[go: up one dir, main page]

JP2009032640A - Sealed battery and its manufacturing method - Google Patents

Sealed battery and its manufacturing method Download PDF

Info

Publication number
JP2009032640A
JP2009032640A JP2007252823A JP2007252823A JP2009032640A JP 2009032640 A JP2009032640 A JP 2009032640A JP 2007252823 A JP2007252823 A JP 2007252823A JP 2007252823 A JP2007252823 A JP 2007252823A JP 2009032640 A JP2009032640 A JP 2009032640A
Authority
JP
Japan
Prior art keywords
current collector
sealed battery
welding
protrusion
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007252823A
Other languages
Japanese (ja)
Other versions
JP5100281B2 (en
Inventor
Kenji Minamisaka
健二 南坂
Yasutomo Taniguchi
恭朋 谷口
Yasuhiro Yamauchi
康弘 山内
Toshiyuki Noma
俊之 能間
Kenji Inagaki
健次 稲垣
Kenji Yoshida
賢司 吉田
Taku Kondo
近藤  卓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007252823A priority Critical patent/JP5100281B2/en
Priority to KR1020080042440A priority patent/KR20080114504A/en
Priority to CN2008101254851A priority patent/CN101335339B/en
Priority to US12/145,039 priority patent/US7819929B2/en
Publication of JP2009032640A publication Critical patent/JP2009032640A/en
Application granted granted Critical
Publication of JP5100281B2 publication Critical patent/JP5100281B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealed battery which has less internal short circuit and has a high reliability by preventing movement of spattered dust into an electrode body when a current collector is resistance welded to a core in the electrode body of a sealed battery having an exposed part of a positive electrode core and a negative electrode core respectively at both ends. <P>SOLUTION: The manufacturing method of the sealed battery comprises processes of: forming an electrode body 11 for the sealed battery having respectively a plurality of sheets of positive electrode core exposed parts 14 and negative electrode core exposed parts 15 at both ends; contacting respectively a negative electrode current collector 18<SB>1</SB>and a negative electrode current collector receiving part 18<SB>3</SB>to both sides of a welding portion of at least the negative electrode core exposed parts 15 through a tape 23a consisting of a thermal adhesive resin having an opening 23<SB>1</SB>formed in the center; and resistance welding by flowing electric current to the negative electrode current collector 18<SB>1</SB>and the negative electrode current collector receiving part 18<SB>3</SB>on both sides. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、密閉電池及びその製造方法に関し、特に両端にそれぞれ正極芯体及び負極芯体の露出部を有する密閉電池の電極体における芯体に対して集電体を抵抗溶接した際、スパッタされたチリが電極体の内部に移動することを防止して、内部短絡の発生が少なく、信頼性の高い密閉電池及びその製造方法に関する。   The present invention relates to a sealed battery and a manufacturing method thereof, and more particularly, when a current collector is resistance-welded to a core body of an electrode body of a sealed battery having exposed portions of a positive electrode core body and a negative electrode core body at both ends, respectively. In addition, the present invention relates to a highly reliable sealed battery that prevents dust from moving into the electrode body, generates less internal short-circuits, and a method for manufacturing the same.

環境保護運動の高まりを背景として二酸化炭素ガス等の排出規制が強化されており、自動車業界ではガソリン、ディーゼル油、天然ガス等の化石燃料を使用する自動車だけでなく、電気自動車(EV)やハイブリッド電気自動車(HEV)の開発が活発に行われている。加えて、近年の化石燃料の価格の急激な高騰はこれらのEVやHEVの開発を進める追い風となっている。   Emission regulations such as carbon dioxide gas have been strengthened against the backdrop of the increasing environmental protection movement. In the automobile industry, not only automobiles that use fossil fuels such as gasoline, diesel oil, and natural gas, but also electric vehicles (EV) and hybrid vehicles. Electric vehicles (HEV) are being actively developed. In addition, the rapid rise in fossil fuel prices in recent years is a tailwind for the development of these EVs and HEVs.

このようなEV、HEV用電池としては、一般にニッケル−水素二次電池やリチウムイオン二次電池が使用されているが、環境対応だけでなく、自動車としての基本性能、すなわち、走りの能力の高度化も要求されるようになってきている。そのため、単に電池容量を大きくすることのみならず、自動車の加速性能や登坂性能に大きな影響を及ぼすために電池出力を大きくすることも必要である。ところが、高出力の放電を行うと電池に大電流が流れるため、発電要素の芯体と集電体との間の接触抵抗による発熱が大きくなる。したがって、EV、HEV用電池は、大型で、大容量であるだけでなく、大電流を取り出せることが必要とされることから、電池内部の電力損失を防止して発熱を低下させるために、これらの発電要素の芯体と集電体との間の溶接不良を防止して内部抵抗を低下させることについても種々の改良が行われてきている。   As such EV and HEV batteries, nickel-hydrogen secondary batteries and lithium ion secondary batteries are generally used, but they are not only environmentally friendly but also have basic performance as an automobile, that is, high driving ability. There is also a need to make it easier. Therefore, it is necessary not only to increase the battery capacity but also to increase the battery output in order to greatly affect the acceleration performance and climbing performance of the automobile. However, when a high output discharge is performed, a large current flows through the battery, so that heat generation due to contact resistance between the core of the power generation element and the current collector increases. Therefore, since the batteries for EV and HEV are not only large and large in capacity, but also need to be able to take out a large current, in order to prevent power loss inside the battery and reduce heat generation, Various improvements have also been made to reduce internal resistance by preventing poor welding between the core of the power generation element and the current collector.

発電要素の芯体と集電体を電気的に接合する方法としては、機械的なカシメ、溶接等の方法があるが、高出力が要求される電池の集電方法としては融接である溶接が適している。また、リチウムイオン二次電池の負極側電極体材料としては、低抵抗化を実現するため銅ないし銅合金が使用されるが、銅ないし銅合金はその特性として、電気抵抗が小さく、熱伝導率が大きいため、溶接するためには非常に大きなエネルギーが必要となる。   As a method of electrically joining the core of the power generation element and the current collector, there are methods such as mechanical caulking and welding, but a current collecting method for batteries that require high output is fusion welding. Is suitable. In addition, as a negative electrode side electrode body material of a lithium ion secondary battery, copper or a copper alloy is used in order to realize a low resistance. However, copper or a copper alloy has low electrical resistance and thermal conductivity as its characteristics. Therefore, very large energy is required for welding.

このような発電要素の芯体と集電体との間の溶接方法としては、従来から以下の方法が知られている。
(1)レーザ溶接法(下記特許文献1参照)
(2)超音波溶接法(下記特許文献2参照)
(3)抵抗溶接法(下記特許文献3参照)
As a welding method between the core of the power generation element and the current collector, the following methods are conventionally known.
(1) Laser welding method (see Patent Document 1 below)
(2) Ultrasonic welding method (see Patent Document 2 below)
(3) Resistance welding method (see Patent Document 3 below)

レーザ溶接法においては、被溶接材料である銅ないし銅合金は金属溶接用に広く使用されているYAG(イットリウム−アルミニウム−ガーネット)レーザ光に対する反射率が約90%と高いため、高エネルギーのレーザ光が必要である。また、銅ないし銅合金をレーザ溶接すると、表面状態の影響により溶接性が大きく変わること、及び、他材質のレーザ溶接の場合と同様に、スパッタの発生が不可避であるという問題点が存在する。   In laser welding, copper or copper alloy, which is a material to be welded, has a high reflectivity of about 90% with respect to YAG (yttrium-aluminum-garnet) laser light, which is widely used for metal welding. I need light. In addition, when laser welding copper or copper alloy, there is a problem that weldability is greatly changed due to the influence of the surface state, and spattering is unavoidable as in the case of laser welding of other materials.

超音波溶接においても、被溶接材料である銅ないし銅合金の熱伝導率が大きいことから、大きなエネルギーが必要となり、また、溶接時の超音波振動によって負極活物質の脱落が生じる。そのため、下記特許文献2に開示されている発明では、超音波溶接時に発電要素である電極体を圧縮し、脱落した負極活物質が発電要素である電極体内に浸入しないようにしている。   Also in ultrasonic welding, since the thermal conductivity of copper or a copper alloy, which is a material to be welded, is large, a large amount of energy is required, and the negative electrode active material falls off due to ultrasonic vibration during welding. Therefore, in the invention disclosed in Patent Document 2 below, the electrode body that is a power generation element is compressed during ultrasonic welding so that the dropped negative electrode active material does not enter the electrode body that is the power generation element.

更に、抵抗溶接においては、被溶接材料である銅ないし銅合金の電気抵抗が小さいこと及び熱伝導率が大きいことから、短時間に大電流の投入が必要であること、溶接時に集電体と同材質である電極棒と集電体との融接が発生することがあること、溶接部以外での融解やスパークの発生が生じるという問題点が存在している。   Furthermore, in resistance welding, since the electrical resistance of copper or a copper alloy as a material to be welded is small and the thermal conductivity is large, it is necessary to input a large current in a short time. There are problems that fusion welding between the electrode rod made of the same material and the current collector may occur, and melting and sparking occur outside the welded portion.

特開2001−160387号公報JP 2001-160387 A 特開2007−053002号公報JP 2007-053002 A 特開2006−310254号公報JP 2006-310254 A 特開2002−008708号公報JP 2002-008708 A

上述のように3種類の溶接方法には一長一短があるが、生産性及び経済性を考慮すると、従来から金属間の溶接法として広く使用されている抵抗溶接法を採用することが望ましい。しかしながら、特に両端にそれぞれ正極芯体及び負極芯体の露出部を有するEV、HEV用の密閉電池の電極体(上記特許文献4参照)における銅ないし銅合金からなる芯体に対して銅製の集電体を抵抗溶接するには、電極体の積層数が多いため、確実に溶接させるためには多大な溶接エネルギーを必要とする。しかも、抵抗溶接に際して溶接エネルギーを大きくすると、スパッタされたチリの発生が増加し、このチリが密閉電池の電極体内部に移動することによって内部短絡の原因となる可能性が増加する。   As described above, the three types of welding methods have advantages and disadvantages. However, in view of productivity and economy, it is desirable to employ a resistance welding method that has been widely used as a welding method between metals. However, in particular, in the case of an electrode body of a sealed battery for EV and HEV having exposed portions of the positive electrode core body and the negative electrode core body at both ends (see Patent Document 4 above), a copper collection is used for the core body made of copper or copper alloy. In order to resistance-weld an electric body, a large number of electrode bodies are stacked, so that a large amount of welding energy is required for reliable welding. In addition, when the welding energy is increased during resistance welding, the generation of sputtered dust increases, and the possibility that this dust moves into the electrode body of the sealed battery increases the cause of an internal short circuit.

本発明は、上述のような従来技術の問題点を解決するために開発されたものであり、その目的は、両端にそれぞれ正極芯体及び負極芯体の露出部を有する密閉電池の電極体における芯体に対して集電体を抵抗溶接した際、スパッタされたチリが電極体の内部に移動することを防止して、内部短絡の発生が少なく、信頼性の高い密閉電池及びその製造方法を提供することにある。   The present invention has been developed in order to solve the above-described problems of the prior art, and the object thereof is an electrode body of a sealed battery having a positive electrode core body and an exposed portion of a negative electrode core body at both ends. When resistance collector welding of a current collector to a core body, a sputtered dust is prevented from moving into the electrode body, an internal short circuit is less likely to occur, and a highly reliable sealed battery and its manufacturing method It is to provide.

上記目的を達成するため、本発明の密閉電池は、両端にそれぞれ正極芯体及び負極芯体が露出した密閉電池用の電極体と、少なくとも一方の前記芯体の両側に抵抗溶接された集電体を備える密閉電池において、前記抵抗溶接部分の周囲の前記芯体と集電体の間には絶縁シール材が配置されていることを特徴とする。   In order to achieve the above object, a sealed battery of the present invention includes an electrode body for a sealed battery in which a positive electrode core body and a negative electrode core body are exposed at both ends, and a current collector that is resistance-welded to both sides of at least one of the core bodies. In a sealed battery including a body, an insulating seal material is disposed between the core body and the current collector around the resistance welding portion.

本発明の密閉電池においては、両端にそれぞれ複数枚の正極芯体及び負極芯体が露出した密閉電池用の電極体と、少なくとも一方の前記複数枚の芯体の両側に抵抗溶接された集電体及び集電体受け部品を備えていることが必要である。このような密閉電池では、通常、電極体の積層数が多いので、確実に溶接させるためには多大な溶接エネルギーを与える必要があるため、抵抗溶接時にスパッタされたチリの発生が増加する。しかしながら、本発明の密閉電池においては、抵抗溶接部分の周囲の前記芯体と集電体及び集電体受け部品の間には絶縁シール材が配置されているので、抵抗溶接時に発生したチリは抵抗溶接部の周囲の絶縁シール材中に捕獲されるため、外部に飛散することがない。従って、本発明によれば、内部短絡の発生が少なく、信頼性の高い密閉電池が得られる。また、抵抗溶接部分の周囲の芯体と集電体及び集電体受け部品の一方の間に絶縁シール材が配置された場合であっても、抵抗溶接時に発生したチリは抵抗溶接部の周囲の絶縁シール材中に捕獲されるため、電極体の内部ないし外部に飛散するチリを少なくする効果が得られる。   In the sealed battery of the present invention, a plurality of positive electrode core bodies and negative electrode core bodies are exposed at both ends, respectively, and a current collector that is resistance welded to both sides of at least one of the plurality of core bodies. It is necessary to have a body and a current collector receiving part. In such a sealed battery, since there are usually a large number of electrode bodies stacked, it is necessary to give a large amount of welding energy in order to reliably perform welding, so that the generation of dust sputtered during resistance welding increases. However, in the sealed battery of the present invention, since an insulating sealing material is disposed between the core around the resistance welding portion and the current collector and current collector receiving part, dust generated during resistance welding is not Since it is trapped in the insulating sealing material around the resistance weld, it does not scatter outside. Therefore, according to the present invention, it is possible to obtain a highly reliable sealed battery with less occurrence of internal short circuit. In addition, even when an insulating seal material is placed between the core around the resistance welded part and one of the current collector and current collector receiving part, the dust generated during resistance welding is around the resistance welded part. Since it is trapped in the insulating sealing material, the effect of reducing dust scattered inside or outside the electrode body can be obtained.

なお、本発明の密閉電池における芯体及び集電体は、両者とも同じ金属からなっていても、それぞれ異なる金属からなる場合であってもよく、また、正極芯体に対しても負極芯体に対しても等しく適用し得る。更に、本発明の密閉電池は、両端にそれぞれ正極芯体及び負極芯体が露出した密閉電池用の電極体と、少なくとも一方の前記芯体に対して両側から対向配置されているとともに抵抗溶接された集電体及び集電体受け部品を備えているものであれば、電極体が巻回形のものであっても積層形のものであってもよく、更に、非水電解質二次電池であっても水性電解質二次電池であってもよい。   Note that the core and the current collector in the sealed battery of the present invention may be made of the same metal or different metals, and the negative electrode core is also used for the positive electrode core. The same applies to. Furthermore, the sealed battery according to the present invention has a sealed battery electrode body in which the positive electrode core body and the negative electrode core body are exposed at both ends, and is opposed to at least one of the core bodies from both sides and is resistance-welded. As long as the current collector and the current collector receiving part are provided, the electrode body may be a wound type or a laminated type, and further, a non-aqueous electrolyte secondary battery Or an aqueous electrolyte secondary battery.

また、本発明の密閉電池においては、前記絶縁シール材は熱溶着性樹脂からなるテープ又は糊材付き絶縁テープであることが好ましい。   In the sealed battery of the present invention, the insulating sealing material is preferably a tape made of a heat-welding resin or an insulating tape with a paste material.

係る態様の密閉電池によれば、抵抗溶接時に発生するスパッタされた高温のチリは、固体の熱溶着性樹脂からなるテープ又は糊材付き絶縁テープを部分的に溶融することによって熱を奪われ、急速に冷却されて温度が下がるので、容易に固体の熱溶着性樹脂からなるテープ又は糊材付き絶縁テープ中に捕獲される。なお、抵抗溶接時には、電流を流す時間は短く、しかも、電流が流れる範囲は狭いので、熱溶着性樹脂からなるテープ又は糊材付き絶縁テープの全てが同時に溶融することは少ない。そのため、抵抗溶接時に発生したスパッタされたチリは熱溶着性樹脂からなるテープ又は糊材付き絶縁テープから飛散して電極体の内部へ入り込むことが少なくなるので、より内部短絡の発生が少なく、信頼性の高い密閉電池が得られる。なお、熱溶着性樹脂は、溶着温度が70〜150℃程度であり、溶解温度は200℃以上のものが望ましく、更には電解液等に対する耐薬品性を備えていることが望ましい。   According to the sealed battery of this aspect, the sputtered high temperature dust generated during resistance welding is deprived of heat by partially melting a tape made of a solid heat-weldable resin or an insulating tape with a paste material, Since it cools rapidly and falls in temperature, it is easily trapped in a tape made of a solid heat-weldable resin or an insulating tape with glue. In resistance welding, since the current flow time is short and the current flow range is narrow, it is unlikely that all of the tape made of the heat-welding resin or the insulating tape with the adhesive material will melt at the same time. Therefore, the sputtered dust generated during resistance welding is less likely to scatter from the tape made of heat-welding resin or the insulating tape with adhesive, and enter the inside of the electrode body. A highly sealed battery is obtained. The heat-welding resin has a welding temperature of about 70 to 150 ° C., a melting temperature of 200 ° C. or higher is desirable, and it is desirable to have chemical resistance against an electrolytic solution and the like.

また、本発明の密閉電池においては、前記集電体及び集電体受け部品の前記抵抗溶接部分の少なくとも一方側には他方側に向かって突出する突起が設けられていることが好ましい。   In the sealed battery of the present invention, it is preferable that a protrusion projecting toward the other side is provided on at least one side of the resistance welding portion of the current collector and the current collector receiving part.

この突起は、一般には「プロジェクション」とも称されているものであり、先端部の断面積が根本の断面積よりも小さくなっていることが好ましい。抵抗溶接時にこの突起の先端部分に電流が集中するので、抵抗溶接に使用されない無効電流が減少し、芯体、集電体及び集電体受け部品等の電気抵抗が低くかつ熱伝導率が高くても効率よく強固に抵抗溶接を行うことができる。したがって、係る態様の密閉電池によれば、上記本発明の効果を奏しながらも、より溶接部の信頼性が高い密閉電池が得られる。   This protrusion is generally called “projection”, and it is preferable that the cross-sectional area of the tip portion is smaller than the cross-sectional area of the root. Since current concentrates on the tip of this protrusion during resistance welding, reactive current not used for resistance welding is reduced, and the electrical resistance of the core, current collector and current collector receiving parts is low and the thermal conductivity is high. However, resistance welding can be performed efficiently and firmly. Therefore, according to the sealed battery of the aspect, a sealed battery with higher reliability of the welded portion can be obtained while achieving the effects of the present invention.

また、本発明の密閉電池においては、前記集電体及び集電体受け部品の前記抵抗溶接部分の一方側には他方側に向かって突出する前記突起が設けられ、前記集電体及び集電体受け部品の他方側には前記突起と対向する部分に表面が平らな凸部が形成されていることが好ましい。   Further, in the sealed battery of the present invention, the protrusion protruding toward the other side is provided on one side of the resistance welding portion of the current collector and the current collector receiving part, and the current collector and the current collector are provided. On the other side of the body receiving part, it is preferable that a convex portion having a flat surface is formed at a portion facing the projection.

抵抗溶接時には、集電体及び集電体受け部品を両側から電極棒によって互いに押圧しながら抵抗溶接が行われるため、溶接部周囲に配置された絶縁シール材の熱溶着性樹脂自体ないし糊材が溶接部へはみ出してしまうことがある。このように熱溶着性樹脂自体ないし糊材が抵抗溶接部にはみ出した状態で抵抗溶接を行うと熱溶着性樹脂自体ないし糊材が爆発的に燃焼してしまうことがある。しかしながら、前記集電体及び集電体受け部品の他方側には前記突起と対向する部分に表面が平らな凸部を形成すると、抵抗溶接時に熱溶着性樹脂ないし糊材がはみ出ることがあっても、このはみ出た熱溶着性樹脂ないし糊材が前記突起の表面及び表面が平らな凸部の表面に達することがないため、安全かつ効率よく、強固な抵抗溶接部を有する密閉電池が得られる。   At the time of resistance welding, resistance welding is performed while pressing the current collector and current collector receiving parts from both sides with the electrode rods, so that the heat sealing resin itself or the paste material of the insulating sealing material arranged around the welded portion It may stick out to the weld. As described above, when resistance welding is performed in a state where the heat-welding resin itself or the glue material protrudes from the resistance welding portion, the heat-welding resin itself or the glue material may explosively burn. However, if a convex part with a flat surface is formed on the other side of the current collector and current collector receiving part, the heat-welding resin or paste may protrude during resistance welding. However, since the protruding heat-welding resin or paste material does not reach the surface of the protrusion and the surface of the convex portion with a flat surface, a sealed battery having a strong resistance welded portion can be obtained safely and efficiently. .

また、本発明の密閉電池においては、前記表面が平らな凸部の形状は平面視で円形状であり、前記表面が平らな凸部の径は前記突起の径よりも大きいことが好ましい。   In the sealed battery according to the aspect of the invention, it is preferable that the shape of the convex portion having a flat surface is a circular shape in plan view, and the diameter of the convex portion having a flat surface is larger than the diameter of the protrusion.

係る態様の密閉電池によれば、集電体及び集電体受け部品の配置位置にずれがあっても、表面が平らな凸部と突起の先端とが対向配置された状態を維持できるため、上記本発明の効果を奏しながらも、より溶接部の信頼性が高い密閉電池が得られる。   According to the sealed battery of this aspect, even if there is a shift in the arrangement position of the current collector and the current collector receiving part, it is possible to maintain the state where the convex portion with the flat surface and the tip of the protrusion are arranged to face each other. A sealed battery having higher welded part reliability can be obtained while exhibiting the effects of the present invention.

また、本発明の密閉電池においては、前記抵抗溶接された芯体、集電体及び集電体受け部品が共に銅又は銅合金からなるものとすることができる。   In the sealed battery of the present invention, the resistance-welded core, current collector, and current collector receiving part may both be made of copper or a copper alloy.

銅又は銅合金は、常用されている導電性金属のうち最も電気抵抗が低くかつ熱伝導率が低いものであるので、抵抗溶接時には大電流を流す必要があるため、スパッタされるチリの発生も多くなる。しかしながら、本発明の密閉電池によれば、これらの大量に発生したスパッタされたチリも抵抗溶接部の周囲の絶縁シール材中に捕獲することができるので、上記本発明の効果を良好に奏することができる。   Since copper or copper alloy has the lowest electrical resistance and low thermal conductivity among the commonly used conductive metals, it is necessary to pass a large current at the time of resistance welding. Become more. However, according to the sealed battery of the present invention, the sputtered dust generated in a large amount can be captured in the insulating sealing material around the resistance welded portion, so that the effect of the present invention can be achieved well. Can do.

更に、上記目的を達成するため、本発明の密閉電池の製造方法は以下の(1)〜(3)の工程を含むことを特徴とする。
(1)両端にそれぞれ複数枚の正極芯体及び負極芯体の露出部を有する密閉電池用の電極体を形成する工程、
(2)少なくとも一方の前記芯体の露出部の溶接箇所の両面に、中央部に開口が形成された絶縁シール材を介して、それぞれ集電体及び集電体受け部品を当接する工程、
(3)前記両側の集電体及び集電体受け部品の間に電流を流して抵抗溶接する工程。
Furthermore, in order to achieve the said objective, the manufacturing method of the sealed battery of this invention is characterized by including the process of the following (1)-(3).
(1) A step of forming an electrode body for a sealed battery having exposed portions of a plurality of positive electrode cores and negative electrode cores at both ends,
(2) A process of contacting a current collector and a current collector receiving part on both surfaces of the welded portion of the exposed portion of at least one of the cores via an insulating seal material having an opening at the center, respectively.
(3) A step of resistance welding by passing an electric current between the current collectors and current collector receiving parts on both sides.

本発明の密閉電池の製造方法によれば、抵抗溶接時には絶縁シール材の中央部に設けられた開口を介して電流が流れる。そのため、抵抗溶接時に絶縁性テープに設けられた開口部分に電流が集中するため、溶接に関与しない無効電流が減少し、効率よく強固に抵抗溶接を行うことができる。しかも、抵抗溶接部分の周囲は絶縁性テープで囲まれているから、抵抗溶接時に発生したスパッタチリは抵抗溶接部の周囲の絶縁シール材中に捕獲されるため、外部に飛散することがない。従って、本発明の密閉電池の製造方法によれば、内部短絡の発生が少なく、信頼性の高い密閉電池が得られる。   According to the method for manufacturing a sealed battery of the present invention, a current flows through an opening provided in the central portion of the insulating sealing material during resistance welding. For this reason, current concentrates on the opening provided in the insulating tape during resistance welding, so that reactive current not involved in welding is reduced and resistance welding can be performed efficiently and firmly. Moreover, since the periphery of the resistance welded portion is surrounded by the insulating tape, the spatter generated during the resistance welding is captured in the insulating sealing material around the resistance welded portion, so that it is not scattered outside. Therefore, according to the method for manufacturing a sealed battery of the present invention, a highly reliable sealed battery with few internal short-circuits can be obtained.

また、本発明の密閉電池の製造方法においては、前記絶縁シール材は熱溶着性樹脂からなるテープ又は糊材付き絶縁テープであることが好ましい。   Moreover, in the manufacturing method of the sealed battery of this invention, it is preferable that the said insulating sealing material is a tape which consists of heat welding resin, or an insulating tape with a paste material.

係る態様の密閉電池の製造方法によれば、容易に絶縁シール材を所定の抵抗溶接位置の周囲に配置することができるようになる。加えて、抵抗溶接時に発生するスパッタされた高温のチリは、固体の熱溶着性樹脂ないし絶縁テープを部分的に溶融することによって熱を奪われ、急速に冷却されて温度が下がるので、容易に固体の熱溶着性樹脂ないし絶縁テープ中に捕獲される。なお、抵抗溶接時には、電流を流す時間は短く、しかも、電流が流れる範囲は狭いので、固体の熱溶着性樹脂ないし絶縁テープの全てが同時に溶融することは少ない。そのため、抗溶接時に発生したスパッタされたチリは固体の熱溶着性樹脂ないし絶縁テープを飛び出して電極体の内部へ入り込むことが少なくなるので、より内部短絡の発生が少なく、信頼性の高い密閉電池が得られる。   According to the sealed battery manufacturing method of this aspect, the insulating sealing material can be easily disposed around the predetermined resistance welding position. In addition, high-temperature sputtered dust generated during resistance welding is easily deprived of heat by partially melting a solid heat-weldable resin or insulating tape, and rapidly cools and drops in temperature. Captured in solid heat-weldable resin or insulating tape. During resistance welding, the current flow time is short and the current flow range is narrow, so that the solid heat-weldable resin or insulating tape is unlikely to melt at the same time. Therefore, spattered dust generated during anti-welding is less likely to jump out of the solid heat-weldable resin or insulating tape and enter the electrode body, resulting in fewer internal short circuits and a highly reliable sealed battery. Is obtained.

なお、熱溶着性樹脂は、溶着温度が70〜150℃程度であり、溶解温度は200℃以上のものが望ましく、更には電解質等に対する耐薬品性を備えていることが望ましい。熱溶着性樹脂としては、ゴム系シール材、酸変性ポリプロピレン、ポリオレフィン系熱溶着性樹脂等を使用し得る。更に、糊材付き絶縁テープとしては、ポリイミドテープ、ポリプロピレンテープ、ポリフェニレンサルファイドテープ等を使用することができ、また、絶縁性熱溶着製樹脂層を有する複層構造のものであってもよい。   The heat-welding resin has a welding temperature of about 70 to 150 ° C., a melting temperature of 200 ° C. or higher is desirable, and it is desirable to have chemical resistance against an electrolyte or the like. As the heat-welding resin, rubber-based sealing materials, acid-modified polypropylene, polyolefin-based heat-welding resins, and the like can be used. Furthermore, polyimide tape, polypropylene tape, polyphenylene sulfide tape, or the like can be used as the insulating tape with paste, and it may have a multilayer structure having an insulating heat-welded resin layer.

また、本発明の密閉電池の製造方法においては、前記(2)の工程において、前記両側の集電体及び集電体受け部品の前記抵抗溶接部分の少なくとも一方側には他方側に向かって突出する突起が形成されたものを使用し、前記突起が前記絶縁シール材の中央部の開口に位置するように前記芯体の溶接箇所に当接することが好ましい。   In the sealed battery manufacturing method of the present invention, in the step (2), at least one side of the resistance welding portion of the current collector on both sides and the current collector receiving part protrudes toward the other side. It is preferable to use a member on which a projection is formed, and abut the welded portion of the core body so that the projection is located at the opening of the central portion of the insulating sealing material.

この突起は、一般には「プロジェクション」とも称されているものであり、先端部の断面積が根本の断面積よりも小さくなっていることが好ましい。抵抗溶接時にこの突起の先端部分に電流が集中するので、抵抗溶接に使用されない無効電流が減少し、芯体、集電体及び集電体受け部品等の電気抵抗が低くかつ熱伝導率が高くても効率よく強固に抵抗溶接を行うことができるようになる。加えて、この突起は絶縁シール材の中央部の開口に位置するように配置されているから、抵抗溶接前の絶縁シール材の位置ずれによる溶接部へのはみ出しを予防することができるため、抵抗溶接時に溶接部へはみ出した絶縁シール材の爆発的な燃焼をなくすことができる。従って、係る態様の密閉電池の製造方法によれば、溶接部の信頼性が高い密閉電池を製造することができる。   This protrusion is generally called “projection”, and it is preferable that the cross-sectional area of the tip portion is smaller than the cross-sectional area of the root. Since current concentrates on the tip of this protrusion during resistance welding, reactive current not used for resistance welding is reduced, and the electrical resistance of the core, current collector and current collector receiving parts is low and the thermal conductivity is high. However, resistance welding can be performed efficiently and firmly. In addition, since this protrusion is arranged so as to be located at the opening of the central portion of the insulating seal material, it can prevent the protrusion to the welded portion due to the displacement of the insulating seal material before resistance welding. Explosive combustion of the insulating seal material that protrudes into the weld during welding can be eliminated. Therefore, according to the manufacturing method of the sealed battery of the aspect which concerns, the sealed battery with high reliability of a welding part can be manufactured.

また、本発明の密閉電池の製造方法においては、前記絶縁シール材の厚さは前記突起の高さの0.1〜1倍であることが好ましい。前記絶縁シール材の厚さは前記突起の高さの2/3〜1倍であることがさらに好ましい。   Moreover, in the manufacturing method of the sealed battery of this invention, it is preferable that the thickness of the said insulating sealing material is 0.1-1 times the height of the said protrusion. More preferably, the thickness of the insulating sealing material is 2/3 to 1 times the height of the protrusion.

絶縁性テープの厚さが突起の高さの0.1倍未満であると実質的に絶縁シール材がない場合と同様になり、スパッタチリが外部へ飛散するのを抑止することができなくなるために内部短絡が増加するので、好ましくない。絶縁性テープの厚さが突起の高さの2/3倍以上であるとスパッタチリの捕集効果が良好となる。また、絶縁シール材の厚さが突起の高さの1倍を超えると、突起を芯体と直接接触させるためには、過剰の圧力が必要となるため好ましくない。   If the thickness of the insulating tape is less than 0.1 times the height of the protrusion, it will be substantially the same as when there is no insulating sealing material, and it will not be possible to prevent spatter from scattering to the outside. Since internal short circuit increases, it is not preferable. When the thickness of the insulating tape is 2/3 or more of the height of the protrusion, the effect of collecting spatter dust becomes good. In addition, if the thickness of the insulating seal material exceeds 1 times the height of the protrusion, it is not preferable because excessive pressure is required to bring the protrusion into direct contact with the core.

また、本発明の密閉電池の製造方法においては、前記絶縁シール材の中央部の開口の幅は前記突起の幅の1〜5倍であることが好ましい。   Moreover, in the manufacturing method of the sealed battery of this invention, it is preferable that the width | variety of the opening of the center part of the said insulating sealing material is 1 to 5 times the width | variety of the said protrusion.

絶縁シール材の中央の開口の幅が突起の幅の1倍未満であると、絶縁シール材が突起の先端部を部分的に覆うことがあるため、抵抗溶接時に溶接部に絶縁シール材が残留しやすくなり、爆発的に燃焼を起こしたり、溶接部の強度の低下及び信頼性の低下が生じるために好ましくない。また、絶縁シール材の中央部の開口の幅が突起の幅の5倍を超えると、実質的に絶縁テープがない場合と同様になり、スパッタチリが外部へ飛散するのを抑止することができなくなるために内部短絡が増加するので好ましくない。なお、本発明における絶縁性テープの中央の開口の幅ないし突起の幅は、これらの形状が円形状であれば直径を表し、これらの形状が方形状であれば最長対角間距離を示す。   If the width of the central opening of the insulating seal material is less than 1 times the width of the protrusion, the insulating seal material may partially cover the tip of the protrusion, so that the insulating seal material remains in the weld during resistance welding. This is not preferable because it tends to be explosive and burns explosively, and the weld strength decreases and the reliability decreases. Further, if the width of the opening of the central portion of the insulating seal material exceeds 5 times the width of the protrusion, it becomes substantially the same as when there is no insulating tape, and it is impossible to prevent spatter dust from scattering to the outside. Therefore, an internal short circuit increases, which is not preferable. In addition, the width | variety of the opening or protrusion of the center of the insulating tape in this invention represents a diameter if these shapes are circular, and shows the longest diagonal distance if these shapes are square.

また、本発明の密閉電池の製造方法においては、前記(2)の工程において、前記集電体及び集電体受け部品の前記抵抗溶接部分の一方側には他方側に向かって突出する前記突起が設けられ、前記集電体及び集電体受け部品の他方側には前記突起と対向する部分に表面が平らな凸部が形成されたものを使用し、前記表面が平らな凸部及び突起が絶縁シール材の中央部の開口に位置して互いに対向するよう前記芯体の溶接箇所に当接することが好ましい。   Moreover, in the manufacturing method of the sealed battery of this invention, in the process of said (2), the said protrusion which protrudes toward the other side in the one side of the said resistance welding part of the said electrical power collector and electrical power collector receiving components The other side of the current collector and the current collector receiving part is formed with a convex part with a flat surface on the part facing the projection, and the convex part and the projection with the flat surface are used. Are preferably in contact with the welded portion of the core body so as to face each other at the opening of the central portion of the insulating sealing material.

係る態様の密閉電池の製造方法によれば、抵抗溶接時に、絶縁シール材の熱溶着性樹脂ないし糊材がはみ出ても前記表面が平らな凸部及び突起の表面までには達せず、しかも抵抗溶接時の電流は前記突起の先端と表面が平らな凸部の表面の一部に集中して流れるため、この熱溶着性樹脂ないし糊材が爆発的に燃焼することがなくなる。しかも、この表面が平らな凸部が絶縁シール材の位置決めにもなるため、容易に抵抗溶接前の絶縁シール材の位置ずれによる溶接部へのはみ出しを予防することができ、抵抗溶接時に溶接部へはみ出した絶縁シール材の爆発的な燃焼をなくすことができる。従って、係る態様の密閉電池の製造方法によれば、安全にかつ強固に抵抗溶接を行うことができるようになると共に、生産性を大きく向上させることができ、効率よく溶接部の信頼性が高い密閉電池を製造することができる。   According to the method for manufacturing a sealed battery of this aspect, even when the heat-welding resin or paste material of the insulating sealing material protrudes during resistance welding, the surface does not reach the surfaces of the flat protrusions and protrusions, and resistance. Since the current during welding flows in a concentrated manner on the tip of the protrusion and a part of the surface of the convex part with a flat surface, the heat-welding resin or paste material does not burn explosively. In addition, since the convex portion having a flat surface also serves as the positioning of the insulating sealing material, it is possible to easily prevent the protruding portion of the insulating sealing material from protruding due to the displacement of the insulating sealing material before resistance welding. Explosive combustion of the insulating sealing material that protrudes can be eliminated. Therefore, according to the method for manufacturing a sealed battery of this aspect, resistance welding can be performed safely and firmly, productivity can be greatly improved, and the reliability of the welded portion is high efficiently. A sealed battery can be manufactured.

また、本発明の密閉電池の製造方法においては、前記表面が平らな凸部の形状は平面視で円形状であり、前記表面が平らな凸部の径は前記突起の径よりも大きいことが好ましい。   In the sealed battery manufacturing method of the present invention, the shape of the convex portion having a flat surface is a circular shape in plan view, and the diameter of the convex portion having a flat surface is larger than the diameter of the projection. preferable.

係る態様の密閉電池の製造方法によれば、表面が平らの凸部の形成が容易にでき、しかも、集電体及び集電体受け部品の配置位置にずれがあっても表面が平らな凸部と突起の先端とが対向配置された状態を簡単に維持できるため、上記本発明の効果を奏しながらも、より溶接部の信頼性が高い密閉電池を製造することができるようになる。   According to the method for manufacturing a sealed battery of this aspect, it is possible to easily form a convex portion having a flat surface, and even if the arrangement positions of the current collector and the current collector receiving component are misaligned, the surface is flat. Since the state in which the portion and the tip of the protrusion are opposed to each other can be easily maintained, it is possible to manufacture a sealed battery in which the reliability of the welded portion is higher while achieving the effects of the present invention.

また、本発明の密閉電池の製造方法においては、前記絶縁シール材の厚さは前突起の高さの0.1〜1倍であることが好ましい。前記絶縁シール材の厚さは前記突起の高さの2/3〜1倍であることがさらに好ましい。   Moreover, in the manufacturing method of the sealed battery of this invention, it is preferable that the thickness of the said insulating sealing material is 0.1 to 1 time the height of a front protrusion. More preferably, the thickness of the insulating sealing material is 2/3 to 1 times the height of the protrusion.

絶縁性テープの厚さが突起の高さの0.1倍未満であると実質的に絶縁シール材がない場合と同様になり、スパッタチリが外部へ飛散するのを抑止することができなくなるために内部短絡が増加するので、好ましくない。絶縁性テープの厚さが突起の高さの2/3倍以上であるとスパッタチリの捕集効果が良好となる。また、絶縁シール材の厚さが突起の高さの1倍を超えると、突起を芯体と直接接触させるためには、過剰の圧力が必要となるため好ましくない。   If the thickness of the insulating tape is less than 0.1 times the height of the protrusion, it will be substantially the same as when there is no insulating sealing material, and it will not be possible to prevent spatter from scattering to the outside. Since internal short circuit increases, it is not preferable. When the thickness of the insulating tape is 2/3 or more of the height of the protrusion, the effect of collecting spatter dust becomes good. In addition, if the thickness of the insulating seal material exceeds 1 times the height of the protrusion, it is not preferable because excessive pressure is required to bring the protrusion into direct contact with the core.

また、本発明の密閉電池の製造方法においては、前記絶縁シール材の中央部の開口の幅は前記突起の幅の1〜5倍であることが好ましい。   Moreover, in the manufacturing method of the sealed battery of this invention, it is preferable that the width | variety of the opening of the center part of the said insulating sealing material is 1 to 5 times the width | variety of the said protrusion.

絶縁シール材の中央の開口の幅が突起の幅の1倍未満であると、絶縁シール材が突起の先端部を部分的に覆うことがあるため、抵抗溶接時に溶接部に絶縁シール材が残留しやすくなり、爆発的に燃焼を起こしたり、溶接部の強度の低下及び信頼性の低下が生じるために好ましくない。また、絶縁シール材の幅が突起の幅の5倍を超えると、実質的に絶縁テープがない場合と同様になり、スパッタチリが外部へ飛散するのを抑止することができなくなるために内部短絡が増加するので好ましくない。   If the width of the central opening of the insulating seal material is less than 1 times the width of the protrusion, the insulating seal material may partially cover the tip of the protrusion, so that the insulating seal material remains in the weld during resistance welding. This is not preferable because it tends to be explosive and burns explosively, and the weld strength decreases and the reliability decreases. Also, if the width of the insulating seal material exceeds 5 times the width of the protrusion, it becomes substantially the same as when there is no insulating tape, and it becomes impossible to prevent spatter dust from scattering to the outside. Since it increases, it is not preferable.

また、本発明の密閉電池の製造方法においては、前記絶縁シール材は熱溶着性樹脂からなるテープであり、前記熱溶着性樹脂からなるテープの厚さをLとしたとき、前記表面が平らな凸部の高さHは、L<H<(3/2)Lの範囲にあることが好ましい。   In the sealed battery manufacturing method of the present invention, the insulating sealing material is a tape made of a heat-welding resin, and the surface is flat when the thickness of the tape made of the heat-welding resin is L. The height H of the convex portion is preferably in the range of L <H <(3/2) L.

絶縁シール材が熱溶着性樹脂からなるテープからなる場合、特に連続的に抵抗溶接を続けると抵抗溶接用電極棒が熱くなるため、抵抗溶接の電流を流す前にこれらの熱溶着性樹脂が軟化して溶接部にはみ出す可能性がある。この場合、L≦Hを満たしていれば表面が平坦な凸部の表面が熱溶着性樹脂製テープよりも突き出た状態となるので、軟化した熱溶着性樹脂製テープが表面が平坦な凸部の表面にまではみ出るようなことがなくなる。また、H<(3/2)Lを満たしていれば熱溶着性樹脂製テープによる抵抗溶接時のスパッタされたチリの捕集効果が良好となる。従って、熱溶着性樹脂からなるテープの厚さと表面が平らな凸部の高さが上記条件を満たしていれば、抵抗溶接時に熱溶着性樹脂がはみ出しても、この熱溶着性樹脂が表面が平らな凸部の表面にまで達することがなくなるため、抵抗溶接時にこの糊材が爆発的に燃焼することがなくなり、安全にかつ溶接部の信頼性が高い密閉電池を製造することができるようになる。   When the insulation sealing material is made of a tape made of heat-welding resin, the resistance welding electrode rods become hot when resistance welding is continued continuously, so these heat-welding resins soften before the resistance welding current flows. Then, there is a possibility of protruding into the weld. In this case, if L ≦ H is satisfied, the surface of the convex portion having a flat surface protrudes from the heat-welding resin tape, so that the softened heat-welding resin tape has a flat surface. No more sticking out of the surface. Also, if H <(3/2) L is satisfied, the effect of collecting sputtered dust during resistance welding with a heat-welding resin tape is good. Therefore, if the thickness of the tape made of the heat-welding resin and the height of the convex portion with the flat surface satisfy the above conditions, even if the heat-welding resin protrudes during resistance welding, the surface of the heat-welding resin does not Since it does not reach the surface of the flat convex part, this glue material will not explode during resistance welding, so that a sealed battery with high safety and high reliability can be manufactured. Become.

また、本発明の密閉電池の製造方法においては、前記絶縁シール材は糊材付き絶縁テープであり、前記糊材付き絶縁テープの総厚さをt、糊材厚さをaとしたとき、前記表面が平らな凸部の高さHは、a<H<(3/2)tの範囲にあることが好ましい。   In the method for producing a sealed battery according to the present invention, the insulating sealing material is an insulating tape with a glue material, and when the total thickness of the insulating tape with a glue material is t and the thickness of the glue material is a, The height H of the convex portion having a flat surface is preferably in the range of a <H <(3/2) t.

糊材は軟質であるために変形し易いため、抵抗溶接時に電極棒で圧力をかけた際に絶縁テープからはみ出し易い。しかしながら、a<Hの関係にあると、糊材の厚さaは表面が平らな凸部の高さHよりも低いため、抵抗溶接時に糊材が表面が平らな凸部を覆うことがなくなる。また、H<(3/2)tの関係にあると、抵抗溶接時のスパッタされたチリの捕集効果が良好となる。したがって、糊材付き絶縁テープの総厚さと、糊材厚さと、表面が平らな凸部の高さとが上記条件を満たしていれば、安全に、信頼性の高い抵抗溶接部を備えた密閉電池を製造することができるようになる。   Since the paste material is soft and easily deformed, it easily protrudes from the insulating tape when pressure is applied with an electrode rod during resistance welding. However, if a <H, the thickness a of the glue material is lower than the height H of the convex part with the flat surface, so that the adhesive material does not cover the convex part with the flat surface during resistance welding. . Moreover, when it is in the relationship of H <(3/2) t, the collection effect of the sputtered dust at the time of resistance welding will become favorable. Therefore, if the total thickness of the insulating tape with glue, the thickness of the glue, and the height of the convex part with a flat surface satisfy the above conditions, the sealed battery having a resistance welding part that is safe and reliable. Can be manufactured.

以下、実施例、比較例と共に図面を参照して本発明の最良の実施形態を説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための密閉電池としての角形非水電解質二次電池の製造方法を例示するものであって、本発明をこの角形非水電解質二次電池の製造方法に特定することを意図するものではなく、特許請求の範囲に含まれるその他の実施形態のものも等しく適応し得るものである。   The best mode for carrying out the present invention will be described below with reference to the drawings together with examples and comparative examples. However, the examples shown below exemplify a method for manufacturing a rectangular non-aqueous electrolyte secondary battery as a sealed battery for embodying the technical idea of the present invention. The present invention is not limited to this rectangular non-aqueous electrolyte. It is not intended to be specific to a method of manufacturing a secondary battery, and other embodiments within the scope of the claims are equally applicable.

なお、図1Aは実施例及び比較例に共通する密閉電池としての角形電池の内部構造を示す正面図であり、図1Bは図1AのIB−IB線に沿った断面図である。図2は実施例1の角形電池の図1AにおけるII−II線に沿った拡大断面図である。図3は図2のIII部分の拡大分解断面図である。図4は実施例1の抵抗溶接部の剥離面の拡大写真である。図5は絶縁シール材としての熱溶着性樹脂からなるテープが軟化した状態を示す図2に対応する拡大断面図である。図6は実施例2の角形電池の図3に対応する拡大断面図である。図7は平面視における絶縁シール材、表面が平らな凸部及び突起との配置関係を示す図である。図8は実施例3の角形電池の図2に対応する拡大断面図である。図9は図8のIX部分の拡大断面図である。図10は実施例3の変形例を示す図2に対応する拡大断面図である。   1A is a front view showing the internal structure of a prismatic battery as a sealed battery common to the examples and comparative examples, and FIG. 1B is a cross-sectional view taken along the line IB-IB in FIG. 1A. 2 is an enlarged cross-sectional view of the prismatic battery of Example 1 taken along line II-II in FIG. 1A. FIG. 3 is an enlarged exploded cross-sectional view of a portion III in FIG. 4 is an enlarged photograph of the peeled surface of the resistance welded portion of Example 1. FIG. FIG. 5 is an enlarged cross-sectional view corresponding to FIG. 2 showing a state in which a tape made of a heat-welding resin as an insulating sealing material is softened. 6 is an enlarged sectional view corresponding to FIG. 3 of the prismatic battery of Example 2. FIG. FIG. 7 is a diagram showing an arrangement relationship between the insulating sealing material, the convex portion having a flat surface, and the protrusion in a plan view. FIG. 8 is an enlarged cross-sectional view corresponding to FIG. 2 of the prismatic battery of Example 3. FIG. 9 is an enlarged cross-sectional view of a portion IX in FIG. FIG. 10 is an enlarged cross-sectional view corresponding to FIG. 2 showing a modification of the third embodiment.

最初に実施例及び比較例に共通する密閉電池としての角形非水電解質二次電池を図1A及び図1Bを用いて説明する。この角形非水電解質二次電池10は、正極極板(図示せず)と負極極板(図示せず)とがセパレータ(図示せず)を介して巻回された偏平状の巻回電極体11を、角形の電池外装缶12の内部に収容し、封口板13によって電池外装缶12を密閉したものである。   First, a prismatic nonaqueous electrolyte secondary battery as a sealed battery common to the examples and the comparative examples will be described with reference to FIGS. 1A and 1B. The rectangular non-aqueous electrolyte secondary battery 10 includes a flat wound electrode body in which a positive electrode plate (not shown) and a negative electrode plate (not shown) are wound via a separator (not shown). 11 is accommodated in a rectangular battery outer can 12 and the battery outer can 12 is sealed with a sealing plate 13.

この偏平状の巻回電極体11は、巻回軸方向の両端部に正極合剤、負極合剤を塗布しない正極芯体露出部14、負極芯体露出部15を備えている。正極芯体露出部14は正極集電体16を介して正極端子17に接続され、負極芯体露出部15は負極集電体18を介して負極端子19に接続されている。正極端子17、負極端子19はそれぞれ絶縁部材20、21を介して封口板13に固定されている。 The flat wound electrode body 11 includes a positive electrode core exposed portion 14 and a negative electrode core exposed portion 15 that do not apply a positive electrode mixture and a negative electrode mixture to both ends in the winding axis direction. Positive electrode substrate exposed portion 14 is connected via a positive electrode collector 16 to positive terminal 17, negative electrode substrate exposed portion 15 is connected to the negative terminal 19 via a negative electrode collector 18 1. The positive terminal 17 and the negative terminal 19 are fixed to the sealing plate 13 via insulating members 20 and 21, respectively.

この角形の非水電解質二次電池は、偏平状の巻回電極体11を電池外装缶12内に挿入した後、封口板13を電池外装缶12の開口部にレーザ溶接し、その後電解液注液孔(図示せず)から非水電解液を注液して、この電解液注液孔を密閉することにより作製される。なお、電解液としては、例えばエチレンカーボネートとジエチルカーボネートを体積比で3:7となるように混合した溶媒に対し、LiPFを1モル/Lとなるように溶解した非水電解液を使用し得る。 In this rectangular nonaqueous electrolyte secondary battery, after the flat wound electrode body 11 is inserted into the battery outer can 12, the sealing plate 13 is laser welded to the opening of the battery outer can 12, and then an electrolyte solution is injected. It is produced by injecting a non-aqueous electrolyte from a liquid hole (not shown) and sealing the electrolyte injection hole. As the electrolytic solution, for example, a non-aqueous electrolytic solution in which LiPF 6 is dissolved at 1 mol / L in a solvent in which ethylene carbonate and diethyl carbonate are mixed at a volume ratio of 3: 7 is used. obtain.

次に、実施例及び比較例に共通する偏平状の巻回電極体11の具体的製造方法について説明する。
[正極板の作製]
正極板は次のようにして作製した。まず、正極活物質としてのコバルト酸リチウム(LiCoO)粉末94質量%と、導電剤としてのアセチレンブラックあるいはグラファイト等の炭素系粉末3質量%と、ポリビニリデンフルオライド(PVdF)よりなる結着剤3質量%とを混合し、得られた混合物にN−メチル−2−ピロリドン(NMP)からなる有機溶剤を加えて混練して正極活物質合剤スラリーを調製した。次いで、アルミニウム箔(例えば、厚さが20μmのもの)からなる正極芯体を用意し、上述のようにして作製した正極活物質合剤スラリーを正極芯体の両面に、均一に塗布して正極活物質合剤層を塗布した。この際、正極活物質合剤層の一方側には、正極活物質合剤スラリーの塗布されていない所定幅(ここでは12mmとした)の非塗布部(正極芯体露出部)が正極芯体の端縁に沿って形成されるように塗布した。この後、正極活物質合剤層を形成した正極芯体を乾燥機中を通過させて、スラリー作製時に必要であったNMPを除去して乾燥させた。乾燥後に、ロールプレス機により厚さが0.06mmとなるまで圧延して正極板を作製した。このようにして作製した正極板を幅が100mmとなる短冊状に切り出し、幅が10mmの帯状のアルミニウムからなる正極芯体露出部を設けた正極板を得た。
Next, a specific method for manufacturing the flat wound electrode body 11 common to the examples and the comparative examples will be described.
[Production of positive electrode plate]
The positive electrode plate was produced as follows. First, a binder composed of 94% by mass of lithium cobaltate (LiCoO 2 ) powder as a positive electrode active material, 3% by mass of carbon-based powder such as acetylene black or graphite as a conductive agent, and polyvinylidene fluoride (PVdF). 3% by mass was mixed, and an organic solvent composed of N-methyl-2-pyrrolidone (NMP) was added to the obtained mixture and kneaded to prepare a positive electrode active material mixture slurry. Next, a positive electrode core body made of aluminum foil (for example, having a thickness of 20 μm) is prepared, and the positive electrode active material mixture slurry prepared as described above is uniformly applied to both surfaces of the positive electrode core body. An active material mixture layer was applied. At this time, on one side of the positive electrode active material mixture layer, a non-applied portion (positive electrode core exposed portion) having a predetermined width (12 mm in this case) to which the positive electrode active material mixture slurry is not applied is positive electrode core. It was apply | coated so that it might form along the edge of this. Thereafter, the positive electrode core body on which the positive electrode active material mixture layer was formed was passed through a drier to remove NMP necessary for slurry preparation and dry. After drying, a positive electrode plate was produced by rolling with a roll press machine until the thickness became 0.06 mm. The positive electrode plate thus produced was cut into a strip shape having a width of 100 mm to obtain a positive electrode plate provided with a positive electrode core exposed portion made of strip-shaped aluminum having a width of 10 mm.

[負極板の作製]
負極板は次のようにして作製した。まず、負極活物質としての天然黒鉛粉末98質量%と、結着剤としてのカルボキシメチルセルロース(CMC)及びスチレン−ブタジエンゴム(SBR)をそれぞれ1質量%ずつ混合し、水を加えて混練して負極活物質合剤スラリーを調製した。次いで、銅箔(例えば、厚さが12μmのもの)からなる負極芯体を用意し、上述のようにして作製した負極活物質合剤スラリーを負極芯体の両面に均一に塗布して、負極活物質合剤層を形成した。この場合、負極活物質合剤層の一方の側には、負極活物質合剤スラリーの塗布されていない所定幅(ここでは10mmとした)の非塗布部(負極芯体露出部)が負極芯体の端縁に沿って形成されるように塗布した。この後、負極活物質合剤層を形成した負極芯体を乾燥機中を通過させて乾燥させた。乾燥後に、ロールプレス機により厚さが0.05mmとなるまで圧延して負極板を作製した。このようにして作製した負極板を幅が110mmとなる短冊状に切り出し、幅が8mmの帯状の負極芯体露出部を設けた負極板を得た。
[Production of negative electrode plate]
The negative electrode plate was produced as follows. First, 98% by mass of natural graphite powder as a negative electrode active material and 1% by mass of carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR) as a binder are mixed, and water is added to knead to prepare a negative electrode. An active material mixture slurry was prepared. Next, a negative electrode core made of copper foil (for example, having a thickness of 12 μm) is prepared, and the negative electrode active material mixture slurry prepared as described above is uniformly applied to both surfaces of the negative electrode core to form a negative electrode An active material mixture layer was formed. In this case, on one side of the negative electrode active material mixture layer, a non-coated portion (negative electrode core exposed portion) having a predetermined width (here, 10 mm) where the negative electrode active material mixture slurry is not applied is a negative electrode core. It was applied to form along the edge of the body. Thereafter, the negative electrode core body on which the negative electrode active material mixture layer was formed was passed through a dryer and dried. After drying, it was rolled by a roll press machine until the thickness became 0.05 mm to produce a negative electrode plate. The negative electrode plate thus produced was cut into a strip shape having a width of 110 mm to obtain a negative electrode plate provided with a strip-shaped negative electrode core exposed portion having a width of 8 mm.

[巻き取り電極体の作製]
上述のようにして得られた正極板の正極芯体露出部と負極板の負極芯体露出部とがそれぞれ対向する電極の活物質合剤層と重ならないようにずらして、ポリエチレン製の多孔質セパレータ(厚さが0.022mmで、幅が100mmのもの)を介して巻回し、両側にそれぞれ複数のアルミニウム箔からなる正極芯体露出部14と、銅箔からなる負極芯体露出部15が形成された実施例及び比較例で使用する偏平状の巻回電極体11を作製した。
[Production of winding electrode body]
The porous body made of polyethylene is shifted so that the positive electrode core exposed portion of the positive electrode plate obtained as described above and the negative electrode core exposed portion of the negative electrode plate do not overlap with the active material mixture layer of the opposing electrode, respectively. Winding through a separator (having a thickness of 0.022 mm and a width of 100 mm), a positive electrode core exposed portion 14 made of a plurality of aluminum foils and a negative electrode core exposed portion 15 made of a copper foil are respectively provided on both sides. A flat wound electrode body 11 used in the formed examples and comparative examples was produced.

[集電体の抵抗溶接]
このようにして作製された偏平状の巻回電極体11の正極芯体露出部14にアルミニウム製の正極集電体16及び正極集電体受け部品(図示せず)を抵抗溶接によって取り付け、同じく負極芯体露出部15に銅製の負極集電体18及び負極集電体受け部品18を抵抗溶接によって取り付けるが、以下においては、負極芯体露出部15に銅製の負極集電体18及び負極集電体受け部品18を抵抗溶接によって取り付ける場合について説明する。
[Resistance welding of current collector]
An aluminum positive electrode current collector 16 and a positive electrode current collector receiving part (not shown) are attached to the positive electrode core body exposed portion 14 of the flat wound electrode body 11 produced in this way by resistance welding. receiving the negative electrode collector 18 1 and the negative electrode current collector made of copper on the negative electrode substrate exposed portion 15 mounting the component 18 3 by resistance welding, but in the following, the negative electrode current collector made of copper on the negative electrode substrate exposed portion 15 18 1 and it will be described for attaching the negative electrode collector receiving part 18 3 by resistance welding.

実施例1の角形非水電解質二次電池10においては、負極集電体18として中央部にプロジェクションとして作用する突起(高さh=0.8mm、基部の直径W=2mm)18が形成されたものを用いた。また、絶縁シール材としては、熱溶着性樹脂製テープ23a(厚さL=0.1mm)に中央部に開口23(直径A=6mmの円状)を形成して用いた。なお、ここで使用した熱溶着性樹脂製テープ23aはポリオレフィン系熱溶着性樹脂槽を含む多層フィルムからなるものである。 In prismatic nonaqueous electrolyte secondary battery 10 of Example 1, the projection acting as a projection in the central portion as a negative electrode collector 18 1 (height h = 0.8 mm, the diameter W = 2 mm of the base) 18 2 formed What was done was used. As the insulating sealing material, an opening 23 1 (circular shape with a diameter A = 6 mm) was formed in the center of a heat-weldable resin tape 23a (thickness L = 0.1 mm). The heat-welding resin tape 23a used here is a multilayer film including a polyolefin-based heat-welding resin tank.

まず、銅製の負極芯体露出部15を束ね、その上下に、それぞれ熱溶着性樹脂製テープ23aに形成された開口23の中心が一致するように、熱溶着性樹脂製テープ23aを載置し、その下側から銅製の負極集電体18の突起18が下側の熱溶着性樹脂製テープ23aの開口23の中心に一致するように配置し、同じく上側の熱溶着性樹脂製テープ23aの開口23を塞ぐように負極集電体受け部品18を配置した。次いで、負極集電体18及び負極集電体受け部品18を挟むように上下から抵抗溶接装置(図示せず)の銅製の電極棒24及び24を当接し、両方の電極棒24及び24を互いに押圧してわずかに短絡した状態としてから、両電極棒24及び24の間に短時間予め実験的に定めた最適溶接電流(例えば4kA)を流して抵抗溶接を行った。 First, bundled copper negative electrode substrate exposed section 15, placed above and below, so that each center of the heat-fusible resin tape 23a in the formed opening 23 1 is coincident, the thermal adhesiveness resin tape 23a The protrusion 18 2 of the copper negative electrode current collector 18 1 is arranged so as to coincide with the center of the opening 23 1 of the lower heat-welding resin tape 23a from the lower side, and the upper heat-welding resin is also formed. the negative electrode collector receiving part 18 3 so as to close the opening 23 1 of manufacturing tape 23a was placed. Then, the negative electrode collector 18 1 and the negative electrode collector receiving part 18 3 resistance welding system from above and below so as to sandwich the (not shown) copper of the electrode rod 24 1 and 24 2 the contact of both of the electrode rod 24 1 and 24 2 are pressed against each other to be slightly short-circuited, and then resistance welding is performed by passing an optimum welding current (for example, 4 kA) predetermined experimentally between the electrode rods 24 1 and 24 2 for a short time. It was.

この上下の銅製の負極集電体18及び負極集電体受け部品18を引っ張り試験機によって剥離するまでの強度を測定したところ、19.6N(20kgf)であった。また、この剥離面の拡大写真は図4に示したとおりである。図4から明らかなように、抵抗溶接によりスパッタされた銅のチリ25が熱溶着性樹脂製テープ23a内に捕獲されていることが認められる。 The measured intensity until detached by the upper and lower copper anode current collector 18 1 and the negative electrode collector receiving part 18 3 to a tensile tester was 19.6 N (20 kgf). Moreover, the enlarged photograph of this peeling surface is as having shown in FIG. As is apparent from FIG. 4, it is recognized that copper dust 25 sputtered by resistance welding is captured in the heat-welding resin tape 23a.

なお、熱溶着性樹脂製テープ23aとしては、熱溶着性樹脂の溶着温度が70〜150℃程度であり、溶解温度は200℃以上のものであれば適宜に選択して使用し得るが、更に非水電解質等に対する耐薬品性を備えているものが望ましい。熱溶着性樹脂としては、ゴム系シール材、酸変性ポリプロピレン、ポリオレフィン系熱溶着性樹脂等を使用し得る。   The heat-welding resin tape 23a can be appropriately selected and used as long as the heat-welding resin has a welding temperature of about 70 to 150 ° C. and the melting temperature is 200 ° C. or higher. Those having chemical resistance against non-aqueous electrolytes are desirable. As the heat-welding resin, rubber-based sealing materials, acid-modified polypropylene, polyolefin-based heat-welding resins, and the like can be used.

また、熱溶着性樹脂製テープ23aの厚さLは、突起18の高さhの0.1〜1倍とであることが好ましい。熱溶着性樹脂製テープ23aの厚さLが突起18の高さhの0.1倍未満であると実質的に熱溶着性樹脂製テープ23aがない場合と同様になり、スパッタチリが外部へ飛散するのを抑止することができなくなるために内部短絡が増加する。また、熱溶着性樹脂製テープ23aの厚さLが突起18の高さhの1倍を超えると、突起18を負極芯体の露出部15と直接接触させるためには、過剰の圧力が必要となるため好ましくない。 The thickness L of the heat-fusible resin tape 23a is preferably in between 0.1 to 1 times the height h of the projection 18 2. The thickness L of the heat-fusible resin tape 23a becomes as if there were no substantial thermal adhesiveness resin tape 23a is less than 0.1 times the height h of the projection 18 2, Supattachiri is outside Since it becomes impossible to suppress scattering, internal short circuit increases. If the thickness L of the heat-fusible resin tape 23a is more than 1 times the height h of the projection 18 2, for contacting the projection 18 2 directly exposed portions 15 of the negative electrode substrate is excess pressure Is not preferable because it is necessary.

また、熱溶着性樹脂製テープ23aの中央部の開口23の幅Aは前記突起18の幅Wの1〜5倍であることが好ましい。熱溶着性樹脂製テープ23aの中央の開口23の幅Wが突起18の幅Wの1倍未満であると、熱溶着性樹脂製テープ23aが突起18の先端部を部分的に覆うことがあるため、抵抗溶接時に溶接部に熱溶着性樹脂製テープ23aが残留しやすくなり、爆発的に燃焼を起こしたり、溶接部の強度の低下及び信頼性の低下が生じる。また、熱溶着性樹脂製テープ23aの中央部の開口23の幅Aが突起18の幅Wの5倍を超えると、実質的に熱溶着性樹脂製テープ23aがない場合と同様になり、スパッタチリが外部へ飛散するのを抑止することができなくなるために内部短絡が増加する。 Further, it is preferable that the width A of the opening 23 1 in the central portion of the heat-fusible resin tape 23a is 1 to 5 times the width W of the projection 18 2. When the central opening 23 1 in the width W of the heat-fusible resin tape 23a is less than 1 times the width W of the projection 18 2, the heat-fusible resin tape 23a is partially cover the distal end portion of the projection 18 2 As a result, the heat-weldable resin tape 23a tends to remain in the weld during resistance welding, causing explosive combustion, and reducing the strength and reliability of the weld. Further, if the width A of the opening 23 1 in the central portion of the heat-fusible resin tape 23a is greater than 5 times the width W of the projection 18 2, it becomes substantially the same manner as if no thermal adhesiveness resin tape 23a is Since it becomes impossible to suppress spatter dust from being scattered to the outside, the internal short circuit is increased.

[比較例]
実施例で使用した熱溶着性樹脂製テープを使用しない以外は実施例の場合と同様にして抵抗溶接を行った。この比較例は上述した従来例のものに対応する。なお、比較例の場合の予め実験的に定めた最適溶接電流は5.7kAである。この抵抗溶接後の巻回電極体11側の銅製の負極芯体露出部15の間には僅かにスパッタされた銅のチリの存在が認められた。また、抵抗溶接後の比較例の上下の集電体を引っ張り試験機によって剥離するまでの強度を測定したところ、19.6N(20kgf)であった。
[Comparative example]
Resistance welding was performed in the same manner as in the example except that the heat-welding resin tape used in the example was not used. This comparative example corresponds to the conventional example described above. The optimum welding current experimentally determined in the case of the comparative example is 5.7 kA. Slightly sputtered copper dust was observed between the copper negative electrode core exposed portions 15 on the side of the wound electrode body 11 after resistance welding. Moreover, it was 19.6 N (20 kgf) when the intensity | strength until the upper and lower collectors of the comparative example after resistance welding were peeled with the tension tester was measured.

なお、実施例1及び比較例の実験状態及び測定結果を纏めると、下記表1に示したとおりとなる。
The experimental conditions and measurement results of Example 1 and the comparative example are summarized as shown in Table 1 below.

表1の記載から明らかなように、実施例1の場合の最適抵抗溶接電流値は比較例の場合の約70%となっているが、引っ張り試験結果は同等となっている。このような結果が得られた理由は、実施例では抵抗溶接時に電流が流れる範囲が熱溶着性樹脂製テープ23aの開口23によって狭い範囲に制限されているのに対し、比較例では上下の集電体及び集電体受け部品が銅製の負極芯体露出部と接触する面積が広いため、抵抗溶接に直接関連しない無効電流が大きくなったためと推測される。 As is clear from the description in Table 1, the optimum resistance welding current value in the case of Example 1 is about 70% in the case of the comparative example, but the tensile test results are the same. The reason for this result may be because, while in the embodiment the range in which a current flows during the resistance welding is limited to a narrow range by the opening 23 1 of the heat-fusible resin tape 23a, the upper and lower in the comparative example It is presumed that the reactive current that is not directly related to resistance welding has increased because the current collector and the current collector receiving part have a large area in contact with the negative electrode core exposed portion made of copper.

したがって、抵抗溶接する部分の周囲に熱溶着性樹脂製テープ23aが存在する状態で抵抗溶接すると、スパッタされた金属のチリが熱溶着性樹脂製テープ23aの内部に捕獲されるため、スパッタされた金属のチリが外部に飛散することが少なくなることが理解できる。   Therefore, when resistance welding is performed in a state where the heat-welding resin tape 23a exists around the portion to be resistance-welded, sputtered metal dust is captured inside the heat-welding resin tape 23a, and thus sputtered. It can be understood that metal dust is less scattered to the outside.

なお、上記実施例では負極芯体露出部15、負極集電体18及び負極集電体受け部品18ともに銅製の場合について説明したが、銅は電極の芯体として常用されている金属の内、最も熱伝導率が高い金属であるため、他の金属の場合に本発明を適用するとよりスパッタされた金属のチリが外部に飛散することが少なくなる。したがって、本発明によれば、密閉電池の種類によらず、内部短絡の発生が少なく、信頼性の高い密閉電池が得られることが分かる。 Incidentally, the metal negative electrode substrate exposed portion 15 in the above embodiment, the description has been given of the both the anode current collector 18 1 and the negative electrode collector receiving part 18 3 copper, copper that are commonly used as the core of the electrode Among them, since the metal has the highest thermal conductivity, when the present invention is applied to other metals, the spattered metal dust is less likely to be scattered outside. Therefore, according to the present invention, it can be seen that a highly reliable sealed battery with few internal short-circuits can be obtained regardless of the type of sealed battery.

実施例1の角形非水電解質二次電池10においては、図2及び図3に示したように、負極集電体18として中央部に突起18が形成されたものを用い、熱溶着性樹脂製テープ23aに中央部に開口23を形成して用いて抵抗溶接した例を示した。しかしながら、特に連続的に抵抗溶接を続けると、電極棒24及び24が熱くなっているため、抵抗溶接時に電流を流す前に熱溶着性樹脂製テープ23a自体が軟化することがある。このような状態で抵抗溶接を行うと、抵抗溶接時には負極集電体18及び負極集電体受け部品18を両側から電極棒24及び24によって互いに押圧しながら抵抗溶接が行われるため、図5に示したように熱溶着性樹脂製テープ23a自体が溶接部側へはみ出してしまうことがある。この状態で抵抗溶接用電流を流すと場合によっては熱溶着性樹脂が爆発的に燃焼してしまう。 In prismatic nonaqueous electrolyte secondary battery 10 of Example 1, as shown in FIGS. 2 and 3, with those projections 18 2 is formed in the central portion as a negative electrode collector 18 1, thermal adhesiveness It shows an example of resistance welding using a resin tape 23a to form an opening 23 1 in the center. However, especially when resistance welding is continued continuously, the electrode rods 24 1 and 24 2 are heated, and thus the heat-welding resin tape 23a itself may be softened before a current is passed during resistance welding. Doing resistance welding in such a state, the resistance welding is performed while pressing each other at the time of resistance welding the negative electrode collector 18 1 and the negative electrode collector receiving part 18 3 from both sides by electrode rods 24 1 and 24 2 As shown in FIG. 5, the heat-weldable resin tape 23a itself may protrude to the welded portion side. If a resistance welding current is passed in this state, the heat-welding resin may explode in some cases.

そこで、実施例2の角形電池の抵抗溶接部として、図6及び図7に示したように、負極集電体受け部品18の負極集電体18の突起18に対向する側に、突起18に向かって高さHの表面が平坦な凸部18を形成し、この表面が平坦な凸部18の表面にまで軟化した熱溶着性樹脂製テープ23aがはみ出てこないようにすることによって、抵抗溶接時の熱溶着性樹脂製テープ23aの爆発的な燃焼を抑止するようにした。なお、図6及び図7においては図2及び図3に示した構成と同一の部分には同一の参照符号を付与してその詳細な説明は省略する。 Therefore, the resistance welds prismatic battery of Example 2, as shown in FIGS. 6 and 7, on the side facing the projection 18 2 of the negative electrode collector 18 1 of the negative electrode current collector receiving part 18 3, projections 18 2 toward the surface of the height H to form a flat convex portion 18 4, so that this surface does not come protrude heat fusible resin tape 23a softened to the surface of a flat convex portion 18 4 By doing so, explosive combustion of the heat-weldable resin tape 23a during resistance welding was suppressed. 6 and 7, the same reference numerals are given to the same parts as those shown in FIGS. 2 and 3, and the detailed description thereof is omitted.

この場合、熱溶着性樹脂製テープ23aの厚さをLとすると、表面が平坦な凸部18の高さHは、L≦H<(3/2)Lとすることが好ましい。すなわち、表面が平坦な凸部18の高さHを、熱溶着性樹脂製テープ23aの厚さLと同じかそれよりも高くし、表面が平坦な凸部18の表面を熱溶着性樹脂製テープ23aよりも突き出させるようにすると、軟化した熱溶着性樹脂製テープ23aが表面が平坦な凸部18の表面にまではみ出るようなことがなくなる。また、表面が平坦な凸部18の高さHが熱溶着性樹脂製テープ23aの厚さLの(3/2)未満であると、熱溶着性樹脂製テープ23aによる抵抗溶接時のスパッタされたチリの捕集効果が良好となる。なお、プロジェクションとして作用する突起18の高さhと熱溶着性樹脂製テープ23aの厚さLとの間の関係及び突起18の基部の幅Wと熱溶着性樹脂製テープ23aの中央の開口23の幅Aとの間の関係は、実施例1において示したものと同様に設定すればよい。 In this case, when the thickness of the heat-fusible resin tape 23a is L, the height H of the surface flat protrusions 18 4, it is preferable that the L ≦ H <(3/2) L . That is, the height H of the surface flat protrusions 18 4, equal to or higher than the thickness L of the heat-fusible resin tape 23a, the surface of the heat-fusible surface of a flat convex portion 18 4 If so also protrude from the resin tape 23a, softened thermally fusible resin tape 23a is the surface that is eliminated as protrude to the surface of a flat convex portion 18 4. Further, when the surface height H of the flat convex portion 18 4 is less than (3/2) of the thickness L of the heat-fusible resin tape 23a, sputtering during resistance welding by thermal adhesiveness resin tape 23a The collected effect of dust is improved. Incidentally, the central projection 18 2 of height h and the heat-fusible resin width W of the relationship and the protrusion 18 2 of the base between the thickness L of the tape 23a and the heat-fusible resin tape 23a which acts as a projection relationship between the width a of the opening 23 1 may be set in the same manner as shown in example 1.

なお、表面が平坦な凸部18の形状は平面視で円形状とすると、作製し易く、また熱溶着性樹脂製テープ23aの開口23との間の位置決めを行いやすくなる。この表面が平坦な凸部18の径をDとし、突起18の基部の径をWとし、熱溶着性樹脂製テープ23aの開口23の径をAとした場合、W<D<Aとすることが好ましい。この場合の表面が平坦な凸部18、突起18及び熱溶着性樹脂製テープ23aの開口23の平面視における配置関係は、図7に示したとおりとなる。 The shape of the surface flat protrusions 18 4 When a circular shape in plan view, easy to prepare, also tends to perform positioning between the opening 23 1 of the heat-fusible resin tape 23a. This surface diameter of flat protrusions 18 4 is D, if the diameter of the base of the projection 18 2 is W, the diameter of the opening 23 1 of the heat-fusible resin tape 23a was A, W <D <A It is preferable that In this case, the arrangement relationship in plan view of the projections 18 4 , the projections 18 2, and the openings 23 1 of the heat-welding resin tape 23a with flat surfaces is as shown in FIG.

このように、実施例2の角形電池の抵抗溶接部の構成を採用すると、抵抗溶接時に熱溶着性樹脂が突起18と表面が平坦な凸部18との間に入り込むことがなくなるので、熱溶着性樹脂が爆発的に燃焼することを抑止することができる。 Thus, when employing the configuration of the resistance welding of the prismatic battery of Example 2, since the thermal welding resin protrusion 18 2 and the surface at the time of resistance welding is eliminated that enters between the flat convex portion 18 4, It is possible to prevent the heat welding resin from burning explosively.

実施例1及び実施例2では、絶縁シール材として熱溶着性樹脂製テープ23aを用いた例を示したが、糊材付き絶縁テープも使用可能である。絶縁シール材としてこの糊材付き絶縁テープ23bを使用した実施例3の角形電池の抵抗溶接部の構成を図8〜図10を用いて説明する。なお、図8〜図10においては図6及び図7に示した構成と同一の部分には同一の参照符号を付与してその詳細な説明は省略する。   In Example 1 and Example 2, although the example which used the heat welding resin tape 23a as an insulating sealing material was shown, the insulating tape with a paste material can also be used. The structure of the resistance welding part of the square battery of Example 3 which uses this insulating tape 23b with paste as an insulating sealing material will be described with reference to FIGS. 8 to 10, the same parts as those shown in FIGS. 6 and 7 are denoted by the same reference numerals, and detailed description thereof is omitted.

実施例3の抵抗溶接部が実施例2の抵抗溶接部と構成が相違している点は、実施例2では絶縁シール材として熱溶着性樹脂製テープ23aを用いているのに対し、実施例3では糊材付き絶縁テープ23bを用いた点でのみであり、その他の構成は実質的に同一である。この糊材付き絶縁テープ23bとしては、ポリイミドテープ、ポリプロピレンテープ、ポリフェニレンサルファイドテープ等からなる絶縁テープ23cの一面に糊材23dが塗布されているものを使用し得る。ここでは、この糊材付き絶縁テープ23bの総厚さt=0.1mm、糊材23dの厚さa=0.03mmとし、表面が平らな凸部の高さH=0.10mmのものを使用したが、表面が平らな凸部の高さHをa<H<(3/2)tの関係を満たすように設定することが好ましい。すなわち、糊材23dは軟質であるために変形し易いため、抵抗溶接時に電極棒24及び24で圧力をかけた際に絶縁テープ23cからはみ出し易い。しかしながら、a<Hの関係にあると、糊材23dの厚さaは表面が平らな凸部18の高さHよりも低いため、抵抗溶接時に糊材が表面が平らな凸部を覆うことがなくなる。また、H<(3/2)tの関係にあると、抵抗溶接時のスパッタされたチリの捕集効果が良好となる。 The difference between the resistance welded portion of the third embodiment and the resistance welded portion of the second embodiment is that the second embodiment uses the heat-weldable resin tape 23a as the insulating sealing material. No. 3 is only in that the insulating tape 23b with glue material is used, and other configurations are substantially the same. As the insulating tape 23b with glue material, one having a glue material 23d coated on one surface of an insulating tape 23c made of polyimide tape, polypropylene tape, polyphenylene sulfide tape or the like can be used. Here, the total thickness t of this insulating tape 23b with glue material is set to 0.1 mm, the thickness a of the glue material 23d is set to 0.03 mm, and the height H of the convex portion having a flat surface is H = 0.10 mm. Although used, it is preferable to set the height H of the convex portion having a flat surface so as to satisfy the relationship of a <H <(3/2) t. That glue material 23d is liable to be deformed because it is soft, easily protrude from the insulating tape 23c when pressured by the electrode rod 24 1 and 24 2 at the time of resistance welding. However, when the relation of a <H, the thickness a of the glue material 23d has low than the height H of the flat convex portion 18 4 surface, glue material surface covers the flat convex portion during resistance welding There will be nothing. Moreover, when it is in the relationship of H <(3/2) t, the collection effect of the sputtered dust at the time of resistance welding will become favorable.

なお、プロジェクションとして作用する突起18の高さhと糊材付き絶縁テープ23bの総厚さtとの間の関係及び突起18の基部の幅Wと糊材付き絶縁テープ23bの中央の開口23の幅Aとの間の関係は、実施例1において示したものと同様に、糊材付き絶縁テープ23bの総厚さtは、突起18の高さhの0.1〜1倍とであることが好ましく、また、糊材付き絶縁テープ23bの中央部の開口23の幅Aは前記突起18の幅Wの1〜5倍であることが好ましい。 Incidentally, the central aperture of the projection 18 2 of height h and paste material with insulation width W of the relationship and the protrusion 18 2 of the base between the total thickness t of the tape 23b and adhesive material-attached insulating tape 23b which acts as a projection relationship between the 23 first width a, similar to that shown in example 1, the total thickness t of the adhesive material-attached insulating tape 23b is 0.1 to 1 times the height h of the projection 18 2 is preferably in between, also, it is preferable that the width a of the opening 23 1 in the central portion of the adhesive material-attached insulating tape 23b 1 to 5 times the width W of the projection 18 2.

また、実施例3の角型電池の抵抗溶接部としては、実施例2の抵抗溶接部の場合と同様に、負極集電体受け部品18の負極集電体18の突起18に対向する側に突起18に向かって高さHの表面が平坦な凸部18を有するものを用いた例を示したが、この表面が平坦な凸部18は必ずしも必要な構成ではない。しかしながら、糊材付き絶縁テープ23bを用いた場合に表面が平坦な凸部18が形成されていないと、図10に示したように、抵抗溶接時に電極棒24及び24で圧力をかけた際に糊材23dが絶縁テープ23cから抵抗溶接部側にはみ出し易い。そのため、安全性を確保するためには表面が平坦な凸部18を設けた方がよい。 The counter as a resistance welding portion of the square cell of Example 3, as in the case of the resistance welding of Embodiment 2, the projections 18 2 of the negative electrode collector 18 1 of the negative electrode current collector receiving part 18 3 the height H surface toward the projection 18 2 on the side is an example of using a material having a flat convex portion 18 4, but 4 this surface flat protrusion 18 is not always required configuration. However, if the surface in the case of using the adhesive material-attached insulating tape 23b is not formed flat protrusions 18 4, as shown in FIG. 10, applying pressure during resistance welding electrode rods 24 1 and 24 2 When this occurs, the glue material 23d tends to protrude from the insulating tape 23c to the resistance welded portion side. Therefore, in order to ensure the safety better surface provided with a flat protrusion 18 4.

上述した実施例1〜3において、プロジェクションとして設けた負極集電体18の突起18は先端部の断面積が根本の断面積よりも小さくなった形状であるが、プロジェクションの形状はこれに限定されない。また、上述した実施例2及び実施例3においては、負極集電体受け部品18の負極集電体18の突起18に対向する側に突起18に向かって高さHの表面が平坦な凸部18を有するものを用いた例を示したが、負極集電体18及び負極集電体受け部品18の両方に、プロジェクションを設けた場合も実施例2及び実施例3と同様の効果が得られる。 In Examples 1 to 3 described above, the protrusion 18 2 of the negative electrode current collector 18 1 provided as a projection has a shape in which the cross-sectional area of the tip is smaller than the basic cross-sectional area. It is not limited. In Example 2 and Example 3 described above, the negative electrode collector receiving part 18 3 of the negative electrode collector 18 1 of the protrusion 18 height H surface toward the projection 18 2 to 2 side opposing the Although an example of using a material having a flat convex portion 18 4, both of the negative electrode collector 18 1 and the negative electrode collector receiving part 18 3, also example case of providing the projection 2 and example 3 The same effect can be obtained.

上述した実施例1〜3においては、角形外装缶を用いた例について説明したが、外装缶形状は特に限定されず、円筒形の外装缶を用いても適用可能である。しかしながら、電池を組み込む機器のスペース効率を考慮すると、角形形状の外装缶を用いることが好ましい。また、上述した実施例1〜3においては、偏平状の巻回電極体を用いる例について説明したが、例えば、平板状の正・負極板をセパレータを介して積層した電極体などを適用できることは明らかである。   In Examples 1 to 3 described above, examples using a rectangular outer can have been described, but the shape of the outer can is not particularly limited, and the present invention can also be applied using a cylindrical outer can. However, in consideration of the space efficiency of the device in which the battery is incorporated, it is preferable to use a rectangular outer can. Moreover, in Examples 1 to 3 described above, an example using a flat wound electrode body has been described. However, for example, an electrode body in which flat positive and negative electrode plates are stacked via a separator can be applied. it is obvious.

図1Aは実施例及び比較例に共通する密閉電池としての角形電池の内部構造を示す正面図であり、図1Bは図1AのIB−IB線に沿った断面図である。FIG. 1A is a front view showing the internal structure of a prismatic battery as a sealed battery common to the examples and comparative examples, and FIG. 1B is a cross-sectional view taken along line IB-IB in FIG. 1A. 実施例1の角形電池の図1AにおけるII−II線に沿った拡大断面図である。It is an expanded sectional view in alignment with the II-II line | wire in FIG. 1A of the square battery of Example 1. FIG. 図2のIII部分の拡大分解断面図である。FIG. 3 is an enlarged exploded cross-sectional view of a portion III in FIG. 2. 実施例1の抵抗溶接部の剥離面の拡大写真である。2 is an enlarged photograph of a peeled surface of a resistance welded portion of Example 1. 絶縁シール材としての熱溶着性樹脂からなるテープが軟化した状態を示す図2に対応する拡大断面図である。It is an expanded sectional view corresponding to Drawing 2 showing the state where the tape which consists of heat welding resin as an insulating seal material softened. 実施例2の角形電池の図3に対応する拡大断面図である。FIG. 4 is an enlarged cross-sectional view corresponding to FIG. 3 of the prismatic battery of Example 2. 平面視における絶縁シール材、表面が平らな凸部及び突起との配置関係を示す図である。It is a figure which shows the arrangement | positioning relationship with the insulating sealing material in a planar view, the convex part with the flat surface, and protrusion. 実施例3の角形電池の図2に対応する拡大断面図である。FIG. 6 is an enlarged cross-sectional view corresponding to FIG. 2 of the prismatic battery of Example 3. 図8のIX部分の拡大断面図である。It is an expanded sectional view of the IX part of FIG. 実施例3の変形例を示す図2に対応する拡大断面図である。FIG. 10 is an enlarged cross-sectional view corresponding to FIG. 2 showing a modification of the third embodiment.

符号の説明Explanation of symbols

10:角形非水電解質二次電池 11:偏平状の巻回電極体 12:電池外装缶 1:3:封口板 14:正極芯体露出部 15:負極芯体露出部 16:正極集電体 17:正極端子 18:負極集電体 18:突起(プロジェクション) 18:負極集電体受け部品 18:表面が平らな凸部 19:負極端子 20、21:絶縁部材 23a:熱溶着性樹脂製テープ 23b:糊材付き絶縁テープ 23c:絶縁テープ 23d:糊材 23:開口 24、24:電極棒 25:スパッタチリ 10: Square non-aqueous electrolyte secondary battery 11: Flat wound electrode body 12: Battery outer can 1: 3: Sealing plate 14: Positive electrode core exposed portion 15: Negative electrode core exposed portion 16: Positive electrode current collector 17 : Positive electrode terminal 18 1 : Negative electrode current collector 18 2 : Protrusion (projection) 18 3 : Negative electrode current collector receiving component 18 4 : Convex part with flat surface 19: Negative electrode terminal 20, 21: Insulating member 23a: Thermal weldability plastic tape 23b: adhesive material-attached insulating tape 23c: insulating tape 23d: paste material 23 1: opening 24 1, 24 2: electrode rod 25: Supattachiri

Claims (18)

両端にそれぞれ複数枚の正極芯体及び負極芯体が露出した電極体と、少なくとも一方の前記複数枚の芯体の両側に抵抗溶接された集電体及び集電体受け部品を備える密閉電池において、
前記抵抗溶接部分の周囲の前記芯体と前記集電体及び集電体受け部品の少なくとも一方の間には絶縁シール材が配置されていることを特徴とする密閉電池。
In a sealed battery comprising an electrode body in which a plurality of positive electrode cores and negative electrode core bodies are exposed at both ends, and a current collector and a current collector receiving component that are resistance-welded on both sides of at least one of the plurality of core bodies ,
A sealed battery, wherein an insulating sealing material is disposed between at least one of the core around the resistance welding portion and the current collector and current collector receiving component.
前記抵抗溶接部分の周囲の前記芯体と前記集電体及び集電体受け部品の間には絶縁シール材が配置されていることを特徴とする請求項1に記載の密閉電池。   2. The sealed battery according to claim 1, wherein an insulating sealing material is disposed between the core around the resistance welding portion and the current collector and current collector receiving component. 前記絶縁シール材は熱溶着性樹脂からなるテープ又は糊材付き絶縁テープであることを特徴とする請求項1又は2に記載の密閉電池。   The sealed battery according to claim 1, wherein the insulating sealing material is a tape made of a heat-welding resin or an insulating tape with a paste material. 前記集電体及び集電体受け部品の前記抵抗溶接部分の少なくとも一方側には他方側に向かって突出する突起が設けられていることを特徴とする請求項1又は2に記載の密閉電池。   3. The sealed battery according to claim 1, wherein a protrusion projecting toward the other side is provided on at least one side of the resistance welding portion of the current collector and the current collector receiving part. 前記集電体及び集電体受け部品の前記抵抗溶接部分の一方側には他方側に向かって突出する前記突起が設けられ、前記集電体及び集電体受け部品の他方側には前記突起と対向する部分に表面が平らな凸部が形成されていることを特徴とする請求項2に記載の密閉電池。   The protrusion protruding toward the other side is provided on one side of the resistance welding portion of the current collector and the current collector receiving part, and the protrusion is provided on the other side of the current collector and the current collector receiving part. The sealed battery according to claim 2, wherein a convex portion having a flat surface is formed on a portion facing the surface. 前記表面が平らな凸部の形状は平面視で円形状であり、前記表面が平らな凸部の径は前記突起の径よりも大きいことを特徴とする請求項5に記載の密閉電池。   6. The sealed battery according to claim 5, wherein the shape of the convex portion having a flat surface is a circular shape in plan view, and the diameter of the convex portion having a flat surface is larger than the diameter of the protrusion. 前記抵抗溶接された芯体、集電体及び集電体受け部品が共に銅又は銅合金からなることを特徴とする請求項1〜6のいずれかに記載の密閉電池。   The sealed battery according to any one of claims 1 to 6, wherein the resistance-welded core, current collector, and current collector receiving part are both made of copper or a copper alloy. 以下の(1)〜(3)の工程を含むことを特徴とする密閉電池の製造方法。
(1)両端にそれぞれ複数枚の正極芯体及び負極芯体の露出部を有する密閉電池用の電極体を形成する工程、
(2)少なくとも一方の前記芯体の露出部の溶接箇所の両面に、中央部に開口が形成された絶縁シール材を介して、それぞれ集電体及び集電体受け部品を当接する工程、
(3)前記集電体及び集電体受け部品の間に電流を流して抵抗溶接する工程。
The manufacturing method of the sealed battery characterized by including the process of the following (1)-(3).
(1) A step of forming an electrode body for a sealed battery having exposed portions of a plurality of positive electrode cores and negative electrode cores at both ends,
(2) A process of contacting a current collector and a current collector receiving part on both surfaces of the welded portion of the exposed portion of at least one of the cores via an insulating seal material having an opening at the center, respectively.
(3) A step of resistance welding by passing a current between the current collector and the current collector receiving part.
前記絶縁シール材は熱溶着性樹脂からなるテープ又は糊材付き絶縁テープであることを特徴とする請求項8に記載の密閉電池の製造方法。   The method for manufacturing a sealed battery according to claim 8, wherein the insulating sealing material is a tape made of a heat-welding resin or an insulating tape with a paste material. 前記(2)の工程において、前記両側の集電体及び集電体受け部品の前記抵抗溶接部分の少なくとも一方側には他方側に向かって突出する突起が形成されたものを使用し、前記突起が前記絶縁シール材の中央部の開口に位置するように前記芯体の溶接箇所に当接したことを特徴とする請求項8に記載の密閉電池の製造方法。   In the step (2), at least one of the resistance welded portions of the current collector and current collector receiving part on both sides is formed with a protrusion protruding toward the other side. The method for manufacturing a sealed battery according to claim 8, wherein the contact portion is in contact with a welded portion of the core body so as to be positioned at an opening in a central portion of the insulating sealing material. 前記絶縁シール材の厚さは前記突起の高さの0.1〜1倍であることを特徴とする請求項10に記載の密閉電池の製造方法。     The method of manufacturing a sealed battery according to claim 10, wherein a thickness of the insulating sealing material is 0.1 to 1 times a height of the protrusion. 前記絶縁シール材の中央部の開口の幅は前記突起の幅の1〜5倍であることを特徴とする請求項10に記載の密閉電池の製造方法。     The method for manufacturing a sealed battery according to claim 10, wherein the width of the opening at the center of the insulating sealing material is 1 to 5 times the width of the protrusion. 前記(2)の工程において、前記集電体及び集電体受け部品の一方側には他方側に向かって突出する前記突起が設けられ、前記集電体及び集電体受け部品の他方側には前記突起と対向する部分に表面が平らな凸部が形成されたものを使用し、前記表面が平らな凸部及び突起が絶縁シール材の中央部の開口に位置して互いに対向するよう前記芯体の溶接箇所に当接したことを特徴とする請求項10に記載の密閉電池の製造方法。     In the step (2), the protrusion protruding toward the other side is provided on one side of the current collector and the current collector receiving part, and on the other side of the current collector and the current collector receiving part. Uses a convex part with a flat surface formed on the part facing the projection, and the convex part and projection with the flat surface are located in the opening of the central part of the insulating sealing material and face each other. The method for manufacturing a sealed battery according to claim 10, wherein the method contacts the welded portion of the core body. 前記表面が平らな凸部の形状は平面視で円形状であり、前記表面が平らな凸部の径は前記突起の径よりも大きいことを特徴とする請求項13に記載の密閉電池の製造方法。 14. The sealed battery according to claim 13, wherein a shape of the convex portion having a flat surface is circular in a plan view, and a diameter of the convex portion having a flat surface is larger than a diameter of the protrusion. Method. 前記絶縁シール材の厚さは前記突起の高さの0.1〜1倍であることを特徴とする請求項13に記載の密閉電池の製造方法。     The method for manufacturing a sealed battery according to claim 13, wherein the thickness of the insulating sealing material is 0.1 to 1 times the height of the protrusion. 前記絶縁シール材の中央部の開口の幅は前記突起の幅の1〜5倍であることを特徴とする請求項13に記載の密閉電池の製造方法。   The method for manufacturing a sealed battery according to claim 13, wherein the width of the opening at the center of the insulating sealing material is 1 to 5 times the width of the protrusion. 前記絶縁シール材は熱溶着性樹脂からなるテープであり、前記熱溶着性樹脂からなるテープの厚さをLとしたとき、前記表面が平らな凸部の高さHは、L<H<(3/2)Lの範囲にあることを特徴とする請求項13〜16のいずれかに記載の密閉電池の製造方法。   The insulating sealing material is a tape made of a heat-welding resin, and when the thickness of the tape made of the heat-welding resin is L, the height H of the convex portion having a flat surface is L <H <( It is in the range of 3/2) L, The manufacturing method of the sealed battery in any one of Claims 13-16 characterized by the above-mentioned. 前記絶縁シール材は糊材付き絶縁テープであり、前記糊材付き絶縁テープの総厚さをt、糊材厚さをaとしたとき、前記表面が平らな凸部の高さHは、a<H<(3/2)tの範囲にあることを特徴とする請求項13〜16のいずれかに記載の密閉電池の製造方法。   The insulating sealing material is an insulating tape with glue, and when the total thickness of the insulating tape with glue is t and the thickness of the glue is a, the height H of the convex portion with the flat surface is a It is in the range of <H <(3/2) t, The manufacturing method of the sealed battery in any one of Claims 13-16 characterized by the above-mentioned.
JP2007252823A 2007-06-27 2007-09-28 Sealed battery and manufacturing method thereof Active JP5100281B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007252823A JP5100281B2 (en) 2007-06-27 2007-09-28 Sealed battery and manufacturing method thereof
KR1020080042440A KR20080114504A (en) 2007-06-27 2008-05-07 Sealed Battery and Manufacturing Method Thereof
CN2008101254851A CN101335339B (en) 2007-06-27 2008-06-18 Sealed battery and manufacturing method thereof
US12/145,039 US7819929B2 (en) 2007-06-27 2008-06-24 Sealed battery and manufacturing method therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007168804 2007-06-27
JP2007168804 2007-06-27
JP2007252823A JP5100281B2 (en) 2007-06-27 2007-09-28 Sealed battery and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012210598A Division JP5668735B2 (en) 2007-06-27 2012-09-25 Secondary battery

Publications (2)

Publication Number Publication Date
JP2009032640A true JP2009032640A (en) 2009-02-12
JP5100281B2 JP5100281B2 (en) 2012-12-19

Family

ID=40197746

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007252823A Active JP5100281B2 (en) 2007-06-27 2007-09-28 Sealed battery and manufacturing method thereof
JP2012210598A Active JP5668735B2 (en) 2007-06-27 2012-09-25 Secondary battery

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012210598A Active JP5668735B2 (en) 2007-06-27 2012-09-25 Secondary battery

Country Status (2)

Country Link
JP (2) JP5100281B2 (en)
CN (1) CN101335339B (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073408A (en) * 2008-09-17 2010-04-02 Toyota Motor Corp Battery and method of manufacturing the same
JP2010205469A (en) * 2009-03-02 2010-09-16 Sanyo Electric Co Ltd Method of manufacturing sealed battery, and sealed battery
JP2010232164A (en) * 2009-03-05 2010-10-14 Sanyo Electric Co Ltd Method for manufacturing prismatic secondary battery
JP2011165515A (en) * 2010-02-10 2011-08-25 Sanyo Electric Co Ltd Square sealed secondary battery and method for manufacturing the same
JP2012033334A (en) * 2010-07-29 2012-02-16 Sanyo Electric Co Ltd Rectangular sealed secondary battery
JP2012190636A (en) * 2011-03-10 2012-10-04 Gs Yuasa Corp Battery and method for manufacturing the same
JP2013041836A (en) * 2007-06-27 2013-02-28 Sanyo Electric Co Ltd Secondary battery and collector for secondary battery
JP2013065552A (en) * 2011-08-31 2013-04-11 Gs Yuasa Corp Power storage element
US8574756B1 (en) 2012-07-17 2013-11-05 Sanyo Electric Co., Ltd. Prismatic secondary battery
JP2014032814A (en) * 2012-08-02 2014-02-20 Toyota Industries Corp Power storage device and secondary battery
WO2014034241A1 (en) * 2012-08-31 2014-03-06 日立ビークルエナジー株式会社 Rectangular secondary battery
JP2014170757A (en) * 2009-03-05 2014-09-18 Sanyo Electric Co Ltd Square-shaped secondary battery and method for manufacturing the same
KR20150023066A (en) 2012-07-30 2015-03-04 도요타지도샤가부시키가이샤 Secondary cell and method for manufacturing secondary cell
JP2015095404A (en) * 2013-11-13 2015-05-18 株式会社Gsユアサ Power storage element and manufacturing method therefor
JP2016085875A (en) * 2014-10-27 2016-05-19 株式会社Gsユアサ Power storage device, power-supply module, and method for manufacturing power storage device
US9356309B2 (en) 2011-08-31 2016-05-31 Sanyo Electric Co., Ltd. Prismatic battery
JP2017016754A (en) * 2015-06-29 2017-01-19 三洋電機株式会社 Secondary battery
JP2017069107A (en) * 2015-09-30 2017-04-06 大日本印刷株式会社 Adhesive protection film
US9882236B2 (en) 2015-09-29 2018-01-30 Sanyo Electric Co., Ltd. Prismatic secondary battery
CN108242525A (en) * 2016-12-26 2018-07-03 三洋电机株式会社 The manufacturing method of secondary cell
WO2018135545A1 (en) * 2017-01-17 2018-07-26 大日本印刷株式会社 Protective film, battery, and battery production method
WO2018159310A1 (en) * 2017-03-03 2018-09-07 株式会社デンソー Bonded body and manufacturing method thereof
JPWO2017149949A1 (en) * 2016-02-29 2018-12-27 パナソニックIpマネジメント株式会社 Method for manufacturing electrode body and method for manufacturing non-aqueous electrolyte secondary battery
US10177363B2 (en) 2015-03-30 2019-01-08 Sanyo Electric Co., Ltd. Prismatic secondary battery
US10199628B2 (en) 2015-09-29 2019-02-05 Sanyo Electric Co., Ltd. Prismatic secondary battery
US10249867B2 (en) 2015-03-30 2019-04-02 Sanyo Electric Co., Ltd. Prismatic secondary battery and assembled battery using the same
US10305084B2 (en) 2015-05-15 2019-05-28 Sanyo Electric Co., Ltd. Prismatic secondary battery and assembled battery using the same
US10305085B2 (en) 2015-09-29 2019-05-28 Sanyo Electric Co., Ltd. Prismatic secondary battery
US10326169B2 (en) 2015-10-30 2019-06-18 Sanyo Electric Co., Ltd. Method for manufacturing prismatic secondary battery
US10665829B2 (en) 2017-06-23 2020-05-26 Sanyo Electric Co., Ltd. Rectangular secondary battery and method of manufacturing the same
US10833372B2 (en) 2017-06-26 2020-11-10 Sanyo Electric Co., Ltd. Rectangular secondary battery
US10910673B2 (en) 2017-06-29 2021-02-02 Sanyo Electric Co., Ltd. Rectangular secondary battery and method of manufacturing the same
WO2021065127A1 (en) 2019-09-30 2021-04-08 三洋電機株式会社 Method for producing secondary battery, and secondary battery
JP2021111514A (en) * 2020-01-10 2021-08-02 株式会社Gsユアサ Power storage element
US11289734B2 (en) 2016-07-29 2022-03-29 Sanyo Electric Co., Ltd. Method for producing secondary battery
US11316235B2 (en) 2015-05-15 2022-04-26 Sanyo Electric Co., Ltd. Prismatic secondary battery, assembled battery using the same and method of producing the same
US11394090B2 (en) 2016-07-29 2022-07-19 Sanyo Electric Co., Ltd. Secondary battery
US11600889B2 (en) 2018-03-29 2023-03-07 Gs Yuasa International Ltd. Energy storage device
CN116093554A (en) * 2023-02-23 2023-05-09 重庆长安新能源汽车科技有限公司 Welding method of composite pole piece, battery cell and battery module
US11923558B2 (en) 2017-02-27 2024-03-05 Sanyo Electric Co., Ltd. Rectangular secondary battery
JP2024057096A (en) * 2019-09-04 2024-04-23 三洋電機株式会社 Prismatic secondary battery and battery pack using the same
US12191499B2 (en) 2017-02-27 2025-01-07 Sanyo Electric Co., Ltd. Rectangular secondary battery and method of manufacturing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5587061B2 (en) * 2009-09-30 2014-09-10 三洋電機株式会社 Energizing block for resistance welding, sealed battery manufacturing method using the energizing block, and sealed battery
JP5649996B2 (en) * 2010-07-14 2015-01-07 三洋電機株式会社 Square sealed secondary battery and method for manufacturing the same
JP5214692B2 (en) * 2010-09-21 2013-06-19 株式会社東芝 battery
CN103155222B (en) * 2010-10-29 2015-07-15 三洋电机株式会社 Rectangular secondary battery
DE112011105575T5 (en) * 2011-08-30 2014-05-15 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery and method for producing a lithium ion secondary battery
US20150136840A1 (en) * 2013-11-21 2015-05-21 Medtronic, Inc. Method of joining stacks of thin metal foil layers
JP7194600B2 (en) * 2019-01-29 2022-12-22 三洋電機株式会社 Method for manufacturing secondary battery

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07282675A (en) * 1994-04-13 1995-10-27 Anden Kk Rotary type contact jointing method
JPH103900A (en) * 1996-06-14 1998-01-06 Toshiba Battery Co Ltd Secondary battery and manufacture thereof
JP2000150306A (en) * 1998-11-12 2000-05-30 Toyota Motor Corp Battery or capacitor current collection method
JP2001160387A (en) * 1999-09-21 2001-06-12 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP2002008708A (en) * 2000-06-20 2002-01-11 Denso Corp Flat wound electrode cell
JP2002075324A (en) * 2000-09-04 2002-03-15 Mitsubishi Chemicals Corp Battery
JP2002164035A (en) * 2000-11-22 2002-06-07 Yuasa Corp Sealed battery
JP2003045402A (en) * 2001-07-27 2003-02-14 Yuasa Corp Battery manufacturing method, battery and resistance welding apparatus
JP2003249419A (en) * 2001-12-18 2003-09-05 Toyota Motor Corp Energy storage device and method of manufacturing the same
JP2006228551A (en) * 2005-02-17 2006-08-31 Toyota Motor Corp Current collecting terminal and power storage device including the terminal
JP2006310254A (en) * 2005-03-31 2006-11-09 Sanyo Electric Co Ltd Manufacturing method of battery
JP2007053002A (en) * 2005-08-18 2007-03-01 Toyota Motor Corp Battery manufacturing method
JP2007149353A (en) * 2005-11-24 2007-06-14 Sanyo Electric Co Ltd Rectangular battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4125680A (en) * 1977-08-18 1978-11-14 Exxon Research & Engineering Co. Bipolar carbon-plastic electrode structure-containing multicell electrochemical device and method of making same
US5985479A (en) * 1997-11-14 1999-11-16 Eveready Battery Company, Inc. Electrochemical cell having current path interrupter
JP4061938B2 (en) * 2001-12-20 2008-03-19 トヨタ自動車株式会社 Storage element and method for manufacturing the same
JP3761498B2 (en) * 2002-06-24 2006-03-29 統市 渡辺 Spot welding automatic assembly method for galvanized steel sheet
JP5100281B2 (en) * 2007-06-27 2012-12-19 三洋電機株式会社 Sealed battery and manufacturing method thereof
JP5355929B2 (en) * 2007-06-29 2013-11-27 三洋電機株式会社 Sealed battery and method for manufacturing the same
JP5137516B2 (en) * 2007-09-28 2013-02-06 三洋電機株式会社 Sealed battery
JP5594901B2 (en) * 2011-02-25 2014-09-24 日立オートモティブシステムズ株式会社 Secondary battery

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07282675A (en) * 1994-04-13 1995-10-27 Anden Kk Rotary type contact jointing method
JPH103900A (en) * 1996-06-14 1998-01-06 Toshiba Battery Co Ltd Secondary battery and manufacture thereof
JP2000150306A (en) * 1998-11-12 2000-05-30 Toyota Motor Corp Battery or capacitor current collection method
JP2001160387A (en) * 1999-09-21 2001-06-12 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP2002008708A (en) * 2000-06-20 2002-01-11 Denso Corp Flat wound electrode cell
JP2002075324A (en) * 2000-09-04 2002-03-15 Mitsubishi Chemicals Corp Battery
JP2002164035A (en) * 2000-11-22 2002-06-07 Yuasa Corp Sealed battery
JP2003045402A (en) * 2001-07-27 2003-02-14 Yuasa Corp Battery manufacturing method, battery and resistance welding apparatus
JP2003249419A (en) * 2001-12-18 2003-09-05 Toyota Motor Corp Energy storage device and method of manufacturing the same
JP2006228551A (en) * 2005-02-17 2006-08-31 Toyota Motor Corp Current collecting terminal and power storage device including the terminal
JP2006310254A (en) * 2005-03-31 2006-11-09 Sanyo Electric Co Ltd Manufacturing method of battery
JP2007053002A (en) * 2005-08-18 2007-03-01 Toyota Motor Corp Battery manufacturing method
JP2007149353A (en) * 2005-11-24 2007-06-14 Sanyo Electric Co Ltd Rectangular battery

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013041836A (en) * 2007-06-27 2013-02-28 Sanyo Electric Co Ltd Secondary battery and collector for secondary battery
JP2010073408A (en) * 2008-09-17 2010-04-02 Toyota Motor Corp Battery and method of manufacturing the same
JP2010205469A (en) * 2009-03-02 2010-09-16 Sanyo Electric Co Ltd Method of manufacturing sealed battery, and sealed battery
JP2010232164A (en) * 2009-03-05 2010-10-14 Sanyo Electric Co Ltd Method for manufacturing prismatic secondary battery
JP2014170757A (en) * 2009-03-05 2014-09-18 Sanyo Electric Co Ltd Square-shaped secondary battery and method for manufacturing the same
JP2011165515A (en) * 2010-02-10 2011-08-25 Sanyo Electric Co Ltd Square sealed secondary battery and method for manufacturing the same
JP2012033334A (en) * 2010-07-29 2012-02-16 Sanyo Electric Co Ltd Rectangular sealed secondary battery
JP2012190636A (en) * 2011-03-10 2012-10-04 Gs Yuasa Corp Battery and method for manufacturing the same
JP2013065552A (en) * 2011-08-31 2013-04-11 Gs Yuasa Corp Power storage element
US9356309B2 (en) 2011-08-31 2016-05-31 Sanyo Electric Co., Ltd. Prismatic battery
US8574756B1 (en) 2012-07-17 2013-11-05 Sanyo Electric Co., Ltd. Prismatic secondary battery
DE112013003756B4 (en) 2012-07-30 2019-01-03 Toyota Jidosha Kabushiki Kaisha Method of manufacturing a secondary battery
US9601781B2 (en) 2012-07-30 2017-03-21 Toyota Jidosha Kabushiki Kaisha Secondary battery and method for manufacturing secondary battery
KR20150023066A (en) 2012-07-30 2015-03-04 도요타지도샤가부시키가이샤 Secondary cell and method for manufacturing secondary cell
KR101659244B1 (en) 2012-07-30 2016-09-22 도요타지도샤가부시키가이샤 Secondary battery and method for manufacturing secondary battery
JP2014032814A (en) * 2012-08-02 2014-02-20 Toyota Industries Corp Power storage device and secondary battery
WO2014034241A1 (en) * 2012-08-31 2014-03-06 日立ビークルエナジー株式会社 Rectangular secondary battery
US9583783B2 (en) 2012-08-31 2017-02-28 Hitachi Automotive Systems, Ltd. Prismatic secondary battery
JP2014049311A (en) * 2012-08-31 2014-03-17 Hitachi Vehicle Energy Ltd Square secondary battery
JP2015095404A (en) * 2013-11-13 2015-05-18 株式会社Gsユアサ Power storage element and manufacturing method therefor
JP2016085875A (en) * 2014-10-27 2016-05-19 株式会社Gsユアサ Power storage device, power-supply module, and method for manufacturing power storage device
US10177363B2 (en) 2015-03-30 2019-01-08 Sanyo Electric Co., Ltd. Prismatic secondary battery
US10249867B2 (en) 2015-03-30 2019-04-02 Sanyo Electric Co., Ltd. Prismatic secondary battery and assembled battery using the same
US11862762B2 (en) 2015-03-30 2024-01-02 Sanyo Electric Co., Ltd. Prismatic secondary battery and assembled battery using the same
US11569552B2 (en) 2015-03-30 2023-01-31 Sanyo Electric Co., Ltd. Prismatic secondary battery and assembled battery using the same
US11165125B2 (en) 2015-03-30 2021-11-02 Sanyo Electric Co., Ltd. Prismatic secondary battery and assembled battery using the same
US12166183B2 (en) 2015-03-30 2024-12-10 Sanyo Electric Co., Ltd. Prismatic secondary battery and assembled battery using the same
US10644301B2 (en) 2015-05-15 2020-05-05 Sanyo Electric Co., Ltd. Prismatic secondary battery and assembled battery using the same
US10305084B2 (en) 2015-05-15 2019-05-28 Sanyo Electric Co., Ltd. Prismatic secondary battery and assembled battery using the same
US11316235B2 (en) 2015-05-15 2022-04-26 Sanyo Electric Co., Ltd. Prismatic secondary battery, assembled battery using the same and method of producing the same
JP2017016754A (en) * 2015-06-29 2017-01-19 三洋電機株式会社 Secondary battery
US10305085B2 (en) 2015-09-29 2019-05-28 Sanyo Electric Co., Ltd. Prismatic secondary battery
US9882236B2 (en) 2015-09-29 2018-01-30 Sanyo Electric Co., Ltd. Prismatic secondary battery
US10199628B2 (en) 2015-09-29 2019-02-05 Sanyo Electric Co., Ltd. Prismatic secondary battery
JP2017069107A (en) * 2015-09-30 2017-04-06 大日本印刷株式会社 Adhesive protection film
US10326169B2 (en) 2015-10-30 2019-06-18 Sanyo Electric Co., Ltd. Method for manufacturing prismatic secondary battery
US11050092B2 (en) 2015-10-30 2021-06-29 Sanyo Electric Co., Ltd. Method for manufacturing prismatic secondary battery
JPWO2017149949A1 (en) * 2016-02-29 2018-12-27 パナソニックIpマネジメント株式会社 Method for manufacturing electrode body and method for manufacturing non-aqueous electrolyte secondary battery
US11289734B2 (en) 2016-07-29 2022-03-29 Sanyo Electric Co., Ltd. Method for producing secondary battery
US11942662B2 (en) 2016-07-29 2024-03-26 Sanyo Electric Co., Ltd. Secondary battery comprising a current collector comprising a current collector protrusion and a current collector opening
US11394090B2 (en) 2016-07-29 2022-07-19 Sanyo Electric Co., Ltd. Secondary battery
US10608233B2 (en) 2016-12-26 2020-03-31 Sanyo Electric Co., Ltd. Method of manufacturing secondary battery
CN108242525A (en) * 2016-12-26 2018-07-03 三洋电机株式会社 The manufacturing method of secondary cell
JPWO2018135545A1 (en) * 2017-01-17 2019-11-07 大日本印刷株式会社 Protective film, battery, and battery manufacturing method
JP7024734B2 (en) 2017-01-17 2022-02-24 大日本印刷株式会社 Protective film, batteries, and battery manufacturing methods
WO2018135545A1 (en) * 2017-01-17 2018-07-26 大日本印刷株式会社 Protective film, battery, and battery production method
US12191499B2 (en) 2017-02-27 2025-01-07 Sanyo Electric Co., Ltd. Rectangular secondary battery and method of manufacturing the same
US11923558B2 (en) 2017-02-27 2024-03-05 Sanyo Electric Co., Ltd. Rectangular secondary battery
WO2018159310A1 (en) * 2017-03-03 2018-09-07 株式会社デンソー Bonded body and manufacturing method thereof
US10665829B2 (en) 2017-06-23 2020-05-26 Sanyo Electric Co., Ltd. Rectangular secondary battery and method of manufacturing the same
US10833372B2 (en) 2017-06-26 2020-11-10 Sanyo Electric Co., Ltd. Rectangular secondary battery
US10910673B2 (en) 2017-06-29 2021-02-02 Sanyo Electric Co., Ltd. Rectangular secondary battery and method of manufacturing the same
US11600889B2 (en) 2018-03-29 2023-03-07 Gs Yuasa International Ltd. Energy storage device
JP2024057096A (en) * 2019-09-04 2024-04-23 三洋電機株式会社 Prismatic secondary battery and battery pack using the same
WO2021065127A1 (en) 2019-09-30 2021-04-08 三洋電機株式会社 Method for producing secondary battery, and secondary battery
JP7413784B2 (en) 2020-01-10 2024-01-16 株式会社Gsユアサ Energy storage element
JP2021111514A (en) * 2020-01-10 2021-08-02 株式会社Gsユアサ Power storage element
CN116093554A (en) * 2023-02-23 2023-05-09 重庆长安新能源汽车科技有限公司 Welding method of composite pole piece, battery cell and battery module

Also Published As

Publication number Publication date
CN101335339B (en) 2013-01-09
JP2013041836A (en) 2013-02-28
JP5100281B2 (en) 2012-12-19
JP5668735B2 (en) 2015-02-12
CN101335339A (en) 2008-12-31

Similar Documents

Publication Publication Date Title
JP5100281B2 (en) Sealed battery and manufacturing method thereof
US7819929B2 (en) Sealed battery and manufacturing method therefor
JP5355929B2 (en) Sealed battery and method for manufacturing the same
JP5917407B2 (en) Prismatic secondary battery
JP4986441B2 (en) Square battery
JP4927064B2 (en) Secondary battery
JP2009032670A5 (en)
JP5137516B2 (en) Sealed battery
JP5106024B2 (en) battery
JP2010205469A (en) Method of manufacturing sealed battery, and sealed battery
JP6569322B2 (en) Secondary battery and assembled battery using the same
JP2002313309A (en) Electrochemical device and method for manufacturing the same
JP5958712B2 (en) Square battery
JP5481527B2 (en) battery
JP2010232164A (en) Method for manufacturing prismatic secondary battery
US7943253B2 (en) Sealed battery and manufacturing method therefor
JP5384071B2 (en) Sealed battery
JP5179103B2 (en) Secondary battery and method for manufacturing secondary battery
JP2007250442A (en) Nonaqueous electrolyte secondary battery
WO2019187775A1 (en) Battery and method for manufacturing same
JP2012209260A (en) Battery
JP2001283824A (en) Lithium secondary battery
WO2025116021A1 (en) Power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5100281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3