[go: up one dir, main page]

JP2009035047A - Turning behavior control method and device for vehicle - Google Patents

Turning behavior control method and device for vehicle Download PDF

Info

Publication number
JP2009035047A
JP2009035047A JP2007199136A JP2007199136A JP2009035047A JP 2009035047 A JP2009035047 A JP 2009035047A JP 2007199136 A JP2007199136 A JP 2007199136A JP 2007199136 A JP2007199136 A JP 2007199136A JP 2009035047 A JP2009035047 A JP 2009035047A
Authority
JP
Japan
Prior art keywords
driving force
braking
difference
yaw moment
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007199136A
Other languages
Japanese (ja)
Other versions
JP5082656B2 (en
Inventor
Atsushi Tamura
淳 田村
Hiroyuki Uematsu
裕之 上松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007199136A priority Critical patent/JP5082656B2/en
Publication of JP2009035047A publication Critical patent/JP2009035047A/en
Application granted granted Critical
Publication of JP5082656B2 publication Critical patent/JP5082656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately achieve a target yaw moment by excluding influence of a yaw moment due to same direction rolling displacement of right and left driving wheels caused by a braking/driving force difference between the right and left wheels for turning behavior control. <P>SOLUTION: Relation between a total yaw moment of a yaw moment directly applied to a vehicle by the braking/driving force difference between the right and left wheels (a braking/driving force moment) for the turning behavior control and the yaw moment by the rolling displacement of the right and left wheels caused by the braking/driving force difference between the right and left wheels (the braking/driving force moment), and the braking/driving force difference between the right and left wheels (the braking/driving force moment) is obtained. By applying the target yaw moment Mz to the total yaw moment on a horizontal axis by use thereof, a target braking/driving force moment (a target braking/driving force difference between the right and left wheels) necessary to achieve the target moment Mz is obtained, and braking/driving force instruction values of the right and left wheels are respectively obtained based thereon to contribute to the turning behavior control. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、車両のヨーイング運動を含む旋回挙動が、運転状態に応じた目標挙動となるよう制御する方法、および、そのための装置に関するものである。   The present invention relates to a method for controlling a turning behavior including a yawing motion of a vehicle to be a target behavior corresponding to a driving state, and an apparatus therefor.

車両の旋回挙動を制御する技術としては従来、例えば特許文献1に記載のごときものが知られている。
この旋回挙動制御技術は、左右駆動輪間に駆動力差を持たせて車体にヨーモーメントを付与することにより車両の旋回挙動が目標挙動となるよう制御する技術を前提とする。
As a technique for controlling the turning behavior of a vehicle, for example, a technique described in Patent Document 1 is known.
This turning behavior control technology is premised on a technology for controlling the turning behavior of the vehicle to be the target behavior by giving a yaw moment to the vehicle body by giving a driving force difference between the left and right drive wheels.

ところでこの種の旋回挙動制御技術にあっては、旋回挙動制御に際し左右駆動輪間に駆動力差を与えると、これら左右駆動輪がキングピン軸線周りのコンプライアンスステア(サスペンション弾性ブッシュなどの変形に起因した転舵)によりトー角を変化され、かかるキングピン軸線周りのコンプライアンスステアが車体にヨーモーメントを付与して、その分だけ車両の旋回挙動が目標挙動からずれるという問題を生ずる。   By the way, in this kind of turning behavior control technology, when a driving force difference is given between the left and right driving wheels in the turning behavior control, these left and right driving wheels are caused by compliance steer around the kingpin axis (due to deformation of suspension elastic bushes, etc. The toe angle is changed by (steering), and the compliance steer around the kingpin axis gives a yaw moment to the vehicle body, causing a problem that the turning behavior of the vehicle deviates from the target behavior accordingly.

この問題を解決するため特許文献1には、旋回挙動制御用に左右駆動輪間に駆動力差を与えた時の上記キングピン軸線周りのコンプライアンスステアによるヨーモーメント変化量を考慮して、これが車両の旋回挙動を目標挙動からずらすことのないよう左右駆動輪間駆動力差を補正するという提案がなされている。
この提案技術によれば、キングピン軸線周りのコンプライアンスステアによる旋回挙動制御への影響を排除して、車両の旋回挙動制御を狙い通りのものに近づけることができる。
特開2005−354762号公報
In order to solve this problem, Patent Literature 1 considers the amount of yaw moment change due to compliance steer around the kingpin axis when a driving force difference is given between the left and right drive wheels for turning behavior control, Proposals have been made to correct the driving force difference between the left and right driving wheels so that the turning behavior is not shifted from the target behavior.
According to this proposed technique, the influence on the turning behavior control by the compliance steer around the kingpin axis can be eliminated, and the turning behavior control of the vehicle can be brought close to the intended one.
JP 2005-354762 A

しかし、上記したごとく左右輪間に駆動力差や制動力差を持たせて目標挙動を実現すべく行う車両の旋回挙動制御において、車両の旋回挙動を目標挙動からずらす原因には、上記したキングピン軸線周りのコンプライアンスステアだけでなく、以下のようなものも車両の旋回挙動制御に影響することを確かめた。   However, as described above, in the turning behavior control of the vehicle to achieve the target behavior by providing a driving force difference or a braking force difference between the left and right wheels, the cause of shifting the turning behavior of the vehicle from the target behavior is as described above. In addition to compliance steer around the axis, the following things have also been confirmed to affect the turning behavior control of the vehicle.

ここで車輪を懸架するサスペンション装置について考察するに、サスペンション装置としては、代表的なものとして車軸懸架式サスペンション装置と、独立懸架式サスペンション装置が存在する。   Here, a suspension device for suspending a wheel is considered. As suspension devices, there are typically an axle suspension type suspension device and an independent suspension type suspension device.

前者の車軸懸架式サスペンション装置は、左右輪が個々に回転自在に取り付けられているナックル同士を、ビームと称せられる構造体により相互に連結し、この構造体(ビーム)を弾性体を介して車体に弾支することにより、左右輪を相互に直接連結した状態で車体に懸架するものである。   In the former axle suspension type suspension device, knuckles to which left and right wheels are individually attached are connected to each other by a structure called a beam, and this structure (beam) is connected to the vehicle body via an elastic body. It is suspended from the vehicle body in a state where the left and right wheels are directly connected to each other.

また後者の独立懸架式サスペンション装置は、左右輪が個々に回転自在に取り付けられているナックルを、サスペンションアームやサスペンションリンクにより、サスペンションメンバと称される構造体に上下方向揺動可能に連節し、この構造体(サスペンションメンバ)を弾性体を介して車体に弾支することにより、左右輪を相互に構造体(サスペンションメンバ)で間接的に連結した状態で車体に懸架するものである。   In the latter independent suspension type suspension device, a knuckle on which left and right wheels are individually rotatable is connected to a structure called a suspension member by a suspension arm and a suspension link so as to be swingable in the vertical direction. The structure (suspension member) is elastically supported on the vehicle body via an elastic body, whereby the left and right wheels are suspended from the vehicle body in a state of being indirectly connected to each other by the structure (suspension member).

これら何れの型式のサスペンション装置においても、前記した旋回挙動制御に際し左右輪間に制駆動力差を持たせると、これら左右輪は両者間における共通な鉛直軸線(路面に垂直な軸線)の周りで、上記弾支による弾支力に抗して共に同じ方向へ転動変位されるといった、左右輪同方向転動変位のコンプライアンスステアを生ずる。
かかる左右輪同方向転動変位のコンプライアンスステアは、左右輪のタイヤスリップ角変化を惹起して車体にヨーモーメントを付与し、これが、左右輪間制駆動力差による挙動制御に影響を及ぼして、車両の旋回挙動を目標挙動からずらすという問題を生ずる。
In any of these types of suspension devices, if a braking / driving force difference is provided between the left and right wheels in the above-described turning behavior control, these left and right wheels are rotated around a common vertical axis (axis perpendicular to the road surface) between the two. As a result, a compliance steer for rolling displacement in the same direction in the left and right wheels is generated, in which both the rollers are displaced in the same direction against the supporting force of the above-mentioned elastic support.
The compliance steer for the rolling displacement in the same direction on the left and right wheels causes a change in tire slip angle between the left and right wheels and gives the vehicle body a yaw moment, which affects the behavior control due to the braking / driving force difference between the left and right wheels. This causes a problem of shifting the turning behavior of the vehicle from the target behavior.

特許文献1に記載の従来の旋回挙動制御技術にあっては、旋回挙動制御用に左右駆動輪間に駆動力差を与えた時におけるキングピン軸線周りのコンプライアンスステアによる影響が排除されるよう左右駆動輪間駆動力差を補正するため、キングピン軸線周りのコンプライアンスステアによる影響をなくすことはできるが、
旋回挙動制御用に左右駆動輪間に駆動力差を与えた時における左右輪同方向転動変位のコンプライアンスステアによる影響はこれを排除し得ず、その分だけ車両の旋回挙動が目標挙動からずれるという問題を生ずる。
In the conventional turning behavior control technology described in Patent Document 1, when driving force difference is applied between the left and right drive wheels for turning behavior control, the left and right drive is eliminated so as to eliminate the influence of compliance steer around the kingpin axis. In order to correct the wheel driving force difference, it is possible to eliminate the influence of compliance steer around the kingpin axis,
The effect of compliance steering on the rolling displacement in the same direction on the left and right wheels when a driving force difference is applied between the left and right drive wheels for turning behavior control cannot be excluded, and the turning behavior of the vehicle deviates from the target behavior accordingly. This causes the problem.

更に、左右輪がリヤサスペンション装置により懸架された後輪である場合、左右輪同方向転動変位のコンプライアンスステアによるヨーモーメントが、左右輪駆動力差によるヨーモーメントを妨げる向きのものであることから、
車両に作用するこれら両ヨーモーメントの和値が、左右輪駆動力差によるヨーモーメントの向きとは逆向きのヨーモーメントになることがあり、この場合、目標ヨーモーメント(目標旋回挙動)を実現する左右輪駆動力差が複数存在することになり、これら複数の左右輪駆動力差から最も適した左右輪駆動力差を選択する必要があるが、この選択について特許文献1には何らの言及もなく、この点においても特許文献1に記載された従来の旋回挙動制御技術は、車両の旋回挙動を目標挙動に一致させることができない。
Furthermore, when the left and right wheels are rear wheels suspended by a rear suspension device, the yaw moment due to the compliance steering of the left and right wheels in the same direction rolling displacement is in a direction that hinders the yaw moment due to the left and right wheel driving force difference. ,
The sum of these two yaw moments acting on the vehicle may result in a yaw moment that is opposite to the direction of the yaw moment due to the difference in driving force between the left and right wheels. In this case, the target yaw moment (target turning behavior) is achieved. There will be a plurality of left and right wheel driving force differences, and it is necessary to select the most suitable left and right wheel driving force difference from these plurality of left and right wheel driving force differences. In this respect as well, the conventional turning behavior control technology described in Patent Document 1 cannot match the turning behavior of the vehicle with the target behavior.

本発明は、左右輪間制駆動力差により車両の旋回挙動を目標挙動に近づける型式の旋回挙動制御を踏襲するが、このとき左右輪間制駆動力差に伴って生じた上記左右輪同方向転動変位のコンプライアンスステアによっても、これによる影響を受けることなく車両の旋回挙動を目標挙動に一致させ得る車両の旋回挙動制御技術を提案することを目的とする。   The present invention follows the type of turning behavior control in which the turning behavior of the vehicle approaches the target behavior due to the difference in braking / driving force between the left and right wheels. It is an object of the present invention to propose a vehicle turning behavior control technology that can match the turning behavior of a vehicle with a target behavior without being affected by compliance steer of rolling displacement.

この目的のため、本発明による車両の旋回挙動制御方法は、請求項1に記載のごとき順次工程の組み合わせになるものとする。
先ず、前提となる車両は、少なくとも1組の左右輪を、これら左右輪間における共通な鉛直軸線周りで弾支力に抗し同方向へ転動変位可能に相関させて懸架した車両とし、
当該車両の旋回挙動制御に当たっては、上記左右輪間に制駆動力差を持たせることにより車体に、目標とすべきヨーモーメントが付与されるようなものとする。
For this purpose, the vehicle turning behavior control method according to the present invention is a combination of sequential processes as described in claim 1.
First, the vehicle as a premise is a vehicle in which at least one pair of left and right wheels are suspended by being correlated with each other so as to be able to roll and displace in the same direction against a resilient support force around a common vertical axis between these left and right wheels.
In controlling the turning behavior of the vehicle, a target yaw moment is applied to the vehicle body by giving a braking / driving force difference between the left and right wheels.

かかる左右輪間制駆動力差による車両の旋回挙動制御に際し、本発明においては、
当該左右輪間制駆動力差に起因した左右輪の上記同方向転動変位に伴って車体に付与されるヨーモーメントを求める工程と、
かようにして求めた左右輪の転動変位に伴うヨーモーメントによる影響を排除しつつ上記の目標ヨーモーメントが達成されるよう左右輪間制駆動力差を決定する工程との順次組み合わせにより車両の旋回挙動制御を行うものとする。
In controlling the turning behavior of the vehicle based on the difference between the braking / driving force between the left and right wheels,
Obtaining a yaw moment to be applied to the vehicle body along with the rolling displacement in the same direction of the left and right wheels caused by the difference in braking / driving force between the left and right wheels;
By sequentially combining with the step of determining the braking / driving force difference between the left and right wheels so as to achieve the target yaw moment while eliminating the influence of the yaw moment due to the rolling displacement of the left and right wheels thus determined, Turn behavior control shall be performed.

また前記した目的のため、本発明による車両の旋回挙動制御装置は、請求項3に記載のごとき以下の構成になるものとする。
先ず、前提となる車両は、少なくとも1組の左右輪を、これら左右輪間における共通な鉛直軸線周りで弾支力に抗し同方向へ転動変位可能に相関させて懸架し、上記左右輪間に制駆動力差を持たせることにより車体に、目標とすべきヨーモーメントを付与するようにした車両とする。
For the purpose described above, the vehicle turning behavior control apparatus according to the present invention has the following configuration as described in claim 3.
First, the vehicle as a premise suspends at least one pair of left and right wheels so as to be capable of rolling displacement in the same direction against a resilient force around a common vertical axis between the left and right wheels. A vehicle in which a target yaw moment is applied to the vehicle body by providing a braking / driving force difference therebetween.

本発明による車両の旋回挙動制御装置は、かかる車両に対し以下のような左右輪間制駆動力差決定手段および左右輪間駆動力差付与手段を設ける。
前者の左右輪間制駆動力差決定手段は、旋回挙動制御用の左右輪間制駆動力差に起因した上記左右輪転動変位に伴って車体に付与されるヨーモーメントと、左右輪間制駆動力差によるヨーモーメントとの相関関係から、目標ヨーモーメントが達成される左右輪間制駆動力差を決定するものである。
後者の左右輪間駆動力差付与手段は、かようにして決定した制駆動力差を左右輪間に付与するものである。
The turning behavior control apparatus for a vehicle according to the present invention includes the following left and right wheel braking / driving force difference determining means and left and right wheel driving force difference providing means for the vehicle.
The former left / right wheel braking / driving force difference determining means includes a yaw moment applied to the vehicle body due to the left / right wheel rolling displacement resulting from the left / right wheel braking / driving force difference for turning behavior control, and left / right wheel braking / driving. From the correlation with the yaw moment due to the force difference, the braking / driving force difference between the left and right wheels at which the target yaw moment is achieved is determined.
The latter right / left wheel driving force difference applying means applies the braking / driving force difference thus determined between the left and right wheels.

本発明による車両の旋回挙動制御方法によれば、旋回挙動制御用の左右輪間制駆動力差に起因した左右輪の前記同方向転動変位に伴うヨーモーメントによる影響を排除しつつ目標ヨーモーメントが達成されるように左右輪間制駆動力差を決定して、これを左右輪間制駆動力差による車両の旋回挙動制御に資することとなり、
旋回挙動制御用の左右輪間制駆動力差による左右輪同方向転動変位に伴って生じたヨーモーメントが、車両の旋回挙動を目標挙動からずらすことがなくなり、旋回挙動制御を狙い通りのものにすることができる。
According to the vehicle turning behavior control method of the present invention, the target yaw moment is eliminated while eliminating the influence of the yaw moment due to the same-direction rolling displacement of the left and right wheels caused by the difference in braking / driving force between the left and right wheels for turning behavior control. Therefore, the difference in braking / driving force between the left and right wheels is determined so as to achieve this, and this will contribute to the vehicle turning behavior control based on the difference in braking / driving force between the left and right wheels.
The yaw moment generated by the rolling displacement of the left and right wheels in the same direction due to the difference in braking / driving force between the left and right wheels for turning behavior control will not shift the turning behavior of the vehicle from the target behavior, and the turning behavior control is as intended. Can be.

また本発明による車両の旋回挙動制御装置によれば、旋回挙動制御用の左右輪間制駆動力差に起因した左右輪の前記同方向転動変位に伴って車体に付与されるヨーモーメントと、左右輪間制駆動力差によるヨーモーメントとの相関関係から、目標ヨーモーメントが達成される左右輪間制駆動力差を決定するから、
左右輪間制駆動力差により車両の旋回挙動を目標挙動に一致させるという車両の旋回挙動制御に対し、前者の左右輪同方向転動変位によるヨーモーメントが影響を及ぼすことのないよう左右輪間制駆動力差を決定することができることとなり、
前者の左右輪同方向転動変位に伴うヨーモーメントによる影響を排除しつつ車両の旋回挙動制御を狙い通りに遂行することができる。
According to the vehicle turning behavior control apparatus of the present invention, the yaw moment applied to the vehicle body in association with the rolling displacement of the left and right wheels caused by the difference in braking / driving force between the left and right wheels for turning behavior control, From the correlation with the yaw moment due to the left / right wheel braking / driving force difference, the left / right wheel braking / driving force difference at which the target yaw moment is achieved is determined.
The left and right wheels are controlled so that the yaw moment due to rolling displacement in the same direction of the left and right wheels does not affect the turning behavior control of the vehicle that matches the turning behavior of the vehicle to the target behavior due to the braking / driving force difference between the left and right wheels. The braking / driving force difference can be determined,
It is possible to perform the turning behavior control of the vehicle as intended while eliminating the influence of the yaw moment accompanying the former left and right wheels in the same direction rolling displacement.

以下、本発明の実施例を、図面に示す実施例に基づき詳細に説明する。
図1は、本発明の一実施例になる車両の旋回挙動制御方法および装置を適用した車両を示し、1Lは左操舵輪(左前輪)、1Rは右操舵輪(右前輪)、2Lは左駆動輪(左後輪)、2Rは右駆動輪(右後輪)である。
Hereinafter, embodiments of the present invention will be described in detail based on the embodiments shown in the drawings.
FIG. 1 shows a vehicle to which a vehicle turning behavior control method and apparatus according to an embodiment of the present invention is applied. 1L is a left steering wheel (left front wheel), 1R is a right steering wheel (right front wheel), and 2L is left. Drive wheel (left rear wheel), 2R is right drive wheel (right rear wheel).

左右前輪1L,1Rは、個々のフロントサスペンション装置3L,3Rにより車体4に上下方向ストローク可能に懸架すると共に、ステアリングホイール5によりステアリングギヤ装置6を介して転舵可能とする。
左右後輪2L,2Rは、サスペンションアーム7L,7Rおよびサスペンションリンク8L,8Rを含む個々の独立懸架式リヤサスペンション装置により車体4に上下方向ストローク可能に懸架するが、この懸架に際しては、左右後輪2L,2Rのナックル(図示せず)にサスペンションアーム7L,7Rおよびサスペンションリンク8L,8Rの対応端(外端)を上下方向揺動可能に連節し、サスペンションアーム7L,7Rおよびサスペンションリンク8L,8Rの他端(内端)を共通なサスペンションメンバ9に上下方向揺動可能に連節し、サスペンションメンバ9をその4偶角における弾性体11を介して車体4に弾支する。
The left and right front wheels 1L and 1R are suspended on the vehicle body 4 so as to be able to move in the vertical direction by the individual front suspension devices 3L and 3R, and can be steered by the steering wheel 5 via the steering gear device 6.
The left and right rear wheels 2L, 2R are suspended on the vehicle body 4 so as to be able to move in the vertical direction by individual independent suspension rear suspension devices including suspension arms 7L, 7R and suspension links 8L, 8R. Suspension arms 7L, 7R and suspension links 8L, 2L, 2R knuckle (not shown) are connected to the corresponding ends (outer ends) of suspension arms 7L, 7R and suspension links 8L, 8R so that they can swing vertically. The other end (inner end) of 8R is connected to a common suspension member 9 so as to be swingable in the vertical direction, and the suspension member 9 is elastically supported on the vehicle body 4 via the elastic body 11 at its four even angles.

かくして左右後輪2L,2Rは、サスペンションメンバ9を介し相互に間接的に連結した状態で車体4に懸架され、
左右後輪2L,2Rは、両者間に制駆動力差を付与されると、例えば図2に矢で示すようなベクトルと左右輪間トレッドbとの積で表される制駆動力モーメントを発生し、左右後輪2L,2R間(サスペンションメンバ9の4個の弾性体11により構成されたサスペンションメンバ弾支構造の弾性中心)における共通な鉛直軸線(路面に直角な軸線)の周りで、4個の弾性体11による弾支力に抗し図2に例示するごとく同方向へ転動変位し得る。
Thus, the left and right rear wheels 2L, 2R are suspended from the vehicle body 4 in a state of being indirectly connected to each other via the suspension member 9,
When the left and right rear wheels 2L and 2R are given a braking / driving force difference between them, for example, a braking / driving force moment represented by the product of the vector shown by the arrow in Fig. 2 and the tread b between the left and right wheels is generated. 4 around the common vertical axis (axis perpendicular to the road surface) between the left and right rear wheels 2L, 2R (the elastic center of the suspension member elastic support structure constituted by the four elastic bodies 11 of the suspension member 9). As shown in FIG. 2, it can roll and displace in the same direction as shown in FIG.

サスペンションメンバ9には更に、左右後輪2L,2R用の個々の制駆動モータ12L,12Rを取着し、これらモータ12L,12Rによりそれぞれの出力軸13L,13Rを介し左右後輪2L,2Rを個々に駆動したり、逆に回生制動し得るものとして、上記の左右輪間制駆動力差を付与し得るようになる。
なお本実施例では、後2輪をそれぞれモータ12L,12Rで個別にモータ駆動して後2輪間に制駆動力差を持たせ得る電気自動車について説明したが、これに限られるものではなく、前輪か後輪かを問わず左右輪間で制駆動力配分を行って左右輪間に制駆動力差を持たせ得る車両であれば、内燃機関のようなエンジン等の共通な動力源で左右輪を駆動する車両であっても、本発明による旋回挙動制御は適用可能である。
The suspension member 9 is further fitted with individual braking / driving motors 12L and 12R for the left and right rear wheels 2L and 2R. The left and right rear wheels 2L and 2R are connected to the suspension member 9 through the output shafts 13L and 13R by the motors 12L and 12R. The above-described left / right wheel braking / driving force difference can be applied as an individual drive or a regenerative braking.
In the present embodiment, the description has been given of the electric vehicle in which the rear two wheels are individually motor-driven by the motors 12L and 12R, respectively, and the braking / driving force difference can be provided between the rear two wheels, but is not limited thereto. If the vehicle can distribute the braking / driving force between the left and right wheels, regardless of whether it is the front wheel or the rear wheel, and the braking / driving force difference between the left and right wheels, it can be controlled by a common power source such as an internal combustion engine. The turning behavior control according to the present invention can be applied even to a vehicle that drives wheels.

図1,2の実施例では、左右後輪2L,2Rを個々に制駆動するために、モータ12L,12Rを共通なコントローラ14により個々のインバータ15L,15Rを介して制駆動力制御可能とし、これがためコントローラ14には、
ステアリングホイール5の操舵角θを検出する操舵角センサ16からの信号と、
エンジン出力を決定するアクセル開度(アクセルペダル踏み込み量)APOを検出するアクセル開度センサ17からの信号と、
ブレーキペダル踏力BPOを検出するブレーキペダル踏力センサ18からの信号と、
車速VSPを検出する車速センサ19からの信号と、
車体に作用するヨーレートγを検出するヨーレートセンサ21からの信号と、
車体に作用する前後加速度Gxを検出する前後加速度センサ22からの信号と、
車体に作用する横加速度Gyを検出する横加速度センサ23からの信号とを入力する。
In the embodiment of FIGS. 1 and 2, in order to individually brake and drive the left and right rear wheels 2L and 2R, the motors 12L and 12R can be controlled by the common controller 14 via the individual inverters 15L and 15R, This is why the controller 14
A signal from the steering angle sensor 16 for detecting the steering angle θ of the steering wheel 5,
A signal from an accelerator opening sensor 17 that detects an accelerator opening (accelerator pedal depression amount) APO that determines engine output,
A signal from the brake pedal depression force sensor 18 for detecting the brake pedal depression force BPO,
A signal from the vehicle speed sensor 19 for detecting the vehicle speed VSP;
A signal from the yaw rate sensor 21 for detecting the yaw rate γ acting on the vehicle body,
A signal from the longitudinal acceleration sensor 22 that detects the longitudinal acceleration Gx acting on the vehicle body,
A signal from the lateral acceleration sensor 23 for detecting the lateral acceleration Gy acting on the vehicle body is input.

コントローラ14は、これら入力情報をもとに図3に示す制御プログラムを実行して、車両の旋回挙動(ヨーモーメント)が目標挙動となるような左右後輪2L,2R間の目標とすべき制駆動力差を決定すると共に、現在の走行状態を維持しつつ目標とすべき左右輪間制駆動力差が達成されるような左右後輪2L,2Rの制駆動力指令値を個々に求め、これら左右後輪2L,2Rの制駆動力指令値をインバータ15L,15Rに指令するものとする。   The controller 14 executes the control program shown in FIG. 3 based on the input information, and controls the left and right rear wheels 2L and 2R so that the turning behavior (yaw moment) of the vehicle becomes the target behavior. In addition to determining the driving force difference, individually determine the braking / driving force command values for the left and right rear wheels 2L and 2R to achieve the target braking force difference between the left and right wheels while maintaining the current running state, The braking / driving force command values of these left and right rear wheels 2L and 2R are commanded to the inverters 15L and 15R.

図3のステップS1においては、車両の目標制駆動力Fdを以下のようにして求める。
先ずアクセル開度APO、ブレーキペダル踏力BPO、車速VSPなどから、モータ12L,12Rの駆動力特性や、ブレーキ装置の制動力特性をもとに、車両に要求されている目標前後加速度αを算出する。
次に、この目標前後加速度αを実現するための車両の目標制駆動力Fdを、目標前後加速度αと、各部回転慣性分だけ補正した車体質量Wjと、走行抵抗Fross(転がり抵抗、空気抵抗、勾配抵抗)とに基づく次式の演算により求める。
Fd=Wi・α+Fross ・・・(1)
In step S1 of FIG. 3, the target braking / driving force Fd of the vehicle is obtained as follows.
First, from the accelerator opening APO, brake pedal depression force BPO, vehicle speed VSP, etc., the target longitudinal acceleration α required for the vehicle is calculated based on the driving force characteristics of the motors 12L and 12R and the braking force characteristics of the brake device. .
Next, the target braking / driving force Fd of the vehicle for realizing the target longitudinal acceleration α is obtained by correcting the target longitudinal acceleration α, the vehicle body mass Wj corrected by the rotational inertia of each part, and the running resistance Fross (rolling resistance, air resistance, It is obtained by calculation of the following equation based on (gradient resistance).
Fd = Wi ・ α + Fross (1)

次のステップS2においては、操舵角θおよび車速VSPから目標とすべきヨーレートγを求め、この目標ヨーレートγを実現するために必要な目標ヨーモーメントMzを、車体慣性―慣性モーメントIzと、微分演算子(d/dt)とに基づく次式の演算により求める。
Mz=Iz・(d/dt)γ ・・・(2)
なお、ステップS1およびステップS2においては、車両の目標制駆動力Fdおよび目標ヨーモーメントMzがそれぞれ、タイヤ摩擦円の限界を越えるような値にならないよう設定するのが好ましい。
In the next step S2, the yaw rate γ to be targeted is obtained from the steering angle θ and the vehicle speed VSP, and the target yaw moment Mz necessary for realizing the target yaw rate γ is calculated as the vehicle body inertia-inertia moment Iz and the differential calculation. It is calculated by the following formula based on the child (d / dt).
Mz = Iz ・ (d / dt) γ (2)
In step S1 and step S2, it is preferable to set so that the target braking / driving force Fd and the target yaw moment Mz of the vehicle do not exceed values of the tire friction circle.

ステップS3においては、左右輪間制駆動力差、つまり図2につき前記した制駆動力モーメントと、これにより車両に付与される合計ヨーモーメントとの関係から、上記目標ヨーモーメントMzを実現するために必要な目標制駆動力モーメント(目標左右輪間制駆動力差)を求める。
制駆動力モーメント(左右輪間制駆動力差)によって車両に付与されるヨーモーメントとしては、左右輪間制駆動力差により直接車体に付与されるヨーモーメントと、図2につき前述した左右後輪2L,2Rの同方向転動変位によるタイヤスリップ角変化に伴って車体に付与されるヨーモーメントとがあり、これらの和値が制駆動力モーメント(左右輪間制駆動力差)によって車両に付与される合計ヨーモーメントである。
In step S3, in order to realize the target yaw moment Mz from the relationship between the braking / driving force difference between the left and right wheels, that is, the braking / driving force moment described above with reference to FIG. 2 and the total yaw moment applied to the vehicle. Obtain the required target braking / driving force moment (target braking force difference between left and right wheels).
The yaw moment applied to the vehicle by the braking / driving force moment (the difference in braking / driving force between the left and right wheels) includes the yaw moment directly applied to the vehicle body by the difference in braking / driving force between the left and right wheels, and the left and right rear wheels described above with reference to FIG. There is a yaw moment that is applied to the vehicle body as the tire slip angle changes due to the rolling displacement of 2L and 2R in the same direction, and the sum of these is applied to the vehicle by the braking / driving force moment (the difference in braking / driving force between the left and right wheels) Is the total yaw moment.

前者のヨーモーメントは、左右輪間制駆動力差による旋回挙動制において周知であるから、ここではその詳細な説明を省略し、後者の左右輪同方向転動変位によるヨーモーメントにつき、以下に詳述する。
左右後輪2L,2Rに係わるリヤサスペンション装置の前後剛性から、左右後輪2L,2Rに制駆動力が与えられた時における左右後輪2L,2Rの前後変位量は一義的に決まるから、左右後輪2L,2Rの制駆動力と前後変位量との関係は予め関数またはマップとして準備可能である。
Since the former yaw moment is well known in turning behavior control based on the difference in braking / driving force between the left and right wheels, a detailed description thereof is omitted here, and the yaw moment caused by the rolling displacement in the same direction on the left and right wheels is described in detail below. Describe.
Since the longitudinal displacement of the left and right rear wheels 2L and 2R is uniquely determined from the longitudinal rigidity of the rear suspension system related to the left and right rear wheels 2L and 2R, when the braking / driving force is applied to the left and right rear wheels 2L and 2R, The relationship between the braking / driving force of the rear wheels 2L and 2R and the longitudinal displacement amount can be prepared in advance as a function or a map.

そこで先ず、これら関数やマップを基に、左右後輪2L,2Rへの制駆動力FxRL,FxRRから左右後輪2L,2Rの図2に例示するタイヤ接地点前後変位量D(FxRL),D(FxRR)を求める。
そして、これら左右後輪2L,2Rのタイヤ接地点前後変位量D(FxRL),D(FxRR)と、左右後輪2L,2R間トレッドbとに基づく次式の演算により、図2に例示した左右後輪2L,2Rのトー角変化量ζを求める。
ζ=sin-1{[D(FxRR)−D(FxRL)]/b}
≒[D(FxRR)−D(FxRL)]/b ・・・(3)
First, based on these functions and maps, the front and rear displacements D (Fx RL) illustrated in FIG. 2 of the left and right rear wheels 2L and 2R from the braking / driving forces Fx RL and Fx RR to the left and right rear wheels 2L and 2R are illustrated. ), D (Fx RR ).
Then, by calculating the following equation based on the front and rear displacements D (Fx RL ) and D (Fx RR ) of the left and right rear wheels 2L and 2R and the tread b between the left and right rear wheels 2L and 2R, FIG. The toe angle change amount ζ of the left and right rear wheels 2L, 2R illustrated is obtained.
ζ = sin −1 {[D (Fx RR ) −D (Fx RL )] / b}
≒ [D (Fx RR ) −D (Fx RL )] / b (3)

かようにして求めた左右後輪2L,2Rのトー角変化量ζに、後輪の等価コーナリングパワーKijを乗ずることで、後輪1輪分の横力変化量を求める。
ここで、後輪の等価コーナリングパワーKijは、予め求めておいた一定値とする。
そして、後輪2輪分の横力変化量に、車両重心点および後輪車軸間の距離Lrを乗ずることにより、左右後輪2L,2Rの制駆動力差に起因した図2に例示する同方向転動変位に伴うヨーモーメントを求めることができる。
The lateral force change amount for one rear wheel is obtained by multiplying the toe angle change amount ζ of the left and right rear wheels 2L and 2R thus obtained by the equivalent cornering power Kij of the rear wheel.
Here, the equivalent cornering power Kij of the rear wheel is set to a constant value obtained in advance.
Then, by multiplying the lateral force change amount for the two rear wheels by the distance Lr between the center of gravity of the vehicle and the rear axle, the example illustrated in FIG. 2 is caused by the braking / driving force difference between the left and right rear wheels 2L, 2R. The yaw moment accompanying the directional rolling displacement can be obtained.

かかる左右後輪2L,2Rの制駆動力差に起因した同方向転動変位に伴って生ずるヨーモーメントと、左右輪間制駆動力差により直接車体に付与されるヨーモーメントとの和値、つまり、制駆動力モーメント(左右輪間制駆動力差)によって車両に付与される合計ヨーモーメントは、制駆動力モーメント(左右輪間制駆動力差)に対し、例えば図4に実線で示すごとき傾向をもって変化する。
なお図4において、OSはオーバーステアを意味し、USは逆にアンダーステアを意味するものである
The sum of the yaw moment that accompanies the rolling displacement in the same direction due to the difference in braking / driving force between the left and right rear wheels 2L and 2R, and the yaw moment that is directly applied to the vehicle body due to the difference in braking / driving force between the left and right wheels, that is, The total yaw moment applied to the vehicle by the braking / driving force moment (the difference in braking / driving force between the left and right wheels) tends to be as shown by the solid line in FIG. 4, for example, relative to the braking / driving force moment (the difference in braking / driving force between the left and right wheels) Change with.
In FIG. 4, OS means oversteer, and US means understeer.

図4における破線特性は、左右輪間制駆動力差により直接車体に付与されるヨーモーメントの変化特性を示し、制駆動力モーメント(左右輪間制駆動力差)に対しリニヤに変化する特性である。
一方で左右後輪2L,2Rの制駆動力差に起因した同方向転動変位に伴って生ずるヨーモーメントは、左右輪間制駆動力差により直接車体に付与されるヨーモーメント(破線で示す)を妨げる向きのものであることから、これらヨーモーメントの和値である、制駆動力モーメント(左右輪間制駆動力差)によって車両に付与される合計ヨーモーメントは、左右輪間制駆動力差により直接車体に付与される破線図示のヨーモーメントを、矢印で示すごとく左右後輪2L,2Rの同方向転動変位に伴って生ずるヨーモーメントだけ減殺した実線図示のごときものとなる。
The broken line characteristic in Fig. 4 shows the change characteristic of the yaw moment directly applied to the vehicle body due to the difference in braking / driving force between the left and right wheels, and the characteristic that changes linearly with respect to the braking / driving force moment (difference in braking / driving force between the left and right wheels). is there.
On the other hand, the yaw moment caused by the rolling displacement in the same direction due to the braking / driving force difference between the left and right rear wheels 2L and 2R is directly applied to the vehicle body by the difference in braking / driving force between the left and right wheels (shown by broken lines). Therefore, the total yaw moment given to the vehicle by the braking / driving force moment (difference between the left and right wheels) is the sum of these yaw moments. As shown by the arrows, the yaw moment shown in the broken line directly applied to the vehicle body is as shown by the solid line in which the yaw moment generated by the rolling displacement in the same direction of the left and right rear wheels 2L and 2R is reduced.

従って、制駆動力モーメント(左右輪間制駆動力差)により車両に付与される合計ヨーモーメントは、図4にハッチングを付して示す領域に見られるごとく、左右輪間制駆動力差により得ようとするヨーモーメント(破線で示す)と逆の向きになることがあり、
車両のオーバーステア傾向を狙った旋回挙動制御が望まれているのに、アンダーステア方向の旋回挙動制御になったり、
逆に、車両のアンダーステア方向を狙った旋回挙動制御が望まれているのに、オーバーステア方向の旋回挙動制御になったりすることがある。
Therefore, the total yaw moment applied to the vehicle by the braking / driving force moment (difference in braking / driving force between the left and right wheels) is obtained by the difference in braking / driving force between the left and right wheels, as seen in the hatched area in FIG. May be in the opposite direction to the yaw moment (shown in broken lines)
Although turning behavior control aiming at the oversteer tendency of vehicles is desired, turning behavior control in the understeer direction,
On the contrary, there is a case where the turning behavior control in the oversteer direction may be performed although the turning behavior control aiming at the understeer direction of the vehicle is desired.

図4の横軸と縦軸とを逆にすると、図5に示すような合計ヨーモーメントに対する制駆動力モーメント(左右輪間制駆動力差)の関係が得られ、これを用いて横軸上の合計ヨーモーメントに目標ヨーモーメントMzを当てはめることにより、目標ヨーモーメントMzを実現するのに必要な目標制駆動力モーメント(左右輪間目標制駆動力差)を求める。
ちなみに、目標ヨーモーメントMzが図5の横軸上においてMz1のように小さな場合、これを実現するのに必要な目標制駆動力モーメント(左右輪間目標制駆動力差)が複数(図では3個)存在し、目標ヨーモーメントMzが図5の横軸上においてMz2のように大きな場合、これを実現するのに必要な目標制駆動力モーメント(左右輪間目標制駆動力差)は1つのみである。
If the horizontal and vertical axes in Fig. 4 are reversed, the relationship of braking / driving force moment (difference in braking / driving force between the left and right wheels) with respect to the total yaw moment as shown in Fig. 5 is obtained. By applying the target yaw moment Mz to the total yaw moment, the target braking / driving force moment (target braking / driving force difference between the left and right wheels) required to achieve the target yaw moment Mz is obtained.
Incidentally, if the target yaw moment Mz is as small as Mz1 on the horizontal axis in Fig. 5, multiple target braking / driving force moments (difference between the target braking / driving forces between the left and right wheels) required to achieve this are shown (3 in the figure). 1) If the target yaw moment Mz is as large as Mz2 on the horizontal axis in Fig. 5, the target braking / driving force moment (target braking / driving force difference between the left and right wheels) required to achieve this is one. Only.

図3のステップS4においては、ステップS3で上記のごとくに求めた、目標ヨーモーメントMzを実現するのに必要な目標制駆動力モーメント(左右輪間目標制駆動力差)が複数存在するか否かをチェックし、複数存在する場合は制御を順次ステップS5、ステップS6およびステップS7へと進め、複数存在しなければ(1個のみである場合は)制御をステップS7へと進める。   In step S4 of FIG. 3, whether or not there are a plurality of target braking / driving force moments (target braking / driving force difference between the left and right wheels) necessary for realizing the target yaw moment Mz obtained as described above in step S3. If there are a plurality, the control proceeds to step S5, step S6, and step S7 sequentially. If there are not a plurality (if there is only one), the control proceeds to step S7.

ステップS5においては、複数の目標制駆動力モーメント(左右輪間目標制駆動力差)ごとに、これらを左右後輪2L,2R間に付与した時における左右前輪1L,1Rおよび左右後輪2L,2Rの摩擦円利用率を以下のように推定演算すると共に、それぞれにおいて最も摩擦円利用率の高い車輪の摩擦円利用率(摩擦円利用率最大値)を、複数の目標制駆動力モーメント(左右輪間目標制駆動力差)による摩擦円利用率最大値q1max,q2max,q3maxとする。   In step S5, for each of a plurality of target braking / driving force moments (target braking / driving force difference between the left and right wheels), the left and right front wheels 1L, 1R and the left and right rear wheels 2L, In addition to estimating and calculating the 2R friction circle utilization rate as follows, the friction circle utilization rate (the maximum value of the friction circle utilization rate) of the wheel with the highest friction circle utilization rate for each of the two target braking / driving force moments (left and right) Friction circle utilization rate maximum value q1max, q2max, q3max due to wheel-to-wheel target braking / driving force difference).

先ず各輪に係わる摩擦円利用率の推定演算を説明する。
そのために、車両質量や車両重心高などの車両諸元と、前後加速度Gxおよび横加速度Gyとから、各輪の荷重移動量を求め、これら荷重移動量だけ各輪の初期輪荷重を加減して、各輪の輪荷重Fzij{i:F(前輪)またはR(後輪)、j:R(右輪)またはL(左輪)で、以下i,jは同様の趣旨を意味するものとする}を推定する。
First, the estimation calculation of the friction circle utilization factor related to each wheel will be described.
For this purpose, the load movement amount of each wheel is obtained from vehicle specifications such as vehicle mass and vehicle center of gravity, and longitudinal acceleration Gx and lateral acceleration Gy, and the initial wheel load of each wheel is adjusted by the load movement amount. , Wheel load Fzij of each wheel {i: F (front wheel) or R (rear wheel), j: R (right wheel) or L (left wheel), hereinafter i and j shall mean the same purpose} Is estimated.

次いで、操舵角θと転舵角との関係を表すアッカーマン特性を含めたマップを基に、操舵角θから左右前輪1L,1Rの転舵角δL,δRを求め、
上記の輪荷重移動量をもとに推定し得るサスペンションストローク量から、サスペンションストローク量とトー角変化量との関係を表したマップを基に、サスペンションストローク量に起因した各輪トー角変化量Φを検索し、
その後、車速VSP、ヨーレートγ、および車体スリップ角βbody(推定値)から、各輪における車体スリップ角を求める。
Next, based on the map including the Ackermann characteristic representing the relationship between the steering angle θ and the turning angle, the turning angles δ L and δ R of the left and right front wheels 1L and 1R are obtained from the steering angle θ,
From the amount of suspension stroke that can be estimated based on the above-mentioned wheel load movement amount, based on a map that shows the relationship between the suspension stroke amount and the toe angle change amount, each wheel toe angle change amount Φ due to the suspension stroke amount Φ Search for
Thereafter, the vehicle body slip angle in each wheel is obtained from the vehicle speed VSP, the yaw rate γ, and the vehicle body slip angle βbody (estimated value).

上記のようにして求めた左右前輪転舵角δL,δR 、各輪トー角変化量Φ、および、各輪における車体スリップ角と、ステップS3で前記(3)式の演算により求めた左右後輪2L,2Rのトー角変化量ζとから、左右前輪1L,1Rのタイヤスリップ角βFL,βFRおよび左右後輪2L,2Rのタイヤスリップ角βRL,βRR をそれぞれ、次式の演算により求める。
βFL=βbody+(LF/V)γ+δL+φFL ・・・(4)
βFR=βbody+(LF/V)γ+δR+φFR ・・・(5)
βRL=βbody−(LR/V)γ+φRL+ζ・・・(6)
βRR=βbody−(LR/V)γ+φRR+ζ・・・(7)
The left and right front wheel turning angles δ L and δ R obtained as described above, the toe angle change amount Φ of each wheel, and the vehicle body slip angle in each wheel, and the left and right values obtained by the calculation of the expression (3) in step S3. From the toe angle change amount ζ of the rear wheels 2L and 2R, tire slip angles β FL and β FR of the left and right front wheels 1L and 1R and tire slip angles β RL and β RR of the left and right rear wheels 2L and 2R are respectively Calculate by calculation.
β FL = β body + (L F / V) γ + δ L + φ FL (4)
β FR = βbody + (L F / V) γ + δ R + φ FR (5)
β RL = βbody− (L R / V) γ + φ RL + ζ (6)
β RR = βbody− (L R / V) γ + φ RR + ζ (7)

そして、前記の推定各輪荷重Fzと、各輪前後力Fx(前回の制駆動力算出値)とから、各輪のコーナリングパワーを推定する。
ここで、コーナリングパワーの荷重依存性を二次関数で近似すると、各輪のコーナリングパワーKij{i:前輪または後輪、j:右輪または左輪}は、タイヤによって決まる定数をa1,a2とし、路面摩擦係数推定値をμとすると、次式によって推定演算することができる。
Kij=(a1・Fzij2+a2・Fzij)×{1−(Fxij/[μ・Fzij])21/2 ・・・(8)
Then, the cornering power of each wheel is estimated from each estimated wheel load Fz and each wheel longitudinal force Fx (previously calculated braking / driving force value).
Here, when the load dependence of the cornering power is approximated by a quadratic function, the cornering power Kij {i: front wheel or rear wheel, j: right wheel or left wheel} of each wheel is a constant determined by the tire, a1 and a2. If the estimated value of the road surface friction coefficient is μ, it can be estimated and calculated by the following equation.
Kij = (a1 · Fzij 2 + a2 · Fzij) × {1− (Fxij / [μ · Fzij]) 2 } 1/2 (8)

上記のようにして求めた各輪のタイヤスリップ角βijおよび各輪のコーナリングパワーKijを基に、以下のように横力Fyを算出する。
つまり、タイヤスリップ角βijに対する横力Fyの非線形特性を二次関数で近似して、横力Fyを次式により推定することができる。
Fyij=Kij・βij−(Kij2/[4μ・Fzij])βij2 ・・・(9)
Based on the tire slip angle βij of each wheel and the cornering power Kij of each wheel determined as described above, the lateral force Fy is calculated as follows.
That is, the non-linear characteristic of the lateral force Fy with respect to the tire slip angle βij can be approximated by a quadratic function, and the lateral force Fy can be estimated by the following equation.
Fyij = Kij · βij− (Kij 2 / [4μ · Fzij]) βij 2 (9)

次に、各輪の前後力Fx(前回の制駆動力算出値)と、横力Fyと、垂直荷重Fzと、路面摩擦係数μとから、次式の演算により各輪の摩擦円利用率qij(%)を推定する。
qij={(Fxij2+Fyij2-2/(μ・Fzij)}×100 ・・・(10)
かかる各輪の摩擦円利用率qij(%)は、複数の目標制駆動力モーメント(左右輪間目標制駆動力差)を左右後輪2L,2R間に付与した時における4輪各々の摩擦円利用率で、
それぞれにおいて最も摩擦円利用率の高い車輪の摩擦円利用率(摩擦円利用率最大値)を、複数の目標制駆動力モーメント(左右輪間目標制駆動力差)による摩擦円利用率最大値q1max,q2max,q3max(図5のMz=Mz1時における3個の目標制駆動力モーメントに対応した摩擦円利用率最大値)とする。
Next, the frictional circle utilization factor qij of each wheel is calculated from the following formula using the longitudinal force Fx (previously calculated braking / driving force value) of each wheel, lateral force Fy, vertical load Fz, and road surface friction coefficient μ. Estimate (%).
qij = {(Fxij 2 + Fyij 2 ) −2 / (μ · Fzij)} × 100 (10)
The friction circle utilization ratio qij (%) of each wheel is the friction circle of each of the four wheels when multiple target braking / driving force moments (target braking / driving force difference between the left and right wheels) are applied between the left and right rear wheels 2L, 2R. Utilization rate
Friction circle utilization rate (maximum friction circle utilization rate) of the wheel with the highest friction circle utilization rate in each case, and maximum friction circle utilization rate q1max by multiple target braking / driving force moments (target braking / driving force difference between left and right wheels) , Q2max, q3max (maximum friction circle utilization rate corresponding to the three target braking / driving force moments when Mz = Mz1 in Fig. 5).

次のステップS6においては、複数の目標制駆動力モーメント(左右輪間目標制駆動力差)を付与した時における摩擦円利用率最大値q1max,q2max,q3maxのうち、最も小さなq1max、またはq2max、或いはq3maxに対応する目標制駆動力モーメント(左右輪間目標制駆動力差)を選択する。
なお、摩擦円利用率最大値q1max,q2max,q3maxのうちに最も小さなものが複数個有る場合は、これらの何れに係わる目標制駆動力モーメント(左右輪間目標制駆動力差)を選択してもよい。
In the next step S6, the smallest q1max, q2max, or q2max of the friction circle utilization rates q1max, q2max, and q3max when a plurality of target braking / driving force moments (target braking / driving force difference between the left and right wheels) is applied, Alternatively, the target braking / driving force moment (target braking / driving force difference between the left and right wheels) corresponding to q3max is selected.
If there are several smallest friction circle utilization ratios q1max, q2max, and q3max, select the target braking / driving force moment (target braking / driving force difference between the left and right wheels) related to any of these. Also good.

次のステップS7においては、ステップS6で選択した目標制駆動力モーメント(左右輪間目標制駆動力差)および車両の前後加速度目標値から、左右後輪2L,2Rの制駆動力指令値を求めて、対応する側のインバータ15L,15Rに出力する。
かかる左右後輪2L,2Rの制駆動力指令値の決定に際しては、先ず目標制駆動力モーメントから左右輪間目標制駆動力差を求め、次に車両の前後加速度目標値から左右後輪2L,2Rの合計制駆動力を求め、これら左右輪間目標制駆動力差および左右後輪2L,2Rの合計制駆動力から、左右後輪2L,2Rの制駆動力指令値を個々に求めることができる。
In the next step S7, the braking / driving force command values for the left and right rear wheels 2L and 2R are obtained from the target braking / driving force moment (target braking / driving force difference between the left and right wheels) selected in step S6 and the vehicle longitudinal acceleration target value. To the corresponding inverters 15L and 15R.
In determining the braking / driving force command values for the left and right rear wheels 2L, 2R, first, the target braking / driving force difference between the left and right wheels is determined from the target braking / driving force moment, and then the left and right rear wheels 2L, The total braking / driving force of 2R can be obtained, and the braking / driving force command values for the left and right rear wheels 2L, 2R can be obtained individually from the target braking / driving force difference between the left and right wheels and the total braking / driving force of the left and right rear wheels 2L, 2R. it can.

なお、ステップS4で目標ヨーモーメント(Mz)実現用の目標制駆動力モーメント(左右輪間目標制駆動力差)が複数存在しないと判定しない場合は、目標制駆動力モーメント(左右輪間目標制駆動力差)が1個のみで上記のような選択を必要としないから、ステップS5およびステップS6をスキップして制御をステップS7に進め、当該1個の目標制駆動力モーメント(左右輪間目標制駆動力差)および車両の前後加速度目標値から、左右後輪2L,2Rの制駆動力指令値を求めて、対応する側のインバータ15L,15Rに出力する。   If it is not determined in step S4 that there are not a plurality of target braking / driving force moments (target braking / driving force difference between the left and right wheels) for realizing the target yaw moment (Mz), the target braking / driving force moment (target braking between the left and right wheels) Since there is only one driving force difference) and the selection as described above is not required, control is advanced to step S7 by skipping step S5 and step S6, and the single target braking / driving force moment (target between left and right wheels) The braking / driving force command values for the left and right rear wheels 2L, 2R are obtained from the braking / driving force difference) and the vehicle longitudinal acceleration target value, and are output to the corresponding inverters 15L, 15R.

上記した第1実施例の旋回挙動制御によれば、制駆動力モーメント(左右輪間制駆動力差)と、これにより直接車体に付与されるヨーモーメント、および、制駆動力モーメント(左右輪間制駆動力差)に起因した、図2に例示する左右後輪2L,2Rの同方向転動変位に伴って生ずるヨーモーメントとの和値、つまり、制駆動力モーメント(左右輪間制駆動力差)によって車両に付与される合計ヨーモーメントとの関係(図5参照)から、目標ヨーモーメントMzを実現するのに必要な目標制駆動力モーメント(左右輪間目標制駆動力差)を求めて車両の左右輪間制駆動力差による旋回挙動制御に資することから、
旋回挙動制御用の左右輪間制駆動力差に起因した左右輪の図2に例示する同方向転動変位に伴うヨーモーメントによる影響を排除しつつ目標ヨーモーメントMzが達成されるように左右輪間制駆動力差を決定して、これを左右輪間制駆動力差による車両の旋回挙動制御に資することとなり、
旋回挙動制御用の左右輪間制駆動力差による左右輪同方向転動変位に伴って生じたヨーモーメントが、車両の旋回挙動を目標挙動からずらすことがなくなり、旋回挙動制御を狙い通りのものにすることができる。
According to the turning behavior control of the first embodiment described above, the braking / driving force moment (the difference in braking / driving force between the left and right wheels), the yaw moment directly applied to the vehicle body by this, and the braking / driving force moment (between the left and right wheels) The sum of the yaw moment generated by the rolling displacement in the same direction of the left and right rear wheels 2L and 2R illustrated in Fig. 2 due to the difference in braking / driving force), that is, the braking / driving force moment (braking / driving force between the left and right wheels) The target braking / driving force moment (target wheel / branch force difference between the left and right wheels) required to achieve the target yaw moment Mz is calculated from the relationship (see Fig. 5) with the total yaw moment applied to the vehicle. Because it contributes to turning behavior control by the difference in braking and driving force between the left and right wheels of the vehicle,
In order to achieve the target yaw moment Mz while eliminating the influence of the yaw moment due to the same-direction rolling displacement illustrated in Fig. 2 of the left and right wheels caused by the difference in braking / driving force between the left and right wheels for turning behavior control By determining the braking / driving force difference, this will contribute to the vehicle's turning behavior control by the braking / driving force difference between the left and right wheels.
The yaw moment generated by the rolling displacement of the left and right wheels in the same direction due to the difference in braking / driving force between the left and right wheels for turning behavior control will not shift the turning behavior of the vehicle from the target behavior, and the turning behavior control is as intended. Can be.

また、図3のステップS4で上記の目標制駆動力モーメント(左右輪間目標制駆動力差)が複数存在すると判定する場合、ステップS5およびステップS6において、複数の目標制駆動力モーメント(左右輪間目標制駆動力差)を左右後輪2L,2R間に付与した時における4輪各々の摩擦円利用率をそれぞれ求めると共に、それぞれにおいて最も摩擦円利用率の高い車輪の摩擦円利用率(摩擦円利用率最大値)を、複数の目標制駆動力モーメント(左右輪間目標制駆動力差)による摩擦円利用率最大値q1max,q2max,q3maxとし、これらq1max,q2max,q3maxのうち、最も小さなq1max、またはq2max、或いはq3maxに対応する目標制駆動力モーメント(左右輪間目標制駆動力差)を選択して上記の旋回挙動制御に用いるため、
摩擦円限界を超えた車輪が存在するような目標制駆動力モーメント(左右輪間目標制駆動力差)を選択する危険性を回避して、摩擦円利用率が最も好適な目標制駆動力モーメント(左右輪間目標制駆動力差)を選択することができることとなり、
加減速の大きな旋回時のように、限界に近い場面でも、目標挙動を達成することができる。
If it is determined in step S4 in FIG. 3 that there are a plurality of target braking / driving force moments (differences in target braking / driving force difference between the left and right wheels), a plurality of target braking / driving force moments (right and left wheels) are determined in steps S5 and S6. Between the left and right rear wheels 2L and 2R, the friction circle utilization rate of each of the four wheels is determined, and the friction circle utilization rate (friction) of the wheel with the highest friction circle utilization rate is obtained. The maximum circle usage rate) is the frictional circle usage rate maximum value q1max, q2max, q3max due to multiple target braking / driving force moments (target braking / driving force difference between the left and right wheels), and the smallest of these q1max, q2max, q3max To select the desired braking / driving force moment (target braking / driving force difference between the left and right wheels) corresponding to q1max, q2max, or q3max and use it for the above-mentioned turning behavior control,
Avoiding the risk of selecting a target braking / driving force moment (difference between the target braking / driving force between the left and right wheels) where there is a wheel exceeding the friction circle limit, and the target braking / driving force moment with the best friction circle utilization rate (The left / right wheel target braking / driving force difference) can be selected,
The target behavior can be achieved even in a scene that is close to the limit, such as when turning with a large acceleration / deceleration.

車体4を図6(a)に実線で示す位置から発進させ、一定の旋回半径rで旋回させるべくステアリングホイール操舵角θをθoから切り増しながら加速する発進加速時につき、上記の作用効果を付言するに、
旋回半径rを維持し得なくなって旋回半径がRで示すようにrよりも大きくなり始めた点が限界点(摩擦円限界)であり、車体4は二点鎖線で示すように目標とする旋回半径rの旋回軌跡から外方へと外れる。
The above-mentioned effects are added at the time of starting acceleration in which the vehicle body 4 is started from the position indicated by the solid line in FIG. 6 (a) and accelerated while the steering wheel steering angle θ is increased from θo to turn at a constant turning radius r. To
The point where the turning radius r cannot be maintained and the turning radius starts to become larger than r as indicated by R is the limit point (friction circle limit), and the vehicle body 4 turns as the target turning as indicated by the two-dot chain line Deviates from the turning trajectory of radius r.

複数の目標制駆動力モーメント(左右輪間目標制駆動力差)による摩擦円利用率最大値q1max,q2max,q3maxのうち、最も小さなq1max、またはq2max、或いはq3maxに対応する目標制駆動力モーメント(左右輪間目標制駆動力差)を選択しないで、それ以外のものを選択して旋回挙動制御に用いる場合は、図6(b)に一点鎖線で示すように当初は目標ヨーレートγを実現し得るも、その後は摩擦円を有効に使うことができずに限界点(摩擦円限界)が、小さなヨーレートγ1において発生し、以後、1輪以上が摩擦円限界を越えたことにより目標ヨーレートγを達成不能になる。   The target braking / driving force moment corresponding to the smallest q1max, q2max, or q3max among the maximum frictional circle usage values q1max, q2max, q3max due to multiple target braking / driving force moments (target braking / driving force difference between the left and right wheels) When selecting other than the left and right wheel target braking / driving force difference) and using it for turning behavior control, the target yaw rate γ is initially realized as shown by the dashed line in FIG. 6 (b). After that, the frictional circle cannot be used effectively, and a limit point (frictional circle limit) occurs at a small yaw rate γ1, and after that, the target yaw rate γ is set because one or more wheels exceeds the frictional circle limit. Unachievable.

これに対し本実施例のごとく、複数の目標制駆動力モーメント(左右輪間目標制駆動力差)による摩擦円利用率最大値q1max,q2max,q3maxのうち、最も小さなq1max、またはq2max、或いはq3maxに対応する目標制駆動力モーメント(左右輪間目標制駆動力差)を選択して旋回挙動制御に用いる場合は、摩擦円を有効に使うことができて図6(b)に実線で示すように小さなヨーレートγ1以上においても引き続き目標ヨーレートγを達成することが可能で、大きなヨーレートγ2においてはじめて限界点(摩擦円限界)が発生し、ヨーレート限界をγ1からγ2へと向上させて一層高い目標ヨーレートを実現可能である。   On the other hand, as in the present embodiment, the smallest q1max, q2max, or q3max among the frictional circle utilization rate maximum values q1max, q2max, q3max due to a plurality of target braking / driving force moments (target braking / driving force difference between the left and right wheels) When the target braking / driving force moment (target difference between left and right wheels) is selected and used for turning behavior control, the friction circle can be used effectively, as shown by the solid line in Fig. 6 (b). It is possible to continue to achieve the target yaw rate γ even at a small yaw rate γ1 or higher, and a limit point (friction circle limit) occurs only at a large yaw rate γ2, and the yaw rate limit is increased from γ1 to γ2 to achieve a higher target yaw rate. Is feasible.

図7は、本発明による旋回挙動制御の他の実施例(第2実施例)を示し、本実施例は、図3に示す左右後輪制駆動力指令値演算プログラムに対し、ステップS8およびステップS9を付加したものである。
複数の目標制駆動力モーメント(左右輪間目標制駆動力差)による摩擦円利用率最大値q1max,q2max,q3maxのどれを選択するかに当たっては、摩擦円限界を越えてしまうようなものが有る場合、これを除外して当該選択を行うことにより図6につき前述したごとくにヨーレート限界を高める必要があるし、摩擦円利用率最大値q1max,q2max,q3maxのうち2つ以上が摩擦円限界を越えないものである場合、これらのどれを選択してもヨーレート限界は同じであることから、車両の挙動変化ができるだけ小さくなるような挙動制御であるのが好ましい。
FIG. 7 shows another embodiment (second embodiment) of turning behavior control according to the present invention. This embodiment corresponds to steps S8 and S8 for the left and right rear wheel braking / driving force command value calculation program shown in FIG. S9 is added.
There are things that exceed the friction circle limit when selecting the maximum frictional circle usage rate q1max, q2max, q3max with multiple target braking / driving force moments (target braking / driving force difference between left and right wheels) In this case, it is necessary to increase the yaw rate limit as described above with reference to FIG. 6 by excluding this, and two or more of the maximum frictional circle utilization values q1max, q2max, q3max have the frictional circle limit. If it does not exceed, the yaw rate limit is the same regardless of which of these is selected. Therefore, it is preferable to control the behavior so that the change in behavior of the vehicle becomes as small as possible.

かかる要求に鑑み本実施例では、ステップS5及びステップS6間に付加したステップS8において、ステップS5で求めた摩擦円利用率最大値q1max,q2max,q3maxのいずれか1つが設定値を越えるか否(q1max,q2max,q3maxのうち2つ以上が設定値を越えない)かをチェックする。
ここで上記のq1max,q2max,q3maxに係わる設定値は、摩擦円限界を越えるか否かを判定するためのものであることから、100%近辺の値とする。
In view of this requirement, in this embodiment, in step S8 added between step S5 and step S6, whether or not any one of the frictional circle utilization rate maximum values q1max, q2max, q3max obtained in step S5 exceeds the set value ( Check that two or more of q1max, q2max, and q3max do not exceed the set value).
Here, the set values related to q1max, q2max, and q3max are for determining whether or not the frictional circle limit is exceeded, and are set to values near 100%.

ステップS8で摩擦円利用率最大値q1max,q2max,q3maxのいずれか1つが設定値を越えると判定する場合は、当該越えたものを除外するために制御をステップS6に進め、ここで摩擦円利用率最大値q1max,q2max,q3maxのうち、最も小さなq1max、またはq2max、或いはq3maxに対応する目標制駆動力モーメント(左右輪間目標制駆動力差)を選択して、ステップS7での演算に資することにより、図6につき前記したごとくヨーレート限界を高める作用効果を実現させる。   When it is determined in step S8 that any one of the friction circle utilization rate maximum values q1max, q2max, and q3max exceeds the set value, the control proceeds to step S6 to exclude the exceeding value, and the friction circle utilization is performed here. Of the maximum rate values q1max, q2max, and q3max, the target braking / driving force moment (the target braking / driving force difference between the left and right wheels) corresponding to the smallest q1max, q2max, or q3max is selected to contribute to the calculation in step S7. As a result, the effect of increasing the yaw rate limit is realized as described above with reference to FIG.

しかしステップS8で摩擦円利用率最大値q1max,q2max,q3maxのうち2つ以上が設定値を越えないと判定する場合は、ステップS9において、これらに対応する2つ以上の目標制駆動力モーメント(左右輪間目標制駆動力差)のうち、現在の制駆動力モーメント(左右輪間制駆動力差)に最も近い目標制駆動力モーメント(左右輪間目標制駆動力差)を選択して、ステップS7での演算に資する。
この場合、上記2つ以上の目標制駆動力モーメント(左右輪間目標制駆動力差)のどれを選択してもヨーレート限界は同じであるが、現在の制駆動力モーメント(左右輪間制駆動力差)に最も近い目標制駆動力モーメント(左右輪間目標制駆動力差)を選択して挙動制御に資することから、車両の挙動変化ができるだけ小さくなるような違和感の少ない挙動制御となって大いに好ましい。
However, if it is determined in step S8 that two or more of the frictional circle utilization rate maximum values q1max, q2max, q3max do not exceed the set value, in step S9, two or more target braking / driving force moments corresponding to them ( Select the target braking / driving force moment (target braking / driving force difference between the left and right wheels) that is closest to the current braking / driving force moment (difference between the braking / driving forces between the left and right wheels) Contributes to the calculation in step S7.
In this case, the yaw rate limit is the same regardless of which of the above two or more target braking / driving force moments (target braking / driving force difference between left and right wheels), but the current braking / driving force moment (braking between left and right wheels) Since the target braking / driving force moment (difference between the left and right wheels) is selected and contributes to behavior control, behavior control with less discomfort is achieved so that changes in vehicle behavior become as small as possible. Highly preferred.

この作用効果を図8により付言する。
図7からステップS8およびステップS9を排除して図3の制御プログラムを実行する前記の第1実施例では、上記の設定値を越えない摩擦円利用率最大値q1max,q2max,q3max複数存在する場合においても、全ての摩擦円利用率最大値q1max,q2max,q3maxのうち最も小さなものに対応する目標制駆動力モーメント(左右輪間目標制駆動力差)を選択して挙動制御に資することから、
図8に破線で示すごとく、摩擦円利用率最大値q1max,q2max,q3maxのうち最も小さなものが切り替わる度に、使用する目標制駆動力モーメント(左右輪間目標制駆動力差)も現在の制駆動力モーメント(左右輪間制駆動力差)と関係なく切り替えられて大きく変動し、度重なる大きな挙動変化を伴いながらの制御となる。
This action and effect will be supplemented by FIG.
In the first embodiment in which step S8 and step S9 are excluded from FIG. 7 and the control program of FIG. 3 is executed, when there are a plurality of friction circle utilization rate maximum values q1max, q2max, and q3max that do not exceed the above set values. In this case, the target braking / driving force moment (the target braking / driving force difference between the left and right wheels) corresponding to the smallest one of the maximum friction circle utilization values q1max, q2max, q3max is selected, which contributes to behavior control.
As shown by the broken line in FIG. 8, every time the smallest one of the maximum frictional circle utilization values q1max, q2max, q3max is switched, the target braking / driving force moment (target braking / driving force difference between the left and right wheels) to be used is also controlled. The control is switched regardless of the driving force moment (the difference in braking / driving force between the left and right wheels) and fluctuates greatly, and the control is accompanied by repeated large behavior changes.

これに対し、図7のステップS8で上記の設定値を越えない摩擦円利用率最大値q1max,q2max,q3max複数存在すると判定する場合、ステップS9でこれらに対応する2つ以上の目標制駆動力モーメント(左右輪間目標制駆動力差)のうち、現在の制駆動力モーメント(左右輪間制駆動力差)に最も近い目標制駆動力モーメント(左右輪間目標制駆動力差)を選択して挙動制御に資する第2実施例の場合、
上記2つ以上の目標制駆動力モーメント(左右輪間目標制駆動力差)のどれを選択してもヨーレート限界は同じであるが、現在の制駆動力モーメント(左右輪間制駆動力差)に最も近い目標制駆動力モーメント(左右輪間目標制駆動力差)を選択することから、図8に実線で示す目標制駆動力モーメント(左右輪間目標制駆動力差)の時系列変化となって、車両の挙動変化ができるだけ小さくなるような違和感の少ない挙動制御により、ヨーレート限界を高めることができて大いに好ましい。
On the other hand, if it is determined in step S8 in FIG. 7 that there are a plurality of frictional circle utilization rate maximum values q1max, q2max, and q3max that do not exceed the set value, two or more target braking / driving forces corresponding to these in step S9. Select the target braking / driving force moment (target braking / driving force difference between the left and right wheels) that is closest to the current braking / driving force moment (difference between the left and right wheels). In the case of the second embodiment contributing to behavior control,
The yaw rate limit is the same regardless of which of the above two or more target braking / driving force moments (the difference between the left and right wheel target braking / driving force), but the current braking / driving force moment (the difference between the left and right wheel braking / driving force) The target braking / driving force moment (target braking / driving force difference between the left and right wheels) closest to is selected, so the time series change of the target braking / driving force moment (target braking / driving force difference between the left and right wheels) shown in FIG. Therefore, it is highly preferable that the yaw rate limit can be increased by the behavior control with less uncomfortable feeling so that the behavior change of the vehicle becomes as small as possible.

図9は、本発明による旋回挙動制御の更に他の実施例(第3実施例)を示し、本実施例は、図7に示す左右後輪制駆動力指令値演算プログラムに対し、ステップS10、ステップS11およびステップS12を追加したものである。
ステップS4およびステップS5間に付加したステップS10においては、図5に対応した図10(a),(b)に例示するごとく、合計ヨーモーメント(目標ヨーモーメントMz)と制駆動力モーメント(左右輪間制駆動力差)との関係から求める、目標ヨーモーメントMzを実現するのに必要な目標制駆動力モーメント(左右輪間目標制駆動力差)が複数存在する合計ヨーモーメント領域(ハッチングを付して示す領域)が設定範囲±εよりも広いか否かをチェックする。
FIG. 9 shows still another embodiment (third embodiment) of the turning behavior control according to the present invention. In this embodiment, step S10 is executed on the left and right rear wheel braking / driving force command value calculation program shown in FIG. Step S11 and step S12 are added.
In step S10 added between step S4 and step S5, as illustrated in FIGS. 10A and 10B corresponding to FIG. 5, the total yaw moment (target yaw moment Mz) and braking / driving force moment (right and left wheels) Total yaw moment area (hatched) with multiple target braking / driving force moments (target braking / driving force difference between left and right wheels) required to achieve the target yaw moment Mz calculated from the relationship with the braking / braking force difference) It is checked whether or not the area shown in FIG.

図10(a)のように目標制駆動力モーメント(左右輪間目標制駆動力差)が複数存在する合計ヨーモーメント領域(ハッチングを付して示す領域)が設定範囲±εよりも広い場合にのみ制御をステップS5に進めて、図7につき前述した第2実施例と同様な挙動制御を遂行する。
しかし、図10(b)のように目標制駆動力モーメント(左右輪間目標制駆動力差)が複数存在する合計ヨーモーメント領域(ハッチングを付して示す領域)が設定範囲±εよりも狭い場合は、制御をステップS12に進め、複数の目標制駆動力モーメント(左右輪間目標制駆動力差)のうち最も小さな目標制駆動力モーメント(左右輪間目標制駆動力差)を選択して、ステップS7での左右後輪制駆動力指令値の演算(旋回挙動制御)に資する。
When the total yaw moment area (hatched area) where there are multiple target braking / driving force moments (difference between the target braking / driving forces between the left and right wheels) is wider than the set range ± ε as shown in Fig. 10 (a) Only the control proceeds to step S5, and behavior control similar to that of the second embodiment described above with reference to FIG. 7 is performed.
However, as shown in FIG. 10 (b), the total yaw moment area (the area shown with hatching) where there are multiple target braking / driving force moments (target braking / driving force difference between the left and right wheels) is narrower than the set range ± ε. In this case, control proceeds to step S12, and the smallest target braking / driving force moment (target braking / driving force difference between left and right wheels) is selected from among a plurality of target braking / driving force moments (target braking / driving force difference between left and right wheels). This contributes to the calculation (turning behavior control) of the left and right rear wheel braking / driving force command values in step S7.

目標制駆動力モーメント(左右輪間目標制駆動力差)が複数存在する合計ヨーモーメント領域(ハッチングを付して示す領域)が設定範囲±εよりも狭い場合において、かように最も小さな目標制駆動力モーメント(左右輪間目標制駆動力差)を選択する本実施例の旋回挙動制御によれば、
設定範囲±ε内の小さな目標ヨーモーメントMzを達成するために、必要を越えた大きな制駆動力モーメント(左右輪間制駆動力差)が無駄に付与される弊害を回避することができ、予期しない外乱などに対する挙動変化を小さく抑制して外乱入力時も目標挙動を安定して実現することができる。
従って上記の設定範囲±εは、外乱による生ずるヨーモーメントの最大値程度とするのが良い。
When the total yaw moment area (area shown with hatching) where there are multiple target braking / driving force moments (the difference between the target braking / driving forces between the left and right wheels) is narrower than the set range ± ε, the smallest target braking According to the turning behavior control of this embodiment that selects the driving force moment (the target braking / driving force difference between the left and right wheels),
In order to achieve a small target yaw moment Mz within the setting range ± ε, it is possible to avoid the adverse effect that a large braking / driving force moment (difference in braking / driving force between the left and right wheels) beyond the necessity is wasted. It is possible to stably realize the target behavior even when a disturbance is input by suppressing a change in behavior with respect to a disturbance that does not occur.
Therefore, the above set range ± ε is preferably set to about the maximum value of the yaw moment generated by the disturbance.

また、ステップS8で摩擦円利用率最大値q1max,q2max,q3maxのうち2つ以上が設定値を越えないと判定する場合に選択されるステップS11においては、目標ヨーモーメントMzの絶対値が設定時間以上に亘って設定値(例えば直進走行に近い走行状態に対応するヨーモーメント)未満か否かを判定する。
直進走行に近い走行状態などの継続により目標ヨーモーメントMzの絶対値が設定時間以上に亘って設定値未満であると判定する場合は、制御をステップS12に進め、複数の目標制駆動力モーメント(左右輪間目標制駆動力差)のうち最も小さな目標制駆動力モーメント(左右輪間目標制駆動力差)を選択して、ステップS7での左右後輪制駆動力指令値の演算(旋回挙動制御)に資する。
In step S11, which is selected when it is determined in step S8 that two or more of the friction circle utilization rate maximum values q1max, q2max, q3max do not exceed the set value, the absolute value of the target yaw moment Mz is set to the set time. It is determined whether or not it is less than a set value (for example, yaw moment corresponding to a traveling state close to straight traveling).
When it is determined that the absolute value of the target yaw moment Mz is less than the set value for a set time or longer due to continuation of a running state close to straight running, the control proceeds to step S12 and a plurality of target braking / driving force moments ( Select the smallest target braking / driving force moment (target braking / driving force difference between left and right wheels) from the left / right wheel target braking / driving force difference) and calculate the left / right rear wheel braking / driving force command value in step S7 (turning behavior) Control).

かかる旋回挙動制御によれば、直進走行に近い走行中なのに制駆動力モーメント(左右輪間制駆動力差)が付与され続ける弊害を排除、若しくは少なくとも最小限にすることができ、結果として摩擦円を無駄に消費してしまうことがなくなり、タイヤの等価コーナーリングパワー(制駆動力が小さいほど大きな値になる)が最大となるような目標制駆動力モーメント(左右輪間目標制駆動力差)を選択することができる。
その結果、予期しない外乱などが車両に加わった場合に、外乱に対する挙動変化を小さく抑えることができ、より確実に目標挙動を実現できるようになるという効果が得られる。
According to such turning behavior control, it is possible to eliminate, or at least minimize, the adverse effect that the braking / driving force moment (the difference in braking / driving force between the left and right wheels) continues to be applied even when the vehicle is traveling straight ahead. The target braking / driving force moment (target braking / driving force difference between the left and right wheels) that maximizes the equivalent cornering power of the tire (the larger the braking / driving force is, the greater the value) is. You can choose.
As a result, when an unexpected disturbance or the like is applied to the vehicle, it is possible to suppress a change in behavior with respect to the disturbance and to achieve an effect that the target behavior can be realized more reliably.

ステップS8で摩擦円利用率最大値q1max,q2max,q3maxのうち2つ以上が設定値を越えないと判定し、且つ、ステップS11で目標ヨーモーメントMzの絶対値が設定値未満でないと判定したり、目標ヨーモーメントMzの絶対値が設定値未満であってもこの状態が設定時間以上に亘って続かないと判定する場合にはじめて制御をステップS9に進め、現在の制駆動力モーメント(左右輪間制駆動力差)に最も近い目標制駆動力モーメント(左右輪間目標制駆動力差)を選択することにより、図9につき前述した第2実施例の作用効果を達成する。   In step S8, it is determined that two or more of the maximum frictional circle utilization values q1max, q2max, q3max do not exceed the set value, and in step S11, it is determined that the absolute value of the target yaw moment Mz is not less than the set value. When it is determined that this state does not continue for the set time or longer even if the absolute value of the target yaw moment Mz is less than the set value, the control proceeds to step S9, and the current braking / driving force moment (between the left and right wheels) By selecting the target braking / driving force moment (target braking / driving force difference between the left and right wheels) closest to the braking / driving force difference), the effect of the second embodiment described above with reference to FIG. 9 is achieved.

図11は、本発明による旋回挙動制御の更に別の実施例(第4実施例)を示し、本実施例は、図9に示す左右後輪制駆動力指令値演算プログラムにステップS13を追加し、制駆動力モーメント(左右輪間制駆動力差)の変化に対する左右後輪転動変位(図2参照)の過渡応答を算出し、この過渡応答をステップS3での演算に用いるようにしたものである。   FIG. 11 shows still another embodiment (fourth embodiment) of turning behavior control according to the present invention. In this embodiment, step S13 is added to the left / right rear wheel braking / driving force command value calculation program shown in FIG. The transient response of the left and right rear wheel rolling displacement (see Fig. 2) with respect to the change in braking / driving force moment (difference in braking / driving force between the left and right wheels) is calculated, and this transient response is used for the calculation in step S3. is there.

先ずステップS13で、制駆動力モーメント(左右輪間制駆動力差)の変化に対する左右後輪転動変位の過渡応答をいかにして算出するかを説明する。
左右後輪2L,2Rの転動変位は図2から明らかなように対称の転動変位であるため、ここでは図12に示すように片側の転動変位に着目して計算を行う。
First, in step S13, how to calculate the transient response of the left and right rear wheel rolling displacement with respect to the change in braking / driving force moment (difference in braking / driving force between the left and right wheels) will be described.
Since the rolling displacements of the left and right rear wheels 2L and 2R are symmetric rolling displacements as is apparent from FIG. 2, calculation is performed here focusing on the rolling displacement on one side as shown in FIG.

図12に示すように、後輪の転動変位(図2参照)に伴って回転する部分の質量をm(サスペンションメンバの質量と、後輪バネ下荷重との和値)とし、サスペンションの前後剛性値によって決まるバネ定数をk(静特性試験により求める)、サスペンションメンバ9と車体4をつなぐ弾性体(ブッシュ)11の物理的特性から決まる減衰係数をcとすると、
後輪の転動変位(図2参照)に伴うサスペンションメンバ11の回転運動を、1自由度の振動系の運動に近似することが可能となり、この回転運動に関する周波数応答特性(ゲインと位相)を図13に示すように求めることができる。
これがため、左右輪それぞれの制駆動力FxRL,FxRRを入力とし、左右輪それぞれの変位量DRL,DRRを出力とすることで、制駆動力モーメント(左右輪間制駆動力差)の変化に伴って左右輪制駆動力変化が生じた場合における左右輪転動変位の過渡応答を以下により算出することができる。
As shown in Fig. 12, the mass of the part that rotates with the rolling displacement of the rear wheel (see Fig. 2) is m (the sum of the mass of the suspension member and the unsprung load of the rear wheel), and before and after the suspension. If the spring constant determined by the stiffness value is k (obtained by a static characteristic test), and the damping coefficient determined by the physical characteristics of the elastic body (bush) 11 connecting the suspension member 9 and the vehicle body 4 is c,
The rotational motion of the suspension member 11 associated with the rolling displacement of the rear wheel (see Fig. 2) can be approximated to the motion of a vibration system with one degree of freedom, and the frequency response characteristics (gain and phase) related to this rotational motion It can be obtained as shown in FIG.
For this reason, the braking / driving force Fx RL and Fx RR for each of the left and right wheels are used as inputs, and the displacements D RL and D RR for each of the left and right wheels are used as outputs, so The transient response of the left and right wheel rolling displacement when the left and right wheel braking / driving force changes with this change can be calculated as follows.

先ず、後輪2R,2Lの転動変位(図2参照)によって発生する車両のヨーモーメントを求める。
後2輪2R,2Lに制駆動力FxRR,FxRLがそれぞれ付加された場合、後2輪2R,2Lが前後に転動変位することから、後2輪2R,2Lの前後転動変位量をそれぞれDRR、DRLとし、後2輪2R,2L間のトレッドをbとすると、後2輪2R,2Lの前後転動変位によるトー角変化量ζは、前記(3)式に対応する次式に求められる。
ζ=sin-1{[DRR−DRL]/b}
≒[DRR−DRL]/b ・・・(11)
First, the yaw moment of the vehicle generated by the rolling displacement of the rear wheels 2R and 2L (see FIG. 2) is obtained.
When braking / driving forces Fx RR and Fx RL are applied to the rear two wheels 2R and 2L, the rear two wheels 2R and 2L roll forward and backward. Are D RR and D RL respectively, and b is the tread between the rear two wheels 2R and 2L, the toe angle change amount ζ due to the forward and backward rolling displacement of the rear two wheels 2R and 2L corresponds to the above equation (3). It is calculated by the following formula.
ζ = sin −1 {[D RR −D RL ] / b}
≒ [D RR −D RL ] / b (11)

前記のようにして求めた左右前輪転舵角δL,δR 、各輪トー角変化量Φ、および、各輪における車体スリップ角と、上記(11)式の演算により求めた左右後輪2L,2Rのトー角変化量ζとから、左右前輪1L,1Rのタイヤスリップ角βFL,βFRおよび左右後輪2L,2Rのタイヤスリップ角βRL,βRR をそれぞれ、前記した(4)〜(7)式(便宜上、以下に再度記述する)の演算により求める。
βFL=βbody+(LF/V)γ+δL+φFL ・・・(4)
βFR=βbody+(LF/V)γ+δR+φFR ・・・(5)
βRL=βbody−(LR/V)γ+φRL+ζ・・・(6)
βRR=βbody−(LR/V)γ+φRR+ζ・・・(7)
The left and right front wheel turning angles δ L and δ R obtained as described above, the toe angle change amount Φ of each wheel, the vehicle body slip angle in each wheel, and the left and right rear wheels 2L obtained by the calculation of the above equation (11). , 2R toe angle change amount ζ, tire slip angles β FL , β FR of left and right front wheels 1L, 1R and tire slip angles β RL , β RR of left and right rear wheels 2L, 2R were respectively described above (4) to Obtained by the calculation of equation (7) (described again below for convenience).
β FL = β body + (L F / V) γ + δ L + φ FL (4)
β FR = βbody + (L F / V) γ + δ R + φ FR (5)
β RL = βbody− (L R / V) γ + φ RL + ζ (6)
β RR = βbody− (L R / V) γ + φ RR + ζ (7)

そして、前記の推定各輪荷重Fzと、各輪前後力Fx(前回の制駆動力算出値)とから、各輪のコーナリングパワーを推定する。
ここで、コーナリングパワーの荷重依存性を二次関数で近似すると、各輪のコーナリングパワーKij{i:前輪または後輪、j:右輪または左輪}は、タイヤによって決まる定数をa1,a2とし、路面摩擦係数推定値をμとすると、前記した(8)式(便宜上、以下に再度記述する)によって推定演算することができる。
Kij=(a1・Fzij2+a2・Fzij)×{1−(Fxij/[μ・Fzij])21/2 ・・・(8)
Then, the cornering power of each wheel is estimated from each estimated wheel load Fz and each wheel longitudinal force Fx (previously calculated braking / driving force value).
Here, when the load dependence of the cornering power is approximated by a quadratic function, the cornering power Kij {i: front wheel or rear wheel, j: right wheel or left wheel} of each wheel is a constant determined by the tire, a1 and a2. When the road surface friction coefficient estimated value is μ, it can be estimated and calculated by the above-described equation (8) (described again below for convenience).
Kij = (a1 · Fzij 2 + a2 · Fzij) × {1− (Fxij / [μ · Fzij]) 2 } 1/2 (8)

上記のようにして求めた各輪のタイヤスリップ角βijおよび各輪のコーナリングパワーKijを基に、以下のように横力Fyを算出する。
つまり、タイヤスリップ角βijに対する横力Fyの非線形特性を二次関数で近似して、横力Fyは前記した(9)式(便宜上、以下に再度記述する)により推定することができる。
Fyij=Kij・βij−(Kij2/[4μ・Fzij])βij2 ・・・(9)
Based on the tire slip angle βij of each wheel and the cornering power Kij of each wheel determined as described above, the lateral force Fy is calculated as follows.
That is, by approximating the nonlinear characteristic of the lateral force Fy with respect to the tire slip angle βij by a quadratic function, the lateral force Fy can be estimated by the above-described equation (9) (described again below for convenience).
Fyij = Kij · βij− (Kij 2 / [4μ · Fzij]) βij 2 (9)

上記した横力Fyijのうち、前輪の横力に前車軸および車両重心間の距離Lfを乗じ、後輪の横力に後車軸および車両重心間の距離Lrを乗ずることで、後輪2L,2Rの転動変位(図2参照)によって車両に発生するヨーモーメントを求めることができる。
そして、かようにして求めた後輪2L,2Rの転動変位によるヨーモーメントと、制駆動力モーメント(左右輪間制駆動力差)により直接車両に付与されるヨーモーメントとの和値が、旋回挙動用の制駆動力モーメント(左右輪間制駆動力差)が間接的におよび直接的に車両に付与する合計ヨーモーメントである。
Of the lateral forces Fyij described above, the lateral force of the front wheels is multiplied by the distance Lf between the front axle and the vehicle center of gravity, and the lateral force of the rear wheels is multiplied by the distance Lr between the rear axle and the vehicle center of gravity. The yaw moment generated in the vehicle can be determined by the rolling displacement (see FIG. 2).
The sum of the yaw moment due to the rolling displacement of the rear wheels 2L and 2R thus obtained and the yaw moment directly applied to the vehicle by the braking / driving force moment (difference in braking / driving force between the left and right wheels) is This is the total yaw moment that the braking / driving force moment for turning behavior (the difference in braking / driving force between the left and right wheels) is indirectly and directly applied to the vehicle.

次に、目標モーメントMzと、これを達成するのに必要な目標制駆動力モーメント(左右輪目標制駆動力差)との関係を求める。
上記した制駆動力モーメント(左右輪間制駆動力差)と合計ヨーモーメントとの関係は例えば図14に破線(図5の実線特性と同じもの)で示すごとくに決まるが、
制駆動力モーメント(左右輪間制駆動力差)の変化に対する左右後輪2L,2Rの転動変位(図2参照)の過渡応答分だけ遅れて、制駆動力モーメント(左右輪間制駆動力差)と合計ヨーモーメントとの関係は実線特性から破線特性へと変化する。
Next, the relationship between the target moment Mz and the target braking / driving force moment (right and left wheel target braking / driving force difference) necessary to achieve this is obtained.
The relationship between the braking / driving force moment (the difference in braking / driving force between the left and right wheels) and the total yaw moment is determined as shown by the broken line in FIG. 14 (the same as the solid line characteristics in FIG. 5).
The braking / driving force moment (braking force between the left and right wheels) is delayed by the transient response of the rolling displacement of the left and right rear wheels 2L and 2R (see Fig. 2) to the change in braking / driving force moment (difference in braking force between the left and right wheels). The relationship between the difference and the total yaw moment changes from a solid line characteristic to a broken line characteristic.

従って、図14の実施例ではステップS3で目標制駆動力モーメント(左右輪間目標制駆動力差)を求めるに際し、制駆動力モーメント(左右輪間制駆動力差)の変化に対して左右後輪2L,2Rの転動変位(図2参照)が遅れている間は、これに伴って実線特性から破線特性へと変化する制駆動力モーメント(左右輪間制駆動力差)と合計ヨーモーメントとの関係を基に、目標制駆動力モーメント(左右輪間目標制駆動力差)を求める。
これがため本実施例においては、目標制駆動力モーメント(左右輪間目標制駆動力差)が急激に変化するような場合でも、目標ヨーモーメントMzを逐一確実に達成することができる。
Therefore, in the embodiment shown in FIG. 14, when the target braking / driving force moment (target braking / driving force difference between the left and right wheels) is obtained in step S3, the left / right rear is changed with respect to the change in braking / driving force moment (difference between braking force on the left and right wheels). While the rolling displacement of the wheels 2L and 2R (see Fig. 2) is delayed, the braking / driving force moment (difference in braking / driving force between the left and right wheels) and the total yaw moment change accordingly. The target braking / driving force moment (target braking / driving force difference between the left and right wheels) is obtained based on
Therefore, in the present embodiment, even when the target braking / driving force moment (the target braking / driving force difference between the left and right wheels) changes abruptly, the target yaw moment Mz can be achieved with certainty.

本発明の一実施例になる旋回挙動制御装置を具えた車両の線図的平面図である。1 is a diagrammatic plan view of a vehicle provided with a turning behavior control device according to an embodiment of the present invention. 図1に示した車両の駆動輪である左右後輪間に旋回挙動制御用制駆動力差を付与した時における左右後輪の転動変位状態を例示する図1と同様な線図的平面図である。1 is a diagrammatic plan view similar to FIG. 1 illustrating the rolling displacement state of the left and right rear wheels when a braking / driving force difference for turning behavior control is applied between the left and right rear wheels, which are the drive wheels of the vehicle shown in FIG. It is. 図1におけるコントローラが、旋回挙動制御用の左右後輪制駆動力差を付与するために必要な左右後輪制駆動力指令値を求める時に実行する制御プログラムを示すフローチャートである。FIG. 2 is a flowchart showing a control program executed when the controller in FIG. 1 obtains left and right rear wheel braking / driving force command values necessary for giving a left / right rear wheel braking / driving force difference for turning behavior control. 左右輪間制駆動力差(制駆動力モーメント)と、これにより車両に直接的および間接的に与えられるヨーモーメントの合計値との関係を示す特性線図である。FIG. 6 is a characteristic diagram showing a relationship between a left / right wheel braking / driving force difference (braking / driving force moment) and a total value of yaw moments that are directly and indirectly applied to the vehicle. 図4の特性から得られた合計ヨーモーメントと左右輪間制駆動力差(制駆動力モーメント)との関係から、目標ヨーモーメントを達成するのに必要な左右輪間目標制駆動力差(目標制駆動力モーメント)を求める要領を示す説明図である。From the relationship between the total yaw moment obtained from the characteristics in Fig. 4 and the braking / driving force difference between left and right wheels (braking and driving force moment), the target braking / driving force difference between left and right wheels (target) required to achieve the target yaw moment. It is explanatory drawing which shows the point which calculates | requires braking / driving force moment. ヨーレート限界を説明するための図で、 (a)は、ヨーレート限界を説明する時の前提となる車両の旋回走行状態を示す説明図、 (b)は、目標ヨーレートに対する限界ヨーレートの発生状況を示す説明図である。It is a figure for explaining a yaw rate limit, (a) is an explanatory view showing the turning traveling state of the vehicle which is a premise when explaining the yaw rate limit, (b) shows the occurrence situation of the limit yaw rate with respect to the target yaw rate It is explanatory drawing. 本発明の他の実施例を示す、図3と同様な制御プログラムのフローチャートである。FIG. 4 is a flowchart of a control program similar to FIG. 3, showing another embodiment of the present invention. 本実施例における左右輪間目標制駆動力差(目標制駆動力モーメント)の時系列変化を、第1実施例による左右輪間目標制駆動力差(目標制駆動力モーメント)の時系列変化と比較して示すタイムチャートである。The time series change of the target braking / driving force difference (target braking / driving force moment) between the left and right wheels in this embodiment is the time series change of the target braking / driving force difference (target braking / driving force moment) between the left and right wheels in the first embodiment. It is a time chart shown in comparison. 本発明の更に他の実施例を示す、図3,7と同様な制御プログラムのフローチャートである。FIG. 8 is a flowchart of a control program similar to FIGS. 3 and 7, showing still another embodiment of the present invention. FIG. 本実施例において挙動制御形態を異ならせることとした、合計ヨーモーメントと左右輪間制駆動力差(制駆動力モーメント)との関係の2例を示し、 (a)は、目標ヨーモーメント達成用の左右輪間目標制駆動力差(目標制駆動力モーメント)が複数存在する合計ヨーモーメントの領域が広い場合の合計ヨーモーメントと左右輪間制駆動力差(制駆動力モーメント)との関係線図、 (b)は、目標ヨーモーメント達成用の左右輪間目標制駆動力差(目標制駆動力モーメント)が複数存在する合計ヨーモーメントの領域が狭い場合の合計ヨーモーメントと左右輪間制駆動力差(制駆動力モーメント)との関係線図である。In this example, two examples of the relationship between the total yaw moment and the braking / driving force difference between the left and right wheels (braking / driving force moment) are shown, where (a) is for achieving the target yaw moment. Relationship line between the total yaw moment and the left / right wheel braking / driving force difference (braking / driving force moment) when there is a wide range of total yaw moment where there are multiple target braking / driving force differences (target braking / driving force moment) Fig. (B) shows the total yaw moment and the left / right wheel braking / driving when the total yaw moment area is narrow and there are multiple target braking / driving force differences between the left and right wheels (target braking / driving force moment) to achieve the target yaw moment. It is a relationship diagram with a force difference (braking / driving force moment). 本発明の更に別の実施例を示す、図3,7,9と同様な制御プログラムのフローチャートである。10 is a flowchart of a control program similar to FIGS. 3, 7, and 9 showing still another embodiment of the present invention. 車体に対するサスペンションメンバの支持構造を模式的に示した模式図である。It is the schematic diagram which showed typically the support structure of the suspension member with respect to a vehicle body. 同支持構造の周波数に対するゲイン変化および位相変化を示す周波数特性図である。It is a frequency characteristic figure which shows the gain change and phase change with respect to the frequency of the support structure. 目標ヨーモーメントが急変した時の過渡時における左右輪間制駆動力差(制駆動力モーメント)と合計ヨーモーメントとの関係の変化状況を示す、図5と同様な特性線図である。FIG. 6 is a characteristic diagram similar to FIG. 5 showing a change state of the relationship between the left / right wheel braking / driving force difference (braking / driving force moment) and the total yaw moment at the time of transition when the target yaw moment changes suddenly.

符号の説明Explanation of symbols

1L 左操舵輪(左前輪)
1R 右操舵輪(右前輪)
2L 左駆動輪(左後輪)
2R 右駆動輪(左後輪)
4 車体
5 ステアリングホイール
6 ステアリングギヤ装置
7L,7R サスペンションアーム
8L,8R サスペンションリンク
9 サスペンションメンバ
11 弾性体
12L,12R 制駆動モータ
13L,13R モータ出力軸
14 コントローラ
15L,15R インバータ
16 操舵角センサ
17 アクセル開度センサ
18 ブレーキペダル踏力センサ
19 車速センサ
21 ヨーレートセンサ
22 前後加速度センサ
23 横加速度センサ
1L left steering wheel (front left wheel)
1R right steering wheel (right front wheel)
2L left drive wheel (left rear wheel)
2R right drive wheel (left rear wheel)
4 body
5 Steering wheel
6 Steering gear device
7L, 7R suspension arm
8L, 8R suspension link
9 Suspension member
11 Elastic body
12L, 12R braking drive motor
13L, 13R Motor output shaft
14 Controller
15L, 15R inverter
16 Steering angle sensor
17 Accelerator position sensor
18 Brake pedal force sensor
19 Vehicle speed sensor
21 Yaw rate sensor
22 Longitudinal acceleration sensor
23 Lateral acceleration sensor

Claims (9)

少なくとも1組の左右輪を、これら左右輪間における共通な鉛直軸線周りで弾支力に抗し同方向へ転動変位可能に相関させて懸架した車両であって、
前記左右輪間に制駆動力差を持たせることにより車体に、目標とすべきヨーモーメントを付与して前記車両の旋回挙動を制御するに際し、
前記左右輪間の制駆動力差に起因した前記左右輪の転動変位に伴って車体に付与されるヨーモーメントを求め、
該左右輪の転動変位に伴うヨーモーメントによる影響を排除しつつ前記目標ヨーモーメントが達成されるよう前記左右輪間制駆動力差を決定することを特徴とする車両の旋回挙動制御方法。
A vehicle in which at least one pair of left and right wheels are suspended so as to be capable of rolling displacement in the same direction against a resilient force around a common vertical axis between these left and right wheels,
When controlling the turning behavior of the vehicle by giving a target yaw moment to the vehicle body by giving a braking / driving force difference between the left and right wheels,
Obtain the yaw moment to be applied to the vehicle body with the rolling displacement of the left and right wheels due to the difference in braking / driving force between the left and right wheels,
A turning behavior control method for a vehicle, wherein the difference in braking / driving force between the left and right wheels is determined such that the target yaw moment is achieved while eliminating the influence of the yaw moment associated with the rolling displacement of the left and right wheels.
請求項1に記載の車両の旋回挙動制御方法において、
前記左右輪間の制駆動力差に起因した左右輪の転動変位に伴うヨーモーメントと、前記左右輪間制駆動力差によるヨーモーメントとの和値が前記目標ヨーモーメントとなるよう前記左右輪間制駆動力差を決定することを特徴とする車両の旋回挙動制御方法。
In the vehicle turning behavior control method according to claim 1,
The left and right wheels so that the sum of the yaw moment resulting from the rolling displacement of the left and right wheels due to the difference in braking / driving force between the left and right wheels and the yaw moment due to the difference in braking / driving force between the left and right wheels becomes the target yaw moment. A method for controlling a turning behavior of a vehicle, characterized by determining a difference in braking / driving force.
少なくとも1組の左右輪を、これら左右輪間における共通な鉛直軸線周りで弾支力に抗し同方向へ転動変位可能に相関させて懸架し、
前記左右輪間に制駆動力差を持たせることにより車体に、目標とすべきヨーモーメントを付与するようにした車両において、
前記左右輪間の制駆動力差に起因した前記左右輪の転動変位に伴って車体に付与されるヨーモーメントと、前記左右輪間制駆動力差によるヨーモーメントとの相関関係から、前記目標ヨーモーメントが達成される左右輪間制駆動力差を決定する左右輪間制駆動力差決定手段と、
該手段により決定した前記制駆動力差を前記左右輪間に付与する左右輪間駆動力差付与手段とを具備してなることを特徴とする車両の旋回挙動制御装置。
Suspend at least one pair of left and right wheels so that they can roll and displace in the same direction against a resilient force around a common vertical axis between these left and right wheels,
In a vehicle in which a yaw moment to be targeted is given to the vehicle body by giving a braking / driving force difference between the left and right wheels,
From the correlation between the yaw moment applied to the vehicle body due to the rolling displacement of the left and right wheels due to the difference in braking / driving force between the left and right wheels, and the yaw moment due to the difference in braking / driving force between the left and right wheels, the target A left-right wheel braking / driving force difference determining means for determining a left / right wheel braking / driving force difference at which the yaw moment is achieved;
A turning behavior control device for a vehicle, comprising: a driving force difference applying means between right and left wheels for applying the braking / driving force difference determined by the means between the left and right wheels.
請求項3に記載の車両の旋回挙動制御装置において、
前記左右輪間制駆動力差決定手段は、
前記左右輪の転動変位に伴って車体に付与されるヨーモーメント、および、前記左右輪間制駆動力差によるヨーモーメントの和値と、前記左右輪間制駆動力差との関係を求める手段と、
該手段により求めた関係から、前記ヨーモーメントの和値に前記目標ヨーモーメントを当てはめて得られる左右輪間制駆動力差を、前記左右輪間駆動力差付与手段に指令する左右輪間制駆動力差指令手段とから成るものであることを特徴とする車両の旋回挙動制御装置。
In the vehicle turning behavior control device according to claim 3,
The left and right wheel braking / driving force difference determining means includes:
Means for obtaining the relationship between the yaw moment applied to the vehicle body in association with the rolling displacement of the left and right wheels, the sum of yaw moments due to the difference in braking / driving force between the left and right wheels, and the difference in braking / driving force between the left and right wheels When,
From the relationship obtained by the means, the left-right wheel braking / driving is instructed to the left-right wheel driving force difference applying means by applying the left-right wheel braking / driving force difference obtained by applying the target yaw moment to the sum of the yaw moments. A turning behavior control device for a vehicle characterized by comprising force difference command means.
請求項4に記載の車両の旋回挙動制御装置において、
前記左右輪間制駆動力差指令手段は、
前記ヨーモーメントの和値と前記左右輪間制駆動力差との関係から、前記ヨーモーメントの和値に前記目標ヨーモーメントを当てはめて得られる左右輪間制駆動力差が複数存在する場合、これら複数の左右輪間制駆動力差のうち、最も摩擦円利用率の高い車輪の摩擦円利用率が最小となるような左右輪間制駆動力差を選択して前記左右輪間駆動力差付与手段に指令するものであることを特徴とする車両の旋回挙動制御装置。
In the vehicle turning behavior control device according to claim 4,
The left and right wheel braking / driving force difference command means includes:
From the relationship between the sum value of the yaw moment and the braking / driving force difference between the left and right wheels, when there are a plurality of left / right wheel braking / driving force differences obtained by applying the target yaw moment to the sum of the yaw moments, these Among the plurality of left and right wheel braking / driving force differences, the right / left wheel braking / driving force difference is selected so as to minimize the friction circle utilization rate of the wheel having the highest friction circle utilization rate. A turning behavior control device for a vehicle, characterized in that it instructs the means.
請求項5に記載の車両の旋回挙動制御装置において、
前記左右輪間制駆動力差指令手段は、
前記左右輪の摩擦円利用率最大値が設定値を越えることのないような左右輪間制駆動力差が複数存在する場合、これらのうち現在の左右輪間制駆動力差に最も近い左右輪間制駆動力差を選択して前記左右輪間駆動力差付与手段に指令するものであることを特徴とする車両の旋回挙動制御装置。
In the vehicle turning behavior control device according to claim 5,
The left and right wheel braking / driving force difference command means includes:
When there are a plurality of left and right wheel braking / driving force differences such that the maximum friction circle utilization rate of the left and right wheels does not exceed the set value, the right and left wheels closest to the current left / right wheel braking / driving force difference A turning behavior control device for a vehicle, characterized in that a difference in driving force between the left and right wheels is selected and commanded to the driving force difference applying means.
請求項5または6に記載の車両の旋回挙動制御装置において、
前記左右輪間制駆動力差指令手段は、
前記ヨーモーメントの和値と前記左右輪間制駆動力差との関係から、前記ヨーモーメントの和値に前記目標ヨーモーメントを当てはめて得られる左右輪間制駆動力差が複数存在し、且つ、前記目標ヨーモーメントの絶対値が設定時間以上に亘って設定値未満である場合、前記複数の左右輪制動力差のうち最も小さな左右輪間制駆動力差を選択して前記左右輪間駆動力差付与手段に指令するものであることを特徴とする車両の旋回挙動制御装置。
In the vehicle turning behavior control device according to claim 5 or 6,
The left and right wheel braking / driving force difference command means includes:
From the relationship between the sum value of the yaw moment and the left / right wheel braking / driving force difference, there are a plurality of left / right wheel braking / driving force differences obtained by applying the target yaw moment to the yaw moment sum value, and When the absolute value of the target yaw moment is less than the set value over a set time, the smallest left-right wheel braking / driving force difference is selected from the plurality of left-right wheel braking force differences, and the left-right wheel driving force is selected. A turning behavior control device for a vehicle, characterized in that it commands the difference giving means.
請求項4〜7のいずれか1項に記載の車両の旋回挙動制御装置において、
前記左右輪間制駆動力差指令手段は、
前記ヨーモーメントの和値と前記左右輪間制駆動力差との関係から、前記ヨーモーメントの和値に前記目標ヨーモーメントを当てはめて得られる左右輪間制駆動力差が複数存在するような目標ヨーモーメントの範囲が設定範囲よりも狭い範囲である場合、前記複数の左右輪間制駆動力差のうち最も小さな左右輪間制駆動力差を選択して前記左右輪間駆動力差付与手段に指令するものであることを特徴とする車両の旋回挙動制御装置。
In the turning behavior control device for a vehicle according to any one of claims 4 to 7,
The left and right wheel braking / driving force difference command means includes:
From the relationship between the sum value of the yaw moment and the braking / driving force difference between the left and right wheels, a target having a plurality of left / right wheel braking / driving force differences obtained by applying the target yaw moment to the sum of the yaw moments. When the yaw moment range is narrower than the set range, the smallest left-right wheel braking / driving force difference among the plurality of left-right wheel braking / driving force differences is selected and the left-right wheel driving force difference providing means is selected. A turning behavior control device for a vehicle, characterized by being commanded.
請求項4〜8のいずれか1項に記載の車両の旋回挙動制御装置において、
前記左右輪間制駆動力差指令手段は、
前記左右輪間制駆動力差の変化に対する前記左右輪転動変位の過渡応答特性に基づき、前記目標ヨーモーメントと、左右輪間制駆動力差と、前記左右輪転動変位に伴うヨーモーメントとの関係を修正するものであることを特徴とする車両の旋回挙動制御装置。
In the vehicle turning behavior control device according to any one of claims 4 to 8,
The left and right wheel braking / driving force difference command means includes:
Based on the transient response characteristics of the left and right wheel rolling displacement to the change in the left and right wheel braking / driving force difference, the relationship between the target yaw moment, the left / right wheel braking / driving force difference, and the yaw moment accompanying the left and right wheel rolling displacement A vehicle turning behavior control device characterized by correcting the vehicle.
JP2007199136A 2007-07-31 2007-07-31 Method and apparatus for controlling turning behavior of vehicle Active JP5082656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007199136A JP5082656B2 (en) 2007-07-31 2007-07-31 Method and apparatus for controlling turning behavior of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007199136A JP5082656B2 (en) 2007-07-31 2007-07-31 Method and apparatus for controlling turning behavior of vehicle

Publications (2)

Publication Number Publication Date
JP2009035047A true JP2009035047A (en) 2009-02-19
JP5082656B2 JP5082656B2 (en) 2012-11-28

Family

ID=40437379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007199136A Active JP5082656B2 (en) 2007-07-31 2007-07-31 Method and apparatus for controlling turning behavior of vehicle

Country Status (1)

Country Link
JP (1) JP5082656B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010220326A (en) * 2009-03-14 2010-09-30 Nissan Motor Co Ltd Driving force controller for vehicles
JP2010233307A (en) * 2009-03-26 2010-10-14 Autech Japan Inc Electric vehicle
JP2017034815A (en) * 2015-07-30 2017-02-09 トヨタ自動車株式会社 Electric vehicle
JP2018207654A (en) * 2017-06-02 2018-12-27 日立オートモティブシステムズ株式会社 Control device of electric vehicle, control system of electric vehicle, and control method of electric vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202508A (en) * 1988-02-08 1989-08-15 Toyota Motor Corp Supporting structure for suspension member
JP2005354762A (en) * 2004-06-08 2005-12-22 Nissan Motor Co Ltd Turn controller of vehicle
JP2006182050A (en) * 2004-12-24 2006-07-13 Nissan Motor Co Ltd Braking force control device for four-wheel independent drive vehicle
JP2006315661A (en) * 2005-04-15 2006-11-24 Nissan Motor Co Ltd Driving force distribution device for four-wheel independent driving vehicle
JP2007001330A (en) * 2005-06-21 2007-01-11 Nissan Motor Co Ltd Braking and driving force distribution device of four wheel independent driving vehicle
JP2007276689A (en) * 2006-04-10 2007-10-25 Hitachi Ltd Wheel mover

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202508A (en) * 1988-02-08 1989-08-15 Toyota Motor Corp Supporting structure for suspension member
JP2005354762A (en) * 2004-06-08 2005-12-22 Nissan Motor Co Ltd Turn controller of vehicle
JP2006182050A (en) * 2004-12-24 2006-07-13 Nissan Motor Co Ltd Braking force control device for four-wheel independent drive vehicle
JP2006315661A (en) * 2005-04-15 2006-11-24 Nissan Motor Co Ltd Driving force distribution device for four-wheel independent driving vehicle
JP2007001330A (en) * 2005-06-21 2007-01-11 Nissan Motor Co Ltd Braking and driving force distribution device of four wheel independent driving vehicle
JP2007276689A (en) * 2006-04-10 2007-10-25 Hitachi Ltd Wheel mover

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010220326A (en) * 2009-03-14 2010-09-30 Nissan Motor Co Ltd Driving force controller for vehicles
JP2010233307A (en) * 2009-03-26 2010-10-14 Autech Japan Inc Electric vehicle
JP2017034815A (en) * 2015-07-30 2017-02-09 トヨタ自動車株式会社 Electric vehicle
JP2018207654A (en) * 2017-06-02 2018-12-27 日立オートモティブシステムズ株式会社 Control device of electric vehicle, control system of electric vehicle, and control method of electric vehicle

Also Published As

Publication number Publication date
JP5082656B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
RU2421354C2 (en) Automotive drive device
JP5007775B2 (en) Vehicle motion control system
US8718872B2 (en) Vehicle attitude controller
JP5809506B2 (en) Vehicle motion control device and suspension control device
JP3546423B2 (en) Vehicle motion control device
JP2009101858A (en) Vehicle steering system
JP7109406B2 (en) vehicle controller
BR102021002518A2 (en) METHOD TO CONTROL A ROAD VEHICLE
JP4333660B2 (en) Vehicle that combines roll angle control and roll rigidity front / rear distribution ratio control
JP5082656B2 (en) Method and apparatus for controlling turning behavior of vehicle
JP2007195386A (en) Driving force controller of electric vehicle and driving force control method of car and electric vehicle
JP2019188955A (en) Automatic tilting vehicle
Shim et al. Using µ feedforward for vehicle stability enhancement
JP4806930B2 (en) Vehicle steering system
JP2018144646A (en) Attitude control device
JP2009132378A (en) Vehicle and control device
JP2020131739A (en) Vehicle posture control device
JP4600161B2 (en) Vehicle that suppresses driving slip of wheels on split road surface
JP2013198174A (en) Driving force control device for vehicle
JP2008086159A (en) Electric cart
JP2008092682A (en) Electric cart
JP7576426B2 (en) Vehicle control device and vehicle control method
JP5476909B2 (en) Steering device
JP2008238934A (en) Power steering device
JP2024046319A (en) Mobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100929

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

R150 Certificate of patent or registration of utility model

Ref document number: 5082656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130213

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20130625