[go: up one dir, main page]

JP2009021025A - 燃料電池システム及び移動体 - Google Patents

燃料電池システム及び移動体 Download PDF

Info

Publication number
JP2009021025A
JP2009021025A JP2007180789A JP2007180789A JP2009021025A JP 2009021025 A JP2009021025 A JP 2009021025A JP 2007180789 A JP2007180789 A JP 2007180789A JP 2007180789 A JP2007180789 A JP 2007180789A JP 2009021025 A JP2009021025 A JP 2009021025A
Authority
JP
Japan
Prior art keywords
pressure
gas
fuel
fuel cell
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007180789A
Other languages
English (en)
Inventor
Yoshinobu Hasuka
芳信 蓮香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007180789A priority Critical patent/JP2009021025A/ja
Publication of JP2009021025A publication Critical patent/JP2009021025A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】燃料ガスの供給圧の変化量が大きくなるような場合であっても、極間差圧を低く抑えることのできる燃料電池システム及び移動体を提供する。
【解決手段】燃料極と酸化極とを有する燃料電池10と、燃料極に供給する燃料ガスの供給圧を調整するインジェクタ35と、酸化極に供給する酸化ガスの供給圧を調整する調圧弁26と、を備えた燃料電池システム1であって、燃料ガスの供給圧の変化量が大きくなると判断された場合、燃料ガスの供給圧と酸化ガスの供給圧とに基づいて、燃料極と酸化極との極間差圧が所定範囲内に維持されるように、インジェクタ35により燃料ガスの供給圧を調整する。
【選択図】図2

Description

本発明は、燃料電池システム及び移動体に関し、特に、燃料電池へのガス供給圧を制御する技術に関するものである。
近年、固体高分子電解質膜(以下、電解質膜)の両側に燃料極と酸化極とを備え、燃料極側に例えば水素ガス等の燃料ガスを供給する一方で、酸化極側に例えば空気等の酸化ガスを供給し、これら燃料ガスと酸化ガスの酸化還元反応による化学エネルギーを電気エネルギーとして直接取り出すことのできる燃料電池を備えた燃料電池システムの開発が進められている。
この種燃料電池システムにおいては、電解質膜の破損防止や長寿命化等のために、燃料極側の燃料ガス供給圧と、酸化極側の酸化ガス供給圧との差圧(以下、極間差圧)を所定値以下に制御する必要がある。そこで、例えば特許文献1では、燃料極出口と空気極出口との差圧が一定になるように調節弁を制御することで、極間差圧を必要範囲におく燃料電池発電装置が提案されている
特開2001−15141
しかしながら、この燃料電池発電装置においては、調節弁を用いていることから応答性が悪く、システムの状態に応じて圧力を微調整することができない。従って、例えばシステム始動時のように燃料ガスの供給圧が大きく変化するような場合には、この供給圧の変化に対して調節弁での調圧が追随できず極間差圧が一時的に大きくなってしまう虞がある
そこで、本発明は、上記従来技術の課題に鑑みてなされたものであり、その目的は、燃料ガスの供給圧の変化量が大きくなるような場合であっても、極間差圧を低く抑えることのできる燃料電池システム及び移動体を提供することにある。
本発明においては、上記課題を解決するために、以下の手段を採用した。すなわち、本発明は、燃料極と酸化極とを有する燃料電池と、前記燃料極に供給する燃料ガスの供給圧を調整するインジェクタと、前記酸化極に供給する酸化ガスの供給圧を調整する調圧弁と、を備えた燃料電池システムであって、前記燃料ガスの供給圧の変化量が大きくなると判断された場合、前記燃料ガスの供給圧と前記酸化ガスの供給圧とに基づいて、前記燃料極と酸化極との極間差圧が所定範囲内に維持されるように、前記インジェクタにより前記燃料ガスの供給圧を調整するようになっている。
この構成によれば、燃料ガスの供給圧の変化量を判断し、インジェクタを用いて燃料ガスの供給圧を調整するので、極間差圧が急激に大きくなるような場合に、インジェクタの高い調圧応答性により燃料ガスの供給圧を高い精度で速やかに変化させることができる。また、燃料ガスの供給圧を調整するインジェクタと酸化ガスの供給圧を調整する調圧弁とで調圧応答性が異なり、この応答性の差異が、特に燃料ガスの供給圧の変化量が大きい場合に、(調圧弁とインジェクタの調圧スピードが異なるために)極間差圧の一時的な増大という形で表れたとしても、燃料ガスの供給圧および酸化ガスの供給圧それぞれを検出した上で、インジェクタにより高精度かつ速やかに調圧を行えるので、インジェクタと調圧弁との調圧応答性の差異に起因するシステム始動時等における極間差圧の一時的な増大を防止することができる。
尚、本明細書におけるインジェクタは、典型的には、弁体を電磁駆動力で直接的に所定の駆動周期で駆動して弁座から離隔させることによりガス状態(流量、圧力、温度、モル濃度などで表されるガスの状態を意味し、特にガス流量及びガス圧力の少なくとも一方を含む)を調整することが可能な電磁駆動式の開閉弁として構成される。
また、上記燃料電池システムにおいて、システム始動時やインジェクタの上流側と下流側のガス圧の差が所定の値より大きい場合に、燃料ガスの供給圧の変化量が大きくなると判断されるように構成してもよい。
この構成によれば、システム始動時である場合、またはインジェクタの上流側と下流側のガス圧の差が所定の値より大きい場合は、燃料ガスの変化量が大きくなる前段階であるから、実際に燃料ガスの供給圧の変化量を測定することなくとも、燃料ガスの供給圧の変化量が大きくなる場合を判断することができる。
また、本明細書において、「システム始動時」とは、停止されている燃料電池システムの運転を開始する一連の工程を示し、典型的には、停止されている燃料供給源から燃料供給路への燃料ガスの供給が開始される工程を含む。
また、上記燃料電池システムにおいて、前記インジェクタは、弁体の作動が電磁駆動力により制御されることにより前記燃料ガスの供給圧を調整し、前記調圧弁は、一次圧、二次圧、外部圧の少なくとも一つの変動に応じて弁体が作動することにより前記酸化ガスの供給圧を調整するようにしてもよい。
この構成によれば、弁体の作動が電磁駆動力により制御されるインジェクタと、一次圧、二次圧、外部圧の少なくとも一つの変動に応じて弁体が作動する調圧弁とでは、調圧の応答性が異なるが、上述のように燃料ガスの供給圧および酸化ガスの供給圧それぞれを検出した上で、インジェクタにより高精度かつ速やかに調圧を行えるので、インジェクタと調圧弁との調圧応答性の差異に起因するシステム始動時等における極間差圧の一時的な増大を防止することができる。
ここで調圧弁は、典型的には、一次側の流体圧力を、ある一定圧力に保持するため、一次側圧力の変化に応じ流体を放出する背圧弁や二次側の流体圧力を、一次側の流体圧力より低いある一定圧力に保持する減圧弁を含むものとする。
また、本発明の移動体は、上記燃料電池システムを備える。
この構成によれば、燃料ガスの供給圧の変化量が大きくなるような場合であっても、極間差圧を低く抑える燃料電池システムを備えているので、運転開始時等に燃料電池に与える負荷を低く抑えることのできる移動体を提供することができる。
本発明によれば、燃料ガスの供給圧の変化量が大きくなるような場合であっても、極間差圧を低く抑えることのできる燃料電池システム及び移動体を提供することができる。
以下、図面を参照して、本発明の実施形態に係る燃料電池システムについて以下の順番で説明する。本実施形態においては、本発明を燃料電池車両(移動体)の車載発電システムに適用した例について説明することとする。尚、各図面において、同一の部品には同一の符号を付している。
1.本発明の実施の形態にかかる燃料電池システムの全体構成
2.本発明の実施の形態にかかる燃料電池システムの極間差圧の制御方法
3.本発明の実施の形態にかかる燃料電池システムの変形例
1.本発明の実施の形態にかかる燃料電池システムの全体構成
まず、図1を用いて、本発明の実施形態に係る燃料電池システム1の全体構成について説明する。本実施形態に係る燃料電池システム1は、図1に示すように、反応ガス(酸化ガス及び燃料ガス)の供給を受けて電力を発生する燃料電池10を備えるとともに、燃料電池10に酸化ガスとしての空気を供給する酸化ガス配管系2、燃料電池10に燃料ガスとしての水素ガスを供給する水素ガス配管系3、システム全体を統合制御する制御装置4等を備えている。
燃料電池10は、反応ガスの供給を受けて発電する単電池を所要数積層して構成したスタック構造を有している。単電池はいずれも図示省略したが、イオン交換膜からなる電解質膜と、電解質膜を両面から挟んだ一対の水素極(燃料極)および酸素極(酸化極)と、で構成されている。
酸素極には、酸化ガス配管系2により所定の圧力の酸化ガスが供給され、水素極には水素ガス配管系3により所定の圧力の水素ガスが供給される。後述するように、酸素極側の酸化ガスの圧力と水素極側の水素ガスの圧力差(以下、極間差圧という)は、燃料電池10の発電量に係らず過大にならないよう常に所定値以下に設定される。
燃料電池10により発生した電力は、PCU(Power Control Unit)11に供給される。PCU11は、燃料電池10とトラクションモータ12との間に配置されるインバータやDC‐DCコンバータ等を備えている。また、燃料電池10には、発電中の電流を検出する電流センサ13が取り付けられている。
酸化ガス配管系2は、加湿器20により加湿された酸化ガス(空気)を燃料電池10に供給する酸化ガス供給流路21と、燃料電池10から排出された酸化オフガスを加湿器20に導く酸化ガス排出流路22と、加湿器21から外部に酸化オフガスを導くための排気流路23と、を備えている。酸化ガス供給流路21には、大気中の空気を取り込んで加湿器20に圧送するコンプレッサ24が設けられている。酸化ガス排出流路22には、燃料電池10内の酸化ガスの圧力を検出するための酸素極側圧力センサ25と、一次圧の変化に応じて酸化オフガスの流量を調整することにより、燃料電池10内の酸化ガスの圧力を調整する背圧弁26が配置されている。
水素ガス配管系3は、高圧の水素ガスを貯留した燃料供給源としての水素タンク30と、水素タンク30の水素ガスを燃料電池10に供給するための水素供給流路31と、燃料電池10から排出された水素オフガスを水素供給流路31に戻すための循環流路32と、を備えている。なお、水素タンク30に代えて、炭化水素系の燃料から水素リッチな改質ガスを生成する改質器と、この改質器で生成した改質ガスを高圧状態にして蓄圧する高圧ガスタンクと、を燃料供給源として採用することもできる。また、水素吸蔵合金を有するタンクを燃料供給源として採用してもよい。
水素供給流路31には、水素タンク30からの水素ガスの供給を遮断又は許容する遮断弁33と、水素ガスの圧力を調整するレギュレータ34と、インジェクタ35と、が設けられている。また、インジェクタ35の上流側には、水素供給流路31内の水素ガスの圧力及び温度を検出するインジェクタ上流側圧力センサ41及び温度センサ42が設けられている。また、インジェクタ35の下流側であって水素供給流路31と循環流路32との合流部A1の上流側には、燃料電池10内の水素ガスの圧力を検出するための水素極側圧力センサ43が設けられている。
レギュレータ34は、その上流側圧力(一次圧)を、予め設定した二次圧に調圧する装置である。本実施形態においては、一次圧を減圧する機械式の減圧弁をレギュレータ34として採用している。機械式の減圧弁の構成としては、背圧室と調圧室とがダイアフラムを隔てて形成された筺体を有し、背圧室内の背圧により調圧室内で一次圧を所定の圧力に減圧して二次圧とする公知の構成を採用することができる。本実施形態においては、図1に示すように、インジェクタ35の上流側にレギュレータ34を2個配置することにより、インジェクタ35の上流側圧力を効果的に低減させることができる。このため、インジェクタ35の機械的構造(弁体、筺体、流路、駆動装置等)の設計自由度を高めることができる。また、インジェクタ35の上流側圧力を低減させることができるので、インジェクタ35の上流側圧力と下流側圧力との差圧の増大に起因してインジェクタ35の弁体が移動し難くなることを抑制することができる。従って、インジェクタ35の下流側圧力の可変調圧幅を広げることができるとともに、インジェクタ35の応答性の低下を抑制することができる。
インジェクタ35は、弁体を電磁駆動力で直接的に所定の駆動周期で駆動して弁座から離隔させることによりガス流量やガス圧を調整することが可能な電磁駆動式の開閉弁である。インジェクタ35は、水素ガス等の気体燃料を噴射する噴射孔を有する弁座を備えるとともに、その気体燃料を噴射孔まで供給案内するノズルボディと、このノズルボディに対して軸線方向(気体流れ方向)に移動可能に収容保持され噴射孔を開閉する弁体と、を備えている。本実施形態においては、インジェクタ35の弁体は電磁駆動装置であるソレノイドにより駆動され、このソレノイドに給電されるパルス状励磁電流のオン・オフにより、噴射孔の開口面積を2段階又は多段階に切り替えることができるようになっている。制御装置4から出力される制御信号によってインジェクタ35のガス噴射時間及びガス噴射時期が制御されることにより、水素ガスの流量及び圧力が高精度に制御される。インジェクタ35は、弁体及び弁座を電磁駆動力で直接開閉駆動するものであり、その駆動周期が高応答の領域まで制御可能であるため、高い応答性を有する。
インジェクタ35は、その下流に要求されるガス流量を供給するために、インジェクタ35のガス流路に設けられた弁体の開口面積(開度)及び開放時間の少なくとも一方を変更することにより、下流側(燃料電池10側)に供給されるガス流量(又は水素モル濃度)を調整する。なお、インジェクタ35の弁体の開閉によりガス流量が調整されるとともに、ガス要求に応じて所定の圧力範囲の中で要求圧力に一致するようにインジェクタ35の上流ガス圧の調圧量(減圧量)を変化させることが可能になっている。
なお、本実施形態においては、図1に示すように、水素供給流路31と循環流路32との合流部A1より上流側にインジェクタ35を配置している。また、図1に破線で示すように、燃料供給源として複数の水素タンク30を採用する場合には、各水素タンク30から供給される水素ガスが合流する部分(水素ガス合流部A2)よりも下流側にインジェクタ35を配置するようにする。
循環流路32には、気液分離器36及び排気排水弁37を介して、排出流路38が接続されている。気液分離器36は、水素オフガスから水分を回収するものである。排気排水弁37は、制御装置4からの指令によって作動することにより、気液分離器36で回収した水分と、循環流路32内の不純物を含む水素オフガス(燃料オフガス)と、を外部に排出(パージ)するものである。また、循環流路32には、循環流路32内の水素オフガスを加圧して水素供給流路31側へ送り出す水素ポンプ39が設けられている。なお、排気排水弁37及び排出流路38を介して排出される水素オフガスは、希釈器40によって希釈されて排気流路23内の酸化オフガスと合流するようになっている。
制御装置4は、車両に設けられた加速操作部材(アクセル等)の操作量を検出し、加速要求値(例えばトラクションモータ12等の負荷装置からの要求発電量)等の制御情報を受けて、システム内の各種機器の動作を制御する。なお、負荷装置とは、トラクションモータ12のほかに、燃料電池10を作動させるために必要な補機装置(例えばコンプレッサ24、水素ポンプ39、冷却ポンプのモータ等)、車両の走行に関与する各種装置(変速機、車輪制御装置、操舵装置、懸架装置等)で使用されるアクチュエータ、乗員空間の空調装置(エアコン)、照明、オーディオ等を含む電力消費装置を総称したものである。
制御装置4は、図示していないコンピュータシステムによって構成されている。かかるコンピュータシステムは、CPU、ROM、RAM、HDD、入出力インタフェース及びディスプレイ等を備えるものであり、ROMに記録された各種制御プログラムをCPUが読み込んで実行することにより、各種制御動作が実現されるようになっている。
具体的には、制御装置4は、燃料電池10の運転状態(電流センサ13で検出した燃料電池10の発電時の電流値)に基づいて、燃料電池10で必要とされる酸化ガス及び水素ガスの供給量を算出する。そして、制御装置4は、背圧弁26およびインジェクタ35を制御することで所望の流量、圧力の酸化ガス、水素ガスを燃料電池10に供給する。このとき、制御装置4は、インジェクタ35の弁体の開口面積(開度)および開放時間の少なくとも一方を変更することにより、燃料電池10への水素ガスの供給圧を調整することで、極間差圧が常に所定の値以下に維持されるようにする(以下、極間差圧制御という)。極間差圧制御に、背圧弁26ではなくインジェクタ35を用いるのは、インジェクタ35は、背圧弁26に比べて高精度の調圧が可能だからである。以下、この極間差圧制御方法について詳細に説明する。
2.本発明の実施の形態にかかる燃料電池システムの極間差圧制御方法
制御装置4は、燃料電池10への水素ガスの供給圧の変化量が大きくなるか否かを判断した上で、極間差圧制御を行う。これは、水素ガスの供給圧の変化量が大きい場合に、特に極間差圧が大きくなりやすいためである。
本実施の形態においては、制御装置4は、燃料電池システム1が始動時である場合、燃料ガスの変化量が大きくなると判断して、極間差圧制御を開始する。以下、図2を用いて具体的に説明する。
図2に示すように、はじめに、制御装置4は、燃料電池システム1が始動時であるか否かを判断する(始動時判断工程:S1)。システムの状態が始動時であるか否かの判断は、例えば、運転開始信号(イグニッションスイッチのON信号)の有無を判定することによりおこなう。
制御装置4は、燃料電池システム1が始動時であると判断した場合、水素極と酸素極への水素ガス及び酸化ガスの供給圧を取得し(供給圧取得工程:S2)極間差圧制御を開始する。ここで、水素ガスの供給圧は、燃料極側圧力センサ43によって水素極側入り口の水素ガスの圧力値を測定することにより取得する。また、酸化ガスの供給圧は、酸素極側圧力センサ25で検出した酸素極側の出口圧力と燃料電池10内での圧力損失とから酸素極側の入り口圧力を算出することにより取得する。
つづいて、制御装置4は、前工程で取得した水素ガスの供給圧と酸化ガスの供給圧との差から極間差圧を算出し、この極間差圧が所定の圧力P0以上であるか否かを判定する(極間差圧判定工程:S3)。ここで、所定の圧力P0は、極間差圧の最大許容値であり、燃料電池10の性能に応じた固有の値である。
極間差圧が所定の圧力P0以上であると判定された場合(極間差圧判定工程:YES)、制御装置4は、インジェクタ制御指令(駆動信号)をインジェクタ35に送出することでインジェクタ35の駆動を制御する(インジェクタ制御指令工程:S4)。具体的には、インジェクタ制御指令により、インジェクタ35の弁体の開口面積(開度)および開放時間の少なくとも一方を変更することにより、燃料電池10への水素ガスの供給圧を減圧させる。
極間差圧が所定の圧力P0未満であると判定された場合(極間差圧判定工程:NO)またはインジェクタ制御指令工程(S4)に続いて、制御装置4は、水素極の供給圧が目標圧力以上であるかを判定し(供給圧力判定工程:S5)、目標圧力以上である場合は、極間差圧制御を終了し、目標圧力未満である場合は、供給圧取得工程(S2)に戻って極間差圧制御を続ける。ここで目標圧力は、システム始動時に燃料電池10に要求された電流を出力するために必要な水素極の圧力値である。
以上の工程を経ることにより次のような効果がある。以下、図3を用いて、極間差圧制御を行わない場合と比較しつつ説明する。ここで図3は、システム始動時における燃料電池システムの水素ガス、酸化ガスの供給圧及び極間差圧の時間履歴を示すタイムチャートであり、(A)は、極間差圧制御を行わない場合(比較例)のタイムチャートであり、(B)は、極間差圧制御を行う場合(実施例)のタイムチャートである。
尚、図3(A)において、L1は、水素ガスの供給圧の時間履歴、M1は、酸化ガスの供給圧の時間履歴、N1は、極間差圧の時間履歴を示している。図3(B)において、L2は、水素ガスの供給圧の時間履歴、M2は、酸化ガスの供給圧の時間履歴、N2は、極間差圧の時間履歴を示している。図3(A)、(B)双方において、P0は極間差圧の最大許容値、P2は酸化ガスの目標圧力、P3は水素ガスの目標圧力である。ここで、水素ガスの目標圧力(P3)と酸化ガス(P2)の目標圧力の差分は、極間差圧の最大許容値(P0)を超えないように設定されている。
(1)極間差圧制御を行わない場合(比較例)
図3(A)に示すように、システム始動時の初期段階においては、水素ガス、酸化ガスの供給圧は、それぞれの目標圧に達するまで急激に増加する。このとき、インジェクタ35と背圧弁26の調圧応答性が異なるため、水素ガスの供給圧が目標圧(P3)に達するまでの時間(t2)と酸化ガスの供給圧が目標圧(P2)に達するまでの時間(t4)とが異なることになる。そのため、たとえ水素ガス及び酸化ガスの目標圧力の差分が、極間差圧の最大許容値を超えないように設定されていたとしても、極間差圧が一時的に(t2〜t3)、極間差圧の最大許容値(P0)を超えてしまう。これに対し、極間差圧制御を行う場合を以下示す。
(2)極間差圧制御を行う場合(実施例)
極間差圧制御を行い場合も、図3(B)に示すように、システム始動時の初期段階においては、インジェクタ35と背圧弁26の調圧応答性が異なるために極間差圧が増大していく(〜t0)。しかしながら、極間差圧制御を行う場合、極間差圧が最大許容値(P0)に達する前に、インジェクタ35が制御装置4からの駆動指令により高精度かつ速やかに調整され、時間t2〜t3において、水素の供給圧の増加曲線L2の傾きが酸素の供給圧の増加曲線M2の傾きと一致するように調整される。これにより、時間t2〜t3においても、極間差圧は最大許容値(P0)未満に保たれる。
以上(1)、(2)で説明したように、システム始動時のように水素供給圧が急激に大きくなるような場合に、インジェクタ35と背圧弁26の調圧応答性の差異が、極間差圧の一時的な増大という形で表れやすい(比較例)が、本実施の形態においては、水素ガスの供給圧および酸化ガスの供給圧それぞれを検出した上で、インジェクタの高い調圧応答性により水素ガスの供給圧を高い精度でかつ速やかに変化させることによって、極間差圧を最大許容値以下の値に保つことができる(実施例)。
尚、上記燃料電池システムにおいて、水素ガスの供給圧の変化量が大きくなると判断されなかった場合には、水素ガス及び酸化ガスの目標圧力の差分が、極間差圧の最大許容値を超えないようすることによって極間差圧制御を行えばよい。このとき、燃料ガスの供給圧の変化量が大きくならないと判断されているので、極間差圧の急激な増加はみこまれず、またインジェクタ35と背圧弁26との調圧応答性の差異による影響も顕在化しないから、極間差圧を所定範囲内に好適に維持できる。これにより、システム全体が簡略化できる。
3.本発明の実施の形態にかかる燃料電池システムの変形例
以上本発明の実施形態を示したが、本発明はこの実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内において様々な態様での実施が可能である。例えば以下のような変形例が可能である。
上記燃料電池システム1においては、システム始動時である場合に、燃料ガスの供給圧の変化量が大きくなると判断するようにしているが、例えば、インジェクタ上流側圧力センサ41及び水素極側圧力センサ43で、インジェクタ35の上流及び下流の水素ガスの圧力を測定し、この圧力差が所定の値より大きい場合に、燃料ガスの供給圧の変化量が大きくなると判断しても良い。また、上記二つを組み合わせ、システム始動時であってかつインジェクタの上流と下流での水素ガスの圧力差が所定の値より大きい場合に、燃料ガスの供給圧の変化量が大きくなると判断しても良い。
また、上記燃料電池システム1においては、酸化ガスの供給圧力を、酸化ガス排出流路22に配置された酸素極側圧力センサ25の測定値と燃料電池10内での圧力損失とから求めているが、酸化ガス供給経路21に圧力センサを設けて、酸化ガスの燃料電池への入り口圧力を直接測定するようにしてもよい。
また、以上の実施形態においては、燃料電池システム1の水素ガス配管系3に循環流路32を設けた例を示したが、例えば、図4に示すように、燃料電池10に排出流路38を直接接続して循環流路32を廃止することもできる。かかる構成(デッドエンド方式)を採用した場合においても、制御装置4で前記実施形態と同様にインジェクタ35に制御信号を送出してインジェクタ35の開閉制御を行うことにより、同様の作用効果を得ることができる。
また、以上の各実施形態においては、本発明に係る燃料電池システムを燃料電池車両に搭載した例を示したが、燃料電池車両以外の各種移動体(ロボット、船舶、航空機等)に本発明に係る燃料電池システムを搭載することもできる。また、本発明に係る燃料電池システムを、建物(住宅、ビル等)用の発電設備として用いられる定置用発電システムに適用してもよい。
本発明の実施形態に係る燃料電池システムの構成図。 本発明の形態に係る燃料電池システムの極間差圧制御方法を説明するためのフローチャート。 燃料電池システムの起動時における水素ガス、酸化ガスの供給圧及び極間差圧の時間履歴を示すタイムチャート。 本発明の実施の形態に係る燃料電池システムの変形例を示す要部構成図。
符号の説明
1 ……燃料電池システム
10……燃料電池
11……PCU
12……トランクションモータ
13……電流センサ
2 ……酸化ガス配管系
20……加湿器
21……酸化ガス供給経路
22……酸化ガス排出経路
23……排気流路
24……コンプレッサ
25……酸素極側圧力センサ
26……背圧弁(調圧弁)
3 ……水素ガス配管系
30……水素タンク
31……水素供給流路
32……循環流路
33……遮断弁
34……レギュレータ
35……インジェクタ
36……気液分離器
37……排気排水弁
38……排出流路
39……水素ポンプ
4 ……制御装置
40……希釈器
41……インジェクタ上流側圧力センサ
42……温度センサ
43……水素極側圧力センサ

Claims (5)

  1. 燃料極と酸化極とを有する燃料電池と、
    前記燃料極に供給する燃料ガスの供給圧を調整するインジェクタと、
    前記酸化極に供給する酸化ガスの供給圧を調整する調圧弁と、を備えた燃料電池システムであって、
    前記燃料ガスの供給圧の変化量が大きくなると判断された場合、前記燃料ガスの供給圧と前記酸化ガスの供給圧とに基づいて、前記燃料極と酸化極との極間差圧が所定範囲内に維持されるように、前記インジェクタにより前記燃料ガスの供給圧を調整する燃料電池システム。
  2. システム始動時である場合に、燃料ガスの供給圧の変化量が大きくなると判断される請求項1に記載の燃料電池システム。
  3. 前記インジェクタの上流側と下流側のガス圧の差が所定の値より大きい場合に、燃料ガスの供給圧の変化量が大きくなると判断される請求項1または請求項2に記載の燃料電池システム。
  4. 前記インジェクタは、弁体の作動が電磁駆動力により制御されることにより前記燃料ガスの供給圧を調整し、前記調圧弁は、一次圧、二次圧、外部圧の少なくとも一つの変動に応じて弁体が作動することにより前記酸化ガスの供給圧を調整する請求項1から請求項3のいずれかに記載の燃料電池システム。
  5. 請求項1から請求項4に記載の燃料電池システムを備えた移動体。
JP2007180789A 2007-07-10 2007-07-10 燃料電池システム及び移動体 Pending JP2009021025A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007180789A JP2009021025A (ja) 2007-07-10 2007-07-10 燃料電池システム及び移動体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007180789A JP2009021025A (ja) 2007-07-10 2007-07-10 燃料電池システム及び移動体

Publications (1)

Publication Number Publication Date
JP2009021025A true JP2009021025A (ja) 2009-01-29

Family

ID=40360520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007180789A Pending JP2009021025A (ja) 2007-07-10 2007-07-10 燃料電池システム及び移動体

Country Status (1)

Country Link
JP (1) JP2009021025A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013246978A (ja) * 2012-05-25 2013-12-09 Honda Motor Co Ltd 燃料電池システム
CN103904345A (zh) * 2012-12-26 2014-07-02 现代摩比斯株式会社 具备紧急氢气供给线的燃料电池系统
US9276275B2 (en) 2012-05-18 2016-03-01 Honda Motor Co., Ltd. Fuel cell system
JP2017147038A (ja) * 2016-02-15 2017-08-24 本田技研工業株式会社 燃料電池システムの出力加速時における圧力制御方法
US11860235B2 (en) 2019-09-30 2024-01-02 Denso Corporation Battery state estimation apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9276275B2 (en) 2012-05-18 2016-03-01 Honda Motor Co., Ltd. Fuel cell system
JP2013246978A (ja) * 2012-05-25 2013-12-09 Honda Motor Co Ltd 燃料電池システム
CN103904345A (zh) * 2012-12-26 2014-07-02 现代摩比斯株式会社 具备紧急氢气供给线的燃料电池系统
CN103904345B (zh) * 2012-12-26 2016-08-10 现代摩比斯株式会社 具备紧急氢气供给线的燃料电池系统
JP2017147038A (ja) * 2016-02-15 2017-08-24 本田技研工業株式会社 燃料電池システムの出力加速時における圧力制御方法
US11860235B2 (en) 2019-09-30 2024-01-02 Denso Corporation Battery state estimation apparatus

Similar Documents

Publication Publication Date Title
JP5041272B2 (ja) 燃料電池システム及び移動体
JP4756465B2 (ja) 燃料電池システム及び移動体
JP5120590B2 (ja) 燃料電池システム及びインジェクタの診断方法
JP4883360B2 (ja) 燃料電池システム
JP4438854B2 (ja) 燃料電池システム
JP4359856B2 (ja) 燃料電池システム及び移動体
JP5057284B2 (ja) 燃料電池システム及びその制御方法
WO2009028340A1 (ja) 燃料電池システム及びその制御方法
JP2008140741A (ja) 燃料電池システム
JP2009123593A (ja) 燃料電池システム
JP2007317597A (ja) 燃料電池システム及び開閉弁の診断方法
JP2009123592A (ja) 燃料電池システム
JP5168821B2 (ja) 燃料電池システム
JP5224080B2 (ja) 燃料電池システムとオフガスパージ方法
JP2009021025A (ja) 燃料電池システム及び移動体
JP2017091625A (ja) 燃料電池システム用センサの異常検出方法
JP5057203B2 (ja) 燃料電池システム及び移動体
JP2007323873A (ja) 燃料電池システム及びその制御方法
JP4998695B2 (ja) 燃料電池システム
JP5339223B2 (ja) 燃料電池システム及びその制御方法
JP2008218034A (ja) 燃料電池システム及びその制御方法
JP2008171623A (ja) 燃料電池システム
JP2009021024A (ja) 燃料電池システム及び移動体
JP2009021041A (ja) 燃料電池システム
JP4941641B2 (ja) 燃料電池システム