[go: up one dir, main page]

JP2009016812A - Thermoelectric conversion module and power generator using the same - Google Patents

Thermoelectric conversion module and power generator using the same Download PDF

Info

Publication number
JP2009016812A
JP2009016812A JP2008149062A JP2008149062A JP2009016812A JP 2009016812 A JP2009016812 A JP 2009016812A JP 2008149062 A JP2008149062 A JP 2008149062A JP 2008149062 A JP2008149062 A JP 2008149062A JP 2009016812 A JP2009016812 A JP 2009016812A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
thermal conductivity
temperature
conversion module
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008149062A
Other languages
Japanese (ja)
Other versions
JP5087757B2 (en
Inventor
Masahiro Ito
雅宏 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2008149062A priority Critical patent/JP5087757B2/en
Publication of JP2009016812A publication Critical patent/JP2009016812A/en
Application granted granted Critical
Publication of JP5087757B2 publication Critical patent/JP5087757B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】素子内に大きな温度差が実現されて発電量の増加が図れる熱電変換モジュールとこれを用いた発電装置を提供する。
【解決手段】p型熱電変換素子とn型熱電変換素子が接続された熱電変換ユニットを二次元的に単数あるいは複数配列させた熱電変換ユニット単体あるいはその集合体両面に基板が設けられた熱電変換モジュールであって、上記各基板20、30が、熱電変換ユニット10表面を被覆する低熱伝導部21、31と、低熱伝導部に設けられた孔内に埋め込まれその一端側がp型とn型熱電変換素子の上記接続部位に接続され他端側が低熱伝導部表面の孔から露出する高熱伝導部22、32とで構成され、低熱伝導部から露出する各高熱伝導部表面が高熱伝導の温度接触部40、50にそれぞれ接続されていることを特徴とする。
【選択図】 図3
A thermoelectric conversion module capable of realizing a large temperature difference in an element and increasing the amount of power generation, and a power generation apparatus using the same.
A thermoelectric conversion unit in which a single or a plurality of thermoelectric conversion units connected to a p-type thermoelectric conversion element and an n-type thermoelectric conversion element are arranged two-dimensionally or a substrate on both surfaces of the thermoelectric conversion unit is provided. Each of the substrates 20 and 30 is a module and is embedded in a low heat conductive portion 21 and 31 covering the surface of the thermoelectric conversion unit 10 and a hole provided in the low heat conductive portion, and one end side thereof is p-type and n-type thermoelectric The other end side is connected to the connection part of the conversion element and is composed of the high heat conduction portions 22 and 32 exposed from the holes on the surface of the low heat conduction portion, and each high heat conduction portion surface exposed from the low heat conduction portion is a temperature contact portion with high heat conduction. It is characterized by being connected to 40 and 50, respectively.
[Selection] Figure 3

Description

本発明は、温度差を利用して熱を電気に変換する熱電変換モジュールとこの熱電変換モジュールを太陽電池に接続した発電装置に関するものである。   The present invention relates to a thermoelectric conversion module that converts heat into electricity using a temperature difference and a power generation device in which the thermoelectric conversion module is connected to a solar cell.

地球温暖化が進行し、天候不順や海水上昇等々の問題が現実的に深刻化してきた現在、温暖化ガスである二酸化炭素を排出しないエネルギー源として太陽電池の重要性は、日本だけでなく、欧州、米国でも認識され、家庭や事業所への導入が盛んになってきている。導入されている太陽電池の7割は、Si系の太陽電池であり、そのほとんどは結晶系(単結晶あるいは多結晶系)である。   As global warming has progressed and problems such as bad weather and rising seawater have become seriously serious, solar cells are not only important in Japan as an energy source that does not emit carbon dioxide, a greenhouse gas, It is also recognized in Europe and the United States, and its introduction into homes and offices has become popular. Seventy percent of the solar cells introduced are Si-based solar cells, most of which are crystalline (single crystal or polycrystalline).

真夏の昼間、地球に降り注ぐ太陽エネルギーは1000W/m程度であり、これらの太陽電池の最適条件下での平均的な発電量は150W/m程度である。つまり、変換効率は15%程度である。しかし、現実的には、住んでいる場所の緯度、家の向き、障害物の存在の有無、季節の差、天候の良し悪し等に強く依存し、15%という値は年間を通して実現されるものではない。 In midsummer daytime, the solar energy falling on the earth is about 1000 W / m 2 , and the average power generation amount under the optimum conditions of these solar cells is about 150 W / m 2 . That is, the conversion efficiency is about 15%. However, in reality, it depends strongly on the latitude of the place where you live, the orientation of the house, the presence of obstacles, the difference in season, the weather, and the like, and the value of 15% is realized throughout the year. is not.

平均的な家庭での必要発電量は4kW程度であろうが、平均的な家庭が太陽電池を導入しようとする場合、26m程度が必要となる。実効的な効率を考えると、40m程度が必要であろう。そのような屋根面積の確保はそう容易なものではない。従って、面積をできるだけ小さくするには、少しでも変換効率の高い太陽電池ユニットが必要とされる。 The average amount of power required in an average home will be about 4 kW, but if the average home wants to introduce solar cells, about 26 m 2 will be required. Considering effective efficiency, about 40 m 2 will be necessary. Securing such a roof area is not so easy. Therefore, in order to make the area as small as possible, a solar cell unit having a high conversion efficiency is required.

また、真夏の昼間、太陽電池にとって最も発電量の多い時間帯では、太陽電池の温度は80℃以上になる。結晶シリコン系太陽電池は80℃まで温度が上がると、室温における変換効率より20〜30%も落ちる(図1参照)。効率が落ちることを補償しようとすると、屋根に載せる太陽電池の面積を大きくしなければならなくなり、高価になるだけでなく、屋根の上でその面積の確保も容易でないというのが現実である。太陽電池の実効的な効率がアップできれば、必要とされる屋根上の太陽電池面積も小さくてすみ、コスト低減にもつながる。これらの理由から、安価で発電効率の高い太陽電池が望まれる。   Further, during the daytime of midsummer, the solar cell temperature is 80 ° C. or higher in the time zone where the amount of power generation is the largest for the solar cell. When the temperature of a crystalline silicon solar cell rises to 80 ° C., the conversion efficiency at room temperature falls by 20 to 30% (see FIG. 1). In order to compensate for the decrease in efficiency, the area of the solar cell placed on the roof has to be increased, which is not only expensive, but it is also difficult to secure the area on the roof. If the effective efficiency of the solar cell can be increased, the required solar cell area on the roof can be reduced, leading to cost reduction. For these reasons, an inexpensive solar cell with high power generation efficiency is desired.

真夏の晴天の正午頃、太陽電池自体が80℃近くなることを逆に利用し、熱電変換素子を裏面に貼付して発電しようというアイデアは過去にもあった(特許文献1、2参照)が、ビジネスとしては実現されていない。その理由は、できるだけ多く発電させるために、従来の熱電変換素子は、高温側と低温側との間ができるだけ断熱的になるような構造をとっていたことによる。そのため、従来の熱電変換素子を仮に太陽電池に接着すると、太陽電池の温度が更に上昇し、これに起因して太陽電池自体からの発電量が減るため、熱電変換素子を接着して発電量を補助しても意味が無いと考えられていたことが大きく影響していた。   In the past, there was an idea to generate electricity by applying the thermoelectric conversion element on the back surface, taking advantage of the fact that the solar cell itself would be close to 80 ° C around noon in midsummer weather (see Patent Documents 1 and 2). It has not been realized as a business. This is because, in order to generate as much power as possible, the conventional thermoelectric conversion element has a structure in which the space between the high temperature side and the low temperature side is as adiabatic as possible. Therefore, if the conventional thermoelectric conversion element is temporarily bonded to the solar cell, the temperature of the solar cell further increases, resulting in a decrease in the amount of power generated from the solar cell itself. The fact that it was thought that there was no point in assisting had a great influence.

更に、従来の熱電変換素子が作りにくいため、小さい面積での素子しか作られなかったこと、そのため、大きな太陽電池の裏に上記素子を接着する工程の複雑さも理由として挙げられる。   Furthermore, since it is difficult to produce a conventional thermoelectric conversion element, only an element with a small area can be produced. For this reason, the complexity of the process of adhering the element to the back of a large solar cell is also cited.

また、熱電変換素子があまりに高価であるという事情もある。これは、従来のゼーベック効果を利用した熱電変換素子の構造上、p型とn型の素子を“π”の字状に結合して下基板に垂直に立てる構造とし、n型−p型−n型−p型というように直列につなぐ必要があり、更に、一般的に使用される熱電材料がBi−Te系であり、この材料がもろい材質の上、半田での接合が難しいという事情のため、ほとんど手作りでしか作られないためということが理由に挙げられる。   There is also a situation that the thermoelectric conversion element is too expensive. This is a structure of a conventional thermoelectric conversion element using the Seebeck effect, and a structure in which a p-type and an n-type element are coupled in a “π” shape to stand vertically to a lower substrate. It is necessary to connect n-type-p-type in series, and the thermoelectric material generally used is Bi-Te, which is a brittle material and difficult to join with solder. For this reason, the reason is that it can only be made by hand.

そのため、低価格であることが必須である太陽電池基板の裏面に使用するのは現実的ではなく、実際に商品としては市場に現れていなかった。   For this reason, it is not practical to use it on the back surface of a solar cell substrate, which is indispensable for a low price, and has not actually appeared in the market as a product.

このような技術的背景の下、特許文献3と非特許文献1には、効率良く発電を行えるとする熱電変換素子が提案されている。すなわち、この熱電変換素子は、p型材料から成る薄膜のp型熱電変換素子とn型材料から成る薄膜のn型熱電変換素子とが直列接続となるように成膜され、かつ、その両側に電極を成膜して熱電変換ユニットを構成すると共に、この熱電変換ユニットの両面に、熱伝導率の異なる2種類の材料で構成された柔軟性を有するフィルム状基板を設けたもので、熱電変換ユニット側に、熱伝導率の低い絶縁体であるポリイミド樹脂等の材料にて皮膜を設け、熱電変換ユニットの接合面と反対側に、熱伝導率の高い、銅等の金属材料が上記フィルム状基板の外面の一部分に位置するように設けられたものである。   Under such a technical background, Patent Literature 3 and Non-Patent Literature 1 propose thermoelectric conversion elements that can generate power efficiently. That is, this thermoelectric conversion element is formed such that a thin film p-type thermoelectric conversion element made of a p-type material and a thin film n-type thermoelectric conversion element made of an n-type material are connected in series, and are formed on both sides thereof. A thermoelectric conversion unit is formed by forming electrodes, and a flexible film-like substrate composed of two types of materials having different thermal conductivities is provided on both sides of the thermoelectric conversion unit. On the unit side, a film is provided with a material such as polyimide resin, which is an insulator with low thermal conductivity, and on the side opposite to the joining surface of the thermoelectric conversion unit, a metal material such as copper with high thermal conductivity is in the form of the film. It is provided so that it may be located in a part of outer surface of a board | substrate.

このような構成を採用することにより、上記フィルム状基板の上下面に温度差を加えたときの各層の熱流束の違いからフィルム状基板内部に温度差を生じさせ、フィルム状基板の厚さ方向の温度勾配をフィルム状基板の面内方向の温度勾配に効率よく変換させ、この温度勾配を利用して、熱電変換ユニットで効率良く発電を行おうとするものであった。そして、特許文献3と非特許文献1に記載の発明は、機械的強度が高く、加工性に優れ、自動化が容易で大量生産が可能であり、更に、フレキシブルであることを生かし曲面等への設置も可能であるため設置場所が制限されない発電効率の高い熱電変換素子を提供することを目的としていた。   By adopting such a configuration, a temperature difference is generated inside the film substrate from the difference in heat flux of each layer when a temperature difference is applied to the upper and lower surfaces of the film substrate, and the thickness direction of the film substrate The temperature gradient is efficiently converted into a temperature gradient in the in-plane direction of the film-like substrate, and the temperature gradient is used to efficiently generate power with the thermoelectric conversion unit. The inventions described in Patent Document 3 and Non-Patent Document 1 have high mechanical strength, excellent workability, are easy to automate, can be mass-produced, and are flexible to curved surfaces. The object of the present invention is to provide a thermoelectric conversion element with high power generation efficiency that can be installed and is not limited in installation location.

具体的には、マスクを利用し、樹脂シート上に素子構造を制御しながらスパッタリング法によりp型、n型の熱電材料をそれぞれ成膜して熱電変換素子部を形成し、かつ、熱電変換素子部上に別の樹脂シートを貼り付けることで熱電変換素子をサンドイッチする。次に、この接着した樹脂シートの両外側面上でかつp型、n型の熱電変換素子の接合部に相当する部位に、銅等の熱伝導の良い金属により、上記接合部と同等サイズで同形のパターンを形成する。   Specifically, using a mask, a p-type and n-type thermoelectric material is formed on the resin sheet by sputtering while controlling the element structure to form a thermoelectric conversion element portion, and the thermoelectric conversion element The thermoelectric conversion element is sandwiched by attaching another resin sheet on the part. Next, on both outer side surfaces of the bonded resin sheet and in a portion corresponding to the joint portion of the p-type and n-type thermoelectric conversion elements, a metal having good thermal conductivity such as copper is used to have the same size as the joint portion. Form an isomorphic pattern.

実際には、銅(図2中、material-Bと示す)が片面に塗布あるいは貼付されたポリイミドシート(図2中、material-Aと示す)を利用してその裏面に熱電変換素子(図2中、TE materialと示す)を形成し、もう1枚のポリイミドシートの銅が付いていない裏面側を上記熱電変換素子上に接着し、かつ、貼り合わせシートの両表面にある銅薄膜をエッチングして所望のパターンを切る。この構造体の断面を図2に示す。この銅部が、高温部、低温部に接触することになる。そこからの熱伝導で、樹脂シート面に平行な熱電変換素子内に温度差がついて発電するというものであった。   Actually, using a polyimide sheet (shown as material-A in FIG. 2) coated or affixed with copper (shown as material-B in FIG. 2) on one side, a thermoelectric conversion element (see FIG. 2) on the back side. The other side of the polyimide sheet with no copper attached is bonded onto the thermoelectric conversion element, and the copper thin films on both surfaces of the bonded sheet are etched. To cut the desired pattern. A cross section of this structure is shown in FIG. This copper part comes into contact with the high temperature part and the low temperature part. Due to the heat conduction from there, there was a temperature difference in the thermoelectric conversion element parallel to the resin sheet surface, and power was generated.

しかし、この方法では、高温側、低温側の温度接触部(以下、温度接触部と称する)からの熱伝導が樹脂内での熱拡散による熱伝導のみのため、熱電変換素子への熱伝導性が低く、熱電変換素子内での温度勾配が付きにくいことから発電量が小さくなってしまうということが課題となっていた。
特開2001−53322号公報 特開2003−69070号公報 特開2006−186255号公報 NEDO平成18年度研究助成事業成果報告会 産業技術研究助成事業「エネルギー・環境技術」プロジェクトID:03B70010c=「低温廃熱利用のためのシート状フレキシブル熱電変換素子の研究開発」の発表資料
However, in this method, the heat conduction from the temperature contact portion on the high temperature side and the low temperature side (hereinafter referred to as the temperature contact portion) is only the heat conduction by thermal diffusion in the resin, and therefore the heat conductivity to the thermoelectric conversion element. However, since the temperature gradient is low and the temperature gradient in the thermoelectric conversion element is difficult to be attached, the problem is that the amount of power generation becomes small.
JP 2001-53322 A JP 2003-69070 A JP 2006-186255 A NEDO 2006 Research Grants Project Results Report Industrial Technology Research Grants Project “Energy / Environmental Technology” Project ID: 03B70010c = Presentation of “Research and development of sheet-like flexible thermoelectric conversion elements for low-temperature waste heat utilization”

本発明は、特許文献3と非特許文献1で提案された熱電変換素子において課題となっていた、高温側、低温側の温度接触部からの熱伝導が樹脂内での熱拡散による熱伝導のみであることに起因した熱電変換素子への熱伝導性の低さ、熱電変換素子内での温度勾配が付きにくいことによる発電量が小さいという課題を改善することを目的とする。   The present invention has been a problem in the thermoelectric conversion elements proposed in Patent Document 3 and Non-Patent Document 1, and the heat conduction from the temperature contact portion on the high temperature side and the low temperature side is only the heat conduction by heat diffusion in the resin. It is an object of the present invention to improve the problems of low heat conductivity to the thermoelectric conversion element due to the fact that the power generation amount is low and a small amount of power generation due to the difficulty of attaching a temperature gradient in the thermoelectric conversion element.

そこで、p型熱電変換素子とn型熱電変換素子とが接続された熱電変換ユニットを二次元的に単数あるいは複数配列させ、かつ、その両側に電極を形成して熱電変換ユニット単体あるいはその集合体を構成すると共に、この熱電変換ユニット単体あるいはその集合体両面に熱伝導率の異なる材料で構成された上記基板が設けられた熱電変換モジュールについて本発明者が鋭意検討を行ったところ、熱電変換モジュールの一方の面側における上記基板の熱伝導率の高い材料が、熱伝導率の低い材料内を貫通若しくは略貫通してp型熱電変換素子の上記接続部位若しくは近傍部位に接続または近接され、他方の面側における上記基板の熱伝導率の高い材料が、熱伝導率の低い材料内を貫通若しくは略貫通してn型熱電変換素子の上記接続部位若しくは近傍部位に接続または近接され、かつ、上記熱伝導率の高い材料の各表面側が、熱伝導率の高い材料で構成される温度接触部に接続させる構造を採ることで、高温部、低温部の温度が効率よく熱電変換ユニット(熱電素子部)に伝わるようになり、これにより熱電変換モジュール内に大きな温度差が実現されることを見出すに至った。本発明はこのような技術的発見により完成されている。   Therefore, a thermoelectric conversion unit in which a p-type thermoelectric conversion element and an n-type thermoelectric conversion element are connected is two-dimensionally arranged in a single or plural number, and electrodes are formed on both sides thereof to form a single thermoelectric conversion unit or an assembly thereof. In addition, the present inventors diligently studied the thermoelectric conversion module provided with the substrate made of a material having different thermal conductivity on both surfaces of the thermoelectric conversion unit alone or an assembly thereof. The material with high thermal conductivity of the substrate on one surface side of the p-type thermoelectric conversion element penetrates or substantially penetrates the material with low thermal conductivity and is connected to or close to the connection part or the vicinity part of the p-type thermoelectric conversion element. The material with high thermal conductivity of the substrate on the surface side of the n-type thermoelectric conversion element passes through or substantially penetrates the material with low thermal conductivity. Is connected to or adjacent to a nearby part and each surface side of the material having high thermal conductivity is connected to a temperature contact portion made of a material having high thermal conductivity, thereby providing a high temperature part and a low temperature part. As a result, it has been found that a large temperature difference is realized in the thermoelectric conversion module. The present invention has been completed by such technical discovery.

すなわち、請求項1に係る発明は、
p型材料から成る薄膜のp型熱電変換素子とn型材料から成る薄膜のn型熱電変換素子とが直接若しくは金属材料を介し接続された熱電変換ユニットを二次元的に単数あるいは複数配列させた熱電変換ユニット単体あるいはその集合体両面に、熱伝導率の異なる材料で構成された基板がそれぞれ設けられ、一方の基板側を高温側にかつ他方の基板側を低温側に配置して成る熱電変換モジュールを前提とし、
上記各基板が、熱伝導率の低い材料で構成されかつ熱電変換ユニット単体あるいはその集合体の表面を被覆する低熱伝導部と、熱伝導率の高い材料で構成されかつ上記低熱伝導部の厚さ方向に沿って設けられた貫通孔若しくは凹部内に埋め込まれると共にその一端側がp型熱電変換素子またはn型熱電変換素子の上記接続部位若しくはその近傍部位に接続または近接され他端側が低熱伝導部表面の貫通孔若しくは凹部から露出する高熱伝導部とで構成され、かつ、低熱伝導部表面の貫通孔若しくは凹部から露出する高熱伝導部の表面が熱伝導率の高い材料で構成される温度接触部に接続されていることを特徴とする。
That is, the invention according to claim 1
A thin-film p-type thermoelectric conversion element made of a p-type material and a thin-film n-type thermoelectric conversion element made of an n-type material are connected directly or via a metal material, two-dimensionally arranging one or more thermoelectric conversion units. A thermoelectric conversion unit is formed by arranging substrates made of materials having different thermal conductivities on both sides of a single thermoelectric conversion unit or an assembly thereof, and arranging one substrate side on the high temperature side and the other substrate side on the low temperature side. Assuming modules,
Each of the substrates is made of a material having a low thermal conductivity and has a low thermal conductivity part covering the surface of the thermoelectric conversion unit alone or an assembly thereof, and a thickness of the low thermal conductivity part made of a material having a high thermal conductivity. Embedded in a through-hole or recess provided along the direction, and one end thereof is connected to or close to the connection portion of the p-type thermoelectric conversion element or n-type thermoelectric conversion element or its vicinity, and the other end is the surface of the low heat conduction portion A temperature contact portion composed of a material having a high thermal conductivity and a surface of the high thermal conductivity portion exposed from the through hole or the concave portion of the surface of the low thermal conductivity portion. It is connected.

次に、請求項2に係る発明は、
請求項1に記載の発明に係る熱電変換モジュールを前提とし、
熱伝導率の高い材料が金属であることを特徴とし、
請求項3に係る発明は、
請求項1または2に記載の発明に係る熱電変換モジュールを前提とし、
上記熱電変換ユニット単体あるいはその集合体が電気絶縁層を介して複数積層され、かつ、最外側に位置する一対の熱電変換ユニット単体あるいはその集合体の外面に上記基板がそれぞれ設けられていることを特徴とし、
請求項4に係る発明は、
一方の基板における高熱伝導部表面が接続される温度接触部が高温側若しくは低温側に配置され、他方の基板における温度接触部が大気側に熱的に接した状態で配置される請求項1〜3のいずれかに記載の発明に係る熱電変換モジュールを前提とし、
上記基板における高熱伝導部の熱伝導度(κc)並びに断面積(Sc)と、上記基板における低熱伝導部の熱伝導度(κa)並びに断面積(Sa)とが、
1.2κa×Sa ≧ κc×Sc (式1)
の関係を有し、かつ
0.8κa×Sa ≦ κc×Sc (式2)
の関係を有していることを特徴とする。
Next, the invention according to claim 2
Based on the thermoelectric conversion module according to the invention of claim 1,
The material with high thermal conductivity is metal,
The invention according to claim 3
On the premise of the thermoelectric conversion module according to the invention of claim 1 or 2,
A plurality of the thermoelectric conversion units or their aggregates are stacked via an electrical insulating layer, and the substrate is provided on the outer surface of a pair of thermoelectric conversion units or their aggregates located on the outermost side. As a feature,
The invention according to claim 4
The temperature contact portion to which the surface of the high thermal conductivity portion of one substrate is connected is disposed on the high temperature side or the low temperature side, and the temperature contact portion on the other substrate is disposed in a state of being in thermal contact with the atmosphere side. On the premise of the thermoelectric conversion module according to the invention described in any one of 3,
The thermal conductivity (κc) and the cross-sectional area (Sc) of the high thermal conductivity portion in the substrate, and the thermal conductivity (κa) and the cross-sectional area (Sa) of the low thermal conductivity portion in the substrate are:
1.2κa × Sa ≧ κc × Sc (Formula 1)
And having a relationship
0.8κa × Sa ≦ κc × Sc (Formula 2)
It has the relationship of these.

また、請求項5に係る発明は、
請求項1〜3のいずれかに記載の発明に係る熱電変換モジュールを前提とし、
上記温度接触部の表面が、略黒色の酸化物膜あるいは熱伝導率の高い材料で被覆されていることを特徴とし、
請求項6に係る発明は、
請求項1〜3のいずれかに記載の発明に係る熱電変換モジュールを前提とし、
低温側に配置される基板の上記温度接触部の表面が、粗面化されていることを特徴とし、
請求項7に係る発明は、
請求項1〜3のいずれかに記載の発明に係る熱電変換モジュールを前提とし、
低温側に配置される基板の上記温度接触部の表面に、放熱板が付加されていることを特徴とし、
請求項8に係る発明は、
請求項1〜7のいずれかに記載の発明に係る熱電変換モジュールを前提とし、
上記基板における熱伝導率の低い材料が樹脂あるいはガラスであり、かつ、上記基板の熱電変換ユニット単体あるいはその集合体面から表面までの厚さが75μm以上であることを特徴とするものである。
The invention according to claim 5
Based on the thermoelectric conversion module according to any one of claims 1 to 3,
The surface of the temperature contact portion is covered with a substantially black oxide film or a material having high thermal conductivity,
The invention according to claim 6
Based on the thermoelectric conversion module according to any one of claims 1 to 3,
The surface of the temperature contact portion of the substrate disposed on the low temperature side is roughened,
The invention according to claim 7 provides:
Based on the thermoelectric conversion module according to any one of claims 1 to 3,
A heat sink is added to the surface of the temperature contact portion of the substrate disposed on the low temperature side,
The invention according to claim 8 provides:
Assuming the thermoelectric conversion module according to any one of claims 1 to 7,
The material having low thermal conductivity in the substrate is resin or glass, and the thickness of the substrate from the surface of the thermoelectric conversion unit alone or its aggregate is 75 μm or more.

次に、請求項9に係る発明は、
発電装置を前提とし、
太陽電池の裏面側に請求項1〜8のいずれかに記載の熱電変換モジュールを接着させ、太陽電池と外気との温度差で発電させることを特徴とし、
請求項10に係る発明は、
請求項9に記載の発明に係る発電装置を前提とし、
太陽電池と熱電変換モジュールの接着に用いる接着剤の熱伝導率を(W/mK)、接着剤の厚みを(d)としたとき、(W/mK)/(d)の比が1000以上であることを特徴とし、
請求項11に係る発明は、
請求項9に記載の発明に係る発電装置を前提とし、
上記熱電変換モジュールにおける太陽電池と接触していない面側の基板表面が、低熱伝導部表面の貫通孔若しくは凹部から露出する高熱伝導部に接続された各温度接触部により被覆されていることを特徴とし、
請求項12に係る発明は、
請求項9に記載の発明に係る発電装置を前提とし、
上記太陽電池が、アモルファス系Si太陽電池であることを特徴とし、
また、請求項13に係る発明は、
請求項9に記載の発明に係る発電装置を前提とし、
上記熱電変換モジュールにおける太陽電池と接触している面側の温度が、太陽電池と接触していない面側の温度より低くなったとき、電気の正負を切り替えるスイッチが熱電変換モジュールの回路中に設けられていることを特徴とするものである。
Next, the invention according to claim 9 is:
Assuming a power generator,
The thermoelectric conversion module according to any one of claims 1 to 8 is adhered to the back side of the solar cell, and the power is generated by a temperature difference between the solar cell and the outside air,
The invention according to claim 10 is:
On the premise of the power generation device according to the invention of claim 9,
When the thermal conductivity of the adhesive used for bonding the solar cell and the thermoelectric conversion module is (W / mK) and the thickness of the adhesive is (d), the ratio of (W / mK) / (d) is 1000 or more. It is characterized by
The invention according to claim 11 is:
On the premise of the power generation device according to the invention of claim 9,
The substrate surface on the surface side not contacting the solar cell in the thermoelectric conversion module is covered with each temperature contact portion connected to the high heat conduction portion exposed from the through hole or the concave portion of the surface of the low heat conduction portion. age,
The invention according to claim 12
On the premise of the power generation device according to the invention of claim 9,
The solar cell is an amorphous Si solar cell,
The invention according to claim 13 is
On the premise of the power generation device according to the invention of claim 9,
When the temperature on the surface side in contact with the solar cell in the thermoelectric conversion module is lower than the temperature on the surface side not in contact with the solar cell, a switch that switches between positive and negative of electricity is provided in the circuit of the thermoelectric conversion module It is characterized by being.

本発明に係る熱電変換モジュールによれば、
p型材料から成る薄膜のp型熱電変換素子とn型材料から成る薄膜のn型熱電変換素子とが直接若しくは金属材料を介し接続された熱電変換ユニットを二次元的に単数あるいは複数配列させた熱電変換ユニット単体あるいはその集合体両面に、熱伝導率の異なる材料で構成された基板がそれぞれ設けられ、一方の基板側を高温側にかつ他方の基板側を低温側に配置して成る熱電変換モジュールにおいて、
上記各基板が、熱伝導率の低い材料で構成されかつ熱電変換ユニット単体あるいはその集合体の表面を被覆する低熱伝導部と、熱伝導率の高い材料で構成されかつ上記低熱伝導部の厚さ方向に沿って設けられた貫通孔若しくは凹部内に埋め込まれると共にその一端側がp型熱電変換素子またはn型熱電変換素子の上記接続部位若しくはその近傍部位に接続または近接され他端側が低熱伝導部表面の貫通孔若しくは凹部から露出する高熱伝導部とで構成され、かつ、低熱伝導部表面の貫通孔若しくは凹部から露出する高熱伝導部の表面が熱伝導率の高い材料で構成される温度接触部に接続される構造を有している。
According to the thermoelectric conversion module according to the present invention,
A thin-film p-type thermoelectric conversion element made of a p-type material and a thin-film n-type thermoelectric conversion element made of an n-type material are connected directly or via a metal material, two-dimensionally arranging one or more thermoelectric conversion units. A thermoelectric conversion unit is formed by arranging substrates made of materials having different thermal conductivities on both sides of a single thermoelectric conversion unit or an assembly thereof, and arranging one substrate side on the high temperature side and the other substrate side on the low temperature side. In the module
Each of the substrates is made of a material having a low thermal conductivity and has a low thermal conductivity part covering the surface of the thermoelectric conversion unit alone or an assembly thereof, and a thickness of the low thermal conductivity part made of a material having a high thermal conductivity. Embedded in a through-hole or recess provided along the direction, and one end thereof is connected to or close to the connection portion of the p-type thermoelectric conversion element or n-type thermoelectric conversion element or its vicinity, and the other end is the surface of the low heat conduction portion A temperature contact portion composed of a material having a high thermal conductivity and a surface of the high thermal conductivity portion exposed from the through hole or the concave portion of the surface of the low thermal conductivity portion. It has a connected structure.

このため、高温部、低温部の温度が、各温度接触部と各基板を介して効率よく熱電変換ユニット(熱電素子部)に伝わるようになり、これにより熱電変換モジュール内に大きな温度差が実現されることになることから発電量を増加、改善させることが可能となる。   For this reason, the temperature of the high temperature part and the low temperature part can be efficiently transmitted to the thermoelectric conversion unit (thermoelectric element part) through each temperature contact part and each substrate, thereby realizing a large temperature difference in the thermoelectric conversion module. As a result, the amount of power generation can be increased and improved.

また、本発明に係る熱電変換モジュールを太陽電池の裏面側に接着させることにより、太陽電池における発電効率の補助を行うことができ、太陽電池の実効的な発電効率を上げることが可能となる。   Moreover, by adhering the thermoelectric conversion module according to the present invention to the back surface side of the solar cell, the power generation efficiency in the solar cell can be assisted, and the effective power generation efficiency of the solar cell can be increased.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

まず、本発明に係る熱電変換モジュールは、図3に示すようにp型材料から成る薄膜のp型熱電変換素子とn型材料から成る薄膜のn型熱電変換素子とが接続された熱電変換ユニット10の両面に、熱伝導率の異なる材料で構成された薄膜の基板20、30がそれぞれ設けられ、一方の基板側を高温側にかつ他方の基板側を低温側に配置して成る熱電変換モジュールであって、上記各基板20、30が、熱伝導率の低い材料で構成されかつ熱電変換ユニット10表面を被覆する低熱伝導部21、31と、熱伝導率の高い材料で構成されかつ上記低熱伝導部21、31の厚さ方向に沿って設けられた貫通孔若しくは凹部内に埋め込まれると共にその一端側がp型熱電変換素子またはn型熱電変換素子の上記接続部位若しくはその近傍部位に接続または近接され他端側が低熱伝導部21、31表面の貫通孔若しくは凹部から露出する高熱伝導部22、32とで構成され、かつ、低熱伝導部21、31表面の貫通孔若しくは凹部から露出する高熱伝導部22、32の表面が熱伝導率の高い材料で構成される温度接触部40、50に接続されていることを特徴としている。   First, a thermoelectric conversion module according to the present invention includes a thermoelectric conversion unit in which a thin film p-type thermoelectric conversion element made of a p-type material and a thin film n-type thermoelectric conversion element made of an n-type material are connected as shown in FIG. 10 are provided with thin-film substrates 20 and 30 made of materials having different thermal conductivities on one side, and one substrate side is disposed on the high temperature side and the other substrate side is disposed on the low temperature side. Each of the substrates 20 and 30 is made of a material having a low heat conductivity and covers the surface of the thermoelectric conversion unit 10, and is made of a material having a high heat conductivity and the low heat conductivity. It is buried in a through hole or a recess provided along the thickness direction of the conductive portions 21 and 31, and one end side thereof is connected to the connection portion of the p-type thermoelectric conversion element or the n-type thermoelectric conversion element or a vicinity thereof. Or the other end side is composed of the high heat conduction portions 22 and 32 exposed from the through holes or the recesses on the surface of the low heat conduction portions 21 and 31, and is exposed from the through holes or the recesses on the surfaces of the low heat conduction portions 21 and 31. The surface of the high heat conduction parts 22 and 32 is connected to temperature contact parts 40 and 50 made of a material having high heat conductivity.

そして、本発明に係る熱電変換モジュールの符号20で示す基板側を高温側に、符号30で示す基板側を低温側にそれぞれ配置した場合、高温の温度接触部40における熱(温度)が高熱伝導部22を介しp型熱電変換素子またはn型熱電変換素子(熱電素子部)に伝わり、また、p型熱電変換素子またはn型熱電変換素子(熱電素子部)からの熱(温度)も高熱伝導部32を介し低温の温度接触部50に効率よく伝わるため、熱電変換モジュール内に大きな温度差を実現させることが可能となる。   And when the board | substrate side shown with the code | symbol 20 of the thermoelectric conversion module which concerns on this invention is each arrange | positioned to the high temperature side, and the board | substrate side shown with the code | symbol 30 is each low temperature side, the heat | fever (temperature) in the high temperature temperature contact part 40 is high heat conduction. It is transmitted to the p-type thermoelectric conversion element or the n-type thermoelectric conversion element (thermoelectric element part) via the part 22, and the heat (temperature) from the p-type thermoelectric conversion element or the n-type thermoelectric conversion element (thermoelectric element part) is also highly thermally conductive. Since the heat is efficiently transmitted to the low temperature contact part 50 via the part 32, a large temperature difference can be realized in the thermoelectric conversion module.

1.熱電変換モジュールの構成
(a)熱電変換材料
熱電変換材料としては、高性能を有するIrSb、BiTe、PbTe等のカルコゲン系化合物の他、熱電特性は低いが資源的に豊富なFeSi、SiGe等の珪化物が挙げられる。また、Si半導体中のキャリアー濃度を1024(1/m)程度になるようにP、B、Al等種々の添加元素の単独または複合添加とその添加量を調整することにより、ゼーベック係数が極めて大きく、熱電変換効率を著しく高めたSi基熱電変換材料も利用することができる。その他、公知のいずれの材質も採用可能である。Siに、Ge、C、Snのうち少なくとも1種を5〜10原子%、Siをp型半導体またはn型半導体となすための添加元素のうち少なくとも1種を0.001原子%〜20原子%含有し、多結晶Siの粒界部に上記Ge、C、Snの1種以上あるいは更に添加元素の1種以上が析出した結晶組織を有するSi基熱電変換材料等のSi基熱電変換材料は熱電変換効率が著しく高いため好ましい。
(b)熱伝導率の高い材料
上記基板の高熱伝導部や温度接触部を構成する熱伝導率の高い材料は金属等であることが好ましく、具体的には、銅、アルミニウム、その他、熱伝導度の高い金属、合金、セラミックス等が挙げられる。また、低温側に配置される基板と高温側に配置される基板の高熱伝導部については、両方とも同一の材料で構成してもよいし異なる材料を用いて構成してもよく任意である。
(c)温度接触部
上記温度接触部の表面は、略黒色の酸化物膜あるいは熱伝導率の高い材料で被覆されていることが好ましい。上記材料としては、銅の酸化物、熱伝導度が高く対環境性の高い樹脂材料等が挙げられ、これにより、高温部、低温部の温度に追随しやすくなり、熱電変換モジュール内部での温度勾配が大きくなり、大発電が可能となり好ましい。
1. Configuration of Thermoelectric Conversion Module (a) Thermoelectric Conversion Material As a thermoelectric conversion material, FeSi 2 which has low thermoelectric properties but is abundant in resources other than chalcogen compounds such as IrSb 3 , Bi 2 Te 3 and PbTe having high performance. And silicides such as SiGe. In addition, by adjusting the amount of various additive elements such as P, B, and Al alone or combined so that the carrier concentration in the Si semiconductor is about 10 24 (1 / m 3 ) and the amount added, the Seebeck coefficient can be increased. Si-based thermoelectric conversion materials that are extremely large and have significantly improved thermoelectric conversion efficiency can also be used. In addition, any known material can be used. In Si, at least one of Ge, C, and Sn is 5 to 10 atomic%, and at least one of additive elements for making Si a p-type semiconductor or an n-type semiconductor is 0.001 atomic% to 20 atomic%. Si-based thermoelectric conversion materials such as Si-based thermoelectric conversion materials containing a crystal structure in which one or more of Ge, C, and Sn or further one or more of additional elements are precipitated are included in the grain boundary portion of polycrystalline Si. This is preferable because the conversion efficiency is remarkably high.
(B) Material with high thermal conductivity It is preferable that the material with high thermal conductivity that constitutes the high thermal conductivity part and the temperature contact part of the substrate is a metal or the like, specifically, copper, aluminum, or other thermal conductivity. Examples include high-grade metals, alloys, and ceramics. Moreover, about the high heat conductive part of the board | substrate arrange | positioned at a low temperature side and the board | substrate arrange | positioned at a high temperature side, both may be comprised with the same material, and may be comprised using a different material, and are arbitrary.
(C) Temperature contact part It is preferable that the surface of the said temperature contact part is coat | covered with the substantially black oxide film or the material with high heat conductivity. Examples of the above materials include copper oxides and resin materials with high thermal conductivity and high environmental resistance. This makes it easy to follow the temperature of the high temperature part and the low temperature part, and the temperature inside the thermoelectric conversion module. This is preferable because the gradient becomes large and large power generation is possible.

また、本発明の熱電変換モジュールにおいては、低温側に配置される基板の上記温度接触部(低温側温度接触部)の表面を粗面化することが好ましい。低温側温度接触部の表面を粗面化するには、砂吹き付け若しくはやすり等で傷つけることを行なえばよく、表面の粗さについては、実効的な表面積が見かけ上の面積の2倍あるいはそれ以上となるように粗くなっていれば効果が大きく、これにより熱伝達係数が2倍以上となるため有効である。   Moreover, in the thermoelectric conversion module of this invention, it is preferable to roughen the surface of the said temperature contact part (low temperature side temperature contact part) of the board | substrate arrange | positioned at a low temperature side. In order to roughen the surface of the low temperature side temperature contact portion, it is only necessary to damage the surface by sandblasting or file. For the surface roughness, the effective surface area is twice or more than the apparent area. The effect is great if it becomes rough so that the heat transfer coefficient becomes twice or more.

また、本発明の熱電変換モジュールにおいては、低温側温度接触部の表面に放熱板を付加した構成を採ることも可能である。このような構成を採ることにより、実効的な表面積を、見かけ上(単に寸法から見られる)表面積の2倍以上にすることが可能で、大きな熱伝達係数(20W/mK以上)を得ることが可能となり、高温部と低温部の大きな温度差が得られ、発電量が大きくなる。 Moreover, in the thermoelectric conversion module of this invention, it is also possible to take the structure which added the heat sink to the surface of the low temperature side temperature contact part. By adopting such a configuration, it is possible to make the effective surface area more than twice the apparent surface area (simply seen from the dimensions), and obtain a large heat transfer coefficient (20 W / m 2 K or more). Therefore, a large temperature difference between the high temperature part and the low temperature part is obtained, and the power generation amount is increased.

図4は、裏面側に熱電変換モジュールが接着された太陽電池における総発電量の樹脂厚依存性をシミュレーションした結果を示すグラフ図である。すなわち、低熱伝導部を構成する熱伝導率の低い材料として熱伝導度0.2W/mKのポリイミド樹脂が適用された熱電変換モジュールを太陽電池の裏面に接着した場合、太陽電池の裏面温度を80℃、大気温を30℃としたとき、低熱伝導部を構成する上記ポリイミド樹脂の樹脂厚(μm)と太陽電池における総発電量との関係を示したものである。尚、上記樹脂厚は熱電変換ユニット単体あるいはその集合体面から低熱伝導部(基板)表面までの距離である。
(d)熱伝導率の低い材料
上記基板の低熱伝導部を構成する熱伝導率の低い材料としては、ポリイミド、発砲スチロール等の樹脂あるいはガラスが挙げられる。そして、基板の熱電変換ユニット単体あるいはその集合体面から表面までの厚さが75μm以上であると、図4に示されるように発電量が現実的な30W/m以上となり好ましいことがわかる。上記基板の熱電変換ユニット単体あるいはその集合体面から表面までの厚さが75μm未満であると、太陽電池の発電量をサポートするためという現実的要望値からは小さくなってしまう場合がある。太陽電池の補助としては、30W/m以上の発電量が望まれるため(発電効率で示すと3%に対応する)、これを確保するため75μm以上が好ましい。尚、低温側に配置される基板と高温側に配置される基板の低熱伝導部についても、両方とも同一の材料で構成してもよいし異なる材料を用いて構成してもよく任意である。
FIG. 4 is a graph showing a result of simulating the resin thickness dependence of the total power generation amount in a solar cell having a thermoelectric conversion module bonded to the back surface side. That is, when a thermoelectric conversion module to which a polyimide resin having a thermal conductivity of 0.2 W / mK is applied as a low thermal conductivity material constituting the low thermal conductivity portion is bonded to the back surface of the solar cell, the back surface temperature of the solar cell is set to 80. The graph shows the relationship between the resin thickness (μm) of the polyimide resin constituting the low heat conduction part and the total power generation amount in the solar cell when the atmospheric temperature is 30 ° C. The resin thickness is a distance from the surface of the thermoelectric conversion unit alone or its aggregate to the surface of the low thermal conductivity portion (substrate).
(D) Low thermal conductivity material Examples of the low thermal conductivity material constituting the low thermal conductivity portion of the substrate include resins such as polyimide and foamed polystyrene, or glass. When the thickness of the thermoelectric conversion unit alone or collectively honor its substrate until the surface is 75μm or more, it can be seen that power generation amount as shown in FIG. 4 is preferable because a realistic 30 W / m 2 or more. If the thickness of the substrate from the single thermoelectric conversion unit or the aggregate surface to the surface thereof is less than 75 μm, the actual desired value for supporting the power generation amount of the solar cell may be reduced. As an auxiliary to the solar cell, a power generation amount of 30 W / m 2 or more is desired (corresponding to 3% in terms of power generation efficiency), and 75 μm or more is preferable to ensure this. It should be noted that the low thermal conductivity portions of the substrate disposed on the low temperature side and the substrate disposed on the high temperature side may both be composed of the same material or may be composed of different materials.

また、上記低熱伝導部を構成する材料は電気的に絶縁材料であり、熱伝導率のできるだけ低い材料が望ましく、目的によってポリイミド、発砲スチロール等の樹脂材料あるいはガラス材料を使い分けることができる。この低熱伝導部は、熱伝導率が低い方が望ましく、また、低熱伝導部の膜厚は、厚い方が熱電変換素子間の温度差が大きくなるので望ましい。   Further, the material constituting the low thermal conductivity portion is an electrically insulating material, and is preferably a material having as low a thermal conductivity as possible. Depending on the purpose, a resin material such as polyimide and foamed polystyrene, or a glass material can be used properly. The low thermal conductivity part is desirably low in thermal conductivity, and the low thermal conductivity part is desirably thick because the temperature difference between thermoelectric conversion elements becomes large.

そして、断熱性が高い従来の立体型熱電変換素子を太陽電池の裏面側に接着した場合、上述したように太陽電池の温度が上昇する危険性があったが、100μm程度の樹脂による低熱伝導部の断熱性はさほど問題にならない。尚、低熱伝導部があまり厚くなると太陽電池自体の温度上昇が問題になる可能性がある。但し、低熱伝導部が数mmでは温度上昇の影響はさほどない。   And when the conventional three-dimensional thermoelectric conversion element with high heat insulation is bonded to the back side of the solar cell, there is a risk that the temperature of the solar cell rises as described above, but the low heat conduction part by the resin of about 100 μm The thermal insulation is not a problem. In addition, when the low heat conduction part becomes too thick, the temperature rise of the solar cell itself may become a problem. However, when the low heat conduction part is several mm, the influence of the temperature rise is not so great.

2.熱電変換モジュールの製造
本発明に係る熱電変換モジュールは、上述したようにp型熱電変換素子とn型熱電変換素子とが直接若しくは金属材料を介し接続された熱電変換ユニットを二次元的に単数あるいは複数配列させた熱電変換ユニット単体あるいはその集合体両面に、低熱伝導部と高熱伝導部とで構成される基板がそれぞれ設けられた構造を有している。
2. Manufacture of Thermoelectric Conversion Module As described above, the thermoelectric conversion module according to the present invention includes a single two-dimensional thermoelectric conversion unit in which a p-type thermoelectric conversion element and an n-type thermoelectric conversion element are connected directly or via a metal material. Each of the thermoelectric conversion units arranged in a plurality or both of the aggregates has a structure in which substrates each composed of a low thermal conductivity portion and a high thermal conductivity portion are provided.

例えば、上記低熱伝導部を構成する厚さ500μmのポリイミド樹脂シートの一方の面に、図5(A)に示すようなp型用マスクを固定し、この状態でスパッタリング装置内に配置し、図5(B)に示すように例えばp型材料を1μm厚程度成膜する。   For example, a p-type mask as shown in FIG. 5A is fixed to one surface of a 500 μm-thick polyimide resin sheet constituting the low thermal conductivity portion, and placed in a sputtering apparatus in this state. As shown in FIG. 5B, for example, a p-type material is formed to a thickness of about 1 μm.

その後、図6(A)に示すようなn型マスクを固定し、p型材料と同じ膜厚となるようにn型材料を成膜し、薄膜のp型熱電変換素子11と薄膜のn型熱電変換素子12とが接続された図7(B)に示す熱電変換ユニット10を二次元的に複数配列させた熱電変換ユニット集合体(図7A参照)が得られる。   After that, an n-type mask as shown in FIG. 6A is fixed, an n-type material is formed so as to have the same film thickness as the p-type material, and the thin film p-type thermoelectric conversion element 11 and the thin film n-type are formed. A thermoelectric conversion unit aggregate (see FIG. 7A) in which a plurality of thermoelectric conversion units 10 shown in FIG. 7B connected to the thermoelectric conversion elements 12 are two-dimensionally arranged is obtained.

更に、図7(A)に示すように、熱電変換ユニット10が複数直列に配列された列ごとに電極13、14を付け、その上に他方側の低熱伝導部を構成する膜厚500μm程度のポリイミド樹脂シートを接着して熱電変換ユニット集合体を挟持する。   Further, as shown in FIG. 7 (A), electrodes 13 and 14 are attached to each row in which a plurality of thermoelectric conversion units 10 are arranged in series, and the film thickness of about 500 μm constituting the other low heat conduction portion is formed thereon. A polyimide resin sheet is bonded to sandwich the thermoelectric conversion unit assembly.

次に、図8(B)に示すように、p型熱電変換素子11とn型熱電変換素子12の接続部位(1.4mm×2.8mm)若しくはその近傍部位15を狙って、高温側に対応する側から、直径0.5mmの穴の開いたマスクを介しエキシマレーザを12.5秒照射して、直径約0.5mmで上記接続部位若しくはその近傍部位が見えるところまで貫通孔を開けると共に、その貫通孔に熱伝導性の良い接着剤を付加して、図8(A)に示すように、例えば、直径0.5mm×0.5mm長の熱伝導性の高い銅材60(高熱伝導部22を構成する)を埋め込む。   Next, as shown in FIG. 8 (B), aiming at the connection part (1.4 mm × 2.8 mm) of the p-type thermoelectric conversion element 11 and the n-type thermoelectric conversion element 12 or its vicinity part 15, Excimer laser is irradiated from the corresponding side for 12.5 seconds through a mask with a hole with a diameter of 0.5 mm, and a through-hole is opened to a position where the connection part or its vicinity can be seen with a diameter of about 0.5 mm. Then, an adhesive having good thermal conductivity is added to the through hole, and as shown in FIG. 8A, for example, a copper material 60 (high thermal conductivity) having a diameter of 0.5 mm × 0.5 mm and having a long thermal conductivity is used. Embedded in the part 22).

同様に、低温側に対応する接続部位(高温側と反対面)若しくはその近傍部位に、直径0.5mmの穴の開いたマスクを介しエキシマレーザを12.5秒照射して、直径0.5mmで接続部位若しくはその近傍部位が見える位置まで貫通孔を開ける。尚、12.5秒以上の長時間照射をすると、熱電素子部も貫通される可能性があるが、12.5秒で止めた場合、熱電素子部はほぼ残っていることが確認されている。その後、直径0.5mmの銅材60表面に熱伝導性を有する接着剤を塗り、上記貫通孔内に埋め込んで高熱伝導部とする。尚、銅材60を埋め込んで高熱伝導部を構成した場合、高熱伝導部による熱電素子部との電気的な接合はできないこともあるが、熱的な接触さえ取れていれば問題はない。従って、銅材が埋め込まれる貫通孔は、熱電素子部側が閉止されその反対の表面側が開放された凹部で構成してもよく、銅材等で構成される高熱伝導部の一端側はp型熱電変換素子またはn型熱電変換素子(熱電素子部)の接続部位若しくはその近傍部位15に接続または近接されていればよい。尚、図8(C)は、断面矩形状の高熱伝導部22、32の一端側が、p型熱電変換素子11またはn型熱電変換素子(熱電素子部)12の接続部位若しくはその近傍部位15に接続または近接された状態を示す概念図である。   Similarly, an excimer laser is irradiated for 12.5 seconds through a mask having a hole with a diameter of 0.5 mm to a connection portion corresponding to the low temperature side (surface opposite to the high temperature side) or its vicinity, and the diameter is 0.5 mm. The through-hole is opened to the position where the connection site or its vicinity can be seen. In addition, if it is irradiated for a long time of 12.5 seconds or longer, there is a possibility that the thermoelectric element part is also penetrated. However, when it is stopped in 12.5 seconds, it is confirmed that the thermoelectric element part is almost left. . Thereafter, an adhesive having thermal conductivity is applied to the surface of the copper material 60 having a diameter of 0.5 mm, and is embedded in the through hole to form a high thermal conductivity portion. In addition, when the high heat conduction part is constituted by embedding the copper material 60, the high heat conduction part may not be electrically connected to the thermoelectric element part, but there is no problem as long as the thermal contact is obtained. Therefore, the through-hole in which the copper material is embedded may be constituted by a recess in which the thermoelectric element portion side is closed and the opposite surface side is opened, and one end side of the high heat conduction portion made of copper material or the like is p-type thermoelectric. What is necessary is just to be connected to or close to the connection part of the conversion element or the n-type thermoelectric conversion element (thermoelectric element part) or its vicinity 15. In FIG. 8C, one end side of the high heat conduction portions 22 and 32 having a rectangular cross section is connected to the connection portion of the p-type thermoelectric conversion element 11 or the n-type thermoelectric conversion element (thermoelectric element portion) 12 or a vicinity portion 15 thereof. It is a conceptual diagram which shows the state connected or adjoined.

更に、基板における低熱伝導部21の熱電変換ユニット10の位置に対応する部位に膜が形成できるようなマスクを介して、図9に示すように高温側の温度接触部(例えば、Cuを用い、膜厚約10μm厚)40をスパッタリングにより形成し、かつ、反対側の低熱伝導部31にも低温側の温度接触部(放熱用薄膜と称する場合がある)を形成して図9に示す熱電変換モジュールが得られる。   Further, through a mask on which a film can be formed at a position corresponding to the position of the thermoelectric conversion unit 10 of the low heat conduction portion 21 on the substrate, as shown in FIG. 9, the temperature contact portion on the high temperature side (for example, using Cu, 9 is formed by sputtering, and the low-temperature conductive portion 31 on the opposite side is also provided with a low-temperature-side temperature contact portion (sometimes referred to as a thin film for heat dissipation). A module is obtained.

尚、熱電変換ユニット10内のp型熱電変換素子11またはn型熱電変換素子12の接続部位若しくはその近傍部位15に熱的接触している高熱伝導部22、32の接触サイズと、高温側の温度接触部40、低温側の温度接触部50の断面サイズとは必ずしも一致しなくとも良い。特に、低温側温度接触部50の断面サイズ(例えば大気との温度接触部の面積)は、ほぼ熱電変換ユニット10全面に広がるほうが良い。これは、低温側の放熱が十分になされた方が、熱電変換素子内での発電が大きいからである。図11のグラフ図は、放熱度との関係をシミュレーションした結果を示している。ここで、放熱係数というのは、低温側に配置される温度接触部の(低温部の面積)×(凸凹度)×(熱伝導度)という積に対応する量である。従って、面積は大きい方が良い。しかし、隣接する熱電変換ユニットまで温度接触部が広がると電気的に接触してしまうので、熱電変換ユニット毎に放熱のための熱伝導性の良い金属等で覆い、低温側の温度接触部と熱的に連結させることが良い。また、できるだけ放熱しやすいように、低温側の温度接触部の表面を凸凹にしたほうが良い。表面積を稼ぐため、立体構造にして放熱フィンを付ける方がより温度差が付きやすく、発電量が大きくなり効果的である。   It should be noted that the contact size of the high thermal conductive portions 22 and 32 that are in thermal contact with the connection portion of the p-type thermoelectric conversion element 11 or the n-type thermoelectric conversion element 12 in the thermoelectric conversion unit 10 or the vicinity thereof 15, The cross-sectional sizes of the temperature contact portion 40 and the temperature contact portion 50 on the low temperature side do not necessarily need to match. In particular, the cross-sectional size of the low temperature side temperature contact portion 50 (for example, the area of the temperature contact portion with the atmosphere) should be spread almost over the entire thermoelectric conversion unit 10. This is because the power generation in the thermoelectric conversion element is larger when the heat radiation on the low temperature side is sufficiently performed. The graph of FIG. 11 shows the result of simulating the relationship with the heat dissipation. Here, the heat dissipation coefficient is an amount corresponding to a product of (area of the low temperature portion) × (roughness) × (thermal conductivity) of the temperature contact portion arranged on the low temperature side. Therefore, a larger area is better. However, if the temperature contact part spreads to the adjacent thermoelectric conversion unit, it will come into electrical contact, so each thermoelectric conversion unit is covered with a metal with good thermal conductivity for heat dissipation, etc. It is better to connect them. Moreover, it is better to make the surface of the temperature contact portion on the low temperature side uneven so that heat can be radiated as easily as possible. In order to increase the surface area, a three-dimensional structure and heat radiation fins are more likely to have a temperature difference, and the amount of power generation is large and effective.

また、本発明に係る熱電変換モジュールにおいては、p型熱電変換素子11とn型熱電変換素子12から成る熱電変換ユニットが二次元的に単数あるいは複数配列された熱電変換ユニット単体あるいはその集合体を図17に示すように電気絶縁層70を介し複数積層させた構造にしてもよい。   Further, in the thermoelectric conversion module according to the present invention, a single thermoelectric conversion unit or an assembly thereof in which a thermoelectric conversion unit composed of a p-type thermoelectric conversion element 11 and an n-type thermoelectric conversion element 12 is arranged one-dimensionally or plurally. As shown in FIG. 17, a structure in which a plurality of layers are stacked with an electrical insulating layer 70 interposed therebetween may be used.

3.基板における「高熱伝導部の断面積」と「低熱伝導部の断面積」の最適条件
一方の基板における高熱伝導部81表面が接続される温度接触部80が高温側若しくは低温側に配置され、他方の基板における温度接触部80が大気側に熱的に接した状態で配置される本発明に係る熱電変換モジュールにおいて、
その発電量が最大となる熱流の条件は、
上記基板における高熱伝導部81の熱伝導度(κc)並びに断面積(Sc)と、上記基板における低熱伝導部82の熱伝導度(κa)並びに断面積(Sa)とが、
1.2κa×Sa ≧ κc×Sc (式1)
の関係を有し、かつ
0.8κa×Sa ≦ κc×Sc (式2)
の関係を有する場合である。
3. Optimum conditions of “cross-sectional area of high heat conduction part” and “cross-sectional area of low heat conduction part” in the substrate The temperature contact part 80 to which the surface of the high heat conduction part 81 in one substrate is connected is arranged on the high temperature side or the low temperature side, In the thermoelectric conversion module according to the present invention in which the temperature contact portion 80 in the substrate is disposed in a state of being in thermal contact with the atmosphere side,
The heat flow condition that maximizes the power generation is
The thermal conductivity (κc) and the cross-sectional area (Sc) of the high thermal conductivity portion 81 in the substrate, and the thermal conductivity (κa) and the cross-sectional area (Sa) of the low thermal conductivity portion 82 in the substrate are:
1.2κa × Sa ≧ κc × Sc (Formula 1)
And having a relationship
0.8κa × Sa ≦ κc × Sc (Formula 2)
It is a case where it has the relationship of.

以下、熱電変換モジュール(但し、簡略化のため熱電変換ユニット集合体でなしに熱電変換ユニット単体を想定)内における熱流が図12に示す熱流と仮定して説明する。   Hereinafter, description will be made assuming that the heat flow in the thermoelectric conversion module (however, for the sake of simplicity, the thermoelectric conversion unit alone is assumed instead of the thermoelectric conversion unit aggregate) is the heat flow shown in FIG.

ここで、各記号の意味は以下の通りである。   Here, the meaning of each symbol is as follows.

S0:熱電変換ユニット(熱電素子83)一つあたりの基板における断面積=Sa+Sc
Sc:熱電変換ユニット(熱電素子)一つあたりの基板における高熱伝導部の断面積
Sa:熱電変換ユニット(熱電素子)一つあたりの基板における低熱伝導部の断面積
St:熱電変換ユニット(熱電素子)一つあたりの断面積
d:「低熱伝導部」の厚さ
L:熱電変換ユニット(熱電素子)の長さ
κc:高熱伝導部の熱伝導度
κa:低熱伝導材料の熱伝導度
κt:熱電変換ユニット(熱電素子)の熱伝導度
α:T5(大気)からの放熱係数
Pf:熱電変換ユニット(熱電素子)のパワーファクター=S /(ρ+ρ
ρ+ρ:n型材料、p型材料の電気伝導度
:ゼーベック係数
Q0:熱電変換ユニット(熱電素子)一つあたりに太陽光から照射されるエネルギー
(1m2では1000W)、
また、これは、
Q0=α・S0・(T5−T4):低温側の面から放出されるエネルギーにも等しい。
S0: Cross-sectional area of substrate per thermoelectric conversion unit (thermoelectric element 83) = Sa + Sc
Sc: Cross-sectional area of high heat conduction part in substrate per thermoelectric conversion unit (thermoelectric element) Sa: Cross-sectional area of low heat conduction part in substrate per thermoelectric conversion unit (thermoelectric element) St: Thermoelectric conversion unit (thermoelectric element) ) Cross section per unit d: Thickness of “low thermal conduction part” L: Length of thermoelectric conversion unit (thermoelectric element) κc: Thermal conductivity of high thermal conduction part κa: Thermal conductivity of low thermal conduction material κt: Thermoelectric Thermal conductivity of conversion unit (thermoelectric element) α: Heat dissipation coefficient from T5 (atmosphere) Pf: Power factor of thermoelectric conversion unit (thermoelectric element) = S B 2 / (ρ n + ρ p )
ρ n + ρ p : Electric conductivity of n-type material and p-type material S B : Seebeck coefficient Q 0: Energy irradiated from sunlight per thermoelectric conversion unit (thermoelectric element) (1000 W at 1 m 2 ),
This is also
Q0 = α · S0 · (T5−T4): Equal to the energy released from the low temperature side surface.

ここで、図12に示す熱流(Q)と上記定義との間に以下の関係式が成立する。   Here, the following relational expression is established between the heat flow (Q) shown in FIG. 12 and the above definition.

Q1=κc×Sc×(T1−T2)×2/d
Q2=κa×Sa×(T1−T4)/d
Q3=κa×Sc×(T1−T3)×2/d
Q4=κa×Sc×(T2−T4)×2/d
Q5=κc×Sc×(T3−T4)×2/d
Q6=κt×St×(T2−T3)/L
また、上記熱流の間に、熱流連続の関係より以下の関係式が成立する。
Q1 = κc × Sc × (T1-T2) × 2 / d
Q2 = κa × Sa × (T1−T4) / d
Q3 = κa × Sc × (T1−T3) × 2 / d
Q4 = κa × Sc × (T2−T4) × 2 / d
Q5 = κc × Sc × (T3−T4) × 2 / d
Q6 = κt × St × (T2−T3) / L
Further, the following relational expression is established between the heat flows from the relationship of continuous heat flow.

Q0=Q1+Q2+Q3
Q1=Q4+Q6
Q5=Q3+Q6
熱流連続の関係より求められたこれ等3式と、上記Q0=α・S0・(T5−T4)の合計4式を連立させると、4変数である各温度T1、T2、T3、T4を自動的に求めることができる。但し、T5は大気温度で、例えば30℃というように固定した値である。
Q0 = Q1 + Q2 + Q3
Q1 = Q4 + Q6
Q5 = Q3 + Q6
When these three formulas obtained from the relationship of continuity of heat flow and the above four formulas of Q0 = α · S0 · (T5−T4) are combined, each temperature T1, T2, T3, T4, which are four variables, is automatically set. Can be obtained. However, T5 is an atmospheric temperature, for example, a fixed value such as 30 ° C.

これらの関係式から求められた温度差(T2−T3)を用いれば、熱電変換ユニット(熱電素子)の発電量が求められる。   If the temperature difference (T2−T3) obtained from these relational expressions is used, the power generation amount of the thermoelectric conversion unit (thermoelectric element) can be obtained.

すなわち、熱電変換ユニット(熱電素子)一つあたりの発電量Pwは、
Pw=Pf×(T2−T3)×St/L
の最大となる条件を求めればよい。
That is, the power generation amount Pw per thermoelectric conversion unit (thermoelectric element) is
Pw = Pf × (T2−T3) 2 × St / L
What is necessary is just to obtain | require the conditions which become the maximum of.

定性的には、発電量を決定する温度差ΔT=|T2−T3|を大きくするには温度T1、温度T4の温度差を大きくする必要がある。   Qualitatively, in order to increase the temperature difference ΔT = | T2−T3 | that determines the amount of power generation, it is necessary to increase the temperature difference between the temperatures T1 and T4.

そのためには、低熱伝導材部の熱伝導度を出来るだけ小さくし、低熱伝導材部を厚くし、高温部、低温部に熱的に接続する高熱伝導部の熱伝導度を上げることが重要である。   For this purpose, it is important to reduce the thermal conductivity of the low thermal conductivity material part as much as possible, thicken the low thermal conductivity material part, and increase the thermal conductivity of the high thermal conductivity part thermally connected to the high temperature part and the low temperature part. is there.

高熱伝導部を太くすると、T1とT4の温度差が小さくなり、結局、T2とT3の温度差が小さくなる。また、高熱伝導部の断面積を小さくすると、T1、T4の温度差は大きくなるが、T2とT3の温度差は小さくなる。   If the high heat conduction part is made thick, the temperature difference between T1 and T4 becomes small, and eventually the temperature difference between T2 and T3 becomes small. Further, when the cross-sectional area of the high heat conducting portion is reduced, the temperature difference between T1 and T4 increases, but the temperature difference between T2 and T3 decreases.

このため、熱電変換モジュールの発電量を最大とする適正値が存在することがわかる。   For this reason, it turns out that the appropriate value which maximizes the electric power generation amount of a thermoelectric conversion module exists.

上記結果、発電量Pwが最大値となるのは、「κa×Sa」の値と「κc×Sc」の値が略等しい条件が満たされる付近であることがわかる。   As a result, it can be seen that the power generation amount Pw has the maximum value in the vicinity where the value of “κa × Sa” is substantially equal to the value of “κc × Sc”.

最大の発電量の8割以上が確保される範囲を発電量の好ましい範囲として条件を求めると、
1.2κa×Sa ≧ κc×Sc (式1)
と、
0.8κa×Sa ≦ κc×Sc (式2)
の間が好ましい範囲であることが求められる。
When the condition is obtained by setting a range where 80% or more of the maximum power generation amount is secured as a preferable range of power generation amount
1.2κa × Sa ≧ κc × Sc (Formula 1)
When,
0.8κa × Sa ≦ κc × Sc (Formula 2)
Is required to be within a preferred range.

4.発電装置
本発明に係る発電装置は、上記熱電変換モジュールが太陽電池の裏面側に接着され、太陽電池と外気温等との温度差で発電することを特徴とするものである。
4). Power Generation Device The power generation device according to the present invention is characterized in that the thermoelectric conversion module is bonded to the back side of the solar cell and generates power with a temperature difference between the solar cell and the outside air temperature.

このような構成にすることにより、太陽電池裏面と外気温の温度差を利用して発電させることができ、これによって太陽電池の温度上昇に起因した発電効率の低下を改善することができる。   With such a configuration, it is possible to generate power using the temperature difference between the back surface of the solar cell and the outside air temperature, thereby improving the decrease in power generation efficiency due to the temperature increase of the solar cell.

ところで、本発明に係る発電装置においては、太陽電池と熱電変換モジュールとの接着に用いる接着剤の熱伝導率と接着剤の厚みが発電効率に関係し、接着剤の熱伝導率を(W/mK)、接着剤の厚みを(d)としたとき、(W/mK)/(d)の比が1000以上であることが好ましい。0.1(W/mK)程度の低熱電度材料である樹脂内を流れる熱は、その厚みが1mm程度のとき、0.1/10−3=100程度となる。太陽電池との接着部で熱抵抗となってはいけないので、上記樹脂の熱流と較べて接着部内の熱流は10倍以上、すなわち、(W/mK)/(d)の比が1000以上あることが望ましい。 By the way, in the power generation device according to the present invention, the thermal conductivity of the adhesive used for bonding the solar cell and the thermoelectric conversion module and the thickness of the adhesive are related to the power generation efficiency, and the thermal conductivity of the adhesive is (W / mK), where the thickness of the adhesive is (d), the ratio of (W / mK) / (d) is preferably 1000 or more. The heat flowing through the resin, which is a low thermoelectric material of about 0.1 (W / mK), is about 0.1 / 10 −3 = 100 when the thickness is about 1 mm. Since it should not become a thermal resistance at the bonding portion with the solar cell, the heat flow in the bonding portion is 10 times or more compared to the heat flow of the resin, that is, the ratio of (W / mK) / (d) is 1000 or more. Is desirable.

また、熱電変換モジュールにおける太陽電池と接触していない面側の各熱電変換ユニットの基板表面については、低熱伝導部表面の貫通孔若しくは凹部から露出する高熱伝導部に接続された各温度接触部により被覆されていることが好ましい。   Moreover, about the board | substrate surface of each thermoelectric conversion unit of the surface side which is not in contact with the solar cell in a thermoelectric conversion module, by each temperature contact part connected to the high heat conduction part exposed from the through-hole or recessed part of the surface of a low heat conduction part It is preferably coated.

ここで、本発明に係る熱電変換モジュールが接着される太陽電池の種類は特に限定されず、例えば、アモルファス系Si太陽電池が挙げられる。アモルファス系Si太陽電池は、結晶系Si太陽電池と較べると太陽光の吸収係数が大きいためSiの膜厚は1μm以下で済む。また、アモルファス系Siを樹脂の上に成膜できることもありフレキシブルな太陽電池も作れる。但し、発電効率は低く、平均8%程度であるため、屋根の上に載せるタイプでは、4kWを実現するには大面積が必要となり、安価でも使用範囲は限られている。しかし、アモルファス系Si太陽電池は、結晶系Si太陽電池と異なり、温度が上昇しても発電効率が落ちないという特色がある。従って、厚めの樹脂等で構成される基板により挟んだ本発明に係る熱電変換モジュールを、太陽電池の裏面に接着したタイプではより高効率の発電が実現できる。そして、どんなタイプの太陽電池に対しても、太陽電池自身の発電とは独立に本発明に係る熱電変換モジュールにより発電を付加できるので、どんなタイプの太陽電池にも本発明に係る熱電変換モジュールを利用することができる。   Here, the kind of solar cell to which the thermoelectric conversion module according to the present invention is bonded is not particularly limited, and examples thereof include amorphous Si solar cells. Amorphous Si solar cells have a larger solar absorption coefficient than crystalline Si solar cells, so the film thickness of Si is 1 μm or less. In addition, since amorphous Si can be formed on a resin, a flexible solar cell can be made. However, since the power generation efficiency is low, about 8% on average, the type mounted on the roof requires a large area to achieve 4 kW, and the range of use is limited even at a low price. However, unlike crystalline Si solar cells, amorphous Si solar cells have a feature that power generation efficiency does not decrease even when the temperature rises. Therefore, the type in which the thermoelectric conversion module according to the present invention sandwiched between substrates made of thick resin or the like is bonded to the back surface of the solar cell can realize more efficient power generation. Since any type of solar cell can be powered by the thermoelectric conversion module according to the present invention independently of the solar cell itself, the thermoelectric conversion module according to the present invention can be applied to any type of solar cell. Can be used.

次に、本発明に係る発電装置においては、熱電変換モジュールにおける太陽電池と接触している面側の温度が、太陽電池と接触していない面側の温度より低くなったとき、電気の正負を切り替えるスイッチが熱電変換モジュールの回路中に設けられていることが好ましい。上記スイッチを設ける理由は、太陽電池と接触している面側の温度が必ずしも高温部になるとは限らず、外気温あるいは太陽電池の設置の仕方によっては低温部となり、逆電圧を発生することがあるからである。この場合、スイッチで正負を切り替える構造にしておけば、太陽のない夜でも発電が可能となる。従って、電気の正負を自動的に切り替えることのできるスイッチを回路中に設けておくことが好ましい。尚、本明細書においては、特に必要の無い限り、太陽電池の裏面との接着部側が高温部として説明している。   Next, in the power generation device according to the present invention, when the temperature on the surface side in contact with the solar cell in the thermoelectric conversion module becomes lower than the temperature on the surface side not in contact with the solar cell, the positive / negative of electricity is determined. It is preferable that the switch to switch is provided in the circuit of the thermoelectric conversion module. The reason for providing the switch is that the temperature on the surface side in contact with the solar cell is not necessarily a high temperature part, and depending on the outside air temperature or the way of installing the solar cell, it becomes a low temperature part and may generate a reverse voltage. Because there is. In this case, if the structure is switched between positive and negative with a switch, power generation is possible even at night without the sun. Therefore, it is preferable to provide a switch in the circuit that can automatically switch between positive and negative. In the present specification, unless otherwise specified, the bonding portion side with the back surface of the solar cell is described as a high temperature portion.

以下、本発明の実施例を具体的に説明するが、本発明は以下の実施例によって限定されるものではない。   Examples of the present invention will be specifically described below, but the present invention is not limited to the following examples.

厚さ500μmのポリイミド樹脂シートの一方の面に、図5(A)に示すようなp型用マスクを固定し、この状態でスパッタリング装置内に配置し、p型材料である鉄を1μm厚で図5(B)に示すパターン形状に成膜した。   A p-type mask as shown in FIG. 5 (A) is fixed to one surface of a polyimide resin sheet having a thickness of 500 μm, and placed in a sputtering apparatus in this state, and p-type material iron is 1 μm thick. The film was formed in the pattern shape shown in FIG.

次に、図6(A)に示すようなn型マスクを固定し、p型材料と同じ膜厚となるようにn型材料であるNiを図6(B)に示すパターン形状に成膜して、鉄から成る薄膜のp型熱電変換素子11とNiから成る薄膜のn型熱電変換素子12とが直接接続された熱電変換ユニット10を、二次元的に横7列かつ縦8列に配列させた熱電変換ユニット集合体(図7A参照)を得た。   Next, an n-type mask as shown in FIG. 6A is fixed, and Ni as an n-type material is formed in a pattern shape shown in FIG. 6B so as to have the same film thickness as the p-type material. The thermoelectric conversion units 10 in which the thin film p-type thermoelectric conversion elements 11 made of iron and the thin film n-type thermoelectric conversion elements 12 made of Ni are directly connected are two-dimensionally arranged in seven horizontal rows and eight vertical rows. A thermoelectric conversion unit assembly (see FIG. 7A) was obtained.

更に、図7(A)に示すように熱電変換ユニット10が横7列に直列にされた列ごとに電極13、14を付け、3cm×3cmの中に、全体で計100個の熱電変換ユニット(熱電素子)を形成した後、その上に厚さ500μm程度のポリイミド樹脂シートを接着して熱電変換ユニット集合体を挟持させた。   Furthermore, as shown in FIG. 7 (A), electrodes 13 and 14 are attached to each row in which thermoelectric conversion units 10 are arranged in series in 7 horizontal rows, and a total of 100 thermoelectric conversion units in 3 cm × 3 cm. After the (thermoelectric element) was formed, a polyimide resin sheet having a thickness of about 500 μm was adhered thereon to sandwich the thermoelectric conversion unit assembly.

次に、図8(B)に示すように、p型熱電変換素子11とn型熱電変換素子12の接続部位(1.4mm×2.8mm)を狙って、高温側に対応する側から直径0.5mmの穴の開いたマスクを介しエキシマレーザをあてて、直径約0.5mmで上記接続部位が見えるところまで貫通孔を開けると共に、その貫通孔に熱伝導性の良い接着剤(XILENCE社製 silver tim)を付加して、図8(A)に示すように、直径0.5mm×0.5mm長の熱伝導性の高い銅材60(高熱伝導部22を構成する)を埋め込んだ。   Next, as shown in FIG. 8B, the diameter from the side corresponding to the high temperature side is aimed at the connection part (1.4 mm × 2.8 mm) of the p-type thermoelectric conversion element 11 and the n-type thermoelectric conversion element 12. An excimer laser is applied through a mask with a hole of 0.5 mm, and a through hole is drilled to the point where the connection site can be seen with a diameter of about 0.5 mm. Adhesive with good thermal conductivity (XILENCE) As shown in FIG. 8A, a copper material 60 having a diameter of 0.5 mm × 0.5 mm and having a high thermal conductivity (constituting the high thermal conductivity portion 22) was embedded.

同様に、低温側に対応する接続部位(高温側と反対面)に、直径0.5mmの穴の開いたマスクを介しエキシマレーザをあてて、直径0.5mmで接続部位が見える位置まで貫通孔を開けた。   Similarly, an excimer laser is applied to the connection site corresponding to the low temperature side (the surface opposite to the high temperature side) through a mask having a hole with a diameter of 0.5 mm, and the through hole reaches a position where the connection site can be seen with a diameter of 0.5 mm. Opened.

尚、上記エキシマレーザの照射条件は以下の通りである。   The excimer laser irradiation conditions are as follows.

エキシマレーザー:Exitech社製 エキシマレーザ加工機 PS2000
使用波長:248(nm)
使用した光学系:10倍レンズ
発信周波数=100 Hz
エネルギー密度=2 J/cmとなるように、約1cm×5cmに広げた。
Excimer laser: Exitech excimer laser processing machine PS2000
Wavelength used: 248 (nm)
Optical system used: 10x lens Transmission frequency = 100 Hz
It was expanded to about 1 cm × 5 cm so that the energy density = 2 J / cm 2 .

孔径:直径0.5mm
また、上記条件でポリイミド樹脂シートへの1照射(100Hz)あたりの貫通孔の深さを計測したところ0.4μmであり、厚さ500μmのポリイミド樹脂シートの場合、1250回の照射で十分であることが確認されたので1回12.5秒照射することにした。
Hole diameter: 0.5mm diameter
Moreover, when the depth of the through-hole per 1 irradiation (100 Hz) to a polyimide resin sheet was measured on the said conditions, it is 0.4 micrometer, and in the case of a 500 micrometer-thick polyimide resin sheet, 1250 times of irradiation is enough. Therefore, it was decided to irradiate once for 12.5 seconds.

その後、図8(A)に示すように直径0.5mm×0.5mm長の銅材60表面に熱伝導性を有する接着剤(XILENCE社製 silver tim)を塗り、上記貫通孔内に埋め込んで高熱伝導部とした。尚、銅材60を埋め込んで高熱伝導部を形成する作業において、上記接続部位の確認は厳密にはわかりにくいので、接続部位と高熱伝導部とは略接触(熱的接触)していればよい。   Thereafter, as shown in FIG. 8 (A), an adhesive (silver tim manufactured by XILENCE) is applied to the surface of the copper material 60 having a diameter of 0.5 mm × 0.5 mm and embedded in the through hole. A high heat conduction part was obtained. In addition, in the operation | work which embeds the copper material 60 and forms a highly heat-conductive part, since the confirmation of the said connection part is hard to understand exactly | strictly, the connection part and the high heat-conduction part should just be substantially contact (thermal contact). .

更に、低熱伝導部21の熱電変換ユニット10の位置に対応する部位に膜が形成できるようなマスクを介して、図9に示すように高温側の温度接触部(Cuを用い、膜厚約10μm厚)40をスパッタリングにより形成し、かつ、反対側の低熱伝導部31にも低温側の温度接触部(放熱用薄膜)を形成して図9に示す熱電変換モジュールを得た。   Further, through a mask capable of forming a film at a position corresponding to the position of the thermoelectric conversion unit 10 of the low heat conducting portion 21, as shown in FIG. 9, the temperature contact portion on the high temperature side (Cu is used and the film thickness is about 10 μm. Thickness 40 was formed by sputtering, and a low-temperature-side temperature contact portion (thin film for heat dissipation) was also formed on the opposite low-temperature conductive portion 31 to obtain a thermoelectric conversion module shown in FIG.

そして、得られた熱電変換モジュールの一方の表面を、市販の太陽電池(ダイワ太陽電池L型:単結晶Si使用。110mm×60mm)の裏側に、上記接着剤(XILENCE社製 silver tim)を用いて接着した。   And one surface of the obtained thermoelectric conversion module was used for the back side of a commercially available solar cell (Daiwa solar cell L type: single crystal Si used. 110 mm × 60 mm) with the above adhesive (silver tim manufactured by XILENCE). And glued.

夏の晴天時の正午頃、太陽電池を太陽の方向に向け、略1時間経過後、太陽電池の裏面の熱電変換モジュールの近傍の温度を計測したところ83℃を示し、外気温は28℃であった。そして、熱電変換モジュールの表面は68℃であることから、熱電変換モジュールの高温側と低温側の温度差は15℃(=83℃−68℃)であると判断できる。   Around noon during summer sunny weather, the solar cell was pointed in the direction of the sun, and after about 1 hour, the temperature in the vicinity of the thermoelectric conversion module on the back of the solar cell was measured to show 83 ° C, and the outside temperature was 28 ° C. there were. And since the surface of a thermoelectric conversion module is 68 degreeC, it can be judged that the temperature difference of the high temperature side and low temperature side of a thermoelectric conversion module is 15 degreeC (= 83 degreeC-68 degreeC).

このとき、太陽電池の発電量は1.4V×420mA=0.59Wであった。これを1mでの変換効率に換算すると8.9%である。一方、熱電変換モジュールからの電力は45mV×3mA=135μWであった。 At this time, the power generation amount of the solar cell was 1.4 V × 420 mA = 0.59 W. When this is converted into the conversion efficiency at 1 m 2 , it is 8.9%. On the other hand, the power from the thermoelectric conversion module was 45 mV × 3 mA = 135 μW.

今回は、Fe−Ni系の熱伝導度が大きい材料で試したので電力は低かったが、同条件でBi−Te系を使用すると仮定すると20W/mの電力となり、太陽電池の実効的な変換効率に換算すると2%となる。従って、太陽電池の効率をかなりの割合でカバーできることが確認される。 This time, the power was low because it was tried with a material with high thermal conductivity of Fe-Ni system. However, assuming that the Bi-Te system is used under the same conditions, the power is 20 W / m 2 , which is effective for solar cells. In terms of conversion efficiency, it becomes 2%. Therefore, it is confirmed that the efficiency of the solar cell can be covered at a considerable rate.

実施例1と略同様にして熱電変換モジュールを作製した。尚、実施例1で用いたマスクを変更することにより、p型熱電変換素子とn型熱電変換素子の配置について図10に示すような高温部同士と低温部同士が隣り合うような構造配置とした。この構造配置の方が高温部と低温部のコントラストが作りやすい。   A thermoelectric conversion module was produced in substantially the same manner as in Example 1. In addition, by changing the mask used in Example 1, the arrangement of the p-type thermoelectric conversion element and the n-type thermoelectric conversion element is such that the high-temperature parts and the low-temperature parts are adjacent to each other as shown in FIG. did. With this structure arrangement, the contrast between the high temperature part and the low temperature part is easier to make.

そして、この熱電変換モジュールを上記接着剤(XILENCE社製 silver tim)を用いてアモルファスシリコン樹脂製太陽電池(三洋製 AT-7665:56mm×58mm)の裏側に接着し、かつ、実施例1と同様の条件で測定を行なった。   This thermoelectric conversion module is adhered to the back side of an amorphous silicon resin solar cell (SANYO AT-7665: 56 mm × 58 mm) using the above-mentioned adhesive (silver tim manufactured by XILENCE), and the same as in Example 1. The measurement was performed under the following conditions.

樹脂製太陽電池の温度は略80℃付近であった。熱電変換モジュールの温度は測れなかったが、熱電変換モジュールからの発電量は150μWであった。アモルファスシリコン樹脂製太陽電池自体が半透明なため、実施例1よりも温度差がつきやすいと思われる。   The temperature of the resin-made solar cell was about 80 ° C. Although the temperature of the thermoelectric conversion module could not be measured, the amount of power generated from the thermoelectric conversion module was 150 μW. Since the amorphous silicon resin solar cell itself is translucent, it seems that the temperature difference is more likely than in Example 1.

このとき、太陽電池自体からの発電量は4V×10mA=4×10−2Wであった。 At this time, the amount of power generated from the solar cell itself was 4 V × 10 mA = 4 × 10 −2 W.

これを1mの時の発電量に換算すると、12.3W/m(変換効率では約1.23%)となる。熱電変換素子の材料としてBi−Te系を用いると仮定し、ゼーベック係数、熱伝導度等を利用して計算すると発電量は20W/mとなり、アモルファスSi樹脂製太陽電池よりも発電量が大きくなることが確認される。 When this is converted into the amount of power generated at 1 m 2 , it is 12.3 W / m 2 (conversion efficiency is about 1.23%). Suppose used Bi-Te-based as the material of the thermoelectric conversion element, Seebeck coefficient, the power generation amount and calculated using the thermal conductivity and the like 20W / m 2, and the larger amount of power generation than the amorphous Si resin solar cell It is confirmed that

図13(A)に示すように片面に銅箔90(膜厚8μm)が貼られたポリイミドシート91(厚さ38μm)の上記銅箔90をエッチング処理して、図13(B)に示すように帯状の熱電極92を形成した。尚、これ等熱電極92の形成部位は、以下に述べる熱電変換ユニット(熱電素子)の低温部、高温部の位置にそれぞれ対応するように設けられている。また、図13(B)に示すように、上側に図示したポリイミドシート91の片面には3本の帯状の熱電極92が設けられ、下側に図示したポリイミドシート91の片面には2本の帯状の熱電極92がそれぞれ設けられており、これ等2枚のポリイミドシート91の銅箔90が貼り付けられていない面同士を重ねた際、上記帯状の熱電極92がそれぞれ重なり合わないような位置関係となるように各熱電極92が設けられている。   As shown in FIG. 13 (B), the copper foil 90 of the polyimide sheet 91 (thickness 38 μm) having a copper foil 90 (film thickness 8 μm) on one side is etched as shown in FIG. A band-shaped thermal electrode 92 was formed on the substrate. These formation portions of the thermal electrodes 92 are provided so as to correspond to the positions of the low temperature portion and the high temperature portion of the thermoelectric conversion unit (thermoelectric element) described below. As shown in FIG. 13B, three belt-like thermal electrodes 92 are provided on one side of the polyimide sheet 91 shown on the upper side, and two pieces are provided on one side of the polyimide sheet 91 shown on the lower side. Each of the strip-shaped thermal electrodes 92 is provided, and when the surfaces of the two polyimide sheets 91 to which the copper foil 90 is not attached are overlapped, the strip-shaped thermal electrodes 92 do not overlap each other. Each thermal electrode 92 is provided so as to have a positional relationship.

次に、2本の帯状の熱電極92が設けられたポリイミドシート91の他方の面(銅箔90が貼り付けられていない面)上に、図13(C)に示すように、BiTeとSbTeを用いて、スパッタリング法によりp型熱電変換素子11とn型熱電変換素子12を形成し、かつ、これ等素子の一端側において電極(金属材料)93により接続されたコ字形状を有する複数の熱電変換ユニット(熱電素子)すなわち熱電変換ユニット集合体を作製した。   Next, as shown in FIG. 13C, BiTe and SbTe are formed on the other surface (the surface on which the copper foil 90 is not attached) of the polyimide sheet 91 provided with the two strip-shaped thermal electrodes 92. The p-type thermoelectric conversion element 11 and the n-type thermoelectric conversion element 12 are formed by sputtering, and a plurality of U-shapes connected by an electrode (metal material) 93 on one end side of these elements are used. A thermoelectric conversion unit (thermoelectric element), that is, a thermoelectric conversion unit assembly was produced.

尚、p型熱電変換素子11とn型熱電変換素子12とで構成される一対の熱電素子(熱電変換ユニット)のサイズを5mm×5mmとし、かつ、複数の熱電素子が配列されている有効な部分の大きさは5cm×5cmである。従って、ポリイミドシート91の上記面上には10対×10対=100個の熱電素子が作製されている。   In addition, the size of a pair of thermoelectric elements (thermoelectric conversion units) composed of the p-type thermoelectric conversion element 11 and the n-type thermoelectric conversion element 12 is 5 mm × 5 mm, and a plurality of thermoelectric elements are arranged effectively. The size of the part is 5 cm × 5 cm. Accordingly, 10 pairs × 10 pairs = 100 thermoelectric elements are formed on the surface of the polyimide sheet 91.

次に、上記熱電変換ユニット集合体が形成されたポリイミドシート91(すなわち、2本の帯状の熱電極92が設けられたポリイミドシート)の上記集合体が形成された面側に、熱電変換ユニット集合体が形成されていない他方のポリイミドシート91(すなわち、3本の帯状の熱電極92が設けられかつ熱電変換ユニット集合体が形成されていないポリイミドシート)の平面側を図13(D)に示すように重ね合わせ、かつ、接着剤を介し接着して上記熱電変換ユニット集合体が一対のポリイミドシート91で挟持された構造体を作製した。   Next, a thermoelectric conversion unit assembly is formed on the surface of the polyimide sheet 91 on which the thermoelectric conversion unit assembly is formed (that is, a polyimide sheet provided with two strip-shaped thermal electrodes 92). FIG. 13D shows the planar side of the other polyimide sheet 91 in which the body is not formed (that is, the polyimide sheet in which the three strip-shaped thermal electrodes 92 are provided and the thermoelectric conversion unit assembly is not formed). Thus, the thermoelectric conversion unit assembly was sandwiched between a pair of polyimide sheets 91 by overlapping and bonding with an adhesive.

尚、一対のポリイミドシート91で上記熱電変換ユニット集合体が挟持された構造体のp型熱電変換素子11、n型熱電変換素子12、電極(金属材料)93、および、帯状の熱電極92の位置関係は、図14に示すようになっている。   In addition, the p-type thermoelectric conversion element 11, the n-type thermoelectric conversion element 12, the electrode (metal material) 93, and the belt-shaped thermoelectrode 92 having a structure in which the thermoelectric conversion unit aggregate is sandwiched between a pair of polyimide sheets 91. The positional relationship is as shown in FIG.

次に、上記熱電変換ユニット集合体が一対のポリイミドシート91で挟持された構造体に対し、その上下から図15(A)に示すように一対の発泡スチロール板97、97を重合させ、更に、上記発泡スチロール板97、97の外面に対し、黄銅棒94が一面に半田付けされた熱伝導の良い一対の銅板95(厚さ0.5mm)で挟んで、図15(B)に示す構造を有する実施例3に係る熱電変換モジュールを作製した。尚、上記黄銅棒94は発泡スチロール板97を貫通し、その先端が上記熱電極92の各位置に熱的に接触するような配置となっている。   Next, with respect to the structure in which the thermoelectric conversion unit aggregate is sandwiched between a pair of polyimide sheets 91, a pair of polystyrene foam plates 97 and 97 are polymerized from above and below as shown in FIG. An embodiment having a structure shown in FIG. 15B, sandwiched between a pair of thermally conductive copper plates 95 (thickness 0.5 mm) in which brass bars 94 are soldered to the outer surface of the expanded polystyrene plates 97, 97. A thermoelectric conversion module according to Example 3 was produced. The brass bar 94 penetrates the expanded polystyrene plate 97, and the tip thereof is arranged so as to be in thermal contact with each position of the thermal electrode 92.

そして、実施例3に係る熱電変換モジュールについて、一方の銅板95側を80℃のホットプレートに熱的に密着させ、他方の面側は約30℃の大気に自由放熱させた。その上で、低温側に配置された上記熱電極92の中央部温度、大気に接触した銅板95の温度をそれぞれ計測した。   And about the thermoelectric conversion module which concerns on Example 3, one copper plate 95 side was closely_contact | adhered thermally to the 80 degreeC hotplate, and the other surface side was made to thermally radiate freely at about 30 degreeC air | atmosphere. Then, the temperature of the central portion of the hot electrode 92 disposed on the low temperature side and the temperature of the copper plate 95 in contact with the atmosphere were measured.

更に、一列の熱電素子(10対の熱電変換ユニットが対応する)における有効面積5mm×50mmに対し、直径サイズ(表1の「黄銅棒の半径」欄参照)が変更された黄銅棒94(黄銅棒の熱伝導度=約130W/mK)を2本(各熱電極島当たり2本)銅板95に半田付けし、黄銅棒94が各熱電極に熱的に接触するように配置してその発電量を測定した。結果を表1に示す。尚、発泡スチロールの熱伝導度は(0.07W/mK)である。   Further, a brass rod 94 (brass) whose diameter size (refer to the “radius of brass rod” column in Table 1) is changed with respect to an effective area of 5 mm × 50 mm in one row of thermoelectric elements (corresponding to 10 pairs of thermoelectric conversion units). 2 bars (2 per each hot electrode island) are soldered to the copper plate 95, and the brass bar 94 is disposed so as to be in thermal contact with each hot electrode to generate the power. The amount was measured. The results are shown in Table 1. In addition, the thermal conductivity of the polystyrene foam is (0.07 W / mK).

Figure 2009016812
発電量が最大値となる条件は、表1の「(κc×Sc)/(κa×Sa)」欄の結果から、
1.2κa×Sa ≧ κc×Sc(式1)、かつ、0.8κa×Sa ≦ κc×Sc(式2)の関係を満たしている中で成立していることが確認された。
Figure 2009016812
The conditions for the maximum power generation amount are as follows from the results in the “(κc × Sc) / (κa × Sa)” column of Table 1.
It was confirmed that the relationship was satisfied while satisfying the relationship of 1.2κa × Sa ≧ κc × Sc (formula 1) and 0.8κa × Sa ≦ κc × sc (formula 2).

実施例3と同様、一方の面に銅箔で構成された帯状の熱電極が設けられその反対面側に熱電変換ユニット集合体が設けられた第1層のユニット集合体を作製した。その際、実施例3と異なり、ポリイミドシート91上のp型熱電変換素子11とn型熱電変換素子12の厚さが約1nmとなるように、10対×10対=100個の熱電変換ユニットを成膜した(図17参照)。   Similar to Example 3, a unit assembly of the first layer was prepared in which a band-shaped thermal electrode made of copper foil was provided on one surface and a thermoelectric conversion unit assembly was provided on the opposite surface side. At this time, unlike Example 3, 10 pairs × 10 pairs = 100 thermoelectric conversion units so that the thicknesses of the p-type thermoelectric conversion element 11 and the n-type thermoelectric conversion element 12 on the polyimide sheet 91 are about 1 nm. Was formed (see FIG. 17).

次に、上記第1層のユニット集合体の上に、電気絶縁層70としてシリカ層を10nm厚で作製し、このシリカ層上に、上記第1層のユニット集合体と同様に第2層のユニット集合体を作製し、更に、第3層のユニット集合体を作製し(図17参照)、以下、同様にして第100層のユニット集合体まで重ねて最上層にシリカ層を形成した。   Next, on the unit assembly of the first layer, a silica layer having a thickness of 10 nm is formed as the electrical insulating layer 70, and on the silica layer, the second layer is assembled in the same manner as the unit assembly of the first layer. A unit assembly was prepared, and further, a third layer unit assembly was prepared (see FIG. 17), and a silica layer was formed on the uppermost layer in the same manner as above until the 100th unit assembly was overlaid.

次に、最上層の上記シリカ層上に、一方の面に銅箔で構成された帯状の熱電極が設けられポリイミドシートを接着してユニット集合体の積層部100を作製し、かつ、その上下から図16並びに図18に示すように一対の発泡スチロール板97、97を重合させ、更に、上記発泡スチロール板97、97の外面に対し、黄銅棒94が一面に半田付けされた熱伝導の良い一対の銅板95で挟んで実施例4に係る熱電変換モジュールを作製した。   Next, on the uppermost silica layer, a belt-like thermal electrode made of copper foil is provided on one surface, and a polyimide sheet is adhered to produce a unit assembly laminate 100, and 16 and FIG. 18, a pair of foamed polystyrene plates 97, 97 are polymerized, and a brass rod 94 is soldered to one surface with respect to the outer surfaces of the foamed polystyrene plates 97, 97. A thermoelectric conversion module according to Example 4 was produced by being sandwiched between copper plates 95.

尚、上記黄銅棒94は発泡スチロール板97を貫通し、その先端が熱電極の各位置に熱的に接触するような配置となっている。   The brass rod 94 is disposed so as to penetrate the foamed polystyrene plate 97 and the tip thereof is in thermal contact with each position of the thermal electrode.

そして、実施例4に係る熱電変換モジュールについて、一方の銅板側をホットプレートに熱的に密着させ、他方の面側は約25℃の大気に自由放熱させた状態で、実施例3と同様にしてその発電量を測定した。結果を表2に示す。   And about the thermoelectric conversion module which concerns on Example 4, it is the same as that of Example 3 in the state which made the one copper plate side thermally_contact | adhered thermally to a hotplate, and the other surface side was freely radiated about 25 degreeC air | atmosphere. The power generation amount was measured. The results are shown in Table 2.

Figure 2009016812
実施例4の積層型の場合、実施例3の1層型より少し出力が大きかった理由は、薄膜型にして二次元性が出たためと思われる。
Figure 2009016812
In the case of the laminated type of Example 4, the reason why the output was slightly larger than that of the single layer type of Example 3 seems to be that the two-dimensionality was obtained by using the thin film type.

本発明に係る熱電変換モジュールによれば熱電変換モジュール内に大きな温度差が実現されることから発電量を増加、改善させることが可能となり、また、本発明に係る熱電変換モジュールを太陽電池の裏面側に接着させることにより太陽電池の実効的な発電効率を上げることが可能となる。従って、本発明に係る熱電変換モジュールは太陽電池に組み込まれて利用される産業上の利用可能性を有している。   According to the thermoelectric conversion module according to the present invention, since a large temperature difference is realized in the thermoelectric conversion module, it is possible to increase and improve the amount of power generation. Also, the thermoelectric conversion module according to the present invention is connected to the back surface of the solar cell. By adhering to the side, the effective power generation efficiency of the solar cell can be increased. Therefore, the thermoelectric conversion module according to the present invention has industrial applicability to be used by being incorporated in a solar cell.

従来の結晶Si系太陽電池の温度特性を示すグラフ図。The graph which shows the temperature characteristic of the conventional crystalline Si type solar cell. 従来技術に係る熱電変換素子の主要部構成を示す断面図。Sectional drawing which shows the principal part structure of the thermoelectric conversion element which concerns on a prior art. 本発明に係る熱電変換モジュールの概略斜視図。The schematic perspective view of the thermoelectric conversion module which concerns on this invention. 裏面側に熱電変換モジュールが接着された太陽電池の総発電量の樹脂厚依存性をシミュレーションした結果を示すグラフ図。The graph which shows the result of having simulated the resin thickness dependence of the total electric power generation amount of the solar cell by which the thermoelectric conversion module was adhere | attached on the back side. 図5(A)は本発明に係る熱電変換モジュールを製造する際に用いられるp型材料用マスクの一例を示す平面図、図5(B)は上記p型材料用マスクを用いて形成されたp型熱電変換素子のパターンを示す概略斜視図。FIG. 5A is a plan view showing an example of a p-type material mask used in manufacturing the thermoelectric conversion module according to the present invention, and FIG. 5B is formed using the p-type material mask. The schematic perspective view which shows the pattern of a p-type thermoelectric conversion element. 図6(A)は本発明に係る熱電変換モジュールを製造する際に用いられるn型材料用マスクの一例を示す平面図、図6(B)は上記n型材料用マスクを用いて形成されたn型熱電変換素子のパターンを示す概略斜視図。6A is a plan view showing an example of an n-type material mask used when manufacturing the thermoelectric conversion module according to the present invention, and FIG. 6B is formed using the n-type material mask. The schematic perspective view which shows the pattern of an n-type thermoelectric conversion element. 図7(A)はp型熱電変換素子とn型熱電変換素子とが接続された熱電変換ユニットを、二次元的に複数配列させた熱電変換ユニット集合体の平面図、図7(B)はp型熱電変換素子とn型熱電変換素子とが直接接続された熱電変換ユニットのパターンを示す概略斜視図。FIG. 7A is a plan view of a thermoelectric conversion unit assembly in which a plurality of thermoelectric conversion units in which p-type thermoelectric conversion elements and n-type thermoelectric conversion elements are connected are two-dimensionally arranged, and FIG. The schematic perspective view which shows the pattern of the thermoelectric conversion unit in which the p-type thermoelectric conversion element and the n-type thermoelectric conversion element were directly connected. 図8(A)は本発明に係る熱電変換モジュールの貫通孔に高熱伝導部を構成する銅材が埋め込まれる状態を示す説明図、図8(B)は上記貫通孔が設けられるp型熱電変換素子またはn型熱電変換素子の接続部位若しくはその近傍部位を示す説明図、図8(C)は断面矩形状の高熱伝導部の一端側がp型熱電変換素子またはn型熱電変換素子の接続部位若しくはその近傍部位に接続または近接された状態を示す概念図。FIG. 8A is an explanatory view showing a state in which the copper material constituting the high thermal conductivity portion is embedded in the through hole of the thermoelectric conversion module according to the present invention, and FIG. 8B is a p-type thermoelectric conversion in which the through hole is provided. FIG. 8C is an explanatory view showing the connection part of the element or the n-type thermoelectric conversion element or its vicinity, and FIG. 8C shows the connection part of the p-type thermoelectric conversion element or the n-type thermoelectric conversion element or the one end side of the high thermal conductivity portion having a rectangular cross section The conceptual diagram which shows the state connected or adjoined to the vicinity site | part. 本発明に係る熱電変換モジュールの平面図。The top view of the thermoelectric conversion module which concerns on this invention. p型熱電変換素子とn型熱電変換素子とが接続された変形例に係る熱電変換モジュールの平面図。The top view of the thermoelectric conversion module which concerns on the modification with which the p-type thermoelectric conversion element and the n-type thermoelectric conversion element were connected. 本発明に係る熱電変換モジュールの低温側温度接触部における放熱係数と総発電量との関係をシミュレーションした結果を示すグラフ図。The graph which shows the result of having simulated the relationship between the thermal radiation coefficient in the low temperature side temperature contact part of the thermoelectric conversion module which concerns on this invention, and total electric power generation amount. 本発明に係る熱電変換モジュール内における熱流の概略図。The schematic of the heat flow in the thermoelectric conversion module which concerns on this invention. 図13(A)〜図13(D)は実施例3に係る熱電変換モジュールの製造工程を示す説明図。FIG. 13A to FIG. 13D are explanatory diagrams illustrating manufacturing steps of the thermoelectric conversion module according to the third embodiment. 実施例3に係る熱電変換モジュールの製造途中における平面図。The top view in the middle of manufacture of the thermoelectric conversion module which concerns on Example 3. FIG. 図15(A)〜図15(B)も実施例3に係る熱電変換モジュールの製造工程を示す説明図。FIG. 15A to FIG. 15B are also explanatory diagrams illustrating manufacturing steps of the thermoelectric conversion module according to the third embodiment. 実施例4に係る熱電変換モジュールの構成を示す分解斜視図。FIG. 10 is an exploded perspective view illustrating a configuration of a thermoelectric conversion module according to a fourth embodiment. 実施例4に係る熱電変換モジュールの一部の構成を示す斜視図。FIG. 9 is a perspective view illustrating a partial configuration of a thermoelectric conversion module according to a fourth embodiment. 実施例4に係る熱電変換モジュールの概略断面図。FIG. 6 is a schematic cross-sectional view of a thermoelectric conversion module according to a fourth embodiment.

符号の説明Explanation of symbols

10 熱電変換ユニット
11 p型熱電変換素子
12 n型熱電変換素子
13 電極
14 電極
20 基板
21 低熱伝導部
22 高熱伝導部
30 基板
31 低熱伝導部
32 高熱伝導部
40 温度接触部
50 温度接触部
60 銅材
70 電気絶縁層
80 温度接触部
81 高熱伝導部
82 低熱伝導部
83 熱電変換ユニット(熱電素子)
90 銅箔
91 ポリイミドシート
92 熱電極
93 電極(金属材料)
94 黄銅棒
95 銅板
97 発泡スチロール板
100 積層部
DESCRIPTION OF SYMBOLS 10 Thermoelectric conversion unit 11 p-type thermoelectric conversion element 12 n-type thermoelectric conversion element 13 Electrode 14 Electrode 20 Substrate 21 Low thermal conduction part 22 High thermal conduction part 30 Substrate 31 Low thermal conduction part 32 High thermal conduction part 40 Temperature contact part 50 Temperature contact part 60 Copper Material 70 Electrical insulation layer 80 Temperature contact part 81 High heat conduction part 82 Low heat conduction part 83 Thermoelectric conversion unit (thermoelectric element)
90 Copper foil 91 Polyimide sheet 92 Thermal electrode 93 Electrode (metal material)
94 Brass rod 95 Copper plate 97 Styrofoam plate 100 Laminate part

Claims (13)

p型材料から成る薄膜のp型熱電変換素子とn型材料から成る薄膜のn型熱電変換素子とが直接若しくは金属材料を介し接続された熱電変換ユニットを二次元的に単数あるいは複数配列させた熱電変換ユニット単体あるいはその集合体両面に、熱伝導率の異なる材料で構成された基板がそれぞれ設けられ、一方の基板側を高温側にかつ他方の基板側を低温側に配置して成る熱電変換モジュールにおいて、
上記各基板が、熱伝導率の低い材料で構成されかつ熱電変換ユニット単体あるいはその集合体の表面を被覆する低熱伝導部と、熱伝導率の高い材料で構成されかつ上記低熱伝導部の厚さ方向に沿って設けられた貫通孔若しくは凹部内に埋め込まれると共にその一端側がp型熱電変換素子またはn型熱電変換素子の上記接続部位若しくはその近傍部位に接続または近接され他端側が低熱伝導部表面の貫通孔若しくは凹部から露出する高熱伝導部とで構成され、かつ、低熱伝導部表面の貫通孔若しくは凹部から露出する高熱伝導部の表面が熱伝導率の高い材料で構成される温度接触部に接続されていることを特徴とする熱電変換モジュール。
A thin-film p-type thermoelectric conversion element made of a p-type material and a thin-film n-type thermoelectric conversion element made of an n-type material are connected directly or via a metal material, two-dimensionally arranging one or more thermoelectric conversion units. A thermoelectric conversion unit is formed by arranging substrates made of materials having different thermal conductivities on both sides of a single thermoelectric conversion unit or an assembly thereof, and arranging one substrate side on the high temperature side and the other substrate side on the low temperature side. In the module
Each of the substrates is made of a material having a low thermal conductivity and has a low thermal conductivity part covering the surface of the thermoelectric conversion unit alone or an assembly thereof, and a thickness of the low thermal conductivity part made of a material having a high thermal conductivity. Embedded in a through-hole or recess provided along the direction, and one end thereof is connected to or close to the connection portion of the p-type thermoelectric conversion element or n-type thermoelectric conversion element or its vicinity, and the other end is the surface of the low heat conduction portion A temperature contact portion composed of a material having a high thermal conductivity and a surface of the high thermal conductivity portion exposed from the through hole or the concave portion of the surface of the low thermal conductivity portion. A thermoelectric conversion module characterized by being connected.
熱伝導率の高い材料が金属であることを特徴とする請求項1に記載の熱電変換モジュール。   The thermoelectric conversion module according to claim 1, wherein the material having a high thermal conductivity is a metal. 上記熱電変換ユニット単体あるいはその集合体が電気絶縁層を介して複数積層され、かつ、最外側に位置する一対の熱電変換ユニット単体あるいはその集合体の外面に上記基板がそれぞれ設けられていることを特徴とする請求項1または2に記載の熱電変換モジュール。   A plurality of the thermoelectric conversion units or their aggregates are stacked via an electrical insulating layer, and the substrate is provided on the outer surface of a pair of thermoelectric conversion units or their aggregates located on the outermost side. The thermoelectric conversion module according to claim 1 or 2, characterized by the above. 一方の基板における高熱伝導部表面が接続される温度接触部が高温側若しくは低温側に配置され、他方の基板における温度接触部が大気側に熱的に接した状態で配置される熱電変換モジュールにおいて、
上記基板における高熱伝導部の熱伝導度(κc)並びに断面積(Sc)と、上記基板における低熱伝導部の熱伝導度(κa)並びに断面積(Sa)とが、
1.2κa×Sa ≧ κc×Sc (式1)
の関係を有し、かつ
0.8κa×Sa ≦ κc×Sc (式2)
の関係を有していることを特徴とする請求項1〜3のいずれかに記載の熱電変換モジュール。
In the thermoelectric conversion module in which the temperature contact portion to which the surface of the high thermal conductivity portion of one substrate is connected is disposed on the high temperature side or the low temperature side, and the temperature contact portion on the other substrate is disposed in thermal contact with the atmosphere side. ,
The thermal conductivity (κc) and the cross-sectional area (Sc) of the high thermal conductivity portion in the substrate, and the thermal conductivity (κa) and the cross-sectional area (Sa) of the low thermal conductivity portion in the substrate are:
1.2κa × Sa ≧ κc × Sc (Formula 1)
And having a relationship
0.8κa × Sa ≦ κc × Sc (Formula 2)
The thermoelectric conversion module according to claim 1, wherein the thermoelectric conversion module has the following relationship.
上記温度接触部の表面が、略黒色の酸化物膜あるいは熱伝導率の高い材料で被覆されていることを特徴とする請求項1〜3のいずれかに記載の熱電変換モジュール。   The thermoelectric conversion module according to claim 1, wherein the surface of the temperature contact portion is covered with a substantially black oxide film or a material having high thermal conductivity. 低温側に配置される基板の上記温度接触部の表面が、粗面化されていることを特徴とする請求項1〜3のいずれかに記載の熱電変換モジュール。   The surface of the said temperature contact part of the board | substrate arrange | positioned at a low temperature side is roughened, The thermoelectric conversion module in any one of Claims 1-3 characterized by the above-mentioned. 低温側に配置される基板の上記温度接触部の表面に、放熱板が付加されていることを特徴とする請求項1〜3のいずれかに記載の熱電変換モジュール。   The thermoelectric conversion module according to claim 1, wherein a heat radiating plate is added to a surface of the temperature contact portion of the substrate disposed on the low temperature side. 上記基板における熱伝導率の低い材料が樹脂あるいはガラスであり、かつ、上記基板の熱電変換ユニット単体あるいはその集合体面から表面までの厚さが75μm以上であることを特徴とする請求項1〜7のいずれかに記載の熱電変換モジュール。   The material having low thermal conductivity in the substrate is resin or glass, and the thickness of the thermoelectric conversion unit of the substrate or its aggregate surface to the surface is 75 μm or more. The thermoelectric conversion module according to any one of the above. 太陽電池の裏面側に請求項1〜8のいずれかに記載の熱電変換モジュールを接着させ、太陽電池と外気との温度差で発電させることを特徴とする発電装置。   A thermoelectric conversion module according to any one of claims 1 to 8 is adhered to a back surface side of a solar cell, and a power generation device is configured to generate power with a temperature difference between the solar cell and outside air. 太陽電池と熱電変換モジュールの接着に用いる接着剤の熱伝導率を(W/mK)、接着剤の厚みを(d)としたとき、(W/mK)/(d)の比が1000以上であることを特徴とする請求項9に記載の発電装置。   When the thermal conductivity of the adhesive used for bonding the solar cell and the thermoelectric conversion module is (W / mK) and the thickness of the adhesive is (d), the ratio of (W / mK) / (d) is 1000 or more. The power generator according to claim 9, wherein the power generator is provided. 上記熱電変換モジュールにおける太陽電池と接触していない面側の基板表面が、低熱伝導部表面の貫通孔若しくは凹部から露出する高熱伝導部に接続された各温度接触部により被覆されていることを特徴とする請求項9に記載の発電装置。   The substrate surface on the surface side not contacting the solar cell in the thermoelectric conversion module is covered with each temperature contact portion connected to the high heat conduction portion exposed from the through hole or the concave portion of the surface of the low heat conduction portion. The power generator according to claim 9. 上記太陽電池が、アモルファス系Si太陽電池であることを特徴とする請求項9に記載の発電装置。   The said solar cell is an amorphous Si solar cell, The electric power generating apparatus of Claim 9 characterized by the above-mentioned. 上記熱電変換モジュールにおける太陽電池と接触している面側の温度が、太陽電池と接触していない面側の温度より低くなったとき、電気の正負を切り替えるスイッチが熱電変換モジュールの回路中に設けられていることを特徴とする請求項9に記載の発電装置。   When the temperature on the surface side in contact with the solar cell in the thermoelectric conversion module is lower than the temperature on the surface side not in contact with the solar cell, a switch that switches between positive and negative of electricity is provided in the circuit of the thermoelectric conversion module The power generator according to claim 9, wherein the power generator is provided.
JP2008149062A 2007-06-08 2008-06-06 Thermoelectric conversion module and power generator using the same Expired - Fee Related JP5087757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008149062A JP5087757B2 (en) 2007-06-08 2008-06-06 Thermoelectric conversion module and power generator using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007152374 2007-06-08
JP2007152374 2007-06-08
JP2008149062A JP5087757B2 (en) 2007-06-08 2008-06-06 Thermoelectric conversion module and power generator using the same

Publications (2)

Publication Number Publication Date
JP2009016812A true JP2009016812A (en) 2009-01-22
JP5087757B2 JP5087757B2 (en) 2012-12-05

Family

ID=40357287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008149062A Expired - Fee Related JP5087757B2 (en) 2007-06-08 2008-06-06 Thermoelectric conversion module and power generator using the same

Country Status (1)

Country Link
JP (1) JP5087757B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192776A (en) * 2009-02-19 2010-09-02 National Institute Of Advanced Industrial Science & Technology Structure of thick film type thermoelectric power generation module
JP2011035203A (en) * 2009-08-03 2011-02-17 Fujitsu Ltd Thermoelectric conversion module
WO2012070395A1 (en) * 2010-11-25 2012-05-31 住友金属鉱山株式会社 Thermoelectric conversion module
CN102612762A (en) * 2009-10-25 2012-07-25 数字安吉尔公司 Planar thermoelectric generator
JP2013042063A (en) * 2011-08-19 2013-02-28 Fujitsu Ltd Thermoelectric element and manufacturing method therefor
WO2013121486A1 (en) * 2012-02-16 2013-08-22 日本電気株式会社 Thermoelectric conversion module unit, and electronic device
WO2016103784A1 (en) * 2014-12-26 2016-06-30 リンテック株式会社 Thermally conductive adhesive sheet, production method therefor, and electronic device using same
JP2016524438A (en) * 2013-07-11 2016-08-12 バーン グリーン パワー ソリューションズ,エルエルシー Thermoelectric device
JP2017063141A (en) * 2015-09-25 2017-03-30 Tdk株式会社 Thin film thermoelectric element
JPWO2015166783A1 (en) * 2014-04-30 2017-04-20 富士フイルム株式会社 Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion element
WO2018003960A1 (en) * 2016-07-01 2018-01-04 タツタ電線株式会社 Thermoelectric conversion sheet
JP2020035850A (en) * 2018-08-29 2020-03-05 マツダ株式会社 Power semiconductor device and method of manufacturing the same
JPWO2021025059A1 (en) * 2019-08-08 2021-02-11
JPWO2021025060A1 (en) * 2019-08-08 2021-02-11

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07162039A (en) * 1993-12-10 1995-06-23 Sharp Corp Thermoelectric conversion device, heat exchange element, and device using them
JP2006186255A (en) * 2004-12-28 2006-07-13 Nagaoka Univ Of Technology Thermoelectric conversion element
JP2010135619A (en) * 2008-12-05 2010-06-17 Sumitomo Metal Mining Co Ltd Thermoelectric conversion module and generator using the same
JP2010135620A (en) * 2008-12-05 2010-06-17 Sumitomo Metal Mining Co Ltd Thermoelectric conversion module, and generator using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07162039A (en) * 1993-12-10 1995-06-23 Sharp Corp Thermoelectric conversion device, heat exchange element, and device using them
JP2006186255A (en) * 2004-12-28 2006-07-13 Nagaoka Univ Of Technology Thermoelectric conversion element
JP2010135619A (en) * 2008-12-05 2010-06-17 Sumitomo Metal Mining Co Ltd Thermoelectric conversion module and generator using the same
JP2010135620A (en) * 2008-12-05 2010-06-17 Sumitomo Metal Mining Co Ltd Thermoelectric conversion module, and generator using the same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192776A (en) * 2009-02-19 2010-09-02 National Institute Of Advanced Industrial Science & Technology Structure of thick film type thermoelectric power generation module
JP2011035203A (en) * 2009-08-03 2011-02-17 Fujitsu Ltd Thermoelectric conversion module
CN102612762A (en) * 2009-10-25 2012-07-25 数字安吉尔公司 Planar thermoelectric generator
JP2013508983A (en) * 2009-10-25 2013-03-07 デストロン フィアリング コーポレイション Planar thermoelectric generator
WO2012070395A1 (en) * 2010-11-25 2012-05-31 住友金属鉱山株式会社 Thermoelectric conversion module
JP5776700B2 (en) * 2010-11-25 2015-09-09 住友金属鉱山株式会社 Thermoelectric conversion module
JP2013042063A (en) * 2011-08-19 2013-02-28 Fujitsu Ltd Thermoelectric element and manufacturing method therefor
WO2013121486A1 (en) * 2012-02-16 2013-08-22 日本電気株式会社 Thermoelectric conversion module unit, and electronic device
JP2016524438A (en) * 2013-07-11 2016-08-12 バーン グリーン パワー ソリューションズ,エルエルシー Thermoelectric device
JPWO2015166783A1 (en) * 2014-04-30 2017-04-20 富士フイルム株式会社 Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion element
WO2016103784A1 (en) * 2014-12-26 2016-06-30 リンテック株式会社 Thermally conductive adhesive sheet, production method therefor, and electronic device using same
JP2017063141A (en) * 2015-09-25 2017-03-30 Tdk株式会社 Thin film thermoelectric element
WO2018003960A1 (en) * 2016-07-01 2018-01-04 タツタ電線株式会社 Thermoelectric conversion sheet
JP2020035850A (en) * 2018-08-29 2020-03-05 マツダ株式会社 Power semiconductor device and method of manufacturing the same
JP7151278B2 (en) 2018-08-29 2022-10-12 マツダ株式会社 Power semiconductor device and its manufacturing method
JPWO2021025059A1 (en) * 2019-08-08 2021-02-11
WO2021025059A1 (en) * 2019-08-08 2021-02-11 デンカ株式会社 Thermoelectric conversion element
JPWO2021025060A1 (en) * 2019-08-08 2021-02-11
CN114207852A (en) * 2019-08-08 2022-03-18 电化株式会社 Thermoelectric conversion element
EP4012788A4 (en) * 2019-08-08 2022-10-05 Denka Company Limited Thermoelectric conversion element
JP7662521B2 (en) 2019-08-08 2025-04-15 デンカ株式会社 Thermoelectric conversion element
JP7662522B2 (en) 2019-08-08 2025-04-15 デンカ株式会社 Thermoelectric conversion element

Also Published As

Publication number Publication date
JP5087757B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP5087757B2 (en) Thermoelectric conversion module and power generator using the same
JP5067352B2 (en) Thermoelectric conversion module and power generator using the same
US6340787B1 (en) Power converter for supplying electricity from a difference in temperature
CN102160194A (en) Solar energy usage
JP5146290B2 (en) Thermoelectric conversion module and power generator using the same
JP2008060488A (en) Single-sided electrode type thermoelectric conversion module
KR101237235B1 (en) Manufacturing Method of Thermoelectric Film
WO2005117154A1 (en) High-density integrated type thin-layer thermoelectric module and hybrid power generating system
JP2009283640A (en) Solar photovoltaic power generation module with heat sink
JP5776700B2 (en) Thermoelectric conversion module
CN202473968U (en) Photovoltaic battery backplane and photovoltaic battery using the backplane
EP0020758A1 (en) Energy production and storage apparatus
JP5478518B2 (en) Power generator
JP2006294935A (en) High efficiency low loss thermoelectric module
WO2002101912A1 (en) Thermoelectric effect device, direct energy conversion system, and energy conversion system
JP2012069720A (en) Solar module system utilizing reflection light for cooling
JP2012069626A (en) Thermal power generation device
JP3171039U (en) Rail power generator, rail power generation system
JPH11354819A (en) Solar cell module
JP2015037133A (en) Power generator
JP4881996B2 (en) Solar power collection unit
JP2003092433A (en) Thermoelectric effect device, direct energy conversion system, energy conversion system
CN114220905A (en) Thermoelectric power generation device based on radiation cooling and preparation method thereof
CN107846157B (en) Thermoelectric power generation device
JP2006332535A (en) Convergent solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5087757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees