[go: up one dir, main page]

JP2009037888A - 触媒燃焼装置 - Google Patents

触媒燃焼装置 Download PDF

Info

Publication number
JP2009037888A
JP2009037888A JP2007201595A JP2007201595A JP2009037888A JP 2009037888 A JP2009037888 A JP 2009037888A JP 2007201595 A JP2007201595 A JP 2007201595A JP 2007201595 A JP2007201595 A JP 2007201595A JP 2009037888 A JP2009037888 A JP 2009037888A
Authority
JP
Japan
Prior art keywords
catalyst
ignition
mixed gas
temperature
catalytic combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007201595A
Other languages
English (en)
Other versions
JP5203652B2 (ja
Inventor
Takumoto Ikada
拓素 井加田
Kiyoshi Kasahara
清志 笠原
Mikihiro Suzuki
幹浩 鈴木
Tadashi Nomura
正 野村
Rieko Okada
梨英子 岡田
Keisuke Suda
恵介 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007201595A priority Critical patent/JP5203652B2/ja
Publication of JP2009037888A publication Critical patent/JP2009037888A/ja
Application granted granted Critical
Publication of JP5203652B2 publication Critical patent/JP5203652B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】燃料電池の暖機時間を短縮できる触媒燃焼装置を提供すること。
【解決手段】触媒燃焼装置は、水素と空気の混合ガスが供給される吸入孔と、この吸入孔の下流側に設けられ、混合ガスを触媒燃焼する触媒216と、を備え、触媒216における燃焼熱で、燃料電池車両に搭載された燃料電池を暖機する。また、触媒燃焼装置は、さらに、吸入孔の下流側に設けられ、混合ガスを燃焼することにより触媒216を加熱するグロープラグ214と、触媒216で混合ガスを触媒燃焼させる際には、グロープラグ214を制御して触媒216を予熱する制御部28と、を備える。制御部28は、触媒216の着火の完了を判定する着火判定部283と、着火判定部283により、触媒216の着火が完了したと判定されるまで、グロープラグ214を制御して触媒216を加熱する点火装置制御部282と、を備える。
【選択図】図3

Description

本発明は、触媒燃焼装置に関する。詳しくは、燃料電池車両に搭載された燃料電池を暖機する触媒燃焼装置に関する。
近年、自動車の新たな動力源として燃料電池システムが注目されている。燃料電池システムは、例えば、反応ガスを化学反応させて発電する燃料電池と、反応ガス流路を介して燃料電池に反応ガスを供給する反応ガス供給装置と、この反応ガス供給装置を制御する制御装置と、を備える。
燃料電池は、例えば、数十個から数百個のセルが積層されたスタック構造である。ここで、各セルは、膜電極構造体(MEA)を一対のセパレータで挟持して構成され、膜電極構造体は、アノード電極(陽極)およびカソード電極(陰極)の2つの電極と、これら電極に挟持された固体高分子電解質膜とで構成される。
この燃料電池のアノード電極に反応ガスとしての水素ガスを供給し、カソード電極に反応ガスとしての酸素を含むエアを供給すると、電気化学反応により発電する。この発電時に生成されるのは、基本的に無害な水だけであるため、環境への影響や利用効率の観点から、燃料電池が注目されている。
ところで、例えば氷点下のような低温環境下では、燃料電池の電気化学反応の進行が遅くなり発電量が低下する。このため、燃料電池を発電に好ましい温度まで暖機する燃料電池用暖機装置が提案されている(特許文献1参照)。この燃料電池用暖機装置では、燃料電池と熱交換可能な伝熱流体の循環流路上に、エアと水素ガスの混合ガスを燃焼する触媒燃焼装置が設けられており、触媒燃焼装置で混合ガスを燃焼して熱交換により伝熱流体を加熱するとともに、この伝熱流体を循環させることで燃料電池を加熱することができる。
特開2005−251431号公報
しかしながら、上述のように水素ガスを触媒燃焼装置で燃焼すると、触媒燃焼により水蒸気が発生するため、この水蒸気が触媒の表面に付着する場合がある。また、暖機装置の停止時に熱交換器で凝縮した水が、暖機装置の起動時に水蒸気となり、この水蒸気が触媒の表面に付着する場合もある。
またさらに、触媒燃焼装置から排出されるガスが流通する配管と燃料電池から排出されるガスが流通する配管とを接続した場合、燃料電池における反応により発生した水蒸気が、これら配管を介して触媒の表面に付着する場合もある。
以上のように、触媒の表面に水や水蒸気が付着した状態で暖機装置を起動すると、混合ガスを触媒燃焼装置に供給しても、水や水蒸気により燃焼反応が阻害されてしまう。このため、触媒における燃焼反応が不安定になったり、燃焼反応が開始するまでに時間がかかったりしてしまい、燃料電池を所定の温度まで暖機するのに時間がかかってしまうおそれがある。
本発明は、燃料電池の暖機時間を短縮できる触媒燃焼装置を提供することを目的とする。
本発明の触媒燃焼装置(例えば、後述の触媒燃焼装置20)は、水素と空気の混合ガスが供給される混合ガス供給部(例えば、後述の吸入孔212)と、前記混合ガス供給部の下流側に設けられ、混合ガスを触媒燃焼する触媒燃焼部(例えば、後述の触媒216)と、を備え、前記触媒燃焼部における燃焼熱で、燃料電池車両に搭載された燃料電池(例えば、後述の燃料電池10)を暖機する触媒燃焼装置であって、前記混合ガス供給部の下流側に設けられ、混合ガスを燃焼することにより前記触媒燃焼部を加熱する点火装置(例えば、後述のグロープラグ214)と、前記触媒燃焼部で混合ガスを触媒燃焼させる際には、前記点火装置を制御して前記触媒燃焼部を予熱する制御部(例えば、後述の制御部28)と、を備え、前記制御部は、前記触媒燃焼部の着火の完了を判定する着火判定部(例えば、後述の着火判定部283)と、前記着火判定部により、前記触媒燃焼部の着火が完了したと判定されるまで、前記点火装置を制御して前記触媒燃焼部を加熱する点火装置制御部(例えば、後述の点火装置制御部282)と、を備えることを特徴とする。
この発明によれば、混合ガス供給部の下流側に、混合ガスを燃焼して触媒燃焼部を加熱する点火装置を設け、さらにこの点火装置を制御して触媒燃焼部を予熱する制御部を設けた。これにより、例えば、触媒燃焼部の表面に水や水蒸気が付着していたり、触媒燃焼部が凍結していたりした場合であっても、点火装置で触媒燃焼部を予熱することで、触媒燃焼部を、混合ガスを燃焼可能な温度まで速やかに加熱することができる。したがって、燃料電池車両の燃料電池の暖機にかかる時間を短縮できる。
また、触媒燃焼部の着火の完了を判定する着火判定部と、この着火判定部により、触媒燃焼部の着火が完了したと判定されるまで、点火装置を制御して触媒燃焼部を加熱する点火装置制御部とを設けた。これにより、点火装置の使用時間を必要最小にとどめ、点火装置において不要な電力が消費されるのを防止できるとともに、触媒燃焼部による触媒燃焼を速やかに開始することができる。
この場合、前記制御部は、前記点火装置により前記触媒燃焼部を予熱するか否かを判断する触媒予熱判断部(例えば、後述の触媒予熱判断部281)をさらに備えることが好ましい。
この発明によれば、点火装置による触媒燃焼部の予熱が必要でない場合に、点火装置が駆動されて、不必要な電力が消費されたり、触媒燃焼部の予熱に必要以上の時間がかかったりするのを防止できる。
この場合、前記触媒予熱判断部は、前記燃料電池による発電が停止してから起動するまでの停止期間(例えば、後述の発電停止期間)と起動直前の前記触媒燃焼部の温度とに基づいて前記触媒燃焼部の活性状態を推定し、該推定された状態に応じて前記点火装置により前記触媒燃焼部を予熱するか否かを判断することが好ましい。
この発明によれば、燃料電池の発電停止期間と、起動直前の触媒燃焼部の温度とに基づいて触媒燃焼部の活性状態が推定され、この活性状態に応じて点火装置による触媒燃焼部の予熱が必要であるか否かが判断される。このように、触媒燃焼部の活性状態に基づいて点火装置の使用を判断することで、点火装置において不必要な電力が消費されたり、触媒燃焼部の予熱に必要以上の時間がかかったりするのを防止できる。
この場合、前記点火装置は、グロープラグであり、前記制御部は、前記グロープラグの温度が混合ガスの発火温度に達したか否かを判断する発火温度判断部(例えば、後述の発火温度判断部284)と、前記点火装置により前記触媒燃焼部を加熱する際には、前記発火温度判断部によりグロープラグの温度が混合ガスの発火温度に達したと判断された後に、混合ガスを前記グロープラグに供給する供給制御部(例えば、後述の供給制御部285)と、をさらに備えることが好ましい。
この発明によれば、グロープラグにより触媒燃焼部の予熱を開始する際には、発火温度判断部によりグロープラグの温度が混合ガスの発火温度に達したか否かが判断され、発火温度に達したと判断された後に、混合ガスがグロープラグに供給される。このように、グロープラグの温度が混合ガスの発火温度に達した時点で、混合ガスの供給を開始することで、例えば混合ガスの供給開始時期をタイマーで制御する場合と比較して、触媒燃焼部の予熱を速やかに開始できる。したがって、燃料電池車両の燃料電池の暖機にかかる時間を短縮できる。
ここで、点火装置としてグロープラグを用いることにより、グロープラグの温度を、例えば、グロープラグの温度抵抗特性に基づき抵抗値から推定することが可能となる。これにより、温度センサを設置することなくグロープラグの温度を推定することができる。また、点火装置としてグロープラグを用いることにより、点火装置として例えばスパークプラグや伝熱ヒータなど用いた場合と比較して、ノイズの影響を少なくしたり消費電力を抑制したりできる。
この発明によれば、例えば、触媒燃焼部の表面に水や水蒸気が付着していたり、触媒燃焼部が凍結していたりした場合であっても、点火装置で触媒燃焼部を予熱することで、触媒燃焼部を、混合ガスを燃焼可能な温度まで速やかに加熱することができる。したがって、燃料電池車両の燃料電池の暖機にかかる時間を短縮できる。また、触媒燃焼部の着火の完了を判定する着火判定部と、この着火判定部により、触媒燃焼部の着火が完了したと判定されるまで、点火装置を制御して触媒燃焼部を加熱する点火装置制御部とを設けることにより、点火装置の使用時間を必要最小にとどめ、点火装置において不要な電力が消費されるのを防止できるとともに、触媒燃焼部による触媒燃焼を速やかに開始することができる。
以下、本発明の一実施形態を図面に基づいて説明する。
図1は、本発明の一実施形態に係る触媒燃焼装置20を備える燃料電池システム1のブロック図である。燃料電池システム1は、燃料電池10と、燃料電池10を暖機する触媒燃焼装置20と、燃料電池10を冷却する冷却システム30と、燃料電池10および触媒燃焼装置20に水素ガスやエアを供給する供給装置40とを有する。この燃料電池システム1は、図示しない燃料電池車両に搭載される。
燃料電池10は、アノード電極(陽極)側に水素ガスが供給され、カソード電極(陰極)側に酸素を含むエアが供給されると、電気化学反応により発電する。
燃料電池10、触媒燃焼装置20、および冷却システム30の間では、冷媒流路25を介して、熱媒体としての冷媒が循環している。冷却システム30は、冷媒流路25に冷媒を循環させるとともに、冷媒と熱交換を行って冷媒から熱を奪うことで、燃料電池10を冷却する。触媒燃焼装置20は、触媒ヒータ27(後述の図2参照)と、この触媒ヒータ27を制御する制御部28(後述の図3参照)とを備え、水素ガスおよびエアの混合ガスとの触媒反応により発熱し、熱交換により冷媒に熱を与えることで、燃料電池10を暖機する。触媒燃焼装置20の構成については、後に図2および図3を参照して詳述する。
冷媒流路25は、触媒燃焼装置20から燃料電池10に至る第1の冷媒流路251と、燃料電池10から冷却システム30に至る第2の冷媒流路252と、冷却システム30から触媒燃焼装置20に至る第3の冷媒流路253とを有する。第2の冷媒流路252には、燃料電池10から排出され第2の冷媒流路252を流れる冷媒の温度を検出する出口温度センサ254が設けられている。
供給装置40は、コンプレッサ41と、水素ガスを供給する水素タンク42と、排ガス処理装置47と、を含んで構成される。
コンプレッサ41は、エアを供給するものであり、エア供給路43を介して、燃料電池10のカソード電極側および触媒燃焼装置20に接続されている。すなわち、このエア供給路43は、コンプレッサ41から供給されたエアを燃料電池10および触媒燃焼装置20に分配して供給する。このエア供給路43は、コンプレッサ41から燃料電池10に至る第1の供給路431と、この第1の供給路431から分岐して触媒燃焼装置20に至る第2の供給路432と、を有する。
第2の供給路432では、触媒燃焼装置20近傍において、後述の水素供給装置453から水素ガスが供給される。水素供給装置453から供給された水素ガスは、第2の供給路432を流れるエアとミキサ435で混合されて、触媒燃焼装置20に供給される。また、第2の供給路432の水素供給装置453よりも上流側には、第2の供給路432を流れるエアの流量を調整するバタフライバルブ433と、第2の供給路432を流れるエアの流量を検出するエアフロセンサ434とが設けられる。
燃料電池10のカソード電極側および触媒燃焼装置20には、それぞれ、排ガス処理装置47に至る第1のエア排出路441および第2のエア排出路442が接続される。すなわち、これら第1のエア排出路441および第2のエア排出路442は、燃料電池10および触媒燃焼装置20で利用されたエアをまとめて排出する。この第1のエア排出路441には、圧力制御弁443が設けられる。
排ガス処理装置47は、燃料電池10および触媒燃焼装置20から排出されるエアおよび水素ガスを処理する。具体的には、第1のエア排出路441および第2のエア排出路442を通して排出されるエアで後述の水素排出路を通して排出される水素ガスを希釈する希釈器や、この混合ガスの騒音を低減するサイレンサーなどを含んで構成される。
水素タンク42は、水素ガスを供給するものであり、水素供給路45を介して、燃料電池10のアノード電極側および触媒燃焼装置20に接続されている。この水素供給路45は、水素タンク42から燃料電池10に至る第1の水素供給路451と、この第1の水素供給路451から分岐して触媒燃焼装置20に至る第2の水素供給路452と、を有する。
第1の水素供給路451には、第1の水素遮断弁454と、第1のレギュレータ456と、エゼクタ457とが設けられている。第1の水素遮断弁454は、第1の水素供給路451を開閉する。第1のレギュレータ456は、水素タンク42から供給された高圧の水素ガスを所定の圧力に減圧する。エゼクタ457は、後述の水素排出路461に排出された水素ガスを、再循環流路462を通して回収し、燃料電池10に再度供給することにより、水素ガスを循環させる。
また、燃料電池10のアノード電極側には、排ガス処理装置47に至る水素排出路461が接続される。すなわち、水素排出路461は、燃料電池10で利用された水素ガスを排出する。この水素排出路461には、水素排出路461が分岐した再循環流路462が設けられており、この再循環流路462の先端はエゼクタ457に接続されている。また、この水素排出路461のうち、再循環流路462との分岐点と排ガス処理装置47との間には、再循環流路462を流れるガスを排出するパージ弁463が設けられている。
第2の水素供給路452には、水素タンク42側から触媒燃焼装置20へ向かって順に、第2の水素遮断弁455と、第2のレギュレータ458と、圧力センサ459と、水素供給装置453とが設けられている。第2の水素遮断弁455は、第2の水素供給路452を開閉する。第2のレギュレータ458は、水素タンク42から供給された高圧の水素ガスを所定の圧力に減圧する。圧力センサ459は、第2の水素供給路452内の圧力を検出する。水素供給装置453は、上述の第2の供給路432に水素ガスを噴射する。水素供給装置453としては、具体的には、インジェクタやエゼクタなどが用いられる。
以上のような燃料電池システム1において、燃料電池10で発電する手順は、以下のようになる。
すなわち、水素タンク42から、水素供給路45を介して、燃料電池10のアノード側に水素ガスを供給する。また、コンプレッサ41を駆動させることにより、エア供給路43を介して、燃料電池10のカソード側にエアを供給する。
燃料電池10に供給された水素ガスおよびエアは、発電に供された後、燃料電池10からアノード側の生成水などの残留水とともに、水素排出路および第1のエア排出路441に流入する。これらの水素ガスおよびエアは、排ガス処理装置47で処理されて、排出される。
図2は、触媒燃焼装置20が備える触媒ヒータ27の断面図である。
触媒ヒータ27は、燃焼器210と、この燃焼器210に直列に接続されかつ下流に配置される熱交換器220とを備える。
燃焼器210は、筒状の燃焼器ケース211と、この燃焼器ケース211の内部に設けられる触媒燃焼部としての触媒216と、整流板215と、点火装置としてのグロープラグ214と、を有する。
燃焼器ケース211には、混合ガス供給部としての吸入孔212が形成され、この吸入孔212には、上述のミキサ435が接続されており、ミキサ435で混合された水素ガスおよびエアの混合ガスは、吸入孔212に供給される。この吸入孔212に供給された混合ガスは、燃焼器ケース211内部に導入される。
整流板215は、吸入孔212の下流に設けられ、混合ガスを整流し触媒216に供給する。触媒216は、整流板215の下流に設けられ、水素ガスおよびエアの混合ガスを触媒燃焼して発熱する。グロープラグ214は、整流板215と触媒216との間に設けられ、水素ガスおよびエアの混合ガスを燃焼することにより触媒216を加熱する。また、燃焼器210には、触媒216の温度を検出する触媒温度センサ218が設けられている。
熱交換器220は、筒状の熱交換器ケース221と、この熱交換器ケース221の内壁に沿って配置された熱交換流路226と、この熱交換流路226に囲まれた滞留部225とを有する。
熱交換流路226は、冷媒流入部227を介して、上述の第3の冷媒流路253に接続され、冷媒流出部228を介して、上述の第1の冷媒流路251に接続される。これにより、熱交換流路226には、冷媒が流通する。滞留部225には、燃焼器210から排出されたガスが滞留する。この滞留部225には、滞留したガスが排出される排気孔222が設けられる。この排気孔222には、上述の第2のエア排出路442が接続される。
上述の触媒216における触媒燃焼により加熱されたガスは、燃焼器210から熱交換器220に排出される。熱交換器220に排出されたガスは、滞留部225に滞留し、この滞留部225を囲む熱交換流路226を循環する冷媒と熱交換する。
図3は、触媒燃焼装置20が備える制御部28のブロック図である。
制御部28は、触媒予熱判断部281と、点火装置制御部282と、着火判定部283と、発火温度判断部284と、供給制御部285とを備え、触媒216で混合ガスを触媒燃焼させるとともに、触媒216で混合ガスを触媒燃焼させる際には、グロープラグ214を制御して触媒216を予熱することが可能となっている。
触媒予熱判断部281は、グロープラグ214により触媒216を予熱するか否かを判断する。この触媒予熱判断部281は、燃料電池10による発電が停止してから起動するまでの停止期間を計測するタイマ(図示せず)を備えている。触媒予熱判断部281は、このタイマにより計測された停止期間と、触媒温度センサ218により検出された起動直前の触媒216の温度とに基づいて、触媒216の活性状態を推定し、この推定された状態に応じて、グロープラグ214により触媒216を予熱するか否かを判断する。
点火装置制御部282は、グロープラグ214の通電量を制御することで、グロープラグを所定の温度まで加熱する。この点火装置制御部282は、例えば、グロープラグ214により触媒216の予熱を行う際には、着火判定部283により触媒216の着火が完了したと判定されるまで、グロープラグ214を通電させて触媒216を加熱する。
着火判定部283は、触媒温度センサ218で検出された触媒216の温度に基づいて、触媒216の着火の完了を判定する。より具体的には、着火判定部283は、触媒216の温度が所定の着火判定温度に達したか否かを判定することにより、触媒216の着火が完了したか否かを判定する。この着火判定温度は、例えば50℃とするが、これに限らない。
発火温度判断部284は、グロープラグ214により触媒216の予熱を行う際に、グロープラグ214の温度が混合ガスの所定の発火温度に達したか否かを判断する。具体的には、発火温度判断部284は、グロープラグ214の抵抗値を検出し、グロープラグ214の温度抵抗特性に基づき、検出された抵抗値からグロープラグ214の温度を算出する。
供給制御部285は、上述のバタフライバルブ433の開度や水素供給装置453の水素ガス供給量を制御し、触媒ヒータ27に供給される混合ガスの流量や、混合ガス中の水素ガスの濃度を調整する。供給制御部285は、グロープラグ214により触媒216を加熱する際には、発火温度判断部284によりグロープラグ214の温度が混合ガスの発火温度に達したと判断された後に、混合ガスをグロープラグ214に供給する。
触媒燃焼装置20の動作について、図4のフローチャートを参照しながら説明する。
図4は、触媒燃焼装置20による燃料電池10の暖機運転処理の手順を示すフローチャートである。この暖機運転処理は、例えば、イグニッションがオンにされたことに応じて開始される。
ST1では、燃料電池の発電停止期間を検出し、ST2に移る。ST2では、触媒ヒータの触媒の温度を検出し、ST3に移る。ST3では、検出された発電停止期間および触媒温度に基づいて、図5に示すマップを検索して触媒の活性状態を判定し、グロープラグを用いた触媒の予熱が必要であるか否かを判別する。この判別がYESである場合にはST4に移り、NOである場合にはST9に移る。
図5は、触媒の活性状態に関する制御マップを示す図である。
触媒の活性状態は、発電停止期間tに関する所定の閾値tsおよび触媒温度Tに関する所定の閾値Tsに基づいて判定される。図5に示すように、発電停止期間が短期(t≦ts)かつ触媒温度が高温(T>Ts)である場合のみ、グロープラグを用いた触媒の予熱は必要でないと判定され、その他の場合は、グロープラグを用いた触媒の予熱が必要であると判定される。
ST4では、グロープラグを通電させて、グロープラグの加熱を開始し、ST5に移る。ST5では、グロープラグの温度が混合ガスの所定の発火温度に達したか否かを判別する。この判別がYESの場合にはST6に移り、NOの場合にはST5に移る。ST6では、図6に示す制御マップに基づいて混合ガスの流量および濃度を調整し、混合ガスの供給を開始する。
図6は、混合ガス流量および混合ガス濃度に関する制御マップを示す図である。
グロープラグを用いない場合、混合ガスの流量は予め設定された通常流量に設定され、混合ガスの濃度は予め設定された通常濃度に設定される。また、グロープラグを用いる場合、混合ガスの流量は上記通常流量より低い低流量に設定され、混合ガスの濃度は上記通常濃度よりも高い高濃度に設定される。
ST7では、触媒の温度が所定の着火判定温度以上であるか否かを判別する。この判別がYESの場合にはST8に移り、NOの場合にはST7に移る。ST8では、グロープラグの通電を終了して、ST11に移る。
ST9では、上述の図6に示す制御マップに基づいて混合ガスの流量および濃度を調整し、混合ガスの供給を開始する。ST10では、触媒の温度が所定の着火判定温度以上であるか否かを判別する。この判別がYESの場合にはST11に移り、NOの場合にはST10に移る。
ST11では、触媒の温度が所定の設定温度以上であると判別されたことに応じて、混合ガスの流量および濃度を再調整し、ST12に移る。ST12では、燃料電池の温度が所定値以上であるか否かを判別する。具体的には、上述の出口温度センサ254(図1参照)によって検出された冷媒の温度が所定値以上であるかを判別する。この判別がYESである場合はST13に移り、NOの場合はST12に移る。ST13では、混合ガスの供給を終了し、暖機運転処理を終了する。
図7は、触媒燃焼装置20による暖機運転処理のタイムチャートである。具体的には、図7は、グロープラグにより触媒の予熱を行った場合における暖機運転処理の例を示すタイムチャートである。
時刻t0において、イグニッションがオンにされて暖機運転処理が開始される。この時刻t0における燃料電池10の出口水温、すなわち、出口温度センサ254で検出された温度は、第1所定温度であり、この第1所定温度は、例えば、−40℃〜−20℃程度である。
時刻t1において、グロープラグ214の通電が開始され(図4中、ST4)、時刻t2において、グロープラグ214の温度が発火温度に達したと判断され(図4中、ST5)、水素供給装置453により水素ガスがエアに供給され、混合ガスの供給が開始される(図4中、ST6)。
時刻t3において、触媒温度が着火判定温度に達したと判断され(図4中、ST7)、グロープラグの通電が終了し(図4中、ST8)、触媒216の予熱が終了する。ここで、触媒216の予熱が終了したことに応じて、混合ガスの流量および濃度が再調整される(図4中、ST11)。具体的には、コンプレッサ41の回転数を上昇して、エアの流量を増加させるとともに、水素供給装置453による水素ガスの供給量を増加して、水素ガスの流量を増加させることにより、触媒216における触媒燃焼を開始する。すると、触媒温度が急激に上昇する。
時刻t4において、触媒温度が定常運転温度に達し、燃料電池10の出口水温が上昇し始める。定常運転温度は、例えば、700℃程度であるとする。
時刻t5において、燃料電池10の出口水温が第2所定温度に達したと判断され(図4中、ST12)、水素供給装置453をオフにし、混合ガスの供給を終了し(図4中、ST13)、燃料電池暖機処理を終了する。第2所定温度は、例えば、0℃〜20℃程度であると。
本実施形態によれば、以下のような作用効果がある。
(1)吸入孔212の下流側に、混合ガスを燃焼して触媒216を加熱するグロープラグ214を設け、さらにこのグロープラグ214を制御して触媒216を予熱する制御部28を設けた。これにより、例えば、触媒216の表面に水や水蒸気が付着していたり、触媒216が凍結していたりした場合であっても、グロープラグ214で触媒216を予熱することで、触媒216を、混合ガスを燃焼可能な温度まで速やかに加熱することができる。したがって、燃料電池車両の燃料電池の暖機にかかる時間を短縮できる。
また、触媒216の着火の完了を判定する着火判定部283と、この着火判定部283により、触媒216の着火が完了したと判定されるまで、グロープラグ214を制御して触媒216を加熱する点火装置制御部282とを設けた。これにより、グロープラグ214の使用時間を必要最小にとどめ、グロープラグ214において不要な電力が消費されるのを防止できるとともに、触媒216による触媒燃焼を速やかに開始することができる。
図8は、触媒216の温度と時間経過との関係を示す図である。
図8中、点線は、グロープラグ214を用いて触媒216を予熱した場合を示し、破線は、グロープラグ214を用いずに触媒216の予熱を行った場合を示す。ここで、触媒温度T1は、設定温度である。
時刻t0において運転を開始すると、グロープラグ214を用いた場合、触媒216の温度は速やかに上昇し、時刻t1において設定温度に達する。一方、グロープラグ214を用いない場合、触媒216の温度はなかなか上昇せず、時刻t1よりも遅い時刻t2において設定温度に達する。
このように、グロープラグ214で混合ガスを燃焼させて、その熱で触媒216を加熱することにより、触媒216が設定温度に達する時間を短縮できる。
(2)点火装置制御部282を設けることにより、グロープラグ214による触媒216の予熱が必要でない場合に、グロープラグ214が駆動されて、不必要な電力が消費されたり、触媒216の予熱に必要以上の時間がかかったりするのを防止できる。
(3)触媒予熱判断部281により、燃料電池10の発電停止期間と、起動直前の触媒216の温度とに基づいて触媒216の活性状態が推定され、この活性状態に応じてグロープラグ214による触媒216の予熱が必要であるか否かが判断される。このように、触媒216の活性状態に基づいてグロープラグ214の使用を判断することで、グロープラグ214において不必要な電力が消費されたり、触媒216の予熱に必要以上の時間がかかったりするのを防止できる。
(4)グロープラグ214により触媒216の予熱を開始する際には、発火温度判断部284によりグロープラグ214の温度が混合ガスの発火温度に達したか否かが判断され、発火温度に達したと判断された後に、混合ガスがグロープラグ214に供給される。
また、グロープラグ214を用いることにより、グロープラグ214の温度を、例えば、グロープラグ214の温度抵抗特性に基づき抵抗値から推定することが可能となる。これにより、温度センサを設置することなくグロープラグ214の温度を推定することができる。また、点火装置としてグロープラグ214を用いることにより、点火装置として例えばスパークプラグや伝熱ヒータなど用いた場合と比較して、ノイズの影響を少なくしたり消費電力を抑制したりできる。
図9は、グロープラグ214により触媒216を予熱した場合における触媒温度と時間経過との関係を示す図である。
図9中、点線は、グロープラグ214の抵抗値を読み取ることで、グロープラグ214の発火温度を判定し、混合ガスの供給を開始した場合を示し、破線は、タイマー制御により混合ガスの供給を開始した場合を示す。また、触媒温度T1は、設定温度である。
時刻t0において運転を開始し、グロープラグ214の通電を開始する。グロープラグ214の抵抗値を読み取ることで発火温度の判定をした場合、時刻t1においてグロープラグ214が発火温度に達すると即座に混合ガスの供給が開始され、触媒216の予熱が開始され、時刻t2において触媒温度が設定温度に達する。
一方、タイマー制御により混合ガスの供給を開始した場合、時刻t1においてグロープラグ214が発火温度に達しても混合ガスの供給が開始されず、時刻t3において設定された時間が経過した後に混合ガスの供給が開始される。その後、触媒216の予熱が開始され、時刻t4において触媒温度が設定温度に達する。
このように、グロープラグ214の温度が混合ガスの発火温度に達した時点で、混合ガスの供給を開始することで、タイマー制御による場合と比較して、触媒216の予熱を速やかに開始できる。したがって、燃料電池車両の燃料電池の暖機にかかる時間を短縮できる。
なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良などは本発明に含まれるものである。
上記実施形態では、着火判定部283において、触媒216の着火の完了を触媒216の温度により判定したが、これに限らない。例えば、触媒の着火の完了は、時間で判定してもよい。すなわち、触媒の着火が完了すると考えられる時間を予め設定しておき、この設定時間が経過した場合には、触媒の着火が完了したと判定してもよい。
上記実施形態では、点火装置としてグロープラグ214を設けたが、これに限らない。例えば、点火装置として、電気加熱式触媒(EHC)や、スパークプラグなどを設けてもよい。
本発明の一実施形態に係る燃料電池システムのブロック図である。 前記実施形態に係る触媒燃焼装置の触媒ヒータの断面図である。 前記実施形態に係る触媒燃焼装置の制御部のブロック図である。 前記実施形態に係る触媒燃焼装置による燃料電池の暖機運転処理の手順を示すフローチャートである。 前記実施形態に係る触媒燃焼装置の制御マップを示す図である。 前記実施形態に係る触媒燃焼装置の制御マップを示す図である。 前記実施形態に係る触媒燃焼装置による暖機運転処理のタイムチャートである。 前記実施形態に係る触媒の温度と時間経過との関係を示す図。 前記実施形態に係るグロープラグにより触媒を予熱した場合における触媒温度と時間経過との関係を示す図である。
符号の説明
1 燃料電池システム
10 燃料電池
20 触媒燃焼装置(触媒燃焼装置)
27 触媒ヒータ
212 吸入孔(混合ガス供給部)
216 触媒(触媒燃焼部)
214 グロープラグ(点火装置)
28 制御部(制御部)
281 触媒予熱判断部(触媒予熱判断部)
282 点火装置制御部(点火装置制御部)
283 着火判定部(着火判定部)
284 発火温度判断部(発火温度判断部)
285 供給制御部(供給制御部)

Claims (4)

  1. 水素と空気の混合ガスが供給される混合ガス供給部と、
    前記混合ガス供給部の下流側に設けられ、混合ガスを触媒燃焼する触媒燃焼部と、を備え、前記触媒燃焼部における燃焼熱で、燃料電池車両に搭載された燃料電池を暖機する触媒燃焼装置であって、
    前記混合ガス供給部の下流側に設けられ、混合ガスを燃焼することにより前記触媒燃焼部を加熱する点火装置と、
    前記触媒燃焼部で混合ガスを触媒燃焼させる際には、前記点火装置を制御して前記触媒燃焼部を予熱する制御部と、を備え、
    前記制御部は、
    前記触媒燃焼部の着火の完了を判定する着火判定部と、
    前記着火判定部により、前記触媒燃焼部の着火が完了したと判定されるまで、前記点火装置を制御して前記触媒燃焼部を加熱する点火装置制御部と、を備えることを特徴とする触媒燃焼装置。
  2. 前記制御部は、
    前記点火装置により前記触媒燃焼部を予熱するか否かを判断する触媒予熱判断部をさらに備えることを特徴とする請求項1に記載の触媒燃焼装置。
  3. 前記触媒予熱判断部は、前記燃料電池による発電が停止してから起動するまでの停止期間と起動直前の前記触媒燃焼部の温度とに基づいて前記触媒燃焼部の活性状態を推定し、該推定された状態に応じて前記点火装置により前記触媒燃焼部を予熱するか否かを判断することを特徴とする請求項2に記載の触媒燃焼装置。
  4. 前記点火装置は、グロープラグであり、
    前記制御部は、
    前記グロープラグの温度が混合ガスの発火温度に達したか否かを判断する発火温度判断部と、
    前記点火装置により前記触媒燃焼部を加熱する際には、前記発火温度判断部によりグロープラグの温度が混合ガスの発火温度に達したと判断された後に、混合ガスを前記グロープラグに供給する供給制御部と、をさらに備えることを特徴とする請求項1から3の何れかに記載の触媒燃焼装置。
JP2007201595A 2007-08-02 2007-08-02 触媒燃焼装置 Expired - Fee Related JP5203652B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007201595A JP5203652B2 (ja) 2007-08-02 2007-08-02 触媒燃焼装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007201595A JP5203652B2 (ja) 2007-08-02 2007-08-02 触媒燃焼装置

Publications (2)

Publication Number Publication Date
JP2009037888A true JP2009037888A (ja) 2009-02-19
JP5203652B2 JP5203652B2 (ja) 2013-06-05

Family

ID=40439609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007201595A Expired - Fee Related JP5203652B2 (ja) 2007-08-02 2007-08-02 触媒燃焼装置

Country Status (1)

Country Link
JP (1) JP5203652B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016139470A (ja) * 2015-01-26 2016-08-04 本田技研工業株式会社 燃料電池モジュール
EP3104443A1 (en) * 2015-06-10 2016-12-14 Aisin Seiki Kabushiki Kaisha Fuel cell system
WO2019229994A1 (ja) * 2018-06-01 2019-12-05 日産自動車株式会社 触媒燃焼装置の制御方法及び触媒燃焼システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0935734A (ja) * 1995-07-25 1997-02-07 Mitsubishi Heavy Ind Ltd 燃料電池始動装置
JP2000063101A (ja) * 1998-08-12 2000-02-29 Honda Motor Co Ltd 燃料改質装置
JP2004281074A (ja) * 2003-03-12 2004-10-07 Denso Corp 燃料電池の暖機システム
JP2004311337A (ja) * 2003-04-10 2004-11-04 Nissan Motor Co Ltd 燃料電池システムとその起動方法
JP2005281020A (ja) * 2004-03-29 2005-10-13 Honda Motor Co Ltd 水素ガス製造システムの始動方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0935734A (ja) * 1995-07-25 1997-02-07 Mitsubishi Heavy Ind Ltd 燃料電池始動装置
JP2000063101A (ja) * 1998-08-12 2000-02-29 Honda Motor Co Ltd 燃料改質装置
JP2004281074A (ja) * 2003-03-12 2004-10-07 Denso Corp 燃料電池の暖機システム
JP2004311337A (ja) * 2003-04-10 2004-11-04 Nissan Motor Co Ltd 燃料電池システムとその起動方法
JP2005281020A (ja) * 2004-03-29 2005-10-13 Honda Motor Co Ltd 水素ガス製造システムの始動方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016139470A (ja) * 2015-01-26 2016-08-04 本田技研工業株式会社 燃料電池モジュール
EP3104443A1 (en) * 2015-06-10 2016-12-14 Aisin Seiki Kabushiki Kaisha Fuel cell system
WO2019229994A1 (ja) * 2018-06-01 2019-12-05 日産自動車株式会社 触媒燃焼装置の制御方法及び触媒燃焼システム
JPWO2019229994A1 (ja) * 2018-06-01 2021-06-17 日産自動車株式会社 触媒燃焼装置の制御方法及び触媒燃焼システム
JP7111158B2 (ja) 2018-06-01 2022-08-02 日産自動車株式会社 触媒燃焼装置の制御方法及び触媒燃焼システム

Also Published As

Publication number Publication date
JP5203652B2 (ja) 2013-06-05

Similar Documents

Publication Publication Date Title
EP3392950B1 (en) Fuel cell system and control method for fuel cell system
JP7163853B2 (ja) 改質システム及びエンジンシステム
JP6237585B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP4151375B2 (ja) 燃料電池システム
JP4130302B2 (ja) 燃料電池用燃料ガス生成装置
CA2365815C (en) Recovery system of heat energy in a fuel cell system
JP5203652B2 (ja) 触媒燃焼装置
JP3882761B2 (ja) 燃料電池システム
JP2010129529A (ja) 燃料電池システム及びその制御方法
JP2001236978A (ja) 燃料電池システム
JP6939282B2 (ja) 燃料電池システムおよび起動制御方法
JP6682911B2 (ja) コジェネレーションシステム
CN112136238B (zh) 催化燃烧装置的控制方法和催化燃烧系统
JP2006114336A (ja) 燃料電池の起動方法及び燃料電池システム
CN113169363B (zh) 燃烧系统和燃烧系统的控制方法
JP6981089B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP2004047210A (ja) 燃料電池システム
JP2021093283A (ja) 燃料電池システム
WO2021116725A1 (ja) 燃料電池システムの制御方法、及び燃料電池システム
JP2006329508A (ja) 温度調整用流体の加熱装置
JP2003272681A (ja) 燃料電池システム
JP2001082707A (ja) 気化式燃焼装置
JPWO2019229877A1 (ja) 燃料電池システムおよびその運転方法
JP2013206658A (ja) 燃料電池発電システム
KR20110084068A (ko) 연료전지용 고속기동장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees