[go: up one dir, main page]

JP2009019855A - Operation method of ice maker - Google Patents

Operation method of ice maker Download PDF

Info

Publication number
JP2009019855A
JP2009019855A JP2007184967A JP2007184967A JP2009019855A JP 2009019855 A JP2009019855 A JP 2009019855A JP 2007184967 A JP2007184967 A JP 2007184967A JP 2007184967 A JP2007184967 A JP 2007184967A JP 2009019855 A JP2009019855 A JP 2009019855A
Authority
JP
Japan
Prior art keywords
ice
ice making
making water
voltage value
water pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007184967A
Other languages
Japanese (ja)
Inventor
Shingo Nishimura
慎吾 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2007184967A priority Critical patent/JP2009019855A/en
Publication of JP2009019855A publication Critical patent/JP2009019855A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To secure ice making capacity for stably generating a constant ice mass. <P>SOLUTION: This ice maker generates an ice mass I by supplying ice making water to an ice making chamber 12 cooled by ice making operation, and generates the ice mass I in large quantities by repeatedly separating the ice mass I by heating the ice making chamber 12 by ice removing operation. The ice maker completes the ice making operation by detecting completion of generating the ice mass I when a rotating speed of an ice making water pump PM measured by a rotating speed measuring means 42 becomes a target rotating speed Ro or more corresponding to a target water quantity Ws calculated in advance in the ice making operation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、製氷水タンクに貯留した製氷水を製氷水ポンプで製氷部に循環供給することで、氷塊を生成する製氷機の運転方法に関するものである。   The present invention relates to a method of operating an ice making machine that generates ice blocks by circulatingly supplying ice making water stored in an ice making water tank to an ice making unit with an ice making water pump.

一般に製氷機は、冷却した製氷部に製氷水タンクから製氷水を供給して氷塊を生成する製氷運転と、製氷部を加温して製氷部から氷塊を離脱させる除氷運転とを繰り返すことで氷塊を生成・製造するようになっている。ここで製氷運転の完了タイミングは、(1)製氷水タンクに設けたフロートスイッチによって製氷水タンクの水位が、設定水位に達したことを検知するフロート方式や、(2)製氷部に設けたサーミスタの測定によって製氷部の温度が設定温度まで低下したことを検知する所謂温度測定方式によって判断される。   In general, an ice making machine repeats an ice making operation in which ice making water is supplied from an ice making water tank to a cooled ice making unit to generate ice blocks, and an ice removing operation in which the ice making unit is heated to remove ice blocks from the ice making unit. It is designed to produce and manufacture ice blocks. Here, the completion timing of the ice making operation is as follows: (1) A float system that detects that the water level in the ice making water tank has reached the set water level by a float switch provided in the ice making water tank; and (2) a thermistor provided in the ice making unit. This is determined by a so-called temperature measurement method for detecting that the temperature of the ice making part has decreased to the set temperature.

ここで、(1)フロート方式を用いた製氷機として、下記の特許文献1記載の「製氷装置の製氷検知方法」が提案されている。しかし、このような検知方法では、経年変化によってフロートスイッチが作動不良を起こす等の信頼性の点で問題があり、また部品点数が多くなるためにコストが嵩む問題が知られていた。これに対し、(2)に係る検出手段としてのサーミスタは安価で検出の信頼性が高く、(1)の問題を回避し得るため好適に採用されている。
特開昭59−195076号公報
Here, (1) “ice making detection method of ice making device” described in Patent Document 1 below is proposed as an ice making machine using a float system. However, such a detection method has a problem in terms of reliability, such as a float switch causing malfunction due to secular change, and a problem that costs increase due to an increase in the number of parts. On the other hand, the thermistor as the detection means according to (2) is preferably used because it is inexpensive and has high detection reliability and can avoid the problem of (1).
JP 59-195076 A

ところで、製氷機における製氷部の温度分布は、該製氷機の製氷能力や、季節によって変動する外気温等の様々な要因によって変化することが知られている。この変化によって、前記サーミスタによって製氷部における一部の温度を検出して製氷運転の完了タイミングを判断する方法では、製氷能力が安定しない問題を内在している。   By the way, it is known that the temperature distribution of the ice making unit in the ice making machine varies depending on various factors such as the ice making capacity of the ice making machine and the outside air temperature that varies depending on the season. Due to this change, the method of detecting a part of the temperature in the ice making section by the thermistor and determining the completion timing of the ice making operation has a problem that the ice making ability is not stable.

すなわち本発明は、従来の技術に係る製氷機の運転方法に内在する前記問題に鑑み、これらを好適に解決するべく提案されたものであって、安定した製氷能力を確保し得る製氷機の運転方法を提供することを目的とする。   That is, the present invention has been proposed in order to suitably solve these problems inherent in the operation method of the ice making machine according to the prior art, and the operation of the ice making machine capable of ensuring stable ice making capacity. It aims to provide a method.

前記課題を克服し、所期の目的を達成するため、本願の請求項1に係る発明の製氷機の運転方法は、
製氷水タンクに貯留した製氷水を、製氷水ポンプにより製氷部に循環供給して氷塊を生成するようにした自動製氷機の運転方法において、
前記製氷水ポンプの回転数を測定する回転数測定手段を備え、
前記回転数測定手段が測定した回転数が、前記製氷水ポンプに一定の電圧を供給して回転させたもとで、前記氷塊の生成に伴い製氷水タンク内の製氷水が減少することによって生ずる該製氷水ポンプの負荷低減によって上昇して目標回転数となったときに、前記氷塊の生成完了と判断して前記製氷水ポンプを停止するようにしたことを特徴とする。
従って、請求項1に係る発明によれば、外気温等の諸要因に影響されず製氷運転の完了を好適に検出できるので、一定の氷塊を安定して生成する製氷能力を確保し得る。
In order to overcome the above-mentioned problems and achieve the intended purpose, an operation method of the ice making machine according to claim 1 of the present application is as follows:
In the operation method of the automatic ice maker, the ice making water stored in the ice making water tank is circulated and supplied to the ice making part by the ice making water pump to generate ice blocks.
A rotational speed measuring means for measuring the rotational speed of the ice making water pump;
The rotation speed measured by the rotation speed measuring means is generated when the ice-making water in the ice-making water tank is reduced with the generation of the ice blocks when the ice-making water pump is rotated by supplying a constant voltage. The ice making water pump is stopped when it is determined that the formation of the ice block has been completed when the target rotational speed is increased by reducing the load of the water pump.
Therefore, according to the first aspect of the present invention, the completion of the ice making operation can be suitably detected without being affected by various factors such as the outside air temperature, so that it is possible to ensure the ice making ability to stably generate a certain ice block.

請求項2に係る発明では、前記目標回転数は、製氷開始時に前記製氷水タンク内に貯留される製氷水の初期水量と、製氷完了までに氷塊の生成に供される製氷水の使用水量とから予め算出される製氷完了時に製氷水タンク内に残留する製氷水の目標水量に対応する値であることを要旨とする。
従って、請求項2に係る発明によれば、製氷開始時に前記製氷水タンク内に貯留される製氷水の初期水量および製氷完了までに氷塊の生成に供される製氷水の使用水量といった計算が容易な数値を用いて目標回転数を算出することになるから、氷塊の生成完了を検出するための製氷水ポンプの回転数を容易に設定し得る。
In the invention which concerns on Claim 2, the said target rotation speed is the initial amount of ice-making water stored in the said ice-making water tank at the time of ice-making start, and the usage-amount of ice-making water used for production | generation of an ice lump by the completion of ice making The value is a value corresponding to the target amount of ice-making water remaining in the ice-making water tank when the ice making is completed.
Therefore, according to the invention of claim 2, it is easy to calculate the initial amount of ice making water stored in the ice making water tank at the start of ice making and the amount of ice making water used to generate ice blocks before ice making is completed. Since the target rotational speed is calculated using a simple numerical value, the rotational speed of the ice making water pump for detecting the completion of the ice block generation can be easily set.

請求項3に係る発明では、製氷開始による水温低下に伴う前記製氷水タンク内の製氷水の粘度上昇に起因する製氷水ポンプの負荷増大によって低下し、前記氷塊の生成に伴う製氷水の減少に起因する製氷水ポンプの負荷低減によって上昇に転じる回転数から、氷結開始点に対応する該製氷水ポンプの最低回転数を決定し、前記最低回転数と回転数測定手段で測定される回転数との関係が、該最低回転数と前記目標回転数との関係を特定すると共に、予め設定された目標回転数係数となったときに、前記氷塊の生成完了と判断して前記製氷水ポンプを停止するようにしたことを要旨とする。
従って、請求項3に係る発明によれば、回転数測定手段が測定する回転数が低下から上昇に移行する氷結開始点を基準とするから、氷塊の生成完了の検出の精度が向上する。
In the invention according to claim 3, it decreases due to an increase in the load of the ice making water pump due to an increase in viscosity of the ice making water in the ice making water tank due to a decrease in water temperature due to the start of ice making, and a decrease in ice making water accompanying the formation of the ice blocks. The minimum rotation speed of the ice-making water pump corresponding to the freezing start point is determined from the rotation speed that turns upward due to the load reduction of the resulting ice-making water pump, and the minimum rotation speed and the rotation speed measured by the rotation speed measuring means are determined. The relationship between the minimum rotational speed and the target rotational speed is determined, and when the target rotational speed coefficient is set in advance, it is determined that the ice block has been generated and the ice-making water pump is stopped. The gist is to do so.
Therefore, according to the third aspect of the invention, since the freezing start point at which the rotational speed measured by the rotational speed measuring means shifts from a decrease to an increase is used as a reference, the accuracy of detecting the completion of the ice block generation is improved.

請求項4に係る発明では、前記回転数測定手段が測定する製氷水ポンプの回転数は、単位時間当りの平均回転数であることを要旨とする。
従って、請求項4に係る発明によれば、微小時間における回転数の変動に影響を受けず、回転数の測定を安定的になし得る。
The gist of the invention according to claim 4 is that the rotation speed of the ice making water pump measured by the rotation speed measuring means is an average rotation speed per unit time.
Therefore, according to the invention which concerns on Claim 4, it is not influenced by the fluctuation | variation of the rotation speed in minute time, but can measure a rotation speed stably.

前記課題を克服し、所期の目的を達成するため、本願の請求項5に係る発明の製氷機の運転方法は、
製氷水タンクに貯留した製氷水を、製氷水ポンプにより製氷部に循環供給して氷塊を生成するようにした自動製氷機の運転方法において、
前記製氷水ポンプを一定の回転数で回転させる電流の電圧値を算出する電圧値算出手段を備え、
前記製氷水ポンプを一定の回転数で回転させたもとで、前記電圧値算出手段により算出される電圧値が、前記氷塊の生成に伴い製氷水タンク内の製氷水の減少することによって生ずる該製氷水ポンプの負荷低減によって低下して目標電圧値となったときに、前記氷塊の生成完了と判断して前記製氷水ポンプを停止するようにしたことを特徴とする。
従って、請求項5に係る発明によれば、外気温等の諸要因に影響されず製氷運転の完了を好適に検出できるので、一定の氷塊を安定して生成する製氷能力を確保し得る。
In order to overcome the above-mentioned problems and achieve the intended purpose, an operation method of the ice making machine of the invention according to claim 5 of the present application,
In the operation method of the automatic ice maker, the ice making water stored in the ice making water tank is circulated and supplied to the ice making part by the ice making water pump to generate ice blocks.
Voltage value calculating means for calculating a voltage value of a current for rotating the ice making water pump at a constant rotation number;
The ice-making water generated when the voltage value calculated by the voltage-value calculating means is reduced when the ice-making water in the ice-making water tank is reduced with the generation of the ice block while the ice-making water pump is rotated at a constant rotational speed. It is characterized in that the ice making water pump is stopped when it is determined that the generation of the ice block has been completed when the target voltage value is decreased by reducing the load on the pump.
Therefore, according to the fifth aspect of the present invention, the completion of the ice making operation can be suitably detected without being influenced by various factors such as the outside air temperature, so that it is possible to ensure the ice making ability to stably generate a certain ice block.

請求項6に係る発明では、前記目標電圧値は、製氷開始時に前記製氷水タンク内に貯留される製氷水の初期水量と、製氷完了までに氷塊の生成に供される製氷水の使用水量とから予め算出される製氷完了時に製氷水タンク内に残留する製氷水の目標水量に対応する値であることを要旨とする。
従って、請求項6に係る発明によれば、製氷開始時に前記製氷水タンク内に貯留される製氷水の初期水量および製氷完了までに氷塊の生成に供される製氷水の使用水量といった計算が容易な数値を用いて目標電圧値を算出することになるから、氷塊の生成完了を検出する際の製氷水ポンプが必要とする電圧値を容易に設定し得る。
In the invention according to claim 6, the target voltage value includes the initial amount of ice making water stored in the ice making water tank at the start of ice making, and the amount of ice making water used to generate ice blocks before ice making is completed. The value is a value corresponding to the target amount of ice-making water remaining in the ice-making water tank when the ice making is completed.
Therefore, according to the invention according to claim 6, it is easy to calculate the initial amount of ice making water stored in the ice making water tank at the start of ice making and the amount of ice making water used for generating ice blocks before ice making is completed. Since the target voltage value is calculated using a simple numerical value, the voltage value required by the ice making water pump when detecting the completion of the ice lump production can be easily set.

請求項7に係る発明では、製氷開始による水温低下に伴う前記製氷水タンク内の製氷水の粘度上昇に起因する製氷水ポンプの負荷増大によって上昇し、前記氷塊の生成に伴う製氷水の減少に起因する製氷水ポンプの負荷低減によって低下に転じる電圧値から、氷結開始点に対応する該製氷水ポンプの最大電圧値を決定し、前記最大電圧値と電圧値算出手段で算出される電圧値との関係が、該最大電圧値と前記目標電圧値との関係を特定すると共に、予め設定された目標電圧値係数となったときに、前記氷塊の生成完了と判断して前記製氷水ポンプを停止するようにしたことを要旨とする。
従って、請求項7に係る発明によれば、氷塊の氷結開始点を基準とするから、該氷塊の生成完了の検出の精度が向上する。
In the invention which concerns on Claim 7, it raises by the load increase of the ice-making water pump resulting from the viscosity increase of the ice-making water in the said ice-making water tank accompanying the water temperature fall by the start of ice making, and it decreases in the ice-making water accompanying the production | generation of the said ice lump. The maximum voltage value of the ice making water pump corresponding to the freezing start point is determined from the voltage value that starts to decrease due to the load reduction of the resulting ice making water pump, and the maximum voltage value and the voltage value calculated by the voltage value calculating means The relationship between the maximum voltage value and the target voltage value is specified, and when the preset target voltage value coefficient is reached, it is determined that the ice block has been generated and the ice-making water pump is stopped. The gist is to do so.
Therefore, according to the seventh aspect of the invention, since the icing start point of the ice block is used as a reference, the accuracy of detecting the completion of the ice block generation is improved.

請求項8に係る発明では、前記電圧値算出手段で算出される電圧値は、単位時間当りの平均電圧値であることを要旨とする。
従って、請求項8に係る発明によれば、微小時間における電圧の変動に影響を受けず、電圧値の測定を安定的になし得る。
The gist of the invention according to claim 8 is that the voltage value calculated by the voltage value calculating means is an average voltage value per unit time.
Therefore, according to the eighth aspect of the invention, the voltage value can be stably measured without being affected by the voltage fluctuation in a very short time.

本発明に係る製氷機の運転方法によれば、外気温等の諸要因に影響されず製氷運転の完了を好適に検出できるので、一定の氷塊を安定して生成する製氷能力を確保し得る。   According to the operation method of the ice making machine according to the present invention, the completion of the ice making operation can be suitably detected without being affected by various factors such as the outside air temperature, so that it is possible to ensure the ice making ability to stably generate a certain ice block.

次に、本発明に係る製氷機の運転方法につき、好適な実施例を挙げて、添付図面を参照して以下に説明する。本願の発明者は、製氷水タンクに貯留される製氷水を製氷水ポンプによって製氷室等に供給する場合に、該製氷水ポンプに掛かる負荷は、該製氷水タンクに貯留される製氷水面の低下、すなわち製氷水量の減少に伴って低減することを知見したものである。そして、この知見を利用することで、外気温等に影響を受けない氷塊の生成完了、すなわち製氷完了検知をなし得る製氷機の運転方法を案出したものである。なお、実施例では、所謂クローズドセルタイプの製氷機構を備える製氷機を例に挙げて説明する。   Next, the operation method of the ice making machine according to the present invention will be described below with reference to the accompanying drawings by giving a preferred embodiment. When the inventor of the present application supplies ice-making water stored in an ice-making water tank to an ice-making chamber or the like by an ice-making water pump, the load applied to the ice-making water pump is reduced in the ice-making water surface stored in the ice-making water tank. That is, it has been found that the amount of ice making water decreases as the amount of ice making water decreases. Then, by utilizing this knowledge, a method of operating an ice making machine capable of detecting completion of ice lump generation that is not affected by outside air temperature, that is, ice making completion detection has been devised. In the embodiment, an ice making machine including a so-called closed cell type ice making mechanism will be described as an example.

(第1実施例)
図1に示すように、第1実施例に係る製氷機は、氷塊(角氷)Iを生成する製氷機構10と、この製氷機構10を冷却する冷凍機構30と、各機器を制御する制御手段C(図4参照)を備え、製氷運転および除氷運転を繰り返して氷塊Iを生成し得るようになっている。製氷機構10は、図1に示すように、下向きに開口した製氷小室14を多数形成した製氷室(製氷部)12と、水皿16と、この水皿16の下部に配設された製氷水タンク18と、これら水皿16および製氷水タンク18を一体的に傾動させる水皿開閉機構20から構成される。製氷室12の上面には、冷凍機構30を構成する蒸発管32が蛇行配置され、蒸発管32を流通する冷媒またはホットガスとの熱交換によって製氷室12が冷却または加温されるようになっている。
(First embodiment)
As shown in FIG. 1, the ice making machine according to the first embodiment includes an ice making mechanism 10 that generates ice blocks (square ice) I, a refrigeration mechanism 30 that cools the ice making mechanism 10, and a control means that controls each device. C (see FIG. 4), and the ice lump I can be generated by repeating the ice making operation and the deicing operation. As shown in FIG. 1, the ice making mechanism 10 includes an ice making chamber (ice making unit) 12 in which a large number of ice making chambers 14 opened downward, a water tray 16, and ice making water disposed at the bottom of the water tray 16. The tank 18 includes a water tray opening / closing mechanism 20 that tilts the water tray 16 and the ice making water tank 18 together. An evaporation pipe 32 constituting the refrigeration mechanism 30 is meandered on the upper surface of the ice making chamber 12, and the ice making chamber 12 is cooled or heated by heat exchange with a refrigerant or hot gas flowing through the evaporation pipe 32. ing.

前記水皿16は、一方の側端部が製氷機本体に対して支軸16aを介して揺動可能に支持されると共に、他方の側端部が水皿開閉機構20を構成するカムアーム22にコイルスプリング24を介して接続されている。水皿16は、カムアーム22をアクチュエータモータ26で正逆回転することで、製氷運転において製氷室12を閉成した水平状態と、除氷運転において製氷室12から下方に傾斜した開放状態とに姿勢変位し得るようになっている。また、水皿16の開放端側の先端部の所要位置には排水口(図示せず)が設けられており、該排水口の高さ位置を超えて貯留される製氷水は排出されるようになっている。なお、アクチュエータモータ26は、制御手段Cに電気的に接続しており、制御手段Cにより駆動制御される(図4参照)。   The water tray 16 is supported such that one side end portion thereof is swingable with respect to the ice making machine body via a support shaft 16a, and the other side end portion is attached to a cam arm 22 constituting the water tray opening / closing mechanism 20. They are connected via a coil spring 24. The water pan 16 is rotated between the horizontal direction in which the ice making chamber 12 is closed in the ice making operation and the open state that is inclined downward from the ice making chamber 12 in the deicing operation by rotating the cam arm 22 forward and backward with the actuator motor 26. It can be displaced. In addition, a drainage port (not shown) is provided at a required position at the tip of the open end side of the water dish 16 so that ice-making water stored beyond the height position of the drainage port is discharged. It has become. The actuator motor 26 is electrically connected to the control means C and is driven and controlled by the control means C (see FIG. 4).

前記製氷水タンク18は、給水部28から供給される所要量の製氷水を貯留し、この製氷水は、製氷水ポンプPMによって水皿16に設けた噴射孔(図示せず)を介して製氷室12の各製氷小室14へ噴射供給される。そして、各製氷小室14へ噴射供給された製氷水は、製氷室12が冷却されることにより該製氷小室14で氷結され、氷結しなかった製氷水(未氷結水)は再び製氷水タンク18に戻る。すなわち、製氷水タンク18に貯留された製氷水は、製氷水ポンプPMにより製氷室12に循環供給されるようになっている。前記製氷水ポンプPMは、制御手段Cに電気的に接続しており、制御手段Cにより駆動制御される。この駆動制御のために制御手段Cには、製氷水ポンプPMを所要の回転数Rで回転させる電流の電圧値Vを算出する電圧値算出手段44と、該電圧値算出手段44で算出された電圧値Vの電流を製氷水ポンプPMに供給する手段(図示せず)が備えられている(図4参照)。また給水部28は、図示しない上水道等の給水源に接続された給水管29と、この給水管29の途中に配設された給水弁WVとから構成され、給水弁WVは制御手段Cにより開閉制御される。そして、製氷水タンク18内の所要位置には、この製氷水タンク18内に貯留される製氷水の水温を測定する水温測定手段40が配設されている。水温測定手段40は、例えばサーミスタ、白金測温抵抗体、熱電対等、実用に供されている既存のものが好適に実施可能であり、その測定結果が制御手段Cに出力される。   The ice-making water tank 18 stores a required amount of ice-making water supplied from the water supply unit 28, and this ice-making water is formed through an injection hole (not shown) provided in the water tray 16 by the ice-making water pump PM. The ice is supplied to each ice making chamber 14 of the chamber 12. The ice making water sprayed and supplied to each ice making chamber 14 is frozen in the ice making chamber 14 when the ice making chamber 12 is cooled, and the ice making water that has not been frozen (unfreezing water) is returned to the ice making water tank 18 again. Return. That is, the ice making water stored in the ice making water tank 18 is circulated and supplied to the ice making chamber 12 by the ice making water pump PM. The ice making water pump PM is electrically connected to the control means C and is driven and controlled by the control means C. For this drive control, the control means C is calculated by the voltage value calculation means 44 for calculating the voltage value V of the current for rotating the ice-making water pump PM at the required rotation speed R, and the voltage value calculation means 44. Means (not shown) for supplying a current having a voltage value V to the ice making water pump PM is provided (see FIG. 4). The water supply unit 28 includes a water supply pipe 29 connected to a water supply source (not shown) such as a water supply, and a water supply valve WV disposed in the middle of the water supply pipe 29. The water supply valve WV is opened and closed by the control means C. Be controlled. A water temperature measuring means 40 for measuring the temperature of the ice making water stored in the ice making water tank 18 is disposed at a required position in the ice making water tank 18. As the water temperature measuring means 40, for example, a thermistor, a platinum resistance temperature detector, a thermocouple, or the like that is already in practical use can be suitably implemented, and the measurement result is output to the control means C.

本第1実施例に係る製氷機の場合、製氷水ポンプPMに掛かる負荷(製氷水タンク18に貯留されている製氷水を製氷室12に噴射供給するために必要な総圧力)は、製氷水を製氷室12に噴射供給するための抵抗圧力(以下、噴射抵抗圧力と云う)と、製氷水タンク18から該製氷水を吸い込むための抵抗圧力(以下、吸い込み抵抗圧力と云う)との合計によって決定される。そして、製氷の進行に伴って噴射抵抗圧力は、製氷室12内の氷塊Iが大きくなるために高くなる。その一方で、吸い込み抵抗圧力は、製氷水タンク18内の製氷水が減少するために低くなる。ここで、吸い込み抵抗圧力の低下度合いは、図2に示す如く、噴射抵抗圧力の上昇度合いよりも大きいため、製氷が進行して製氷水タンク18内に貯留される製氷水の量が減少する程、該製氷水を製氷室12に噴射供給するのに必要とされる総圧力、すなわち製氷水ポンプPMに掛かる負荷は減少することになる。   In the case of the ice making machine according to the first embodiment, the load applied to the ice making water pump PM (the total pressure required to inject and supply ice making water stored in the ice making water tank 18 to the ice making chamber 12) is ice making water. The resistance pressure for injecting and supplying the ice making chamber 12 (hereinafter referred to as “injection resistance pressure”) and the resistance pressure for inhaling the ice making water from the ice making water tank 18 (hereinafter referred to as “inhalation resistance pressure”) It is determined. As the ice making progresses, the spray resistance pressure increases because the ice lump I in the ice making chamber 12 increases. On the other hand, the suction resistance pressure is lowered because the ice making water in the ice making water tank 18 is reduced. Here, as shown in FIG. 2, the degree of decrease in the suction resistance pressure is larger than the degree of increase in the injection resistance pressure, so that the amount of ice-making water stored in the ice-making water tank 18 decreases as ice making progresses. Therefore, the total pressure required to inject and supply the ice making water to the ice making chamber 12, that is, the load applied to the ice making water pump PM is reduced.

なお、製氷水タンク18には、製氷開始時に最も多くの製氷水が貯留され、このときの水量を初期水量Wと呼称し、氷塊Iの生成が完了する製氷完了時に該製氷水タンク18内に残留している製氷水の量を目標水量Wと呼称する。ここで、初期水量Wは、基本的に前記水皿16に設けられた排水口の高さ位置によって決定されている。また、この目標水量Wから初期水量Wを差し引いた水量は、製氷水が氷塊Iに変化することで減少した量に相当し、使用水量Wと呼称する。ここで初期水量Wおよび使用水量Wは、製氷機の設計値として取得可能であるので、目標水量Wは、初期水量Wから使用水量Wを減算することで容易に計算可能である。そして、目標水量Wに対応する製氷水ポンプPMの回転数R、すなわち製氷水タンク18に貯留される製氷水の量が目標水量Wになったときの負荷によって決定される製氷水ポンプPMの回転数Rを目標回転数Rと呼称する。 Note that the ice-making water tank 18, most of the ice-making water is stored at the start ice, the amount of water at this time is called the initial amount of water W S, ice making water tank 18 at the time of generation of the ice block I is completed ice completed the amount of ice-making water remaining is referred to as the target water amount W O on. Here, the initial amount of water W S is determined by the height position of the provided drainage openings essentially the water tray 16. The amount of water minus the initial water W S from the target water amount W O is making water corresponds to an amount that is reduced by varying the ice blocks I, referred to as water consumption W I. Here, since the initial water amount W S and the used water amount W I can be obtained as design values of the ice making machine, the target water amount W O can be easily calculated by subtracting the used water amount W I from the initial water amount W S. is there. Then, the rotational speed of the ice-making water pump PM which corresponds to the target water amount W O R, i.e. making water pump PM which is determined by the load when the amount of ice making water stored in the ice-making water tank 18 becomes the target amount of water W O Is referred to as a target rotational speed RO.

また、前記製氷機の冷凍機構30は、図1に示すように、圧縮機CM、凝縮器CD、この凝縮器CDを冷却する冷却ファンFM、膨張弁EVおよび前記蒸発管32を備え、圧縮機CM、凝縮器CD、膨張弁EVおよび蒸発管32を、冷媒配管34で順次連結して冷凍回路36を構成している。圧縮機CMで圧縮された気化冷媒は、冷媒配管34を経て凝縮器CDで凝縮液化された後、膨張弁EVで減圧され、蒸発管32に流入してここで膨張して蒸発し、製氷室12と熱交換することで、製氷室12が氷点以下に強制冷却される。また冷凍機構30は、冷凍回路36に加えて、除氷運転時に、凝縮器CDおよび膨張弁EVを介さず圧縮機CMから高温冷媒(ホットガス)を蒸発管32に直接供給するバイパス回路38を備えている。このバイパス回路38は、圧縮機CMの吐出側と蒸発管32の吸込み側とを連結するバイパス管39と、このバイパス管39の途中に配設され、制御手段Cにより開閉制御されるホットガス弁HVとから構成される。そして、製氷運転時には、ホットガス弁HVを閉鎖して冷凍回路36に冷媒が循環され、これに対し除氷運転時には、ホットガス弁HVが開放されてバイパス回路38にホットガスが循環されるようになっている。   The ice making machine refrigeration mechanism 30 includes a compressor CM, a condenser CD, a cooling fan FM for cooling the condenser CD, an expansion valve EV, and the evaporation pipe 32 as shown in FIG. CM, the condenser CD, the expansion valve EV, and the evaporation pipe 32 are sequentially connected by a refrigerant pipe 34 to constitute a refrigeration circuit 36. The vaporized refrigerant compressed by the compressor CM is condensed and liquefied by the condenser CD via the refrigerant pipe 34, then depressurized by the expansion valve EV, flows into the evaporation pipe 32, and expands and evaporates there. By exchanging heat with 12, the ice making chamber 12 is forcibly cooled below the freezing point. In addition to the refrigeration circuit 36, the refrigeration mechanism 30 includes a bypass circuit 38 that directly supplies high-temperature refrigerant (hot gas) from the compressor CM to the evaporation pipe 32 without passing through the condenser CD and the expansion valve EV during the deicing operation. I have. The bypass circuit 38 includes a bypass pipe 39 that connects the discharge side of the compressor CM and the suction side of the evaporation pipe 32, and a hot gas valve that is disposed in the middle of the bypass pipe 39 and controlled to be opened and closed by the control means C. HV. During the ice making operation, the hot gas valve HV is closed and the refrigerant is circulated through the refrigeration circuit 36. On the other hand, during the deicing operation, the hot gas valve HV is opened and the hot gas is circulated through the bypass circuit 38. It has become.

前記製氷水ポンプPMとしては、入力される電圧値Vと回転トルクとが一意的に対応する直流(DC)ポンプが採用され、また該ポンプPMの回転数Rを測定する回転数測定手段42が備えられている。この回転数測定手段42は、製氷水ポンプPMのモーター回転パルスを検出することで回転数Rを測定している。そして、本第1実施例において製氷水ポンプPMは、電圧値Vを一定として駆動されるよう構成されている。すなわち、製氷水ポンプPMは、製氷水の製氷室12への噴射供給に係る負荷の変動に伴って回転数Rが変化することになる。ここで、製氷水ポンプPMは直流電流によって駆動されるため、製氷水の製氷室12への噴射供給に係る負荷が増大すると、製氷水ポンプPMの回転数Rが比例的に低下し、該負荷が減少すると、該製氷水ポンプPMの回転数Rが比例的に上昇する。そして、製氷水ポンプPMの回転数Rは、制御手段Cに出力される(図4参照)。また、電圧値Vは設定値として予め制御手段Cに入力・保持されている。   As the ice making water pump PM, a direct current (DC) pump in which an input voltage value V and a rotational torque uniquely correspond is adopted, and a rotational speed measuring means 42 for measuring the rotational speed R of the pump PM is provided. Is provided. The rotation speed measuring means 42 measures the rotation speed R by detecting a motor rotation pulse of the ice making water pump PM. In the first embodiment, the ice making water pump PM is configured to be driven with the voltage value V being constant. In other words, the rotation speed R of the ice making water pump PM changes as the load relating to the jet supply to the ice making chamber 12 changes. Here, since the ice making water pump PM is driven by a direct current, when the load relating to the supply of the ice making water to the ice making chamber 12 increases, the rotation speed R of the ice making water pump PM decreases proportionally, and the load Decreases, the rotation speed R of the ice making water pump PM rises proportionally. Then, the rotation speed R of the ice making water pump PM is output to the control means C (see FIG. 4). The voltage value V is previously input and held in the control means C as a set value.

電圧値Vを一定に保持した場合の製氷運転時における製氷水量と製氷水ポンプPMの回転数Rとの関係を図3に示す。すなわち、製氷水タンク18に初期水量Wの製氷水が貯留された製氷開始時において、製氷水ポンプPMの負荷が最も大きくなるため、その回転数Rは最も低下した状態となる。そして、製氷進行による製氷水量の減少に伴って製氷水ポンプPMの負荷は減少し、最終的に氷塊Iが生成完了して製氷水タンク18に残留する製氷水が目標水量Wに到った際に該負荷が最も小さくなり、その回転数Rは最も上昇した状態となる。そして本発明は、氷塊Iが生成完了した状態を、製氷水ポンプPMの負荷(本第1実施例では回転数R)から検出するものである。具体的には、氷塊Iの生成が完了した際の製氷水の量である目標水量Wに対応する目標回転数Rを予め算出しておき、製氷運転開始後に製氷水ポンプPMの回転数Rが目標回転数Rとなったか否かで、該氷塊Iの生成完了を判断する。前述の如く、目標水量Wは容易に計算可能であるので、これに製氷水ポンプPMの性能を当てはめることで、該目標水量Wを貯留した製氷水タンク18における製氷水ポンプPMの回転数Rである目標回転数Rは容易に算出可能である。 FIG. 3 shows the relationship between the amount of ice making water during the ice making operation and the rotation speed R of the ice making water pump PM when the voltage value V is kept constant. That is, when the ice making water is initiated ice for storing the initial water W S in the ice-making water tank 18, the load on the ice-making water pump PM is maximized, the rotation speed R is the most reduced state. Then, the load of the ice making water pump PM decreases as the amount of ice making water decreases due to the progress of ice making, and finally the ice lump I is completely generated and the ice making water remaining in the ice making water tank 18 reaches the target water amount W O. At that time, the load becomes the smallest, and the rotation speed R becomes the highest state. In the present invention, the state where the ice block I is completely generated is detected from the load of the ice making water pump PM (the rotation speed R in the first embodiment). Specifically, a target rotational speed R O corresponding to the target water amount W O that is the amount of ice-making water when the generation of the ice block I is completed is calculated in advance, and the rotational speed of the ice-making water pump PM after the start of the ice making operation. R is whether it is the target rotation speed R O, determines completion of generation of the ice mass I. Since the target water amount W O can be easily calculated as described above, the number of rotations of the ice making water pump PM in the ice making water tank 18 storing the target water amount W O is applied by applying the performance of the ice making water pump PM thereto. target rotational speed R O is R can be easily calculated.

前記制御手段Cには、図4に示すように、製氷水ポンプPM、該製氷水ポンプPMの回転数Rを検出する回転数測定手段42、その他の各種測定手段や検出手段から各種信号が入力される。また制御手段Cは、各種入力信号、製氷水ポンプPMの回転数Rに応じた電圧値Vを算出する電圧値算出手段44および図示しないコントロールパネルから入力された各種設定値等に基づき、ホットガス弁HVを含む冷凍機構30の各機器、水皿開閉機構20のアクチュエータモータ26、製氷水ポンプPMを含む製氷機構10の各機器、給水部28における給水弁WV等の動作を総合的に制御するようになっている。なお、本第1実施例においては、制御手段C内に予め設定した時間をカウントするタイマ(図示せず)が備えられている。また図4では、本願発明に関連のある構成部材、構成機器だけを図示している。   As shown in FIG. 4, the control means C receives various signals from the ice making water pump PM, the rotational speed measuring means 42 for detecting the rotational speed R of the ice making water pump PM, and other various measuring means and detecting means. Is done. The control means C is a hot gas based on various input signals, voltage value calculation means 44 for calculating a voltage value V corresponding to the rotation speed R of the ice making water pump PM, and various setting values inputted from a control panel (not shown). Each device of the refrigeration mechanism 30 including the valve HV, the actuator motor 26 of the water tray opening / closing mechanism 20, each device of the ice making mechanism 10 including the ice making water pump PM, the operation of the water supply valve WV in the water supply unit 28, etc. are comprehensively controlled. It is like that. In the first embodiment, a timer (not shown) for counting a preset time is provided in the control means C. FIG. 4 shows only constituent members and constituent devices related to the present invention.

前記製氷機は、氷塊Iの生成完了、すなわち製氷運転の完了タイミングを判断して製氷水ポンプPMを停止する等して製氷運転を完了させる運転切替え手段を備えている。この運転切替え手段は、製氷水ポンプPMと、この製氷水ポンプPMの回転数Rを測定する回転数測定手段42と、各機器を制御する前記制御手段Cとから基本的に構成されている(図4参照)。そして、実施例では制御手段Cには、製氷運転および除氷運転の切替えに必要とされる値、すなわち目標回転数Rを記憶し、また、製氷水ポンプPMや回転数測定手段42から逐次入力される電圧値Vや回転数Rが一時的に記憶されるメモリーMが組み込まれている。 The ice making machine is provided with operation switching means for completing the ice making operation by determining completion timing of the ice lump I, that is, completion timing of the ice making operation and stopping the ice making water pump PM. The operation switching means basically includes an ice making water pump PM, a rotation speed measuring means 42 for measuring the rotation speed R of the ice making water pump PM, and the control means C for controlling each device. (See FIG. 4). Then, in the control unit C is example, the values required for the switching of the ice-making operation and the deicing operation, i.e. stores target speed R O, also, successively from the ice-making water pump PM and the rotation number measuring means 42 A memory M in which the input voltage value V and the rotational speed R are temporarily stored is incorporated.

前記運転切替え手段としての制御手段Cは、回転数測定手段42から入力された回転数Rが、メモリーMに記憶されている目標回転数R以上であるか否かを判断するようになっている。制御手段Cは、製氷運転において、回転数測定手段42から入力される回転数Rが、目標回転数Rより小さい場合に製氷運転を継続するように各機器を制御し、回転数Rが目標回転数R以上となったときに(R≧R)、製氷運転を完了して除氷運転を開始するように各機器を制御するようになっている。 Control means C as the operation switching unit, the rotational speed R that is input from the rotation number measuring means 42, adapted to determine whether a target rotational speed R O or stored in the memory M Yes. Control means C, in the ice making operation, the rotational speed R that is input from the rotation number measuring means 42, and controls each device so as to continue the ice making operation when the target rotational speed R O is less than the rotation speed R is the target When the number of revolutions R O becomes equal to or higher than R O (R ≧ R O ), each device is controlled so that the ice making operation is completed and the deicing operation is started.

(第1実施例の作用)
次に、第1実施例に係る製氷機の作用について、図5に示すフローチャートに基づいて説明する。なお、製氷水タンク18内には、製氷開始時に必要とされる初期水量Wの製氷水が貯留されて製氷運転が開始された直後であるとする。また、制御手段Cに備えられるメモリーMには、製氷完了時の目標水量Wに対応する目標回転数Rが予め記憶され、前記タイマは、製氷を開始して、製氷室12に噴射供給される製氷水が氷結を開始して、製氷水タンク18内の製氷水が減少し始めるまでの時間をカウントするように設定されているものとする。
(Operation of the first embodiment)
Next, the operation of the ice making machine according to the first embodiment will be described based on the flowchart shown in FIG. Incidentally, in the ice-making water tank 18, the ice making water in the initial water W S which is required at the start of the ice has just ice-making operation is stored is started. The memory M provided in the control means C stores in advance a target rotational speed R O corresponding to the target water amount W O at the time of completion of ice making, and the timer starts ice making and supplies the ice making chamber 12 with an injection. It is assumed that the time until the ice making water started to freeze and the ice making water in the ice making water tank 18 starts to decrease is counted.

前記製氷機は、製氷運転を開始すると、水皿16で製氷室12を閉成すると共にホットガス弁HVが閉鎖された状態のもとで、圧縮機CMおよび冷却ファンFMを駆動して、冷凍回路36に冷媒が循環され、蒸発管32に供給される冷媒との熱交換により製氷室12が冷却されると共に、前記タイマのカウントが開始される。また製氷機構10では、製氷水ポンプPMが駆動されることで、製氷水タンク18に貯留されている製氷水が水皿16から各製氷小室14へ噴射供給される。そして、噴射供給された製氷水は冷却された製氷室12で氷結して徐々に氷塊Iを生成し、氷結しなかった未氷結水は製氷水タンク18に戻る。すなわち、氷塊Iを生成が開始されると、製氷水タンク18に貯留される製氷水は減少を始める。また、同時に前記タイマのカウントが終了(ステップSr1)すると、製氷水ポンプPMの回転数が回転数測定手段42で測定され、前記制御手段Cに入力されるステップSr2に進む。   When the ice making operation is started, the ice making chamber 12 is closed by the water tray 16 and the hot gas valve HV is closed, and the compressor CM and the cooling fan FM are driven to freeze the ice making machine. The refrigerant is circulated in the circuit 36, and the ice making chamber 12 is cooled by heat exchange with the refrigerant supplied to the evaporation pipe 32, and the timer starts counting. In the ice making mechanism 10, the ice making water pump PM is driven, so that the ice making water stored in the ice making water tank 18 is jetted and supplied from the water tray 16 to each ice making chamber 14. Then, the ice-making water supplied and sprayed is frozen in the cooled ice-making chamber 12 to gradually generate ice blocks I, and the non-freezing water that has not been frozen returns to the ice-making water tank 18. That is, when the generation of the ice lump I is started, the ice making water stored in the ice making water tank 18 starts to decrease. At the same time, when the counting of the timer is completed (step Sr1), the rotation speed of the ice making water pump PM is measured by the rotation speed measuring means 42, and the process proceeds to step Sr2 input to the control means C.

前記制御手段Cでは、前記タイマのカウント終了後、回転数測定手段42で測定される製氷水ポンプPMの回転数Rが入力され(ステップSr2)、続いてステップSr3に進む。ステップSr3では、当該測定で得られた回転数RとメモリーM内に予め記憶されている目標回転数Rとが比較され、当該測定で得られた回転数Rが目標回転数Rよりも小さければ(ステップSr3:No)、ステップSr2に戻る。そして、当該測定で得られた回転数Rが目標回転数R以上であれば(ステップSr3:Yes)、製氷水ポンプPMの駆動に必要される回転トルクが低下、すなわち製氷水タンク18内に貯留される製氷水量が目標水量Wに到ったと判断して、該製氷水ポンプPMを停止し(ステップSr4)、製氷運転を完了する。具体的に製氷機では、製氷水ポンプPMが停止されると共に、冷却ファンFMが停止される。そして製氷機では、除氷運転が開始され、ホットガス弁HVが開放されて製氷室12が加温されると共に、アクチュエータモータ26が開放方向へ駆動されて、水皿16が下方へ傾動する。 In the control means C, the rotation speed R of the ice making water pump PM measured by the rotation speed measurement means 42 is input after the timer count is completed (step Sr2), and then the process proceeds to step Sr3. In step Sr3, the target rotation speed R O stored in advance in the rotational speed R and memory M obtained in the measurements are compared, than the rotation speed R is the target rotational speed R O obtained in the measurement If it is smaller (step Sr3: No), the process returns to step Sr2. Then, if the rotational speed R obtained in the measurement target rotational speed R O or (Step Sr3: Yes), lowering the rotation torque necessary for driving the ice-making water pump PM, i.e. in the ice-making water tank 18 it is determined that the ice making water to be stored has reached the target amount of water W O, stop the ice making water pump PM (step Sr4), completing the ice-making operation. Specifically, in the ice making machine, the ice making water pump PM is stopped and the cooling fan FM is stopped. In the ice making machine, the deicing operation is started, the hot gas valve HV is opened, the ice making chamber 12 is heated, the actuator motor 26 is driven in the opening direction, and the water dish 16 tilts downward.

ここで、回転数測定手段42は一定時間内に製氷水ポンプPMのモータ回転パルスを検出するものであるため、該回転数測定手段42によって測定される回転数Rは、単位時間当りの平均回転数となっている。このように、回転数Rが単位時間当りの平均回転数となっていることで、微小時間における回転数Rの変動に影響を受けず、安定度の高い測定が可能となっている。また、制御手段Cに対する負荷も低減し得る。なお、本第1実施例で単位時間は1秒と設定されている。なお、製氷水ポンプPMの瞬間的な回転数を測定する回転数測定手段42を用いてもよい。   Here, since the rotation speed measuring means 42 detects the motor rotation pulse of the ice making water pump PM within a predetermined time, the rotation speed R measured by the rotation speed measuring means 42 is an average rotation per unit time. It has become a number. As described above, since the rotation speed R is the average rotation speed per unit time, measurement with high stability is possible without being affected by the fluctuation of the rotation speed R in a minute time. Also, the load on the control means C can be reduced. In the first embodiment, the unit time is set to 1 second. In addition, you may use the rotation speed measurement means 42 which measures the instantaneous rotation speed of the ice making water pump PM.

このように本第1実施例に係る製氷機では、氷塊Iの生成完了、すなわち製氷運転の完了タイミングを製氷水ポンプPMの回転数Rから判断するので、外気温等の影響を受けることがなく、安定的に一定の大きさの氷塊Iを生成し得る。 また、前記製氷機は、初期水量Wおよび使用水量Wから計算される目標水量Wから容易に算出される目標回転数Rによって製氷運転の完了を把握可能であるため、その設定管理は極めて容易となり、製氷機の設置時の設定や、メンテナンス性といった実用性を向上し得る。 As described above, in the ice making machine according to the first embodiment, the generation completion of the ice lump I, that is, the completion timing of the ice making operation is determined from the rotation speed R of the ice making water pump PM, so that it is not affected by the outside temperature or the like. The ice lump I having a constant size can be generated stably. Further, since the ice making machine can grasp the completion of the ice making operation based on the target rotational speed R O easily calculated from the target water quantity W O calculated from the initial water quantity W S and the used water quantity W I , its setting management Is extremely easy and can improve practicality such as setting at the time of installing the ice making machine and maintenance.

(第2実施例)
前述の第1実施例では、回転抵抗の低下によって製氷水ポンプPMの回転数Rが、予め算出した目標回転数R以上となった際に氷塊Iの生成完了を検出するようにしている。ところで、前記製氷水タンク18内に貯留される製氷水は、水温が0℃になるまでは各製氷小室14へ噴射供給されることで徐々に水温を低下させられて製氷水タンク18に戻るため、その量を殆ど変化させない。すなわち、前記製氷水は、製氷運転の開始によって先ず液体のまま0℃程度まで冷却され、その後に製氷室12内部での氷結に供されている。そして、各製氷小室14へ噴射供給された製氷水が氷結を開始すると、前述の第1実施例同様に未氷結水だけが製氷水タンク18に戻るようになり、該氷結の進行と共に該製氷水タンク18に貯留される製氷水が減少するするようになる。
(Second embodiment)
In the first embodiment described above, the rotational speed R of the ice-making water pump PM by decreased rotation resistance, and to detect the completion of generation of the ice blocks I upon a target rotational speed R O or a previously calculated. By the way, since the ice making water stored in the ice making water tank 18 is sprayed and supplied to each ice making chamber 14 until the water temperature reaches 0 ° C., the water temperature is gradually lowered and returned to the ice making water tank 18. , Hardly change the amount. That is, the ice making water is first cooled to about 0 ° C. while being in a liquid state at the start of the ice making operation, and is then subjected to freezing in the ice making chamber 12. Then, when the ice making water sprayed and supplied to each ice making chamber 14 starts freezing, only the unfreezing water returns to the ice making water tank 18 as in the first embodiment, and the ice making water progresses as the freezing progresses. The ice making water stored in the tank 18 decreases.

このように冷却されると、水温低下に伴って水の粘度が上昇することが知られている。すなわち、製氷水の水温低下に伴って製氷水ポンプPMには負荷が掛かることになる。従って、製氷運転中において、その進行に伴う製氷水の水温および量と、製氷水ポンプPMの回転数Rとの関係は、図6に示されるグラフで表されるようなものになる(上段実線は時間と回転数Rとの関係を、下段実線は時間と温度との関係を、下段二点鎖線は時間と製氷水量との関係を夫々表している)。なお、水の粘度は、0℃、5℃、10℃、15℃、20℃または25℃において夫々1792×10、1520×10、1307×10、1138×10、1002×10または890×10(単位:Pa・sec)であり、0℃時の粘度は、20℃時の約1.8倍、25℃時の2倍以上になる。また、目標回転数R、初期水量W、目標水量Wおよび使用水量Wの定義や、回転数Rとして単位時間当りの平均回転数が採用されている点については、第1実施例と同様である。 It is known that when cooled in this way, the viscosity of water increases as the water temperature decreases. That is, a load is applied to the ice making water pump PM as the temperature of the ice making water decreases. Therefore, during the ice making operation, the relationship between the water temperature and amount of ice making water accompanying the progress and the rotation speed R of the ice making water pump PM is as shown in the graph shown in FIG. 6 (upper solid line). Represents the relationship between time and rotational speed R, the lower solid line represents the relationship between time and temperature, and the lower two-dot chain line represents the relationship between time and the amount of ice making water). The water viscosity is 1792 × 10 6 , 1520 × 10 6 , 1307 × 10 6 , 1138 × 10 6 , 1002 × 10 6 at 0 ° C., 5 ° C., 10 ° C., 15 ° C., 20 ° C. or 25 ° C., respectively. Or, it is 890 × 10 6 (unit: Pa · sec), and the viscosity at 0 ° C. is about 1.8 times at 20 ° C. and twice or more at 25 ° C. Further, the definition of the target rotational speed R O , the initial water quantity W S , the target water quantity W O and the used water quantity W I and the point that the average rotational speed per unit time is adopted as the rotational speed R are described in the first embodiment. It is the same.

そこでこのような製氷水の水温と、製氷水ポンプPMの回転数Rとの関係を活かして、製氷水ポンプPMの回転数低下が上昇に転じる転換点から、製氷室12で製氷水の氷結が実質的に開始される氷結開始点を特定すると共に、該氷結開始点を基準として該氷塊Iの生成完了を検出し、製氷運転を完了するようにしてもよい。具体的には、(A)前記回転数測定手段42で測定される回転数Rを記憶することで、製氷運転の進行に伴う回転数Rの変化の低下上昇を認識可能として、製氷水の水温低下に伴う粘度上昇に起因する製氷水ポンプPMの負荷増大に伴って低下する回転数Rが、その後の氷塊Iの生成進行による製氷水の減少に起因する該製氷水ポンプPMの負荷低減に伴って上昇に転じる転換点を氷結開始点として特定し、該氷結開始点における回転数Rを製氷水ポンプPMの最低回転数Rとして決定する、(B)そして最低回転数Rと、目標回転数Rとの関係を目標回転数係数Kとして定義し、該最低回転数Rと、回転数測定手段42で測定される回転数Rとの関係が該目標回転数係数Kとなったときに、氷塊Iの生成完了と判断して製氷水ポンプPMを停止するよう構成される。ここで目標回転数Rは、第1実施例と同様に、製氷完了時に製氷水タンク18内に残留する製氷水の目標水量Wに対応するものであり、また最低回転数Rは氷塊Iの生成が実質的に開始される氷結開始点に対応するものとなっている。すなわち、最低回転数Rと製氷水ポンプPMの回転数Rとの関係が、最低回転数Rと該目標回転数Rとの関係を特定する目標回転数係数K以上となった際に、氷塊Iの生成完了を検出するようになっている。 Therefore, taking advantage of the relationship between the temperature of the ice making water and the rotation speed R of the ice making water pump PM, the ice making water freezes in the ice making chamber 12 from the turning point where the decrease in the rotation speed of the ice making water pump PM starts to rise. The ice starting operation may be completed by specifying the ice starting point that is substantially started and detecting the completion of the formation of the ice block I with reference to the ice starting point. Specifically, (A) by storing the rotational speed R measured by the rotational speed measuring means 42, it is possible to recognize a decrease and increase in the change in the rotational speed R with the progress of the ice making operation. The rotational speed R, which decreases with an increase in the load of the ice making water pump PM due to the increase in viscosity due to the decrease, is accompanied by a decrease in the load of the ice making water pump PM due to the decrease in ice making water due to the subsequent generation of ice blocks I. The turning point that starts to rise is identified as the freezing start point, and the rotation speed R at the freezing start point is determined as the minimum rotation speed RL of the ice making water pump PM. (B) And the minimum rotation speed RL and the target rotation the relationship between the number R O is defined as a target rotation speed coefficient K R, is a outermost low rotation speed R L, the relationship between the rotation speed R which is determined by the rotational speed measuring means 42 and the target rotational speed coefficient K R When it is determined that the formation of ice block I has been completed, Is configured to stop the pump PM. Here, the target rotational speed R O corresponds to the target water volume W O of the ice making water remaining in the ice making water tank 18 when the ice making is completed, as in the first embodiment, and the minimum rotational speed RL is the ice block. This corresponds to the freezing start point at which the production of I starts substantially. That is, when the relationship between the minimum rotational speed R L and the rotation speed R of the ice-making water pump PM is, it becomes the target rotation speed coefficient K R or to identify the relationship between the minimum rotation speed R L and the target rotation speed R O In addition, the completion of generation of the ice block I is detected.

第2実施例に係る製氷機自体の構成は、前述の第1実施例のものと同じであるので説明を省略し、以下に第2実施例に係る製氷機の作用について、図7に示すフローチャートに基づいて説明する。なお、製氷水タンク18内には、製氷開始時に必要とされる初期水量Wの製氷水が貯留されて製氷運転が開始された直後であるとする。また、制御手段Cに備えられるメモリーMには、前記最低回転数Rと目標回転数Rとの関係を特定する目標回転数係数Kが予め記憶されているものとする。ここで目標回転数係数Kとは、最低回転数Rと目標回転数Rとの関係を表す定数であり、製氷水の水温低下による粘度の変化と、目標水量Wとから算出される。 Since the configuration of the ice making machine itself according to the second embodiment is the same as that of the first embodiment described above, description thereof will be omitted, and the operation of the ice making machine according to the second embodiment will be described below with reference to the flowchart shown in FIG. Based on Incidentally, in the ice-making water tank 18, the ice making water in the initial water W S which is required at the start of the ice has just ice-making operation is stored is started. Further, in the memory M provided in the control unit C, and those in which the minimum frequency R L and the target rotation speed R O the target rotation speed coefficient K R to identify the relationship is stored in advance. Here, the target rotation speed coefficient K R, a constant representing the relationship between the minimum rotation speed R L and the target rotation speed R O, and the change in viscosity with temperature decrease of ice making water, is calculated from the target water amount W O The

前記製氷機のステップSr2およびステップSr4については、前述の第1実施例であるので説明を割愛する。また、製氷開始から製氷水タンク18に貯留された製氷水が減少を始めるまでの時間は、前述の氷結開始点によって特定されるので、ステップSr1は省略されている。すなわち、製氷開始後に直ぐに回転数測定手段42によって製氷水ポンプPMの回転数Rを測定するステップSr2が実行されて、前記制御手段Cに入力される。このとき、回転数測定手段42による製氷水ポンプPMの回転数測定が初回であると(ステップSr5:Yes)、入力された回転数RをメモリーMに記憶する(ステップSr7)と共に、ステップSr2に戻る。そして、回転数測定が2回目以降であると(ステップSr5:No)、メモリーM内に記憶されている直前の回転数Rに対する該測定で得られた回転数Rの大小を判断するステップSr6に進む。   Steps Sr2 and Sr4 of the ice making machine are the same as those in the first embodiment described above, and will not be described. Further, since the time from the start of ice making until the ice making water stored in the ice making water tank 18 starts to decrease is specified by the above-mentioned freezing start point, step Sr1 is omitted. That is, immediately after the start of ice making, step Sr2 of measuring the rotational speed R of the ice making water pump PM is executed by the rotational speed measuring means 42 and input to the control means C. At this time, if the rotational speed measurement of the ice-making water pump PM by the rotational speed measuring means 42 is the first time (step Sr5: Yes), the input rotational speed R is stored in the memory M (step Sr7) and at step Sr2. Return. If the rotation speed measurement is the second time or later (step Sr5: No), the process proceeds to step Sr6 for determining the magnitude of the rotation speed R obtained by the measurement with respect to the rotation speed R immediately before being stored in the memory M. move on.

ステップSr6では、当該測定で得られた回転数RとメモリーM内に記憶されている直前の回転数Rとが比較され、当該測定で得られた回転数Rが直前の回転数Rよりも小さければ(ステップSr6:No)、当該測定で得られた回転数RをメモリーMに(上書き)記憶する(ステップSr7)と共に、ステップSr2に戻る。そして、当該測定で得られた回転数Rが直前の回転数R以上であれば(ステップSr6:Yes)、当該測定で得られた回転数RをメモリーM内に記憶されている最低回転数Rで除算するステップSr8に進むことになる。すなわち、当該測定で得られた回転数Rが直前の回転数R以上であれば、氷結開始点(転換点)を通過したと判断され、ステップSr6をYesの方向に進み、以後メモリーM内に記憶された数値が上書きされることはなくなって、該メモリーMには最低の回転数Rである最低回転数Rが保持され続ける。 In step Sr6, the rotational speed R obtained by the measurement is compared with the immediately preceding rotational speed R stored in the memory M, and the rotational speed R obtained by the measurement is smaller than the immediately preceding rotational speed R. If (step Sr6: No), the rotational speed R obtained by the measurement is stored (overwritten) in the memory M (step Sr7) and the process returns to step Sr2. If the rotation speed R obtained by the measurement is equal to or higher than the previous rotation speed R (step Sr6: Yes), the rotation speed R obtained by the measurement is stored in the memory M as the minimum rotation speed R. The process proceeds to step Sr8 for dividing by L. That is, if the rotation speed R obtained by the measurement is equal to or greater than the previous rotation speed R, it is determined that the freezing start point (turning point) has been passed, and the process proceeds to Yes in step Sr6. The stored numerical value is not overwritten, and the memory M keeps the minimum rotational speed RL which is the minimum rotational speed R.

ステップSr8では当該測定で得られた回転数RをメモリーM内に記憶されている最低回転数Rで除算した値(以下、除算値と云う)が算出され、次のステップSr9では、該除算値と予めメモリーM内に記憶される目標回転数係数Kとが比較され、当該除算値が目標回転数係数Kよりも小さければ(ステップSr9:No)、ステップSr2に戻る。そして、当該除算値が目標回転数係数K以上であれば(ステップSr9:Yes)、回転数Rが目標回転数Rに到ったと判断、すなわち製氷水タンク18内に貯留される製氷水量が目標水量Wに到ったと判断して、該製氷水ポンプPMを停止し(ステップSr4)、製氷運転を完了する。 In step Sr8, a value obtained by dividing the rotational speed R obtained by the measurement by the minimum rotational speed RL stored in the memory M (hereinafter referred to as a divided value) is calculated, and in the next step Sr9, the division is performed. They are compared with the target rotational speed coefficient K R to be stored in advance in the memory M and the value, if the quotient is smaller than the target rotational speed coefficient K R (step SR9: No), the flow returns to step Sr2. Then, if the relevant division value is the target rotational speed coefficient K R above (step SR9: Yes), the ice making water rotational speed R is determined that reached the target rotational speed R O, i.e., which is stored in the ice-making water tank 18 There it is determined that reached the target amount of water W O, stop the ice making water pump PM (step Sr4), completing the ice-making operation.

本第2実施例の場合、目標回転数Rを測定することで直接的に氷塊Iの生成完了を検出するのではなく、時間的に生成完了が近い最低回転数Rを特定して基準とすると共に、該目標回転数Rおよび最低回転数Rの関係を表す目標回転数係数Kによって氷塊Iの生成完了を検出するようにしたので、氷塊Iの生成完了の検出の精度が向上する。また、氷塊Iの氷結開始の時点を特定し得るため、製氷開始から氷結開始までの時間や、氷結開始から製氷完了までの時間を別途記憶させることで、製氷時に発生する異常をきめ細かく監視し得る。 In the case of the second embodiment, the completion of generation of the ice block I is not directly detected by measuring the target rotation speed R O , but the minimum rotation speed RL that is close in time to generation is specified and used as a reference. with a, since to detect the completion of generation of the target speed coefficient K R by ice blocks I representing the relationship between the target rotational speed R O and minimum rotation speed R L, the detection accuracy of the completion of generation of the ice block I improves. In addition, since it is possible to specify the time point when the ice block I begins to freeze, by separately storing the time from the start of ice making to the start of freezing, and the time from the start of freezing to the completion of ice making, it is possible to closely monitor abnormalities occurring during ice making. .

(第3実施例)
前述の各実施例では、電圧値Vを一定として製氷水ポンプPMを駆動した際に変化する回転数Rによって氷塊Iの生成完了を検出するようにしているが、本第3実施例では、回転数R以外の指標を使用して氷塊Iの生成完了を検出する方法を説明する。第3実施例に係る製氷機自体の構成は、前述の第1実施例のものと同じであるので説明を省略する。また、初期水量W、目標水量Wおよび使用水量Wの定義については、第1実施例と同様である。
(Third embodiment)
In each of the above-described embodiments, the completion of the generation of the ice block I is detected based on the rotation speed R that changes when the ice-making water pump PM is driven with the voltage value V kept constant. A method for detecting the completion of generation of the ice block I using an index other than the number R will be described. Since the configuration of the ice making machine itself according to the third embodiment is the same as that of the first embodiment described above, description thereof is omitted. The definitions of the initial water amount W S , the target water amount W O and the used water amount W I are the same as in the first embodiment.

本第3実施例は、回転数Rの代わりに前記製氷水ポンプPMの回転数Rを一定とするように電圧値Vをフィードバック制御した場合において、製氷水ポンプPMに掛かる負荷の変動に伴って必要とされる電圧値V(以下、単に電圧値Vと云う)の変化を利用して氷塊Iの生成完了を検出する方法である。これは、直流電流によって駆動される製氷水ポンプPMでは、製氷水の製氷室12への噴射供給に係る負荷が増大すると電圧値Vが比例的に増大し、該負荷が減少すると電圧値Vが比例的に減少すると共に、該負荷の程度によって電圧値Vが一意的に決定される点を利用したものである。なお、電圧値Vは、制御手段Cに組み込まれている電圧値算出手段44によって、一定とすべき回転数Rから算出されると共に、該制御手段Cに入力されている。また第1実施例と同様の理由によって、電圧値Vとして単位時間当りの平均電圧値が採用されている。   In the third embodiment, when the voltage value V is feedback-controlled so that the rotation speed R of the ice-making water pump PM is constant instead of the rotation speed R, the variation in the load applied to the ice-making water pump PM is accompanied. This is a method for detecting the completion of the formation of the ice lump I using the change in the required voltage value V (hereinafter simply referred to as the voltage value V). This is because, in the ice making water pump PM driven by a direct current, the voltage value V increases proportionally when the load related to the supply of ice making water to the ice making chamber 12 increases, and the voltage value V decreases when the load decreases. It uses the point that the voltage value V is uniquely determined according to the degree of the load while decreasing proportionally. The voltage value V is calculated from the rotation speed R to be made constant by the voltage value calculation means 44 incorporated in the control means C, and is input to the control means C. For the same reason as in the first embodiment, an average voltage value per unit time is adopted as the voltage value V.

回転数Rを一定に保持した場合の製氷水量と製氷水ポンプPMの電圧値Vとの関係を図8に示す。すなわち、製氷水タンク18に初期水量Wの製氷水が貯留された製氷開始時では、製氷水ポンプPMの負荷が最も大きくなるため、該製氷水ポンプPMの電圧値Vは最も高い値となる。そして、製氷進行による製氷水量の減少に伴って製氷水ポンプPMの負荷は減少し、最終的に製氷が完了すると製氷水タンク18に貯留される製氷水が最も減少して、該製氷水ポンプPMの負荷が最も小さくなるため電圧値Vは最も低いものになる。すなわち、電圧値Vの変化から氷塊Iの生成完了を検出するものである。具体的には、氷塊Iの生成が完了した際の製氷水の量である目標水量Wに対応する目標電圧値Vを予め算出しておき、製氷運転開始後に電圧値Vが目標電圧値Vとなったか否かで、該氷塊Iの生成完了を判断する。 FIG. 8 shows the relationship between the amount of ice making water and the voltage value V of the ice making water pump PM when the rotation speed R is kept constant. That is, in the ice making start the ice making water is stored in the initial water W S in the ice making water tank 18, the load of the ice making water pump PM is maximized, the voltage value V of ice making water pump PM is the highest value . Then, the load of the ice making water pump PM decreases as the amount of ice making water decreases due to the progress of ice making, and when ice making is finally completed, the ice making water stored in the ice making water tank 18 is the smallest, and the ice making water pump PM The voltage value V is the lowest because the load of the current is the smallest. That is, the generation completion of the ice block I is detected from the change in the voltage value V. Specifically, a target voltage value V O corresponding to the target water amount W O that is the amount of ice-making water when the generation of the ice block I is completed is calculated in advance, and the voltage value V becomes the target voltage value after the ice-making operation is started. Whether or not the ice block I has been generated is determined based on whether or not V O has been reached.

以下に第3実施例に係る製氷機の作用について、図9に示すフローチャートに基づいて説明する。なお、製氷水タンク18内には、製氷開始時に必要とされる初期水量Wの製氷水が貯留されて製氷運転が開始された直後であるとする。また、制御手段Cに備えられるメモリーMには、製氷完了時の目標水量Wに対応する目標電圧値Vが予め記憶され、前記タイマは、製氷を開始して、製氷室12に噴射供給される製氷水が氷結を開始して、製氷水タンク18内の製氷水が減少し始めるまでの時間をカウントするように設定されているものとする。 The operation of the ice making machine according to the third embodiment will be described based on the flowchart shown in FIG. Incidentally, in the ice-making water tank 18, the ice making water in the initial water W S which is required at the start of the ice has just ice-making operation is stored is started. Further, the memory M provided in the control means C stores a target voltage value V O corresponding to the target water amount W O at the completion of ice making in advance, and the timer starts ice making and supplies the ice making chamber 12 with injection. It is assumed that the time until the ice making water started to freeze and the ice making water in the ice making water tank 18 starts to decrease is counted.

前記製氷機は、製氷運転を開始すると、前述の第1実施例と同様に水皿16で製氷室12が閉成され、ホットガス弁HVが閉鎖され、冷凍回路36に冷媒が循環されて製氷室12が冷却されると共に、前記タイマのカウントが開始され、製氷水タンク18に貯留されている製氷水が製氷水ポンプPMの駆動により各製氷小室14へ噴射供給される。そして、噴射供給された製氷水は冷却された製氷室12で氷結して徐々に氷塊Iを生成し、氷結しなかった未氷結水は製氷水タンク18に戻るため、製氷水タンク18に貯留される製氷水は減少を始め、これと同時に前記タイマのカウントが終了(ステップSv1)してステップSv2に進む。   When the ice making operation is started, the ice making chamber 12 is closed by the water pan 16, the hot gas valve HV is closed, and the refrigerant is circulated in the refrigeration circuit 36, as in the first embodiment. As the chamber 12 is cooled, the timer starts counting, and the ice making water stored in the ice making water tank 18 is jetted and supplied to each ice making chamber 14 by driving the ice making water pump PM. Then, the ice-making water supplied and sprayed is frozen in the cooled ice-making chamber 12 to gradually generate ice blocks I, and the non-freezing water that has not been frozen returns to the ice-making water tank 18 and is stored in the ice-making water tank 18. The ice making water begins to decrease, and at the same time, the timer count ends (step Sv1) and the process proceeds to step Sv2.

前記タイマのカウント終了後、前記制御手段Cに、電圧値算出手段44から製氷水ポンプPMを駆動している現時点の電流の電圧値Vが入力され(ステップSv2)、続いてステップSv3に進む。ステップSv3では、現時点で入力される電圧値VとメモリーM内に記憶されている目標電圧値Vとが比較され、当該電圧値Vが目標電圧値Vよりも大きければ(ステップSv3:No)、ステップSv1に戻る。そして、当該電圧値Vが目標電圧値V以下であれば(ステップSv3:Yes)、製氷水ポンプPMの駆動に必要される回転トルクが低下、すなわち製氷水タンク18内に貯留される製氷水量が目標水量Wに到ったと判断して、該製氷水ポンプPMを停止し(ステップSv4)、製氷運転を完了する。 After the timer count ends, the voltage value V of the current current that drives the ice making water pump PM is input from the voltage value calculation means 44 to the control means C (step Sv2), and then the process proceeds to step Sv3. In step Sv3, the voltage value V inputted at the present time is compared with the target voltage value V O stored in the memory M, and if the voltage value V is larger than the target voltage value V O (step Sv3: No ), The process returns to step Sv1. If the voltage value V is less than or equal to the target voltage value V O (step Sv3: Yes), the rotational torque required for driving the ice making water pump PM is reduced, that is, the amount of ice making water stored in the ice making water tank 18. There it is determined that reached the target amount of water W O, stop the ice making water pump PM (step Sv4), completing the ice-making operation.

このように、製氷水ポンプPMを回転駆動する電流の電圧値Vから製氷の完了タイミングを判断する場合、該製氷水ポンプPMを回転駆動する電流を適宜変動させることになるため、前述した第1実施例および第2実施例に比較して、エネルギー消費を抑制し得る。   As described above, when determining the completion timing of ice making from the voltage value V of the current for rotating the ice making water pump PM, the current for rotating the ice making water pump PM is appropriately changed. Compared with the embodiment and the second embodiment, energy consumption can be suppressed.

(第4実施例)
前述の第3実施例では、回転抵抗の低下によって製氷水ポンプPMを一定回転で駆動するのに必要な電圧値V(以下、単に電圧値Vと云う)が、予め算出した目標電圧値V以下となった際に氷塊Iの生成が完了と判断しているが、本第4実施例では、第3実施例に対して、前述の第2実施例に記載した水温低下に伴って上昇する水の粘度を考慮した方法を説明する。また、製氷運転の進行に伴う製氷水の水温および量と、電圧値Vとの関係を図10に示す(図10において、上段実線は時間と電圧値Vとの関係を、下段実線は時間と温度との関係を、下段二点鎖線は時間と製氷水量との関係を夫々表している)。図10は、製氷水の水温と、電圧値Vとの関係を活かして、製氷水ポンプPMを一定回転させる電圧値Vの上昇が低下に転じる転換点から、製氷室12で製氷水の氷結が実質的に開始される氷結開始点を特定すると共に、該氷結開始点を基準として該氷塊Iの生成完了を検出し、製氷運転を完了させる制御が可能なことを表している。
(Fourth embodiment)
In the third embodiment described above, a voltage value V (hereinafter simply referred to as voltage value V) required to drive the ice making water pump PM at a constant rotation due to a decrease in rotational resistance is a target voltage value V O calculated in advance. Although it is determined that the generation of the ice lump I is completed when the following conditions are reached, the fourth embodiment increases with the decrease in the water temperature described in the second embodiment as compared with the third embodiment. A method considering the viscosity of water will be described. FIG. 10 shows the relationship between the temperature and amount of ice-making water accompanying the progress of the ice making operation and the voltage value V (in FIG. 10, the upper solid line shows the relationship between time and voltage value V, and the lower solid line shows the time and time). The relationship between the temperature and the lower two-dot chain line represents the relationship between time and the amount of ice-making water). FIG. 10 shows the ice temperature of the ice making water in the ice making room 12 from the turning point where the rise of the voltage value V that rotates the ice making water pump PM at a constant speed is reduced by utilizing the relationship between the water temperature of the ice making water and the voltage value V. It indicates that it is possible to control the completion of the ice making operation by specifying the ice starting point that is substantially started and detecting the completion of the formation of the ice block I with reference to the ice starting point.

具体的には、(a)前記電圧値算出手段44から入力される電圧値Vを記憶することで、製氷運転の進行に伴う電圧値Vの変化の上昇低下を認識可能として、製氷水の水温低下に伴う粘度上昇に起因する製氷水ポンプPMの負荷増大に伴って上昇する電圧値Vが、その後の氷塊Iの生成進行による製氷水の減少に起因する該製氷水ポンプPMの負荷低減に伴って低下に転じる転換点を氷結開始点として特定し、該氷結開始点における電圧値Vを製氷水ポンプPMの最大電圧値Vとして決定する、(b)そして最大電圧値Vと、目標電圧値Vをとの関係を目標電圧値係数Kとして定義し、該最大電圧値Vと、電圧値算出手段44から入力される電圧値Vとの関係が該目標電圧値係数Kとなったときに、氷塊Iの生成完了と判断して製氷水ポンプPMを停止するよう構成される。ここで目標電圧値Vは、第3実施例と同様に、製氷完了時に製氷水タンク18内に残留する製氷水の目標水量Wに対応するものであり、また最大電圧値Vは、氷塊Iの生成が実質的に開始される氷結開始点に対応するものとなっている。すなわち、最大電圧値Vと電圧値Vとの関係が、最大電圧値Vと目標電圧値Vとの関係を特定する目標電圧値係数K以下となった際に、氷塊Iの生成完了を検出するようになっている。なお、目標電圧値V、初期水量W、目標水量Wおよび使用水量Wの定義や、電圧値Vとして単位時間当りの平均電圧値が採用されている点については、第3実施例と同様である。 Specifically, (a) by storing the voltage value V input from the voltage value calculating means 44, it is possible to recognize an increase and decrease in the change in the voltage value V as the ice making operation proceeds, and the water temperature of the ice making water The voltage value V that rises with an increase in the load of the ice making water pump PM due to the increase in viscosity due to the decrease is accompanied by a decrease in the load of the ice making water pump PM due to the decrease in ice making water due to the subsequent generation of ice blocks I. identify the turning point starts to decrease Te as freezing start point, determines the voltage value V in the ice formation start point as the maximum voltage value V H of the ice-making water pump PM, (b) and the maximum voltage value V H, the target voltage The relationship between the value V O and the target voltage value coefficient K V is defined, and the relationship between the maximum voltage value V H and the voltage value V input from the voltage value calculation means 44 is the target voltage value coefficient K V. It is determined that the formation of ice block I has been completed. It is configured to stop the ice water pump PM. Here, the target voltage value V O corresponds to the target water amount W O of the ice making water remaining in the ice making water tank 18 when the ice making is completed, as in the third embodiment, and the maximum voltage value V H is This corresponds to the freezing start point at which the generation of the ice lump I is substantially started. That is, when the relationship between the maximum voltage value V H and the voltage value V is equal to or less than the target voltage value coefficient K V for specifying the relationship between the maximum voltage value V H and the target voltage value V O, generation of ice cubes I Completion is detected. Note that the definition of the target voltage value V O , the initial water amount W S , the target water amount W O and the used water amount W I and the point that the average voltage value per unit time is adopted as the voltage value V are the third embodiment. It is the same.

第4実施例に係る製氷機自体の構成は、前述の第1実施例のものと同じであるので説明を省略し、以下に第4実施例に係る製氷機の作用について、図11に示すフローチャートに基づいて説明する。なお、製氷水タンク18内には、製氷開始時に必要とされる初期水量Wの製氷水が貯留されて製氷運転が開始された直後であるとする。また、制御手段Cに備えられるメモリーMには、前記最大電圧値Vと電圧値Vとの関係を特定する目標電圧値係数Kが予め記憶されているものとする。ここで目標電圧値係数Kとは、最大電圧値Vと目標電圧値Vとの関係を表す定数であり、製氷水の水温低下による粘度の変化と、目標水量Wとから算出される。 Since the configuration of the ice making machine itself according to the fourth embodiment is the same as that of the first embodiment described above, description thereof will be omitted, and the operation of the ice making machine according to the fourth embodiment will be described below with reference to the flowchart shown in FIG. Based on Incidentally, in the ice-making water tank 18, the ice making water in the initial water W S which is required at the start of the ice has just ice-making operation is stored is started. In addition, it is assumed that the memory M provided in the control means C stores in advance a target voltage value coefficient K V that specifies the relationship between the maximum voltage value V H and the voltage value V. Here, the target voltage value coefficient K V is a constant representing the relationship between the maximum voltage value V H and the target voltage value V O, and is calculated from the change in viscosity due to a decrease in the water temperature of the ice making water and the target water amount W O. The

前記製氷機の製氷運転開始後のステップSv2およびステップSv4については、前述の第3実施例であるので説明を割愛する。また、製氷開始から製氷水タンク18に貯留された製氷水が減少を始めるまでの時間は、前述の氷結開始点によって特定されるので、ステップSv1は省略されている。すなわち、製氷開始後に直ぐに製氷水ポンプPMを駆動している現時点の電流の電圧値Vが、前記電圧値算出手段44から制御手段Cに入力される(ステップSv2)。このとき、電圧値Vの入力が初回であると(ステップSv5:Yes)、電圧値VをメモリーMに記憶する(ステップSv7)と共に、ステップSv2に戻る。そして、電圧値Vの入力が2回目以降であると(ステップSv5:No)、当該電圧値VとメモリーM内に記憶されている直前の電圧値Vとを比較して、該直前の電圧値Vに対する当該電圧値Vの大小を判断するステップSv6に進む。   Steps Sv2 and Sv4 after the start of the ice making operation of the ice making machine are the above-described third embodiment, and will not be described. Further, since the time from the start of ice making until the ice making water stored in the ice making water tank 18 starts to decrease is specified by the above-mentioned freezing start point, step Sv1 is omitted. That is, the voltage value V of the current current that is driving the ice making water pump PM immediately after the start of ice making is input from the voltage value calculating means 44 to the control means C (step Sv2). At this time, if the voltage value V is input for the first time (step Sv5: Yes), the voltage value V is stored in the memory M (step Sv7) and the process returns to step Sv2. If the voltage value V is input for the second time or later (step Sv5: No), the voltage value V is compared with the immediately preceding voltage value V stored in the memory M, and the immediately preceding voltage value is compared. The process proceeds to step Sv6 for determining the magnitude of the voltage value V with respect to V.

ステップSv6では、現時点で入力される電圧値VとメモリーM内に記憶されている直前の電圧値Vとが比較され、当該電圧値Vが直前の電圧値Vよりも大きければ(ステップSv6:No)、当該測定で得られた電圧値VをメモリーMに(上書き)記憶する(ステップSv7)と共に、ステップSv2に戻る。そして、当該電圧値Vが直前の電圧値V以下であれば(ステップSv6:Yes)、当該電圧値VをメモリーM内に記憶されている最大電圧値Vで除算するステップSr8に進むことになる。すなわち、現時点で入力される電圧値Vが直前の電圧値V以下であれば、氷結開始点(転換点)を通過したと判断され、ステップSv6をYesの方向に進み、以後メモリーM内に記憶された数値が上書きされることはなくなって、該メモリーMには最大の電圧値Vである最大電圧値Vが保持され続ける。 In step Sv6, the current voltage value V is compared with the immediately preceding voltage value V stored in the memory M, and if the voltage value V is greater than the immediately preceding voltage value V (step Sv6: No). The voltage value V obtained by the measurement is stored (overwritten) in the memory M (step Sv7), and the process returns to step Sv2. Then, if the relevant voltage value V is less immediately preceding voltage value V (step SV6: Yes), it proceeds to step Sr8 dividing the maximum voltage value V H which is stored the voltage value V in memory M Become. That is, if the voltage value V input at this time is equal to or less than the immediately preceding voltage value V, it is determined that the icing start point (turning point) has been passed, and step Sv6 is advanced in the direction of Yes, and thereafter stored in the memory M. numeric longer be is overwritten, the maximum voltage value V H continues to be held is the maximum voltage value V in the memory M.

ステップSv9では、ステップSv8で得られる現時点で入力される電圧値VをメモリーM内に記憶されている最大電圧値Vで除算した算出した値(以下、除算値と云う)と、予めメモリーM内に記憶される目標電圧値係数Kとが比較され、当該除算値が目標電圧値係数Kよりも大きければ(ステップSv9:No)、ステップSv2に戻る。そして、当該除算値が目標電圧値係数K以下であれば(ステップSv9:Yes)、電圧値Vが目標電圧値Vに到ったと判断、すなわち製氷水タンク18内に貯留される製氷水量が目標水量Wに到ったと判断して、該製氷水ポンプPMを停止し(ステップSv4)、製氷運転を完了する。 In step SV9, a calculated value obtained by dividing the maximum voltage value V H which is stored a voltage value V to be inputted at the present time obtained in step Sv8 in memory M (hereinafter, referred to as division value), previously memory M and the target voltage value coefficient K V stored are compared within, if the division value is greater than the target voltage value coefficient K V (step SV9: No), the flow returns to step Sv2. Then, if the relevant division value is less than the target voltage value coefficient K V (step SV9: Yes), the ice making water a voltage value V determined that reached the target voltage value V O, i.e., which is stored in the ice-making water tank 18 There it is determined that reached the target amount of water W O, stop the ice making water pump PM (step Sv4), completing the ice-making operation.

本第4実施例の場合、前述の第2実施例と同様に、時間的に生成完了が近い最大電圧値Vを特定して基準とするようにしたので、氷塊Iの生成完了の検出の精度が向上する。また、氷塊Iの氷結開始の時点を特定し得るため、製氷開始から氷結開始までの時間や、氷結開始から製氷完了までの時間を別途記憶させることで、製氷時に発生する異常をきめ細かく監視し得る。 In the case of the fourth embodiment, as in the second embodiment described above, the maximum voltage value VH that is close to completion of generation in time is specified and used as a reference. Accuracy is improved. In addition, since it is possible to specify the time point when the ice block I begins to freeze, by separately storing the time from the start of ice making to the start of freezing, and the time from the start of freezing to the completion of ice making, it is possible to closely monitor abnormalities occurring during ice making. .

(変更例)
本発明は、前述の実施例に限定されず、以下の如く変更することも可能である。
(1)前述の各実施例の運転方法は、流下式やオープンセルタイプの製氷機構を備える製氷機にも適用できる。この場合、前述した噴射抵抗圧力は考えなくてもよいため、製氷水ポンプPMに掛かる負荷はより大きく減少する。
(2)第2実施例および第4実施例では、製氷水ポンプPMの負荷が増大から減少に変化する転換点を、該製氷水ポンプPMの回転数Rや電圧値Vによって特定していたが、本発明はこれに限定されない。例えば、前記転換点は、図6および図10から明らかな通り、製氷水の水温が0℃付近に到る氷結開始点であるため、製氷水タンク18に備えられて製氷水の水温を測定する水温測定手段40を使用して転換点を特定するようにしてもよい。
(3)前述の各実施例では、氷塊Iの生成完了を検出するための目標回転数Rや目標電圧値Vは、制御手段Cに備えられるメモリーMに予め記憶されるが、本発明はこれに限定されない。例えば、作業者が適宜入力可能な構成としてもよい。この場合、氷塊Iの生成完了の検出、すなわち、製氷運転の完了タイミングを作業者の好みに合わせる等の細かなサービスも可能となる。更に、前記目標回転数Rや目標電圧値Vについては変更不可としつつ、これらの値に対して一定の変数を乗算する等の制御手法を取り入れると共に、該変数については作業者が適宜設定可能としてもよい。この場合、基本となる値は残して高い復帰性を確保しつつ、前述した製氷運転の完了タイミングを変更し得るので、更に製氷機の有用性を高め得る。
(4)前述の第1実施例および第3実施例では、夫々回転数Rの測定開始タイミングや電圧値Vの入力開始タイミングをタイマを使用することで判断しているが、本発明はこれに限定されない。例えば、製氷室12温度や製氷水の水温を利用して氷塊Iの生成開始を検出して、該タイミングを判断するようにしてもよい
(5)前述の第1実施例では、回転数Rとして1秒当りの平均回転数を利用しているが、本発明はこれに限定されない。製氷運転完了の精度等によって、単位時間を長くしたり短くしてもよい。
(Example of change)
The present invention is not limited to the above-described embodiments, and can be modified as follows.
(1) The operation method of each of the embodiments described above can be applied to an ice making machine equipped with a flow-down type or open cell type ice making mechanism. In this case, since it is not necessary to consider the injection resistance pressure described above, the load applied to the ice making water pump PM is greatly reduced.
(2) In the second and fourth embodiments, the turning point at which the load of the ice making water pump PM changes from increasing to decreasing is specified by the rotational speed R and voltage value V of the ice making water pump PM. However, the present invention is not limited to this. For example, as apparent from FIGS. 6 and 10, the turning point is a freezing start point where the water temperature of the ice making water reaches around 0 ° C. Therefore, the water temperature of the ice making water provided in the ice making water tank 18 is measured. The turning point may be specified using the water temperature measuring means 40.
(3) In each of the above-described embodiments, the target rotational speed RO and the target voltage value V O for detecting the completion of the generation of the ice block I are stored in advance in the memory M provided in the control means C. Is not limited to this. For example, it is good also as a structure which an operator can input suitably. In this case, it is possible to perform fine services such as detection of the completion of the generation of the ice lump I, that is, matching the completion timing of the ice making operation to the operator's preference. Furthermore, while making the target rotation speed R O and the target voltage value V O unchangeable, a control method such as multiplying these values by a certain variable is adopted, and the variables are appropriately set by the operator. It may be possible. In this case, it is possible to change the completion timing of the ice making operation described above while maintaining a high returnability while leaving the basic value, so that the usefulness of the ice making machine can be further enhanced.
(4) In the first and third embodiments described above, the measurement start timing of the rotational speed R and the input start timing of the voltage value V are determined by using a timer. It is not limited. For example, the timing may be determined by detecting the start of ice lump I using the temperature of the ice making chamber 12 or the temperature of the ice making water.
(5) In the first embodiment described above, the average rotational speed per second is used as the rotational speed R, but the present invention is not limited to this. The unit time may be lengthened or shortened depending on the accuracy of completion of the ice making operation.

本発明の好適な第1実施例に係る製氷機の運転方法に用いられる製氷機を示す概略図である。It is the schematic which shows the ice making machine used for the operating method of the ice making machine which concerns on suitable 1st Example of this invention. 第1実施例の製氷機において、製氷運転時の製氷水量および製氷水ポンプに掛かる圧力と、時間との関係を示すグラフ図である。In the ice making machine of the first embodiment, it is a graph showing the relationship between the amount of ice making water during ice making operation, the pressure applied to the ice making water pump, and time. 第1実施例の製氷機において、製氷運転時の製氷水量および製氷水ポンプの回転数と、時間との関係を示すグラフ図である。In the ice making machine of the first embodiment, it is a graph showing the relationship between the amount of ice making water during ice making operation, the number of rotations of the ice making water pump, and time. 第1実施例の製氷機の制御ブロック図である。It is a control block diagram of the ice making machine of 1st Example. 第1実施例の製氷機において、製氷運転の流れを示すフローチャート図である。It is a flowchart figure which shows the flow of the ice making operation | movement in the ice making machine of 1st Example. 第2実施例の製氷機において、製氷運転時の製氷水量、水温および製氷水ポンプの回転数と、時間との関係を示すグラフ図である。In the ice making machine of 2nd Example, it is a graph which shows the relationship between the amount of ice making water at the time of ice making operation, water temperature, the rotation speed of an ice making water pump, and time. 第2実施例の製氷機において、製氷運転の流れを示すフローチャート図である。It is a flowchart figure which shows the flow of the ice making operation | movement in the ice making machine of 2nd Example. 第3実施例の製氷機において、製氷運転時の製氷水量および製氷水ポンプを一定回転数で駆動するために必要とする電圧値と、時間との関係を示すグラフ図である。In the ice making machine of 3rd Example, it is a graph which shows the voltage value required in order to drive the amount of ice making water at the time of ice making operation, and an ice making water pump by fixed rotation speed, and time. 第3実施例の製氷機において、製氷運転の流れを示すフローチャート図である。It is a flowchart figure which shows the flow of the ice making operation | movement in the ice making machine of 3rd Example. 第4実施例の製氷機において、製氷運転時の製氷水量、水温および製氷水ポンプを一定回転数で駆動するために必要とする電圧値と、時間との関係を示すグラフ図である。In the ice making machine of 4th Example, it is a graph which shows the voltage value required in order to drive the amount of ice making water at the time of ice making operation, water temperature, and an ice making water pump by fixed rotation speed, and time. 第4実施例の製氷機において、製氷運転の流れを示すフローチャート図である。It is a flowchart figure which shows the flow of the ice making operation | movement in the ice making machine of 4th Example.

符号の説明Explanation of symbols

12 製氷室(製氷部)、18 製氷水タンク、42 回転数測定手段
44 電圧値算出手段、I 氷塊、PM 製氷水ポンプ、R 回転数
最低回転数、R 目標回転数、V 電圧値、V 最大電圧値
目標電圧値、W 使用水量、W 目標水量、W 初期水量
12 Freezer (ice making section), 18 the ice-making water tank, 42 rpm measuring means 44 voltage value calculating means, I ice blocks, PM making water pump, R rotational speed R L minimum rotational speed, R O target speed, V voltage , V H maximum voltage value V O target voltage value, W I water consumption, W O target water amount, W S initial water

Claims (8)

製氷水タンク(18)に貯留した製氷水を、製氷水ポンプ(PM)により製氷部(12)に循環供給して氷塊(I)を生成するようにした自動製氷機の運転方法において、
前記製氷水ポンプ(PM)の回転数(R)を測定する回転数測定手段(42)を備え、
前記回転数測定手段(42)が測定した回転数(R)が、前記製氷水ポンプ(PM)に一定の電圧を供給して回転させたもとで、前記氷塊(I)の生成に伴い製氷水タンク(18)内の製氷水が減少することによって生ずる該製氷水ポンプ(PM)の負荷低減によって上昇して目標回転数(RO)となったときに、前記氷塊(I)の生成完了と判断して前記製氷水ポンプ(PM)を停止するようにした
ことを特徴とする製氷機の運転方法。
In the method of operating an automatic ice maker, the ice making water stored in the ice making water tank (18) is circulated and supplied to the ice making part (12) by the ice making water pump (PM) to generate ice blocks (I).
Rotational speed measuring means (42) for measuring the rotational speed (R) of the ice making water pump (PM),
The rotation speed (R) measured by the rotation speed measuring means (42) is rotated by supplying a constant voltage to the ice-making water pump (PM), and the ice-making water tank is generated along with the generation of the ice blocks (I). (18) When the ice-making water pump (PM) generated by the decrease in ice-making water is increased and reaches the target rotational speed (R O ), it is determined that the formation of the ice block (I) is completed. And the ice making water pump (PM) is stopped.
前記目標回転数(RO)は、製氷開始時に前記製氷水タンク(18)内に貯留される製氷水の初期水量(WS)と、製氷完了までに氷塊(I)の生成に供される製氷水の使用水量(WI)とから予め算出される製氷完了時に製氷水タンク(18)内に残留する製氷水の目標水量(WO)に対応する値である請求項1記載の製氷機の運転方法。 The target rotational speed (R O ) is used to generate an initial amount of ice making water (W S ) stored in the ice making water tank (18) at the start of ice making and generation of ice blocks (I) until ice making is completed. 2. The ice making machine according to claim 1, wherein the ice making machine has a value corresponding to a target water amount (W O ) of ice making water remaining in the ice making water tank (18) when ice making is completed, which is calculated in advance from the amount of water used for ice making water (W I ). Driving method. 製氷開始による水温低下に伴う前記製氷水タンク(18)内の製氷水の粘度上昇に起因する製氷水ポンプ(PM)の負荷増大によって低下し、前記氷塊(I)の生成に伴う製氷水の減少に起因する製氷水ポンプ(PM)の負荷低減によって上昇に転じる回転数(R)から、氷結開始点に対応する該製氷水ポンプ(PM)の最低回転数(RL)を決定し、前記最低回転数(RL)と回転数測定手段(42)で測定される回転数(R)との関係が、該最低回転数(RL)と前記目標回転数(RO)との関係を特定すると共に、予め設定された目標回転数係数(KR)となったときに、前記氷塊(I)の生成完了と判断して前記製氷水ポンプ(PM)を停止するようにした請求項1記載の製氷機の運転方法。 Decrease due to increased load of ice making water pump (PM) due to increase in viscosity of ice making water in ice making water tank (18) accompanying water temperature drop due to start of ice making, decrease in ice making water due to generation of ice block (I) The minimum rotation speed (R L ) of the ice-making water pump (PM) corresponding to the freezing start point is determined from the rotation speed (R) that turns upward due to the load reduction of the ice-making water pump (PM) caused by the relationship between the rotational speed (R L) and the rotational speed measured by the rotational speed measuring means (42) (R) is identified the relationship between the outermost low rotational speed (R L) and the target rotational speed (R O) In addition, when the target rotational speed coefficient (K R ) reaches a preset target rotational speed coefficient (K R ), it is determined that the generation of the ice block (I) is completed, and the ice making water pump (PM) is stopped. How to operate your ice machine. 前記回転数測定手段(42)が測定する製氷水ポンプ(PM)の回転数(R)は、単位時間当りの平均回転数である請求項1〜3の何れか一項に記載の製氷機の運転方法。   The rotation speed (R) of the ice-making water pump (PM) measured by the rotation speed measuring means (42) is an average rotation speed per unit time of the ice making machine according to any one of claims 1 to 3. how to drive. 製氷水タンク(18)に貯留した製氷水を、製氷水ポンプ(PM)により製氷部(12)に循環供給して氷塊(I)を生成するようにした自動製氷機の運転方法において、
前記製氷水ポンプ(PM)を一定の回転数で回転させる電流の電圧値(V)を算出する電圧値算出手段(44)を備え、
前記製氷水ポンプ(PM)を一定の回転数で回転させたもとで、前記電圧値算出手段(44)により算出される電圧値(V)が、前記氷塊(I)の生成に伴い製氷水タンク(18)内の製氷水の減少することによって生ずる該製氷水ポンプ(PM)の負荷低減によって低下して目標電圧値(VO)となったときに、前記氷塊(I)の生成完了と判断して前記製氷水ポンプ(PM)を停止するようにした
ことを特徴とする製氷機の運転方法。
In the method of operating an automatic ice maker, the ice making water stored in the ice making water tank (18) is circulated and supplied to the ice making part (12) by the ice making water pump (PM) to generate ice blocks (I).
Voltage value calculating means (44) for calculating a voltage value (V) of a current for rotating the ice making water pump (PM) at a constant rotation speed,
The voltage value (V) calculated by the voltage value calculation means (44) under the rotation of the ice-making water pump (PM) at a constant rotational speed is an ice-making water tank ( 18) When the target voltage value (V O ) is reduced by reducing the load of the ice making water pump (PM) generated by the decrease in the ice making water in the inside, it is determined that the formation of the ice block (I) is completed. And the ice making water pump (PM) is stopped.
前記目標電圧値(VO)は、製氷開始時に前記製氷水タンク(18)内に貯留される製氷水の初期水量(WS)と、製氷完了までに氷塊(I)の生成に供される製氷水の使用水量(WI)とから予め算出される製氷完了時に製氷水タンク(18)内に残留する製氷水の目標水量(WO)に対応する値である請求項5記載の製氷機の運転方法。 The target voltage value (V O ) is used to generate an initial amount of ice making water (W S ) stored in the ice making water tank (18) at the start of ice making, and generation of ice blocks (I) until ice making is completed. 6. The ice making machine according to claim 5, wherein the ice making machine has a value corresponding to a target water amount (W O ) of ice making water remaining in the ice making water tank (18) when ice making is completed, which is calculated in advance from the amount of water used for ice making water (W I ). Driving method. 製氷開始による水温低下に伴う前記製氷水タンク(18)内の製氷水の粘度上昇に起因する製氷水ポンプ(PM)の負荷増大によって上昇し、前記氷塊(I)の生成に伴う製氷水の減少に起因する製氷水ポンプ(PM)の負荷低減によって低下に転じる電圧値(V)から、氷結開始点に対応する該製氷水ポンプ(PM)の最大電圧値(VH)を決定し、前記最大電圧値(VH)と電圧値算出手段(44)で算出される電圧値(V)との関係が、該最大電圧値(VH)と前記目標電圧値(VO)との関係を特定すると共に、予め設定された目標電圧値係数(KV)となったときに、前記氷塊(I)の生成完了と判断して前記製氷水ポンプ(PM)を停止するようにした請求項5記載の製氷機の運転方法。 Increase in the load of the ice making water pump (PM) due to an increase in the viscosity of the ice making water in the ice making water tank (18) due to a decrease in water temperature due to the start of ice making, and a decrease in ice making water due to the formation of the ice block (I) The maximum voltage value (V H ) of the ice-making water pump (PM) corresponding to the freezing start point is determined from the voltage value (V) that starts to decrease due to the load reduction of the ice-making water pump (PM) caused by the voltage value calculated by the voltage value (V H) and the voltage value calculating means (44) relationship between the (V), identified a relationship between said maximum voltage value (V H) and the target voltage value (V O) In addition, when the preset target voltage value coefficient (K V ) is reached, it is determined that the generation of the ice block (I) is completed, and the ice making water pump (PM) is stopped. How to operate your ice machine. 前記電圧値算出手段(44)で算出される電圧値(V)は、単位時間当りの平均電圧値である請求項5〜7の何れか一項に記載の製氷機の運転方法。   The method of operating an ice making machine according to any one of claims 5 to 7, wherein the voltage value (V) calculated by the voltage value calculation means (44) is an average voltage value per unit time.
JP2007184967A 2007-07-13 2007-07-13 Operation method of ice maker Pending JP2009019855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007184967A JP2009019855A (en) 2007-07-13 2007-07-13 Operation method of ice maker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007184967A JP2009019855A (en) 2007-07-13 2007-07-13 Operation method of ice maker

Publications (1)

Publication Number Publication Date
JP2009019855A true JP2009019855A (en) 2009-01-29

Family

ID=40359644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007184967A Pending JP2009019855A (en) 2007-07-13 2007-07-13 Operation method of ice maker

Country Status (1)

Country Link
JP (1) JP2009019855A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033206A (en) * 2009-07-29 2011-02-17 Hoshizaki Electric Co Ltd Ice making machine
CN103940184A (en) * 2014-04-08 2014-07-23 河南新飞制冷器具有限公司 Ice machine for air-cooled refrigerator and control method of ice machine for air-cooled refrigerator
JP2017036862A (en) * 2015-08-07 2017-02-16 福島工業株式会社 Cell ice machine
EP3092450A4 (en) * 2014-01-08 2017-08-23 True Manufacturing Co., Inc. Variable-operating point components for cube ice machines
CN113625606A (en) * 2021-08-11 2021-11-09 上海秉越电子仪器有限公司 Medical spine-free ice slush manufacturing control system
CN117006563A (en) * 2023-09-27 2023-11-07 湖南大学 Cold accumulation amount detection system and method, air conditioning system and control method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033206A (en) * 2009-07-29 2011-02-17 Hoshizaki Electric Co Ltd Ice making machine
EP3092450A4 (en) * 2014-01-08 2017-08-23 True Manufacturing Co., Inc. Variable-operating point components for cube ice machines
CN103940184A (en) * 2014-04-08 2014-07-23 河南新飞制冷器具有限公司 Ice machine for air-cooled refrigerator and control method of ice machine for air-cooled refrigerator
JP2017036862A (en) * 2015-08-07 2017-02-16 福島工業株式会社 Cell ice machine
CN113625606A (en) * 2021-08-11 2021-11-09 上海秉越电子仪器有限公司 Medical spine-free ice slush manufacturing control system
CN117006563A (en) * 2023-09-27 2023-11-07 湖南大学 Cold accumulation amount detection system and method, air conditioning system and control method thereof
CN117006563B (en) * 2023-09-27 2024-01-23 湖南大学 A cold storage capacity detection system, method, air conditioning system and control method thereof

Similar Documents

Publication Publication Date Title
JP2009019855A (en) Operation method of ice maker
KR20100124068A (en) A refrigerator comprising an ice making device and a control method thereof
KR20090111717A (en) Ice water purifier with two drip trays
WO2008053975A1 (en) Automatic ice making machine and operation method therefor
ES2928140T3 (en) Adaptive control procedure for refrigeration systems
JP4994087B2 (en) How to operate an automatic ice machine
JP5052240B2 (en) How to operate an ice machine
JP5173272B2 (en) How to operate an ice machine
JP2009121768A (en) Automatic ice making machine and control method for it
JP5052173B2 (en) How to operate an automatic ice machine
JP5052201B2 (en) Automatic ice maker and operation method of automatic ice maker
US5894734A (en) Water-circulating type ice maker
JP6767097B2 (en) Ice machine
KR100755866B1 (en) Cooling unit and its control method
KR200416645Y1 (en) The structure of ice guide device for discharging ice in ice-making room of ice maker.
JP7002281B2 (en) Ice machine
JP6934326B2 (en) Ice machine
KR20150068277A (en) Ice maker, method for controlling ice maker, and refrigerator with the same
JP2000258009A (en) Automatic ice maker
JP5329332B2 (en) Ice machine
KR20060003397A (en) Water supply control device and water supply control method of automatic ice maker
JP6176724B2 (en) refrigerator
WO2008150104A2 (en) Apparatus for supercooling and method for making porous ice using the same
JP6946147B2 (en) Ice machine
KR100672392B1 (en) Ice making device, cooling device using same, and control method thereof