JP2009039652A - Sludge dewatering agent and method - Google Patents
Sludge dewatering agent and method Download PDFInfo
- Publication number
- JP2009039652A JP2009039652A JP2007207303A JP2007207303A JP2009039652A JP 2009039652 A JP2009039652 A JP 2009039652A JP 2007207303 A JP2007207303 A JP 2007207303A JP 2007207303 A JP2007207303 A JP 2007207303A JP 2009039652 A JP2009039652 A JP 2009039652A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- group
- water
- hydrogen
- general formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Treatment Of Sludge (AREA)
Abstract
Description
本発明は、スクリュープレス型脱水機を用いて汚泥を脱水する場合の汚泥脱水剤および汚泥脱水方法に関するものであり、詳しくは特定の化学組成の高分子汚泥脱水剤に関し、またそれを用いた汚泥脱水方法に関する。 The present invention relates to a sludge dewatering agent and a sludge dewatering method in the case of dewatering sludge using a screw press type dehydrator, and more particularly to a polymer sludge dewatering agent having a specific chemical composition, and sludge using the same. It relates to a dehydration method.
汚泥脱水機には、遠心脱水機、ベルトプレス、回転式圧縮濾過機(ローラリープレス)など現在使用されているが、スクリュープレス型脱水機は、製紙工場から発生する混合汚泥を始め、各種の有機汚泥の脱水や、魚肉蛋白の回収に使用されてきた。近年、密閉式の圧入式スクリュープレス型脱水機が、比較的脱水しにくい汚泥に対しても有効性を発揮するために、中小規模の処理場で採用されつつある。圧入式スクリュープレス型脱水機は、脱水機の中でろ過ケーキが外筒の全面で脱水されるために、含水率が下がりやすいという特徴を有し、遠心脱水機、ベルトプレス脱水機などの時代から、次世代に向けての脱水機として注目されている。 Currently, sludge dewatering machines such as centrifugal dewatering machines, belt presses, and rotary compression filters (rollary presses) are used. Screw press dewatering machines, including mixed sludge generated from paper mills, are used in various ways. It has been used for organic sludge dewatering and fish protein recovery. In recent years, sealed press-fitting type screw press type dehydrators are being adopted in small and medium-sized treatment plants in order to demonstrate effectiveness against sludge that is relatively difficult to dehydrate. The press-fitted screw press type dehydrator is characterized in that the moisture content tends to decrease because the filter cake is dehydrated on the entire surface of the outer cylinder in the dehydrator. Therefore, it is attracting attention as a dehydrator for the next generation.
従来、ベルトプレス脱水機向けとして特に開発された脱水剤は、市販されておらず、選定試験において使用可能な水溶性高分子が採用されてきた。例えばメタクリレート系、アクリレート系カチオン性単量体を共重合した
水溶性両性高分子(特許文献1)、ポリオキシエチレン鎖を含有する水溶性高分子(特許文献2)、あるいはカチオン性高分子凝集剤、アニオン性高分子凝集剤および水溶性塩からなる混合物(特許文献3)を用いることが開示されている。
これら特許文献を見ると、スクリュープレス型脱水機は、脱水初期において水切れの良い凝集性が必要であるという点に着目した例はない。またこれに必要な水溶性高分子は、水溶性高分子に架橋の概念を取り入れたもの、アミジン系水溶性高分子とアクリル系水溶性高分子の混合物に着目した例はない。
Conventionally, a dehydrating agent specifically developed for a belt press dehydrator has not been commercially available, and a water-soluble polymer that can be used in a selection test has been employed. For example, a water-soluble amphoteric polymer copolymerized with a methacrylate-based or acrylate-based cationic monomer (Patent Document 1), a water-soluble polymer containing a polyoxyethylene chain (Patent Document 2), or a cationic polymer flocculant In addition, it is disclosed to use a mixture (Patent Document 3) comprising an anionic polymer flocculant and a water-soluble salt.
When these patent documents are seen, there is no example which paid attention to the point that the screw press type dehydrator needs cohesiveness with good water drainage in the early stage of dehydration. There are no examples of water-soluble polymers required for this, in which a water-soluble polymer incorporates the concept of crosslinking, and a mixture of an amidine-based water-soluble polymer and an acrylic water-soluble polymer.
本発明の課題は、スクリュープレス型脱水機によって汚泥を脱水する際に必要な高分子凝集剤の機能として、脱水初期において水切れの良い凝集性が必要であるという点に着目し、また水溶性高分子に架橋の概念を取り入れてスクリュープレス型脱水機に適した汚泥脱水剤を開発することである。 The object of the present invention is to pay attention to the point that a coagulant with good water drainage is necessary at the initial stage of dehydration as a function of a polymer flocculant necessary for dewatering sludge with a screw press type dehydrator. The idea is to develop a sludge dewatering agent suitable for screw press dehydrators by incorporating the concept of crosslinking into the molecule.
本発明者は、上記課題を解決するため詳細な検討を重ねた結果、以下のような発明に到達した。すなわち請求項1の発明は、余剰汚泥と凝集沈殿の混合汚泥に高分子汚泥脱水剤を添加したのち、スクリュープレス型脱水機で脱水処理する汚泥の脱水方法において、該高分子汚泥脱水剤が、下記の汚泥脱水剤群(a)および(b)より選択される一種以上であることを特徴とするスクリュープレス型脱水機用汚泥脱水剤である。
汚泥脱水剤群;
(a)下記式(1)および/または(2)で表される構造単位を10〜90モル%含有するアミジン系水溶性高分子(A)と、下記一般式(3)及び/又は(4)で表わされる単量体10〜60モル%、下記一般式(5)で表わされる単量体0〜50モル%、水溶性非イオン性単量体0〜90モル%からなる単量体混合物を重合したカチオン性あるいは両性水溶性高分子(B)とからなる混合物(C)。
R3は水素又はメチル基、R4、R5は炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基、R6は水素、炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基であり、同種でも異種でも良い。Aは酸素原子またはNH、Bは炭素数2〜4のアルキレン基またはアルコキシレン基、X1は陰イオンをそれぞれ表わす。
R7は水素又はメチル基、R8、R9は炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基、X2は陰イオンをそれぞれ表わす。
R10は水素またはCH2COOY2、QはSO3、C6H4SO3、
CONHC(CH3)2CH2SO3、C6H4COOあるいはCOO、R11は水素、メチル基またはCOOY2であり、Y1、Y2は水素または陽イオンをそれぞれ表わす。
(b)下記一般式(3)及び/又は(4)で表わされる単量体10〜60モル%、下記一般式(5)で表わされる単量体0〜50モル%、水溶性非イオン性単量体0〜90モル%からなる単量体混合物を重合した電荷内包率が30%以上、70%以下である架橋性水溶性高分子。
R3は水素又はメチル基、R4、R5は炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基、R6は水素、炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基であり、同種でも異種でも良い。Aは酸素原子またはNH、Bは炭素数2〜4のアルキレン基またはアルコキシレン基、X1は陰イオンをそれぞれ表わす。
R7は水素又はメチル基、R8、R9は炭素数1〜3のアルキル基、アルコキシ基あるいはベンジル基、X2は陰イオンをそれぞれ表わす。
R10は水素またはCH2COOY2、QはSO3、C6H4SO3、
CONHC(CH3)2CH2SO3、C6H4COOあるいはCOO、R11は水素、メチル基またはCOOY2であり、Y1、Y2は水素または陽イオンをそれぞれ表わす。
As a result of repeated detailed studies to solve the above problems, the present inventor has reached the following invention. That is, the invention of claim 1 is a method for dewatering sludge in which a polymer sludge dehydrating agent is added to surplus sludge and coagulated sediment mixed sludge and then dehydrated by a screw press type dehydrator. It is a sludge dewatering agent for screw press type dehydrators characterized by being one or more selected from the following sludge dewatering agent groups (a) and (b).
Sludge dehydrating agent group;
(A) an amidine-based water-soluble polymer (A) containing 10 to 90 mol% of a structural unit represented by the following formula (1) and / or (2), and the following general formula (3) and / or (4) The monomer mixture is composed of 10 to 60 mol% of the monomer represented by formula (0), 0 to 50 mol% of the monomer represented by the following general formula (5), and 0 to 90 mol% of the water-soluble nonionic monomer. A mixture (C) comprising a cationic or amphoteric water-soluble polymer (B) obtained by polymerizing the above.
R3 is hydrogen or a methyl group, R4 and R5 are alkyl groups having 1 to 3 carbon atoms, alkoxyl groups or benzyl groups, and R6 is hydrogen, an alkyl group having 1 to 3 carbon atoms, alkoxyl groups or benzyl groups. But it ’s okay. A represents an oxygen atom or NH, B represents an alkylene group or alkoxylene group having 2 to 4 carbon atoms, and X1 represents an anion.
R7 represents hydrogen or a methyl group, R8 and R9 each represent an alkyl group having 1 to 3 carbon atoms, an alkoxyl group or a benzyl group, and X2 represents an anion.
R10 is hydrogen or CH2COOY2, Q is SO3, C6H4SO3,
CONHC (CH3) 2CH2SO3, C6H4COO or COO, R11 is hydrogen, a methyl group or COOY2, and Y1 and Y2 each represent hydrogen or a cation.
(B) 10-60 mol% of a monomer represented by the following general formula (3) and / or (4), 0-50 mol% of a monomer represented by the following general formula (5), water-soluble nonionic A crosslinkable water-soluble polymer having a charge inclusion rate of 30% or more and 70% or less obtained by polymerizing a monomer mixture composed of 0 to 90 mol% of monomers.
R3 is hydrogen or a methyl group, R4 and R5 are alkyl groups having 1 to 3 carbon atoms, alkoxyl groups or benzyl groups, and R6 is hydrogen, an alkyl group having 1 to 3 carbon atoms, alkoxyl groups or benzyl groups. But it ’s okay. A represents an oxygen atom or NH, B represents an alkylene group or alkoxylene group having 2 to 4 carbon atoms, and X1 represents an anion.
R7 represents hydrogen or a methyl group, R8 and R9 each represent an alkyl group having 1 to 3 carbon atoms, an alkoxy group or a benzyl group, and X2 represents an anion.
R10 is hydrogen or CH2COOY2, Q is SO3, C6H4SO3,
CONHC (CH3) 2CH2SO3, C6H4COO or COO, R11 is hydrogen, a methyl group or COOY2, and Y1 and Y2 each represent hydrogen or a cation.
請求項2の発明は、前記ポリアミジン系水溶性高分子と、前記両性水溶性高分子とからなる混合物(C)が、質量比において、前記ポリアミジン系水溶性高分子:前記両性水溶性高分子=20:80〜60:40であることを特徴とする請求項1に記載の汚泥脱水剤である。 In the invention of claim 2, the mixture (C) comprising the polyamidine-based water-soluble polymer and the amphoteric water-soluble polymer has a mass ratio of the polyamidine-based water-soluble polymer: the amphoteric water-soluble polymer = It is 20: 80-60: 40, The sludge dehydrating agent of Claim 1 characterized by the above-mentioned.
請求項3の発明は、請求項1あるいは2に記載の汚泥脱水剤を汚泥に添加した後、スクリュープレス型脱水機で脱水することを特徴とする汚泥脱水方法である。 A third aspect of the invention is a sludge dewatering method characterized in that the sludge dewatering agent according to the first or second aspect is added to the sludge and then dewatered by a screw press type dehydrator.
本発明は、スクリュープレス型脱水機を用いて余剰汚泥と凝集沈殿汚泥の混合汚泥を脱水する際に、下記の汚泥脱水剤群(a)および(b)より選択される一種以上であることを特徴とする。すなわち(a)アミジン系水溶性高分子(A)と、カチオン性単量体の共重合率が10〜60モル%であるカチオン性あるいは両性水溶性高分子(B)とからなる混合物(C)、(b)カチオン性単量体の共重合率が単量体10〜90モル%であり、電荷内包率が30%以上、70%以下であるカチオン性あるいは両性架橋性水溶性高分子である。すなわちこれら水溶性高分子を添加することによって、下水混合生汚泥や下水消化汚泥に架橋性水溶性高分子を添加してより締った強度の高いフロックを形成することは、初期の濾過工程において良好な濾過性を有し、以後の圧搾、せん断への作用を効率よく行なうことが可能である。 The present invention, when dewatering the mixed sludge of excess sludge and coagulated sediment sludge using a screw press type dehydrator, is one or more selected from the following sludge dewatering agent groups (a) and (b) Features. That is, (a) a mixture (C) comprising an amidine-based water-soluble polymer (A) and a cationic or amphoteric water-soluble polymer (B) having a copolymerization ratio of the cationic monomer of 10 to 60 mol%. (B) a cationic or amphoteric crosslinkable water-soluble polymer having a copolymerization ratio of the cationic monomer of 10 to 90 mol% and a charge inclusion ratio of 30% to 70%. . In other words, by adding these water-soluble polymers, it is possible to add a crosslinkable water-soluble polymer to sewage mixed raw sludge and sewage digested sludge to form a tighter floc and stronger floc. It has good filterability and can efficiently perform subsequent pressing and shearing operations.
本発明で使用する水溶性高分子のうちアミジン系水溶性高分子は、以下のような物性のものであり、以下のように製造することが出来る。すなわち一般的には一級アミノ基または変換反応により一級アミノ基が生成しうる置換アミノ基を有するビニル単量体と、アクリロニトリルまたはメタアクリロニトリル及び前記単量体総量に対し生成した重合体が水溶性を保つモル比で架橋性単量体を添加した共重合体を製造し、更に、該共重合体中のシアノ基と一級アミノ基を反応させてアミジン化することにより得ることができる。 Among the water-soluble polymers used in the present invention, amidine-based water-soluble polymers have the following physical properties and can be produced as follows. That is, in general, a vinyl monomer having a primary amino group or a substituted amino group capable of forming a primary amino group by a conversion reaction, acrylonitrile or methacrylonitrile, and a polymer formed with respect to the total amount of the monomers are water-soluble. The copolymer can be obtained by producing a copolymer to which a crosslinkable monomer is added at a molar ratio to be maintained, and further by reacting a cyano group and a primary amino group in the copolymer to form an amidine.
前記ビニル単量体としては、N−ビニルカルボン酸アミドであり、その例としては、N−ビニルホルムアミドやN−ビニルアセトアミドなどをあげることができる。共重合体中において、かかる化合物に由来する置換アミノ基は、加水分解あるいは加アルコール分解により容易に一級アミノ基に変換される。更にこの一級アミノ基は、隣接したシアノ基と反応してアミジン化する。また共重合するビニル系ニトリル類としては、アクリロニトリルが最も一般的である。 Examples of the vinyl monomer include N-vinylcarboxylic acid amide, and examples thereof include N-vinylformamide and N-vinylacetamide. In the copolymer, a substituted amino group derived from such a compound is easily converted to a primary amino group by hydrolysis or alcoholysis. Furthermore, this primary amino group reacts with an adjacent cyano group to be amidined. The most common vinyl nitriles to be copolymerized are acrylonitrile.
これらのビニル単量体とニトリル類との重合モル比は、通常20:80〜80:20であるが、若し所望ならばこの範囲外の重合モル比を採用することもできる。一般的にカチオン性高分子凝集剤中に占めるアミジン単位の比率が多い方が凝集剤としての性能は優れている。また、アミン単位も凝集剤としての性能に有利に寄与していると考えられる。従って、凝集剤として好適な共重合体を与えるビニル単量体とニトリル類との重合モル比は、一般に20:80〜80:20、好ましくは40:60〜60:40である。 The polymerization molar ratio of these vinyl monomers and nitriles is usually 20:80 to 80:20, but if desired, a polymerization molar ratio outside this range can be employed. Generally, the higher the ratio of amidine units in the cationic polymer flocculant, the better the performance as the flocculant. Moreover, it is thought that the amine unit has also contributed favorably to the performance as a flocculant. Accordingly, the polymerization molar ratio of vinyl monomer and nitrile that gives a copolymer suitable as a flocculant is generally 20:80 to 80:20, preferably 40:60 to 60:40.
アミジン化反応は、ビニル単量体として前記一般式で示されるN−ビニルアミド化合物を用いた場合には、共重合体の置換アミノ基を一級アミノ基に変換し、次いで、生成した一級アミノ基と隣接するシアノ基と反応させてアミジン構造を生成させるという2段階反応により製造することができる。そして、好ましくは、該共重合体を、強酸また強塩基の存在下、水またはアルコール溶液中で加温して、一段階でアミジン構造を生成させる。この場合においても、先ず、一級アミノ基が中間構造として生成しているものと考えられる。 When the N-vinylamide compound represented by the above general formula is used as the vinyl monomer, the amidine reaction is performed by converting the substituted amino group of the copolymer into a primary amino group, and then the generated primary amino group and It can be produced by a two-step reaction in which an amidine structure is formed by reacting with an adjacent cyano group. Preferably, the copolymer is heated in water or an alcohol solution in the presence of a strong acid or a strong base to produce an amidine structure in one step. Even in this case, it is considered that a primary amino group is first generated as an intermediate structure.
該反応の具体的条件としては、例えば共重合体に対し、その置換アミノ基に対して通常0.9〜5.0倍、好ましくは1.0〜3.0倍当量の強酸、好ましくは塩酸を加え、通常80〜150℃、好ましくは90〜120℃の温度で、通常0.5〜20時間加熱することによりアミジン単位を有するカチオン化高分子とすることができる。一般に置換アミノ基に対する強酸の当量比が大きいほど、かつ、反応温度が高いほど、アミジン化が進行する。また、アミジン化に際しては反応に供する共重合体に対し、通常10重量%以上、好ましくは20重量%以上の水を反応系内に存在させる。 Specific conditions for the reaction include, for example, 0.9 to 5.0 times, preferably 1.0 to 3.0 times equivalent of strong acid, preferably hydrochloric acid, relative to the substituted amino group of the copolymer. And a cationized polymer having an amidine unit can be obtained by heating at a temperature of usually 80 to 150 ° C., preferably 90 to 120 ° C., usually for 0.5 to 20 hours. In general, the larger the equivalent ratio of strong acid to substituted amino group and the higher the reaction temperature, the more the amidation proceeds. In addition, in the case of amidine formation, water of usually 10% by weight or more, preferably 20% by weight or more is present in the reaction system with respect to the copolymer used for the reaction.
一般式(1)及び/または(2)の構造単位を有する水溶性高分子は、最も典型的には、上記で説明したところに従い、N−ビニルホルムアミド及びアクリロニトリルを共重合させ、生成した共重合体を、通常、水懸濁液として塩酸の存在下に加熱して置換アミノ基と隣接するシアノ基からアミジン単位を形成させることにより製造される。そして、共重合に供するN−ビニルホルムアミドとアクリロニトリルとのモル比、及び共重合体のアミジン化条件を選択することにより、各種の組成のアミジン系水溶性高分子を製造することができる。 The water-soluble polymer having the structural unit of the general formula (1) and / or (2) is most typically formed by copolymerizing N-vinylformamide and acrylonitrile in accordance with the above-described explanation. The union is usually prepared by heating as an aqueous suspension in the presence of hydrochloric acid to form amidine units from the cyano group adjacent to the substituted amino group. And the amidine-type water-soluble polymer of various compositions can be manufactured by selecting the molar ratio of N-vinylformamide and acrylonitrile to be subjected to copolymerization, and the amidation conditions of the copolymer.
加水分解後の分子中アミジン構造単位のモル%は、5〜100モル%であり、好ましくは10〜100モル%、最も好ましくは20〜100モル%である。非イオン性構造単位は、未加水分解のカルボン酸アミド基と未反応のニトリル基であり、0〜95モル%であり、好ましくは0〜90モル%、最も好ましくは0〜80モル%である。また、分子量は、100万〜1000万であり、好ましくは200万〜700万である。 The mol% of the amidine structural unit in the molecule after hydrolysis is 5 to 100 mol%, preferably 10 to 100 mol%, and most preferably 20 to 100 mol%. The nonionic structural unit is an unhydrolyzed carboxylic acid amide group and an unreacted nitrile group, and is 0 to 95 mol%, preferably 0 to 90 mol%, most preferably 0 to 80 mol%. . The molecular weight is 1 million to 10 million, preferably 2 million to 7 million.
また(a)のもう一方の成分である水溶性高分子は、下記一般式(3)及び/又は(4)で表わされる単量体、下記一般式(5)で表わされる単量体、および水溶性非イオン性単量体を共重合したカチオン性あるいは両性水溶性高分子である。
R3は水素又はメチル基、R4、R5は炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基、R6は水素、炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基であり、同種でも異種でも良い。Aは酸素原子またはNH、Bは炭素数2〜4のアルキレン基またはアルコキシレン基、X1は陰イオンをそれぞれ表わす。
R7は水素又はメチル基、R8、R9は炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基、X2は陰イオンをそれぞれ表わす。
R10は水素またはCH2COOY2、QはSO3、C6H4SO3、
CONHC(CH3)2CH2SO3、C6H4COOあるいはCOO、R11は水素、メチル基またはCOOY2であり、Y1、Y2は水素または陽イオン
The water-soluble polymer as the other component of (a) is a monomer represented by the following general formula (3) and / or (4), a monomer represented by the following general formula (5), and A cationic or amphoteric water-soluble polymer copolymerized with a water-soluble nonionic monomer.
R3 is hydrogen or a methyl group, R4 and R5 are alkyl groups having 1 to 3 carbon atoms, alkoxyl groups or benzyl groups, and R6 is hydrogen, an alkyl group having 1 to 3 carbon atoms, alkoxyl groups or benzyl groups. But it ’s okay. A represents an oxygen atom or NH, B represents an alkylene group or alkoxylene group having 2 to 4 carbon atoms, and X1 represents an anion.
R7 represents hydrogen or a methyl group, R8 and R9 each represent an alkyl group having 1 to 3 carbon atoms, an alkoxyl group or a benzyl group, and X2 represents an anion.
R10 is hydrogen or CH2COOY2, Q is SO3, C6H4SO3,
CONHC (CH3) 2CH2SO3, C6H4COO or COO, R11 is hydrogen, methyl group or COOY2, Y1 and Y2 are hydrogen or cation
共重合の割合は、前記一般式(3)及び/又は(4)で表わされる単量体を10〜90モル%、前記一般式(5)で表わされる単量体を0〜50モル%及び非イオン性単量体を0〜90モル%であり、好ましくは前記一般式(3)及び/又は(4)で表わされる単量体を5〜60モル%、前記一般式(5)で表わされる単量体を5〜50モル%、非イオン性単量体を0〜90モル%である。 The proportion of copolymerization is 10 to 90 mol% of the monomer represented by the general formula (3) and / or (4), 0 to 50 mol% of the monomer represented by the general formula (5), and The nonionic monomer is 0 to 90 mol%, preferably the monomer represented by the general formula (3) and / or (4) is 5 to 60 mol%, and represented by the general formula (5). The monomer is 5 to 50 mol%, and the nonionic monomer is 0 to 90 mol%.
前記一般式(3)で表わされる単量体の例は、(メタ)アクリル酸ジメチルアミノエチルやジメチルアミノプロピル(メタ)アクリルアミド、メチルジアリルアミンなどの単量体が上げられ、四級アンモニウム基含有単量体の例は、前記三級アミノ含有単量体の塩化メチルや塩化ベンジルによる四級化物である(メタ)アクリロイルオキシエチルトリメチルアンモニウム塩化物、(メタ)アクリロイルオキシ2−ヒドロキシプロピルトリメチルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルトリメチルアンモニウム塩化物、(メタ)アクリロイルオキシエチルジメチルベンジルアンモニウム塩化物、(メタ)アクリロイルオキシ2−ヒドロキシプロピルジメチルベンジルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルジメチルベンジルアンモニウム塩化物などである。また一般式(4)で表されるカチオン性単量体の例としては、ジメチルジアリルアンモニウム塩化物、ジアリルメチルベンジルアンモニウム塩化物などである。 Examples of the monomer represented by the general formula (3) include monomers such as dimethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylamide, and methyl diallylamine. Examples of the mer are (meth) acryloyloxyethyltrimethylammonium chloride and (meth) acryloyloxy 2-hydroxypropyltrimethylammonium chloride which are quaternized products of the tertiary amino-containing monomers with methyl chloride or benzyl chloride. , (Meth) acryloylaminopropyltrimethylammonium chloride, (meth) acryloyloxyethyldimethylbenzylammonium chloride, (meth) acryloyloxy 2-hydroxypropyldimethylbenzylammonium chloride, (meth) acryloylaminopropiyl Dimethyl benzyl ammonium chloride, and the like. Examples of the cationic monomer represented by the general formula (4) include dimethyl diallylammonium chloride and diallylmethylbenzylammonium chloride.
さらに一般式(5)で表されるアニオン性単量体の例としては、スルホン基含有単量体の例は、ビニルスルホン酸、ビニルベンゼンスルホン酸あるいは2−アクリルアミド2−メチルプロパンスルホン酸などである。またカルボキシル基含有単量体の例は、メタクリル酸、アクリル酸、イタコン酸、マレイン酸あるいはp−カルボキシスチレンなどである。 Further, as examples of the anionic monomer represented by the general formula (5), examples of the sulfone group-containing monomer include vinyl sulfonic acid, vinyl benzene sulfonic acid, 2-acrylamido 2-methylpropane sulfonic acid, and the like. is there. Examples of the carboxyl group-containing monomer include methacrylic acid, acrylic acid, itaconic acid, maleic acid, and p-carboxystyrene.
非イオン性モノマーの例としては、(メタ)アクリルアミド、N,N−ジメチルアクリルアミド、酢酸ビニル、アクリロニトリル、アクリル酸メチル、(メタ)アクリル酸2−ヒドロキシエチル、ジアセトンアクリルアミド、N−ビニルピロリドン、N−ビニルホルムアミド、N−ビニルアセトアミドアクリロイルモルホリン、アクリロイルピペラジンなどがあげられる。特に好ましいのは、アクリルアミドである。 Examples of nonionic monomers include (meth) acrylamide, N, N-dimethylacrylamide, vinyl acetate, acrylonitrile, methyl acrylate, 2-hydroxyethyl (meth) acrylate, diacetone acrylamide, N-vinyl pyrrolidone, N -Vinylformamide, N-vinylacetamidoacryloylmorpholine, acryloylpiperazine and the like. Particularly preferred is acrylamide.
上記水溶性高分子の分子量は、300万〜1500万であり、好ましくは300万〜1000万、さらに好ましくは500万〜800万である。また本発明で使用するアミジン系水溶性高分子(A)と両性水溶性高分子(B)とからなる混合物(C)の混合比は、アミジン系水溶性高分子(A):両性水溶性高分子(B)=20:80〜60:40であり、好ましくは30:70〜50:50である。この理由としてアミジン系水溶性高分子は、一般的にコスト高であり、混合比は出来る限り低くしたほうが好ましいからである。 The molecular weight of the water-soluble polymer is 3 million to 15 million, preferably 3 million to 10 million, and more preferably 5 million to 8 million. Further, the mixing ratio of the mixture (C) composed of the amidine-based water-soluble polymer (A) and the amphoteric water-soluble polymer (B) used in the present invention is the amidine-based water-soluble polymer (A): Molecule (B) = 20: 80 to 60:40, preferably 30:70 to 50:50. This is because amidine-based water-soluble polymers are generally high in cost, and it is preferable that the mixing ratio be as low as possible.
本発明は、架橋性のイオン性水溶性高分子を使用する場合、電荷内包率30以上、70%以下を有するものであることが好ましい。電荷内包率30未満であると、余剰汚泥と凝集沈殿汚泥の混合汚泥に対しては架橋性が低く、脱水初期において水切れの良い凝集性が必要であるという本発明の目的には適合したものではない。また電荷内包率70%以上であると、架橋が進みすぎたために添加量の増大をもたらし、コスト上昇につながり不利である。 In the present invention, when a crosslinkable ionic water-soluble polymer is used, it preferably has a charge inclusion rate of 30 to 70%. If the charge inclusion rate is less than 30, the mixed sludge of surplus sludge and coagulated sediment sludge has low crosslinkability, and is suitable for the purpose of the present invention that requires good cohesiveness to drain water at the initial stage of dehydration. Absent. On the other hand, if the charge inclusion rate is 70% or more, the amount of addition is increased due to excessive progress of crosslinking, leading to an increase in cost, which is disadvantageous.
水溶性高分子は、架橋することによって水中における分子の広がりが抑制される。そのためにより「密度の詰まった」分子形態として存在し、さらに架橋が進めば水膨潤性の微粒子となる。汚泥脱水剤として高分子凝集剤が使用される場合、前記の「密度の詰まった」分子形態である場合が効率的とされる。架橋性水溶性高分子が汚泥中に添加されると懸濁粒子に吸着し、粒子同士の接着剤として作用し結果として粒子の凝集が起こる。この時「密度の詰まった」分子形態であるため粒子表面と多点で結合し、より締った強度の高いフロックを形成すると推定される。多点で結合することは、懸濁粒子への吸着性能が優れ、そのため未吸着の水溶性高分子が少なく、汚泥中に遊離せず汚泥粘性の上昇が発生しない。結果として機械脱水時、水切れが良くケーキ含水率が低下すると考えられる。さらに使用する高分子凝集剤が両性であるならば、高分子凝集剤の分子同士によるイオン結合、あるいは懸濁粒子表面に吸着している高分子凝集剤分子のカチオン性基とアニオン性基同士によるイオン結合も発生し、電荷の中和が起こる。すなわち電荷的によりゼロに近い状態に近づく。そのため最適添加量範囲は広がり、薬注調節はしやすいものとなる。高分子凝集剤のイオン性がカチオン性のものを使用した場合も吸着、凝集などは同様な機構で起こると推定されるが、カチオン性基とアニオン性基同士によるイオン結合による電荷の中和が発生しないため、添加しすぎると再分散作用が起きやすく、最適添加量範囲は両性に較べより狭いものとなる。 The water-soluble polymer is inhibited from spreading in water by crosslinking. For this reason, it exists as a “density packed” molecular form, and when the crosslinking proceeds further, it becomes a water-swellable fine particle. When a polymer flocculant is used as the sludge dewatering agent, the above-mentioned “density packed” molecular form is considered efficient. When the crosslinkable water-soluble polymer is added to the sludge, it adsorbs to the suspended particles and acts as an adhesive between the particles, resulting in aggregation of the particles. At this time, it is presumed that since it is in a “dense packed” molecular form, it binds to the particle surface at multiple points to form a tighter and stronger floc. Bonding at multiple points is excellent in adsorption performance to suspended particles, so that there are few unadsorbed water-soluble polymers, they are not released into sludge, and sludge viscosity does not increase. As a result, it is considered that during mechanical dehydration, water drainage is good and the moisture content of the cake is reduced. Furthermore, if the polymer flocculant used is amphoteric, it may depend on ionic bonds between the molecules of the polymer flocculant, or between the cationic groups and anionic groups of the polymer flocculant molecules adsorbed on the surface of the suspended particles. Ionic bonds also occur and charge neutralization occurs. That is, it approaches a state close to zero in terms of charge. Therefore, the optimum addition amount range is widened, and the drug injection can be easily adjusted. Even when the ionicity of the polymer flocculant is cationic, adsorption, aggregation, etc. are presumed to occur by the same mechanism, but charge neutralization by ionic bond between the cationic group and anionic group is Since it does not occur, re-dispersing action tends to occur if it is added too much, and the optimum addition amount range becomes narrower than that of both amphoteric.
上記概念をスクリュープレス型脱水機による脱水機構に当てはめて検討してみると、以下のように考えられる。この脱水機は、凝集剤を添加し凝集フロックを生成させた汚泥を多孔パンチングプレートやスリット状のウェッジワイヤー等からなる円筒状のストレーナー(濾過筒)の内部に導入した凝集汚泥を0.1〜2.0rpmの極低速で回転する特殊形状のスクリューシャフトにより搬送しながら圧搾し、脱水を行うタイプである。従って、スクリュープレス脱水機で脱水処理するには、フロック径がストレーナーの孔やスリット巾より大きいこと、凝集汚泥がスクリューにより長時間搬送、圧搾され捩じりが加わるので、フロックが強固で壊れにくいことなどが要望される。そのため初期の濾過工程における汚泥フロックのストレーナー孔やスリット濾過性も処理状態を決める重要な因子と考えられる。従って架橋性水溶性高分子を添加してより締った強度の高いフロックを形成することは、初期の濾過工程において迅速な濾過性を有し、以後の圧搾、せん断への作用を効率よく行なうことが可能である。フロックが締った強度の高いものが形成されていると言うことは、圧搾、せん断によってフロックが破壊せず脱水されるべき「水の通り道」が確保され脱水作用が効率よく行なわれることを意味する。その結果従来の水溶性高分子にくらべ脱水ケーキ含水率も低下すると推定される。 When the above concept is applied to a dehydration mechanism using a screw press type dehydrator, the following is considered. In this dehydrator, the sludge in which flocculant is added and flocculent flocs are generated is introduced into the inside of a cylindrical strainer (filter cylinder) composed of a perforated punching plate, a slit-shaped wedge wire, etc. This is a type in which it is squeezed and dehydrated while being conveyed by a specially shaped screw shaft that rotates at an extremely low speed of 2.0 rpm. Therefore, when dehydrating with a screw press dehydrator, the floc diameter is larger than the strainer hole or slit width, and the coagulated sludge is transported, squeezed and twisted by the screw for a long time. That is required. Therefore, strainer holes and slit filterability of sludge floc in the initial filtration process are considered to be important factors that determine the treatment state. Therefore, the addition of a crosslinkable water-soluble polymer to form a tighter and stronger floc has a rapid filterability in the initial filtration step, and efficiently performs subsequent pressing and shearing operations. It is possible. The fact that a high-strength floc is formed means that the water block that should be dewatered without squeezing or shearing is secured and the dewatering action is performed efficiently. To do. As a result, the water content of the dehydrated cake is estimated to be lower than that of conventional water-soluble polymers.
濾過、圧搾、せん断によって脱水される機構を有するので基本的は多少の繊維分を有するほうが好ましいので、繊維分の少ない余剰汚泥と凝集沈殿汚泥の混合汚泥の場合は架橋性水溶性高分子が適している。また下水混合生汚泥の場合は、比較的繊維分が多いので、架橋度としては低くても脱水に適用できる。 Since it has a mechanism of dehydration by filtration, pressing and shearing, it is basically preferable to have some fiber content, so in the case of mixed sludge of excess sludge with low fiber content and coagulated sediment sludge, a crosslinkable water-soluble polymer is suitable. ing. In the case of sewage mixed raw sludge, since it has a relatively large amount of fibers, it can be applied to dehydration even if the degree of crosslinking is low.
また(a)のアミジン系水溶性高分子とカチオン性あるいは両性水溶性高分子との混合物がスクリュープレス型脱水機に適用できるのは、やはり脱水初期において水切れの良い凝集性が必要であるという点に適しているからであると考えられる。アミジン系水溶性高分子は分子量が低目であり、また架橋性水溶性高分子は、汚泥への拡散が速く、その結果共に汚泥への拡散、吸着、凝集という過程が素早く進み脱水初期において水切れの良い凝集性が達成できるという必要条件を満たしていると考えられる。 The reason why the mixture of the amidine-based water-soluble polymer (a) and the cationic or amphoteric water-soluble polymer can be applied to the screw press type dehydrator is that the coagulability with good drainage is necessary in the early stage of dehydration. It is thought that it is suitable for. Amidine-based water-soluble polymers have a low molecular weight, and cross-linkable water-soluble polymers diffuse quickly into sludge. As a result, the process of diffusion, adsorption, and aggregation into sludge progresses quickly, and water drains at the beginning of dehydration. This is considered to meet the requirement that good cohesiveness can be achieved.
ここで余剰汚泥というのは、排水を沈殿槽に集め、その上澄みを暴気槽において生物処理を行った後、処理水中の懸濁物を沈殿させ、その懸濁物(すなわち汚泥)を暴気槽に返送する際、余分な汚泥は処理系から除くため発生する汚泥ことをいう。また凝集沈殿汚泥というのは、生物処理を行った後、処理水上澄みを硫酸バンドなどの無機凝集剤により凝集させ、懸濁物を沈殿させた沈殿物のことをいう。本発明で使用する汚泥脱水剤の添加量は、汚泥固形分に対し質量で0.1〜1.5%であり、好ましくは0.2〜1.0%である。 The surplus sludge here refers to the collection of wastewater in a sedimentation tank, biological treatment of the supernatant in a storm tank, precipitation of the suspension in the treated water, and storm of the suspension (ie, sludge). When returning to the tank, excess sludge is generated because it is removed from the treatment system. The coagulated sediment sludge refers to a precipitate obtained by coagulating the supernatant of treated water with an inorganic coagulant such as a sulfuric acid band after biological treatment, and precipitating a suspension. The addition amount of the sludge dehydrating agent used in the present invention is 0.1 to 1.5% by mass with respect to the sludge solid content, and preferably 0.2 to 1.0%.
以下に、実施例によって本発明を具体的に説明する。ただし、本発明は以下の実施例に制約されるものではない。 Hereinafter, the present invention will be described specifically by way of examples. However, the present invention is not limited to the following examples.
(合成例1)攪拌機および温度制御装置を備えた反応槽に沸点190°Cないし230°Cのイソパラフィン126.0gにソルビタンモノオレート6.0g及びポリリシノ−ル酸/ポリオキシエチレンブロック共重合物0.6gを仕込み溶解させた。別に脱イオン水35.0gとアクリル酸(AACと略記)60%水溶液19.7gを混合し、これを35%水酸化ナトリウム水溶液17.8gで当量中和した。中和後、アクリロイルオキシエチルトリメチルアンモニウム塩化物(以下DMQと略記)80%水溶液119.1g、メタクリロイルオキシエチルトリメチルアンモニウム塩化物(以下DMCと略記)80%水溶液42.6g、アクリルアミド(AAMと略記)50%水溶液116.4g及びメチレンビスアクリルアミド0.1質量%水溶液3.3g(対単量体0.0018モル%)を各々採取し前記アクリル酸溶液に添加し、完全に溶解させた。また、pHを4.01に調節し、油と水溶液を混合し、ホモジナイザーにて1000rpmで15分間攪拌乳化した。この時の単量体組成は、DMC/DMQ/AAC/AAM=10/30/10/50(モル%)である。 (Synthesis Example 1) In a reaction vessel equipped with a stirrer and a temperature controller, 126.0 g of isoparaffin having a boiling point of 190 ° C to 230 ° C, 6.0 g of sorbitan monooleate and polyricinoleic acid / polyoxyethylene block copolymer 0 .6 g was charged and dissolved. Separately, 35.0 g of deionized water and 19.7 g of a 60% aqueous solution of acrylic acid (abbreviated as AAC) were mixed and neutralized with 17.8 g of a 35% aqueous sodium hydroxide solution. After neutralization, 119.1 g of 80% aqueous solution of acryloyloxyethyltrimethylammonium chloride (hereinafter abbreviated as DMQ), 42.6 g of 80% aqueous solution of methacryloyloxyethyltrimethylammonium chloride (hereinafter abbreviated as DMC), and acrylamide (abbreviated as AAM) 116.4 g of 50% aqueous solution and 3.3 g of methylenebisacrylamide 0.1% by mass aqueous solution (0.0018 mol% to monomer) were each collected and added to the acrylic acid solution, and completely dissolved. Further, the pH was adjusted to 4.01, the oil and the aqueous solution were mixed, and the mixture was emulsified with stirring by a homogenizer at 1000 rpm for 15 minutes. The monomer composition at this time is DMC / DMQ / AAC / AAM = 10/30/10/50 (mol%).
得られたエマルジョンにイソプロピルアルコール40%水溶液2.0g(対単量体0.5質量%)を加え、単量体溶液の温度を30〜33℃に保ち、窒素置換を30分行った後、2、2’−アゾビス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕二塩化水素化物の10%水溶液0.35g(対単量体0.02質量%)を加え、重合反応を開始させた。反応温度を32±2℃で12時間重合させ反応を完結させた。重合後、生成した油中水型エマルジョンに転相剤としてポリオキシエチレントリデシルエ−テル10.0g(対液2.0質量%)を添加混合して試験に供する試料(試料−1)とした。得られた試料をミューテック社製PCD滴定装置により荷電内包率を測定し、また静的光散乱法による分子量測定器(大塚電子製DLS−7000)によって重量平均分子量を測定した。仕込み組成を表1に、結果を表2に示す。 After adding 2.0 g of isopropyl alcohol 40% aqueous solution (0.5% by mass of monomer) to the obtained emulsion, keeping the temperature of the monomer solution at 30 to 33 ° C. and performing nitrogen substitution for 30 minutes, 2,5′-Azobis [2- (5-methyl-2-imidazolin-2-yl) propane] dihydrochloride 10% aqueous solution 0.35 g (0.02% by mass with respect to monomer) was added and polymerized. The reaction was started. The reaction was completed at a reaction temperature of 32 ± 2 ° C. for 12 hours to complete the reaction. After polymerization, 10.0 g of polyoxyethylene tridecyl ether (2.0% by mass with respect to the liquid) was added to and mixed with the resulting water-in-oil emulsion as a phase inversion agent to prepare a sample for use in the test (sample 1). . The charge inclusion rate of the obtained sample was measured by a PCD titration apparatus manufactured by Mutech, and the weight average molecular weight was measured by a molecular weight measuring device (DLS-7000 manufactured by Otsuka Electronics Co., Ltd.) by a static light scattering method. The charged composition is shown in Table 1, and the results are shown in Table 2.
(合成例2)合成例1と同様な操作により単量体組成DMC/DMQ/AAC/AAM=20/40/10/30(モル%)からなる油中水型エマルジョンを重合し、転相剤を加え試料−2とした。仕込み組成を表1に、及び結果を表2に示す。 (Synthesis Example 2) A water-in-oil emulsion having a monomer composition of DMC / DMQ / AAC / AAM = 20/40/10/30 (mol%) was polymerized by the same operation as in Synthesis Example 1, and a phase inversion agent was obtained. To make Sample-2. The charged composition is shown in Table 1, and the results are shown in Table 2.
(合成例3)合成例1と同様な操作により単量体組成DMQ/AAM=50/50(モル%)からなる油中水型エマルジョンを重合し、転相剤を加え試料−3とした。仕込み組成を表1に、及び結果を表2に示す。 (Synthesis Example 3) A water-in-oil emulsion having a monomer composition DMQ / AAM = 50/50 (mol%) was polymerized in the same manner as in Synthesis Example 1, and a phase inversion agent was added to prepare Sample-3. The charged composition is shown in Table 1, and the results are shown in Table 2.
(合成例4)温度計、攪拌機、窒素導入管、ペリスタポンプ(SMP−21型、東京理化器械製)に接続した単量体供給管およびコンデンサ−を備えた500mLの4ツ口フラスコ内にN−ビニルホルムアミド57.3g、アクリロニトリル42.7g(単量体のモル比として50:50)、脱イオン水87.2gを混合したモノマー溶液およびアイソパーM(商品名、エッソ社製、高沸点ケロシン)100g、ハイパーマーB−246(商品名、ICI社製、高級脂肪酸エステル)2g、ソルビタンモノオレート6.5gを秤取し、窒素ガスを導入する事により脱酸素操作を行う。その後、温度52℃にて回転数500rpmにて攪拌しながらアゾ系重合開始剤[2,2’−アゾビス(2,4−ジメチルバレロニトリル)]を全単量体重量に対し2500ppm添加後60℃の温度下に18時間保持し重合を行った。 (Synthesis Example 4) In a 500 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen introduction tube, a monomer supply pipe connected to a peristaltic pump (SMP-21 type, manufactured by Tokyo Rika Kikai Co., Ltd.) and a condenser, N- A monomer solution in which 57.3 g of vinylformamide, 42.7 g of acrylonitrile (molar ratio of the monomer is 50:50), 87.2 g of deionized water, and Isopar M (trade name, manufactured by Esso, high-boiling kerosene) 100 g , 2 g of Hypermer B-246 (trade name, manufactured by ICI, higher fatty acid ester) and 6.5 g of sorbitan monooleate are weighed and deoxygenated by introducing nitrogen gas. Thereafter, while stirring at a temperature of 52 ° C. and a rotation speed of 500 rpm, azo polymerization initiator [2,2′-azobis (2,4-dimethylvaleronitrile)] was added at 2500 ppm based on the total monomer weight, and then 60 ° C. The polymerization was carried out while maintaining the temperature for 18 hours.
この重合体を室温にまで冷却後、安定剤を加え無水塩化水素29.3gを吸収させ、85℃にて24時間加水分解を行った。得られた重合体エマルジョンをアセトン中に添加し、析出せしめ、これを真空乾燥して固体状重合体を得た。このようにして得たアミジン化後重合体の組成は、13C−NMRスペクトルの重合体中の各繰り返し単位に対応した吸収ピークの積分値より算出した。その結果、アミジン構造単位が81モル%、一級アミノ基構造単位が6モル%、その他構造単位が13モル%であることが分かった。これを試料―4とする。仕込み組成を表1に、及び結果を表2に示す。 After cooling the polymer to room temperature, a stabilizer was added to absorb 29.3 g of anhydrous hydrogen chloride, followed by hydrolysis at 85 ° C. for 24 hours. The obtained polymer emulsion was added to acetone to cause precipitation, and this was vacuum dried to obtain a solid polymer. The composition of the polymer after amidine formation thus obtained was calculated from the integrated value of the absorption peak corresponding to each repeating unit in the polymer of the 13 C-NMR spectrum. As a result, it was found that the amidine structural unit was 81 mol%, the primary amino group structural unit was 6 mol%, and the other structural units were 13 mol%. This is designated as Sample-4. The charged composition is shown in Table 1, and the results are shown in Table 2.
(合成例5)合成例4と同様な操作により単量体組成NVF/AN=60/40(モル%)からなる油中水型エマルジョンを重合し、重合後、塩酸により加水分解・アミジン化し、転相剤を加え試料−5とした。その結果、アミジン構造単位が71モル%、一級アミノ基構造単位が15モル%、その他構造単位が14モル%であることが分かった。仕込み組成を表1に、及び結果を表2に示す。 (Synthesis Example 5) A water-in-oil emulsion having a monomer composition NVF / AN = 60/40 (mol%) was polymerized in the same manner as in Synthesis Example 4, and after polymerization, hydrolyzed and amidined with hydrochloric acid. A phase inversion agent was added to make Sample-5. As a result, it was found that the amidine structural unit was 71 mol%, the primary amino group structural unit was 15 mol%, and the other structural units were 14 mol%. The charged composition is shown in Table 1, and the results are shown in Table 2.
(合成例6)合成例1と同様な操作により単量体組成DMQ/AAM=50/50(モル%)からなる油中水型エマルジョンを重合し、転相剤を加え試料−6とした。仕込み組成を表1に、及び結果を表2に示す。 Synthesis Example 6 A water-in-oil emulsion having a monomer composition DMQ / AAM = 50/50 (mol%) was polymerized in the same manner as in Synthesis Example 1, and a phase inversion agent was added to prepare Sample-6. The charged composition is shown in Table 1, and the results are shown in Table 2.
(合成例7)合成例1と同様な操作により単量体組成DMQ/AAM=70/30(モル%)からなる油中水型エマルジョンを重合し、転相剤を加え試料−7とした。仕込み組成を表1に、及び結果を表2に示す。 (Synthesis Example 7) A water-in-oil emulsion having a monomer composition DMQ / AAM = 70/30 (mol%) was polymerized in the same manner as in Synthesis Example 1, and a phase inversion agent was added to prepare Sample-7. The charged composition is shown in Table 1, and the results are shown in Table 2.
(合成例8)合成例1と同様な操作により単量体組成DMC/DMQ/AAC/AAM=10/30/10/50(モル%)からなる油中水型エマルジョンを重合し、転相剤を加え試料−8とした。仕込み組成を表1に、及び結果を表2に示す。 (Synthesis Example 8) A water-in-oil emulsion having a monomer composition of DMC / DMQ / AAC / AAM = 10/30/10/50 (mol%) was polymerized in the same manner as in Synthesis Example 1, and a phase inversion agent was obtained. Was added to make Sample-8. The charged composition is shown in Table 1, and the results are shown in Table 2.
(合成例9)合成例1と同様な操作により単量体組成DMC/DMQ/AAC/AAM=30/40/10/20(モル%)からなる油中水型エマルジョンを重合し、転相剤を加え試料−9とした。仕込み組成を表1に、及び結果を表2に示す。 (Synthesis Example 9) A water-in-oil emulsion having a monomer composition of DMC / DMQ / AAC / AAM = 30/40/10/20 (mol%) was polymerized in the same manner as in Synthesis Example 1, and a phase inversion agent was obtained. Was added to make Sample-9. The charged composition is shown in Table 1, and the results are shown in Table 2.
(比較合成例1)合成例1と同様な操作により単量体組成DMC/DMQ/AAC/AAM=10/30/10/50(モル%)からなる油中水型エマルジョンを重合し、転相剤を加え比較―1とした。仕込み組成を表1に、及び結果を表2に示す。 (Comparative Synthesis Example 1) A water-in-oil emulsion having a monomer composition of DMC / DMQ / AAC / AAM = 10/30/10/50 (mol%) was polymerized by the same operation as in Synthesis Example 1, and phase inversion was performed. Comparative agent-1 was added. The charged composition is shown in Table 1, and the results are shown in Table 2.
(比較合成例2)合成例1と同様な操作により単量体組成DMC/DMQ/AAC/AAM=25/20/10/45(モル%)からなる油中水型エマルジョンを重合し、転相剤を加え比較―2とした。仕込み組成を表1に、及び結果を表2に示す。
(Comparative Synthesis Example 2) A water-in-oil emulsion having a monomer composition of DMC / DMQ / AAC / AAM = 25/20/10/45 (mol%) was polymerized by the same operation as in Synthesis Example 1, and phase inversion was performed. Comparative agent-2 was added. The charged composition is shown in Table 1, and the results are shown in Table 2.
(表1)組成
DMC:メタクロイルオキシエチルトリメチルアンモニウムクロリド
DMQ:アクリロイルオキシエチルトリメチルアンモニウムクロリド、AAC:アクリル酸、AAM:アクリルアミド、架橋剤添加量:対単量体モル%、MBA;メチレンビスアクリルアミド、AN:アクリロニトリル、NVF:N−ビニルホルムアミド。
(Table 1) Composition
DMC: methacryloyloxyethyltrimethylammonium chloride DMQ: acryloyloxyethyltrimethylammonium chloride, AAC: acrylic acid, AAM: acrylamide, cross-linking agent addition amount: mol% to monomer, MBA; methylenebisacrylamide, AN: acrylonitrile, NVF : N-vinylformamide.
(表2)製造結果
分散液粘度:mPa・s、分子量:単位は万、荷電内包率;%
(Table 2) Manufacturing results
Dispersion viscosity: mPa · s, molecular weight: 10,000, charge inclusion rate:%
(ポリアミジンとカチオン性あるいは両性高分子からなる混合物の調製)ポリアミジン(a)試料―4および試料―5と、カチオン性・両性高分子試料(b)試料―1〜試料―3を表3に記載する配合により混合物を調製し(質量比)、それぞれ試料10〜試料―15とする。 (Preparation of a mixture of polyamidine and cationic or amphoteric polymer) Table 3 shows polyamidine (a) sample-4 and sample-5, and cationic / amphoteric polymer sample (b) sample-1 to sample-3. Mixtures are prepared (mass ratio) according to the blending, and are referred to as Sample 10 to Sample-15, respectively.
(表3)
(Table 3)
し尿余剰汚泥とし尿凝集沈殿汚泥の混合汚泥(pH6.85、全SS分17100mg/L)200mLをポリビ−カ−に採取し、表3の試料−10〜試料−15(ポリアミジンとカチオン性あるいは両性高分子からなる混合物)を対汚泥固形分0.7%添加し、ビ−カ−移し替え攪拌20回行った後、T−1179Lの濾布(ナイロン製)により濾過し、10秒後の濾液量の測定、及びフロック強度(大きさ)を目視により測定した。その後50秒間濾過した汚泥をプレス圧3Kg/m2で1分間脱水した後、ケ−キ含水率(105℃で20hr乾燥)を測定した。結果を表4に示す。 200 mL of mixed sludge (pH 6.85, total SS content 17100 mg / L) as surplus human waste sludge was collected in a poly-bicker, and sample 10 to sample 15 in Table 3 (polyamidine and cationic or amphoteric) Polymer mixture) was added to the sludge solid content 0.7%, the beaker was transferred and stirred 20 times, filtered through a T-1179L filter cloth (made of nylon), and the filtrate after 10 seconds. The amount and the floc strength (size) were measured visually. Thereafter, the sludge filtered for 50 seconds was dehydrated at a press pressure of 3 kg / m 2 for 1 minute, and then the moisture content of the cake (dried at 105 ° C. for 20 hours) was measured. The results are shown in Table 4.
(比較試験1)表2の単独の試料である試料―1〜試料―3、および試料―4〜試料―5を用いて、実施例1と同様な試験操作によって比較試験を行った。結果を表4に示す。
(Comparative Test 1) A comparative test was performed by the same test operation as in Example 1 using Sample-1 to Sample-3 and Sample-4 to Sample-5, which are the single samples in Table 2. The results are shown in Table 4.
(表4)
10秒後濾液量:ml、ケーキ含水率:質量%
濾布剥離性:○>△>×の順に良いことを示す。
(Table 4)
Ten seconds later, filtrate amount: ml, cake moisture content: mass%
Filter cloth peelability: Good in the order of ◯>Δ> ×.
食品工業排水余剰汚泥と食品凝沈汚泥の混合汚泥(pH6.25、全SS分30500mg/L)200mLをポリビ−カ−に採取し、表2の試料−6〜試料−9(架橋性水溶性高分子)を対汚泥固形分0.55%添加し、ビ−カ−移し替え攪拌20回行った後、T−1179Lの濾布(ナイロン製)により濾過し、10秒後の濾液量の測定、及びフロック強度(大きさ)を目視により測定した。その後50秒間濾過した汚泥をプレス圧3Kg/m2で1分間脱水した後、ケ−キ含水率(105℃で20hr乾燥)を測定した。結果を表5に示す。 200 ml of mixed sludge of food industry wastewater surplus sludge and food coagulation sludge (pH 6.25, total SS content 30500 mg / L) was collected in a poly-bicker, and sample 6 to sample 9 in Table 2 (crosslinkable water-soluble) Polymer) was added to the sludge solid content of 0.55%, the beaker was transferred and stirred 20 times, then filtered through a T-1179L filter cloth (made of nylon), and the filtrate amount after 10 seconds was measured. The floc strength (size) was measured visually. Thereafter, the sludge filtered for 50 seconds was dehydrated at a press pressure of 3 kg / m 2 for 1 minute, and then the moisture content of the cake (dried at 105 ° C. for 20 hours) was measured. The results are shown in Table 5.
(比較試験2)表2の比較―1と比較―2(架橋性でない水溶性イオン性高分子)を用いて、実施例2と同様な試験操作によって比較試験を行った。結果を表5に示す。
(Comparative Test 2) A comparative test was conducted by the same test procedure as in Example 2 using Comparative-1 and Comparative-2 (non-crosslinkable water-soluble ionic polymer) in Table 2. The results are shown in Table 5.
(表5)
10秒後濾液量:ml、ケーキ含水率:質量%、
濾布剥離性:○>△>×の順に良いことを示す。
(Table 5)
After 10 seconds, filtrate amount: ml, cake moisture content: mass%,
Filter cloth peelability: Good in the order of ◯>Δ> ×.
Claims (3)
汚泥脱水剤群;
(a)下記式(1)および/または(2)で表される構造単位を10〜90モル%含有するアミジン系水溶性高分子(A)と、下記一般式(3)及び/又は(4)で表わされる単量体10〜60モル%、下記一般式(5)で表わされる単量体0〜50モル%、水溶性非イオン性単量体0〜85モル%からなる単量体混合物を重合したカチオン性あるいは両性水溶性高分子(B)とからなる混合物(C)。
R3は水素又はメチル基、R4、R5は炭素数1〜3のアルキル基、アルコキシ基あるいはベンジル基、R6は水素、炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基であり、同種でも異種でも良い。Aは酸素原子またはNH、Bは炭素数2〜4のアルキレン基またはアルコキシレン基、X1は陰イオンをそれぞれ表わす。
R7は水素又はメチル基、R8、R9は炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基、X2は陰イオンをそれぞれ表わす
R10は水素またはCH2COOY2、QはSO3、C6H4SO3、
CONHC(CH3)2CH2SO3、C6H4COOあるいはCOO、R11は水素、メチル基またはCOOY2であり、Y1、Y2は水素または陽イオンをそれぞれ表わす。
(b)下記一般式(3)及び/又は(4)で表わされる単量体10〜90モル%、下記一般式(5)で表わされる単量体0〜50モル%、水溶性非イオン性単量体0〜90モル%からなる単量体混合物を重合した電荷内包率が30%以上、70%以下である架橋性水溶性高分子。
R3は水素又はメチル基、R4、R5は炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基、R6は水素、炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基であり、同種でも異種でも良い。Aは酸素原子またはNH、Bは炭素数2〜4のアルキレン基またはアルコキシレン基、X1は陰イオンをそれぞれ表わす。
R7は水素又はメチル基、R8、R9は炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基、X2は陰イオンをそれぞれ表わす。
R10は水素またはCH2COOY2、QはSO3、C6H4SO3、
CONHC(CH3)2CH2SO3、C6H4COOあるいはCOO、R11は水素、メチル基またはCOOY2であり、Y1、Y2は水素または陽イオンをそれぞれ表わす。 In the sludge dewatering method in which the polymer sludge dewatering agent is added to the mixed sludge of the excess sludge and the coagulated sediment sludge and then dehydrated with a screw press dewatering machine, the polymer sludge dewatering agent is a sludge dewatering agent group ( A sludge dewatering agent for a screw press type dehydrator, wherein the sludge dewatering agent is one or more selected from a) and (b).
Sludge dehydrating agent group;
(A) an amidine-based water-soluble polymer (A) containing 10 to 90 mol% of a structural unit represented by the following formula (1) and / or (2), and the following general formula (3) and / or (4) A monomer mixture comprising 10 to 60 mol% of a monomer represented by formula (0), 0 to 50 mol% of a monomer represented by the following general formula (5), and 0 to 85 mol% of a water-soluble nonionic monomer. A mixture (C) comprising a cationic or amphoteric water-soluble polymer (B) obtained by polymerizing the above.
R3 is hydrogen or a methyl group, R4 and R5 are alkyl groups having 1 to 3 carbon atoms, alkoxy groups or benzyl groups, R6 is hydrogen, an alkyl group having 1 to 3 carbon atoms, alkoxyl groups or benzyl groups. But it ’s okay. A represents an oxygen atom or NH, B represents an alkylene group or alkoxylene group having 2 to 4 carbon atoms, and X1 represents an anion.
R7 represents hydrogen or a methyl group, R8 and R9 each represent an alkyl group having 1 to 3 carbon atoms, an alkoxyl group or a benzyl group, and X2 represents an anion.
R10 is hydrogen or CH2COOY2, Q is SO3, C6H4SO3,
CONHC (CH3) 2CH2SO3, C6H4COO or COO, R11 is hydrogen, a methyl group or COOY2, and Y1 and Y2 each represent hydrogen or a cation.
(B) 10 to 90 mol% of a monomer represented by the following general formula (3) and / or (4), 0 to 50 mol% of a monomer represented by the following general formula (5), water-soluble nonionic A crosslinkable water-soluble polymer having a charge inclusion rate of 30% or more and 70% or less obtained by polymerizing a monomer mixture composed of 0 to 90 mol% of monomers.
R3 is hydrogen or a methyl group, R4 and R5 are alkyl groups having 1 to 3 carbon atoms, alkoxyl groups or benzyl groups, R6 is hydrogen, an alkyl group having 1 to 3 carbon atoms, alkoxyl groups or benzyl groups. But it ’s okay. A represents an oxygen atom or NH, B represents an alkylene group or alkoxylene group having 2 to 4 carbon atoms, and X1 represents an anion.
R7 represents hydrogen or a methyl group, R8 and R9 each represent an alkyl group having 1 to 3 carbon atoms, an alkoxyl group or a benzyl group, and X2 represents an anion.
R10 is hydrogen or CH2COOY2, Q is SO3, C6H4SO3,
CONHC (CH3) 2CH2SO3, C6H4COO or COO, R11 is hydrogen, a methyl group or COOY2, and Y1 and Y2 each represent hydrogen or a cation.
A sludge dewatering method comprising adding a sludge dewatering agent according to claim 1 or 2 to sludge and then dewatering with a screw press type dehydrator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007207303A JP2009039652A (en) | 2007-08-09 | 2007-08-09 | Sludge dewatering agent and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007207303A JP2009039652A (en) | 2007-08-09 | 2007-08-09 | Sludge dewatering agent and method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009039652A true JP2009039652A (en) | 2009-02-26 |
Family
ID=40440999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007207303A Pending JP2009039652A (en) | 2007-08-09 | 2007-08-09 | Sludge dewatering agent and method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009039652A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010214341A (en) * | 2009-03-19 | 2010-09-30 | Hymo Corp | Method for dehydrating sludge |
JP2011031225A (en) * | 2009-08-05 | 2011-02-17 | Daiyanitorikkusu Kk | Sludge dehydrating agent and dehydration method |
JP2011224420A (en) * | 2010-04-15 | 2011-11-10 | Daiyanitorikkusu Kk | Sludge dewatering agent and sludge dewatering treatment method |
JP2012206023A (en) * | 2011-03-30 | 2012-10-25 | Hymo Corp | Coagulation treatment agent and sludge dehydration method using the same |
JP2013006159A (en) * | 2011-06-27 | 2013-01-10 | Daiyanitorikkusu Kk | Sludge dehydration treatment method |
JP2013094739A (en) * | 2011-11-01 | 2013-05-20 | Daiyanitorikkusu Kk | Sludge dehydrating agent and method of dehydrating organic sludge using the same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6125700A (en) * | 1984-07-13 | 1986-02-04 | Ebara Infilco Co Ltd | Dehydrating method of organic sludge |
JPH06218399A (en) * | 1993-01-27 | 1994-08-09 | Mitsubishi Kasei Corp | Sludge dewatering agent |
JP2000176499A (en) * | 1998-12-21 | 2000-06-27 | Japan Organo Co Ltd | Dehydration of inorganic oil-containing sludge |
JP2001179300A (en) * | 1999-12-27 | 2001-07-03 | Toagosei Co Ltd | Method for dehydrating sludge of pulp or papermaking industry |
JP2002114810A (en) * | 2000-08-03 | 2002-04-16 | Hymo Corp | Method for producing water-in-oil type polymer emulsion and method for using the same |
JP2006000759A (en) * | 2004-06-17 | 2006-01-05 | Tomoe Engineering Co Ltd | Sludge dehydrating agent for rotary compression filter and sludge dehydrating method using the same |
-
2007
- 2007-08-09 JP JP2007207303A patent/JP2009039652A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6125700A (en) * | 1984-07-13 | 1986-02-04 | Ebara Infilco Co Ltd | Dehydrating method of organic sludge |
JPH06218399A (en) * | 1993-01-27 | 1994-08-09 | Mitsubishi Kasei Corp | Sludge dewatering agent |
JP2000176499A (en) * | 1998-12-21 | 2000-06-27 | Japan Organo Co Ltd | Dehydration of inorganic oil-containing sludge |
JP2001179300A (en) * | 1999-12-27 | 2001-07-03 | Toagosei Co Ltd | Method for dehydrating sludge of pulp or papermaking industry |
JP2002114810A (en) * | 2000-08-03 | 2002-04-16 | Hymo Corp | Method for producing water-in-oil type polymer emulsion and method for using the same |
JP2006000759A (en) * | 2004-06-17 | 2006-01-05 | Tomoe Engineering Co Ltd | Sludge dehydrating agent for rotary compression filter and sludge dehydrating method using the same |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010214341A (en) * | 2009-03-19 | 2010-09-30 | Hymo Corp | Method for dehydrating sludge |
JP2011031225A (en) * | 2009-08-05 | 2011-02-17 | Daiyanitorikkusu Kk | Sludge dehydrating agent and dehydration method |
JP2011224420A (en) * | 2010-04-15 | 2011-11-10 | Daiyanitorikkusu Kk | Sludge dewatering agent and sludge dewatering treatment method |
JP2012206023A (en) * | 2011-03-30 | 2012-10-25 | Hymo Corp | Coagulation treatment agent and sludge dehydration method using the same |
JP2013006159A (en) * | 2011-06-27 | 2013-01-10 | Daiyanitorikkusu Kk | Sludge dehydration treatment method |
JP2013094739A (en) * | 2011-11-01 | 2013-05-20 | Daiyanitorikkusu Kk | Sludge dehydrating agent and method of dehydrating organic sludge using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100853926B1 (en) | Aqueous Water Soluble Polymer Dispersion and Method of Use | |
JP4687866B2 (en) | Sludge dewatering agent for rotary compression filter and sludge dewatering method using the same | |
WO2004000944A1 (en) | Water-soluble polymer dispersion, process for producing the same and method of use therefor | |
WO2008015769A1 (en) | Flocculant composition and process for producing the same | |
JP2009039652A (en) | Sludge dewatering agent and method | |
JP2009039653A (en) | Sludge dewatering method | |
JP2009039650A (en) | Sludge dewatering agent and method | |
JP5279024B2 (en) | Sludge dewatering method | |
JP4868127B2 (en) | Organic sludge dewatering method | |
JP3712946B2 (en) | Amphoteric water-soluble polymer dispersion | |
JP2009039651A (en) | Sludge dewatering agent and method | |
JP4886228B2 (en) | Water-soluble polymer dispersion and paper making method using the same | |
JP5963257B2 (en) | Sludge dewatering agent | |
JP2009072754A (en) | Method for dehydrating sludge | |
JP5692910B2 (en) | Sludge dewatering agent and sludge dewatering treatment method | |
JP5305443B2 (en) | Water-soluble polymer composition | |
JP2004089780A (en) | Sludge dewatering method | |
JP2008221172A (en) | Sludge dehydrating agent, and sludge dehydrating method | |
JP2008080185A (en) | Sludge dewatering method | |
JP6931209B2 (en) | Method of reforming organic waste | |
JP5601704B2 (en) | Sludge dewatering agent and sludge dewatering method | |
JPH10235399A (en) | Sludge dehydration | |
CN106170502A (en) | Water-soluble cross-linked block copolymer | |
JP3719531B2 (en) | Sludge dewatering method | |
JP4404645B2 (en) | Organic sludge dewatering method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100709 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101014 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110916 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111024 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120309 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120413 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20121010 |