[go: up one dir, main page]

JP2009014220A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2009014220A
JP2009014220A JP2007174230A JP2007174230A JP2009014220A JP 2009014220 A JP2009014220 A JP 2009014220A JP 2007174230 A JP2007174230 A JP 2007174230A JP 2007174230 A JP2007174230 A JP 2007174230A JP 2009014220 A JP2009014220 A JP 2009014220A
Authority
JP
Japan
Prior art keywords
fluid
fluid passage
heat exchanger
passage
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007174230A
Other languages
Japanese (ja)
Inventor
Sadao Ikeda
貞雄 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007174230A priority Critical patent/JP2009014220A/en
Publication of JP2009014220A publication Critical patent/JP2009014220A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact heat exchanger of low costs having superior heat exchanging efficiency. <P>SOLUTION: In this heat exchanger 10 exchanging heat between fluids flowing in a cooling water passage 31 and an exhaust gas passage 32 formed by a plurality of plate members 21, 22, each of the plurality of plate members 21, 22 has first projecting portions 21a, 22a having the projecting shape on its one face side and second projecting portions 21b, 22b having the projecting shape on the other face side in a state of being separated from the first projecting portions in the fluid passing direction, the plurality of plate members are stacked in a state that their one face sides or other face sides are opposed to each other, and the cooling water passage 31 and the exhaust gas passage 32 are formed on one face side and the other face side of the plurality of the plate members 21, 22. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、熱交換器、特に内燃機関の排気再循環装置における排気冷却用として好適な熱交換器に関する。   The present invention relates to a heat exchanger, and more particularly to a heat exchanger suitable for exhaust cooling in an exhaust gas recirculation device for an internal combustion engine.

車両用内燃機関の排気浄化性能に対する要求の高度化等に伴って、NOx低減に効果的なるEGR(排気再循環)装置を装着した内燃機関が普及してきており、空気量に対し燃料が希薄な燃焼が可能でEGR量が多くなる内燃機関では、再循環される排気の温度を下げるEGRクーラが多用されている。   With the increasing demand for exhaust purification performance of internal combustion engines for vehicles, internal combustion engines equipped with EGR (exhaust gas recirculation) devices that are effective in reducing NOx have become widespread, and fuel is lean relative to the amount of air. In an internal combustion engine in which combustion is possible and the amount of EGR increases, an EGR cooler that reduces the temperature of the recirculated exhaust gas is frequently used.

EGRクーラは、例えばシェル内に扁平チューブを積層配置してその扁平チューブ内に排気再循環される排気ガスを通し、シェルと扁平チューブの間に導いた冷却水と、積層された扁平チューブ内を通る排気ガスとの間で熱交換させることにより、吸気側に再循環される排気ガスを冷却するようになっている。すなわち、EGRクーラは、熱交換器として構成されている。   For example, the EGR cooler has a flat tube stacked in a shell, and exhaust gas recirculated through the flat tube is passed through the cooling water guided between the shell and the flat tube. By exchanging heat with the passing exhaust gas, the exhaust gas recirculated to the intake side is cooled. That is, the EGR cooler is configured as a heat exchanger.

従来のこの種の熱交換器としては、例えば扁平チューブに複数の凸部を突出形成してこれらの凸部が互いに当接するように扁平チューブを積層し、当接した複数対の凸部によって冷却水の流通方向や流通量を部分的に調整し、冷却水の淀みによる沸騰等といった問題が生じるのを防止するようにしたものが知られている(例えば、特許文献1参照)。   As a conventional heat exchanger of this type, for example, a plurality of protrusions are formed on a flat tube so that the protrusions are in contact with each other, and the flat tubes are stacked so that the protrusions are in contact with each other. A water flow direction and flow amount are partially adjusted to prevent problems such as boiling due to cooling water stagnation (for example, see Patent Document 1).

また、排気ガスを通すシェル内に、排気流通方向と直交する方向に向けて扁平チューブを多数平行に配置し、扁平チューブの端部を排気ガス通路の流通方向下流側に隣接する扁平チューブに順次折返し接続してジグザグの冷却水通路を形成したもの(例えば、特許文献2参照)や、排気ガス通路となる扁平チューブの内方あるいは外方(扁平チューブ間)に伝熱面積を増加させるためのフィン部材を付加したものも知られている(例えば、特許文献3、4、5参照)。   In addition, in the shell through which exhaust gas passes, a number of flat tubes are arranged in parallel in a direction orthogonal to the exhaust flow direction, and the ends of the flat tubes are sequentially placed on the flat tubes adjacent to the downstream side of the exhaust gas passage in the flow direction. For increasing the heat transfer area inside or outside of the flat tubes that form the zigzag cooling water passages (for example, see Patent Document 2) and the exhaust gas passages (between the flat tubes). The thing which added the fin member is also known (for example, refer patent documents 3, 4, and 5).

なお、EGRクーラ付の排気再循環装置を備えた内燃機関は、例えば図16に示すように、エンジン1の排気の一部を吸気マニホルド3側に再循環させる排気再循環装置2を備えており、排気ガスをバイパスして排気マニホルド4内の排気通路と吸気マニホルド3内の吸気通路とを連通させるEGR通路6を有している。このEGR通路6には排気再循環量を調整するEGRバルブ7と、EGR通路6を通って還流する排気を冷却する排気冷却器、すなわちEGRクーラ8が設けられている。このEGRクーラ8による排気冷却のための熱交換量は、EGRガスと冷却水とのうち少なくとも一方の通過流量をエンジンの運転状態に応じバルブ制御することで調節される。また、ターボ過給機5は、内部の排気タービンを排気エネルギにより回転させて吸入空気コンプレッサを回転させ、エンジン1内に正圧の空気を吸入させることができる。
特開2004−177060号公報 特開2006−057473号公報 特開2005−172262号公報 特開2005−133981号公報 特開2001−342910号公報
Note that an internal combustion engine having an exhaust gas recirculation device with an EGR cooler includes an exhaust gas recirculation device 2 that recirculates a part of the exhaust gas of the engine 1 to the intake manifold 3 side as shown in FIG. 16, for example. The EGR passage 6 bypasses the exhaust gas and connects the exhaust passage in the exhaust manifold 4 and the intake passage in the intake manifold 3. The EGR passage 6 is provided with an EGR valve 7 that adjusts the exhaust gas recirculation amount, and an exhaust cooler that cools the exhaust gas recirculated through the EGR passage 6, that is, an EGR cooler 8. The heat exchange amount for exhaust cooling by the EGR cooler 8 is adjusted by valve-controlling the flow rate of at least one of the EGR gas and the cooling water according to the operating state of the engine. Further, the turbocharger 5 can rotate the intake air compressor by rotating the internal exhaust turbine with the exhaust energy, and can suck positive pressure air into the engine 1.
JP 2004-177060 A JP 2006-057473 A JP 2005-172262 A JP 2005-133981 A JP 2001-342910 A

しかしながら、上述のような従来の熱交換器にあっては、冷却水の流通の均一化を図った特許文献1、2に記載のようなものでは、通路高さが低い扁平チューブ内(冷却水側)への凸部の背面側(排気ガス側)に凹部が形成されてガスの流通部が拡大する一方で、その凸部の当接部分では冷却水の流通が規制されてしまい、冷却効率が低下してしまうという問題があった。また、扁平チューブの位置や冷却条件によって冷却水の淀み防止効果が大きく変化してしまい、安定した冷却性能を確保するのが容易でなく、設計の自由度も低いという問題もあった。   However, in the conventional heat exchanger as described above, in the ones described in Patent Documents 1 and 2 in which the circulation of the cooling water is made uniform, the inside of the flat tube having a low passage height (cooling water) On the other hand, a recess is formed on the back side (exhaust gas side) of the convex part to the side) and the gas circulation part expands. On the other hand, the circulation of cooling water is restricted at the contact part of the convex part, and the cooling efficiency There was a problem that would decrease. Further, the stagnation prevention effect of the cooling water greatly changes depending on the position of the flat tube and the cooling conditions, and there is a problem that it is not easy to ensure stable cooling performance and the degree of freedom in design is low.

また、特許文献3(当該公報の図1、3参照)に記載のように、シェル内への冷却水の流入方向と流出方向が交差したり均等厚さで長径の異なる複数種の扁平チューブが設置されたりしている場合、各部位での圧損が一定とならず冷却水を均等に流すことが困難であり、長径の異なる複数種の扁平チューブを用いるために部品点数が増加するばかりか、EGRガスの流れも一定とならず、ガス流れに合致する効率的な排気冷却が困難であった。   In addition, as described in Patent Document 3 (see FIGS. 1 and 3 of the publication), there are a plurality of types of flat tubes in which the inflow direction and the outflow direction of cooling water into the shell intersect or the major axis is different in thickness and uniform. If it is installed, the pressure loss at each part is not constant and it is difficult to evenly flow cooling water, and not only the number of parts increases because of using multiple types of flat tubes with different long diameters, The flow of EGR gas was not constant, and it was difficult to efficiently cool the exhaust gas in accordance with the gas flow.

さらに、特許文献3〜5に記載のように、扁平チューブの一対の仕切板部の間にフィン部材を設ける場合、フィン部材によってガス室内の流れにむらが生じ易く、流れの均一性も低下するため、熱効率が低下し易い。また、シェル上部の仕切板に凹凸が形成され、冷却室の外部への開口より冷却室内最上面の高さが高くなっていたため(特許文献5の図10参照)、含水中の空気や発生した蒸気が抜け難く、冷却効率が低下し易いばかりか、シェル上下の仕切板がろう付けされた後ではその検査もできないという問題があった。
一方、扁平部内にガス通路側インナーフィンを設けることも考えられるが、そのインナーフィンは冷却水側凸部の背面に位置する扁平チューブの凹部内壁に当接し得ないため、やはり十分な冷却性能が期待できない。
Furthermore, as described in Patent Documents 3 to 5, when a fin member is provided between a pair of partition plate portions of a flat tube, the fin member easily causes uneven flow in the gas chamber, and the flow uniformity is also reduced. Therefore, the thermal efficiency is likely to decrease. In addition, the partition plate on the upper part of the shell was uneven, and the height of the top surface of the cooling chamber was higher than the opening to the outside of the cooling chamber (see FIG. 10 of Patent Document 5). The steam is difficult to escape and the cooling efficiency is liable to decrease, and there is a problem that the inspection cannot be performed after the upper and lower partition plates are brazed.
On the other hand, it is conceivable to provide an inner fin on the gas passage side in the flat part, but the inner fin cannot contact the inner wall of the concave part of the flat tube located on the back of the convex part on the cooling water side. I can't expect it.

本発明は、上述のような従来技術の未解決の課題に鑑みてなされたものであり、熱交換効率に優れた小型・低コストの熱交換器を提供することを目的とする。   The present invention has been made in view of the above-mentioned unsolved problems of the prior art, and an object of the present invention is to provide a small and low-cost heat exchanger excellent in heat exchange efficiency.

本発明の熱交換器は、上記目的達成のため、(1)複数の板状部材により形成される一方の流体通路と他方の流体通路とを流れる流体の間で熱交換させる熱交換器において、前記複数の板状部材のそれぞれが、一面側に凸状をなす第1凸部と該第1凸部から前記一方または他方の流体通路の流体通過方向に離間して他面側に凸状をなす第2凸部とを有するとともに、前記一面側同士もしくは他面側同士で対向するように積層され、前記複数の板状部材の前記一面側と前記他面側とに前記一方の流体通路と前記他方の流体通路とが形成されたことを特徴とするものである。   In order to achieve the above object, the heat exchanger of the present invention is (1) a heat exchanger that exchanges heat between fluid flowing in one fluid passage and the other fluid passage formed by a plurality of plate-like members. Each of the plurality of plate-like members has a first convex portion convex on one surface side and a convex shape on the other surface side away from the first convex portion in the fluid passage direction of the one or other fluid passage. A second convex portion formed and stacked so as to face each other or the other surface side, and the one fluid passage on the one surface side and the other surface side of the plurality of plate-like members. The other fluid passage is formed.

この構成により、板状部材の両面側の一方および他方の流体通路に、第1凸部および第2凸部が形成されることになり、これら第1凸部および第2凸部の大きさや配置を適宜設定することで、フィン部材を別に設けることなく流体の流れの方向や流量の調整ができるとともに、伝熱面積も十分に確保することができる。また、板状部材をプレス加工によって低コストに製造でき、低コストで冷却効率の高い熱交換器を提供することができる。   With this configuration, the first convex portion and the second convex portion are formed in one and the other fluid passages on both sides of the plate-like member, and the size and arrangement of the first convex portion and the second convex portion. By appropriately setting, it is possible to adjust the flow direction and flow rate of the fluid without providing a fin member separately, and it is possible to sufficiently secure the heat transfer area. Moreover, a plate-shaped member can be manufactured at low cost by press work, and a low-cost and high cooling efficiency heat exchanger can be provided.

なお、板状部材の一面側同士または他面側同士を対向させるとは、第1凸部同士あるいは第2凸部同士を対向させることを含むが、第1凸部同士あるいは第2凸部同士を食い違い(流体の通過方向で異なる位置)に配置することもできる。また、板状部材をプレス加工する場合、第1凸部および第2凸部の背面側に形成される凹部によって各流体通路に凹凸が形成されるようにするのが好ましく、第1凸部、第2凸部のそれぞれが錐台形状をなすようにしてその周囲の傾斜面により伝熱面積を大きくするのがより好ましい。さらに、比熱の異なる流体間で熱交換する場合、第1凸部と第2凸部の伝熱面積の大きさを相違させ、比熱の小さい流体が流れる流体通路側に凸状をなす一方の凸部を他方の凸部より大きくする(一方の凸部の高さを他方の凸部の高さより高くする)のがよい。   In addition, facing one surface side or the other surface side of the plate-shaped member includes facing the first convex portions or the second convex portions, but the first convex portions or the second convex portions are opposed to each other. Can also be arranged at different positions (positions that differ in the direction of fluid passage). Further, when pressing the plate-like member, it is preferable that irregularities are formed in each fluid passage by the concave portions formed on the back side of the first convex portion and the second convex portion, the first convex portion, It is more preferable that the heat transfer area is increased by the inclined surface around each of the second convex portions so as to form a frustum shape. Furthermore, when exchanging heat between fluids having different specific heats, the size of the heat transfer area of the first and second protrusions is made different so that one of the protrusions is convex toward the fluid passage through which the fluid having a small specific heat flows. It is preferable that the portion is made larger than the other convex portion (the height of one convex portion is made higher than the height of the other convex portion).

上記(1)の構成を有する熱交換器は、(2)前記第1凸部と前記第2凸部とが、前記一方の流体通路内の流体の流れ方向に交互に複数配置されるとともに、前記他方の流体通路内の流体の流れ方向にも交互に複数配置されたものであるのが好ましい。   In the heat exchanger having the configuration of (1) above, (2) a plurality of the first protrusions and the second protrusions are alternately arranged in the fluid flow direction in the one fluid passage, It is preferable that a plurality of fluids are alternately arranged in the fluid flow direction in the other fluid passage.

この構成により、一方の流体通路および他方の流体通路の双方で、乱流効果と伝熱効果とを期待でき、一方側の流体通路の断面積増大部分で他方の流体通路側の流体の通過が制限されることによって冷却能力が落ちるといった問題が解消されることになる。   With this configuration, it is possible to expect a turbulent flow effect and a heat transfer effect in both the one fluid passage and the other fluid passage, and the passage of the fluid on the other fluid passage side at the portion where the cross-sectional area of the one fluid passage is increased. The problem that the cooling capacity is reduced due to the restriction is solved.

また、上記(2)の構成を有する場合、(3)前記一方の流体通路内の流体の流れ方向と前記他方の流体通路内の流体の流れ方向とが互いに直交し、前記第1凸部と前記第2凸部とが、前記一方の流体通路内の流体の流れ方向と直交する方向に交互に離間するとともに、前記他方の流体通路内の流体の流れ方向と直交する方向に交互に離間するように、複数配置されているのが望ましい。   In the case of having the configuration of (2) above, (3) the fluid flow direction in the one fluid passage and the fluid flow direction in the other fluid passage are orthogonal to each other, and the first convex portion The second convex portions are alternately separated in a direction perpendicular to the fluid flow direction in the one fluid passage and alternately separated in a direction perpendicular to the fluid flow direction in the other fluid passage. As described above, it is desirable that a plurality of them are arranged.

この構成により、一方の流体通路および他方の流体通路における乱流効果と伝熱効果の向上がより期待できるとともに、熱交換させる各流体の流通経路を容易に配置できる。   With this configuration, it is possible to further improve the turbulent flow effect and the heat transfer effect in one fluid passage and the other fluid passage, and it is possible to easily arrange the flow path of each fluid to be heat exchanged.

上記(1)〜(3)の構成を有する熱交換器は、(4)前記複数の板状部材のうち前記一面側で互いに対向する各一対の板状部材が、前記一面側を内面側とし、前記他面側を外面側とする扁平チューブを構成し、前記複数の板状部材によって構成される複数の前記扁平チューブが前記第2凸部同士を当接するように積層されたものであるのがよい。   In the heat exchanger having the configuration of (1) to (3) above, (4) each of the pair of plate members facing each other on the one surface side among the plurality of plate members has the one surface side as an inner surface side. A flat tube having the other surface side as an outer surface side is constituted, and a plurality of the flat tubes constituted by the plurality of plate-like members are laminated so that the second convex portions are in contact with each other. Is good.

この構成により、一対の板状部材を予め扁平チューブとしてそのシール性や形状精度を担保するとともに、その扁平チューブを同一姿勢で順次積層することで組立が容易化できる。   With this configuration, a pair of plate-like members are used in advance as flat tubes to ensure sealing performance and shape accuracy, and assembly can be facilitated by sequentially stacking the flat tubes in the same posture.

また、上記(1)〜(3)の構成を有する熱交換器は、(5)前記複数の扁平チューブを収納するシェルと、前記シェル内で前記複数の扁平チューブの両端側に設けられ、前記シェルとの間に前記複数の扁平チューブ内の前記一方の流体通路同士を連通させる連通路を形成する一対の側壁部材と、を備え、前記一対の側壁部材と前記複数の扁平チューブとによって前記複数の扁平チューブの間に前記他方の流体通路が形成されたものであるのが好ましい。   Moreover, the heat exchanger having the configuration of the above (1) to (3) includes (5) a shell that houses the plurality of flat tubes, and provided at both ends of the plurality of flat tubes in the shell, A pair of side wall members that form communication passages that allow the one fluid passages in the plurality of flat tubes to communicate with each other between the plurality of flat tubes, and the plurality of the plurality of flat tubes includes the plurality of side walls. It is preferable that the other fluid passage is formed between the flat tubes.

この構成により、複数の扁平チューブと一対の側壁部材とによって一方および他方の流体通路と連通路とを形成することができ、部品点数を少なくすることができる。   With this configuration, one or the other fluid passage and the communication passage can be formed by the plurality of flat tubes and the pair of side wall members, and the number of parts can be reduced.

上記(4)または(5)の熱交換器においては、(6)前記第1凸部が、前記一方の流体通路への前記流体の流入出方向と交差する長手方向を有し、前記一方の流体通路内の流体の流れを前記他方の流体通路内における流体の流入側に偏倚させるのが好ましい。   In the heat exchanger of the above (4) or (5), (6) the first convex portion has a longitudinal direction intersecting with the inflow / outflow direction of the fluid to the one fluid passage, The flow of the fluid in the fluid passage is preferably biased toward the fluid inflow side in the other fluid passage.

この構成により、低温側の流体が熱交換の進行していない高温側の流体の流入側に、または、高温側の流体が熱交換の進行していない低温側の流体の流入側に、偏倚する流れとなり、熱交換効率が高まることになる。   With this configuration, the low temperature side fluid is biased toward the high temperature side fluid inflow side where heat exchange is not proceeding, or the high temperature side fluid is biased toward the low temperature side fluid inflow side where heat exchange is not proceeding. As a result, the heat exchange efficiency is increased.

上記(4)または(5)の熱交換器においては、(7)前記第2凸部が、前記他方の流体通路への前記流体の流入出方向と交差する長手方向を有し、前記他方の流体通路内の流体の流れを前記一方の流体通路内における流体の流入側に偏倚させるものであっても好ましい。   In the heat exchanger of the above (4) or (5), (7) the second convex portion has a longitudinal direction intersecting with the flow direction of the fluid into and out of the other fluid passage, It is also preferable that the fluid flow in the fluid passage is biased toward the fluid inflow side in the one fluid passage.

この構成でも、高温側の流体が熱交換の進行していない低温側の流体の流入側に、または、低温側の流体が熱交換の進行していない高温側の流体の流入側に、偏倚する流れとなり、熱交換効率が高まることになる。   Even in this configuration, the high temperature side fluid is biased toward the low temperature side fluid inflow side where heat exchange has not progressed, or the low temperature side fluid is biased toward the high temperature side fluid inlet side where heat exchange has not progressed. As a result, the heat exchange efficiency is increased.

上記(4)または(5)の熱交換器においては、(8)前記第1凸部が前記他方の流体通路への流体の流入出方向と直交する他方の流体通路幅の全域に及ぶ長さを有し、前記一方の流体通路内の流体が該第1凸部を挟んで前記他方の流体通路幅方向における一方側と他方側に折り返して流れるようにすることもできる。   In the heat exchanger of the above (4) or (5), (8) the length of the first protrusion extending over the entire width of the other fluid passage perpendicular to the fluid inflow / outflow direction to the other fluid passage. The fluid in the one fluid passage may be folded back and flow to one side and the other side in the width direction of the other fluid passage with the first convex portion interposed therebetween.

この構成により、第1凸部を挟んで折り返す一方の流体通路が他方の流体通路の幅方向全域を往復する折り返し通路となり、熱交換効率が高まることになる。   With this configuration, one fluid passage that is folded back across the first convex portion becomes a folded passage that reciprocates across the entire width direction of the other fluid passage, and heat exchange efficiency is increased.

上記(1)〜(8)の熱交換器においては、(9)前記複数の板状部材が、前記一面側の平面部からの前記第1凸部の突出高さまたは前記他面側の平面部からの前記第2凸部の突出高さが互いに異なる複数種の板状部材からなり、前記一方の流体通路および前記他方の流体通路のうち低温側の流体通路の断面積が前記複数の板状部材の積層方向における外側ほど小さくなるように、あるいは、前記一方の流体通路および前記他方の流体通路のうち高温側の流体通路の断面積が前記複数の板状部材の積層方向における外側ほど大きくなるように、前記複数種の板状部材が積層されていてもよい。   In the heat exchangers of the above (1) to (8), (9) the plurality of plate-like members have a protruding height of the first convex portion from the flat portion on the one surface side or a flat surface on the other surface side. A plurality of types of plate-like members having different projecting heights of the second convex portion from the portion, and the cross-sectional area of the low temperature side fluid passage of the one fluid passage and the other fluid passage is the plurality of plates. The cross-sectional area of the high temperature side fluid passage of the one fluid passage and the other fluid passage increases toward the outside in the stacking direction of the plurality of plate-shaped members. As described above, the plurality of types of plate-like members may be laminated.

この構成により、板状部材の積層方向中央側では冷却側の流体の流量を多くし、板状部材の積層方向外側では被冷却側の流体の流量を多くすることができることになり、熱交換器の中心部における熱溜りを抑えることが可能となる。   With this configuration, the flow rate of the fluid on the cooling side can be increased on the center side in the stacking direction of the plate-shaped member, and the flow rate of the fluid on the cooled side can be increased on the outer side in the stacking direction of the plate-shaped member. It becomes possible to suppress the heat accumulation in the central part.

また、上記(1)〜(9)の熱交換器は、内燃機関の排気再循環通路を通る排気ガスを冷却するよう、前記他方の流体通路が内燃機関の排気再循環通路の一部を形成し、前記一方の流体通路内に冷却液が供給されるものであるのが好ましい。   In the heat exchangers (1) to (9), the other fluid passage forms a part of the exhaust gas recirculation passage of the internal combustion engine so as to cool the exhaust gas passing through the exhaust gas recirculation passage of the internal combustion engine. However, it is preferable that the coolant is supplied into the one fluid passage.

この構成により、内燃機関の吸気側に再循環される排気の温度を低下させ、排気再循環装置によるNOx低減効果を高めることができる、高熱効率で小型・低コストのEGRクーラを提供することができる。   With this configuration, it is possible to provide a high-thermal efficiency, small, and low-cost EGR cooler that can reduce the temperature of exhaust gas recirculated to the intake side of an internal combustion engine and enhance the NOx reduction effect of the exhaust gas recirculation device. it can.

本発明によれば、一方の流体通路と他方の流体通路のそれぞれが第1凸部および第2凸部に対応する凹凸形状を有するようにしているので、これら第1凸部および第2凸部の大きさや配置を適宜設定することで、フィン部材を別に設けることなく流体の流れの方向や流量を調整することができ、伝熱面積も十分に確保することができる、小型・低コストで熱交換効率の高い熱交換器を提供することができる。   According to the present invention, each of the one fluid passage and the other fluid passage has a concavo-convex shape corresponding to the first convex portion and the second convex portion. Therefore, these first convex portion and second convex portion. By appropriately setting the size and arrangement, the flow direction and flow rate of the fluid can be adjusted without providing a separate fin member, and a sufficient heat transfer area can be secured. A heat exchanger with high exchange efficiency can be provided.

以下、本発明の好ましい実施の形態について図面に基づいて説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

(第1の実施の形態)
図1から図11は本発明の第1の実施の形態に係る熱交換器を示す図であり、本発明の熱交換器を内燃機関の排気再循環(EGR)装置に装着されるEGRクーラとして構成した例を示している。なお、EGR装置自体の全体構成については詳述しないが、例えば図16に示した従来例と同様に、排気の一部を吸気側に還流させ再循環させるものである。
(First embodiment)
FIGS. 1 to 11 are views showing a heat exchanger according to a first embodiment of the present invention. The heat exchanger according to the present invention is used as an EGR cooler mounted on an exhaust gas recirculation (EGR) device of an internal combustion engine. A configured example is shown. Although the entire configuration of the EGR device itself is not described in detail, a part of the exhaust gas is recirculated to the intake side and recirculated as in the conventional example shown in FIG.

まず、図1〜図9により構成を説明する。図1は本実施形態の熱交換器の一部断面平面図、図2は図1のA−A断面図、図3は図1のB−B断面図、図4(a)は図3のE−E断面図、図4(b)は図3のF−F断面図、図5は図1のC−C断面図、図6は図1のD−D断面図、図7は図3に示されるガス導入口の形状説明図であり、図8はそのガス導入口の変形態様の形状説明図、図9はその熱交換器の内部の側壁部材の平面図である。   First, the configuration will be described with reference to FIGS. 1 is a partial cross-sectional plan view of the heat exchanger according to the present embodiment, FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1, FIG. 3 is a cross-sectional view taken along the line BB in FIG. 4B is a cross-sectional view taken along line FF in FIG. 3, FIG. 5 is a cross-sectional view taken along line CC in FIG. 1, FIG. 6 is a cross-sectional view taken along line DD in FIG. 8 is an explanatory view of the shape of the gas introduction port shown in FIG. 8, FIG. 8 is an explanatory view of the shape of a modification of the gas introduction port, and FIG. 9 is a plan view of the side wall member inside the heat exchanger.

図1から図4に示すように、本実施形態の熱交換器10は、外殻であるシェル11と、シェル11内に収納された複数の扁平チューブ12とを備えている。   As shown in FIGS. 1 to 4, the heat exchanger 10 of the present embodiment includes a shell 11 that is an outer shell and a plurality of flat tubes 12 that are housed in the shell 11.

シェル11は、両端のフランジ部11a、11bで図示しないEGR通路(図16に示した従来例のEGR通路6に相当する)を形成する排気管に接続されている。   The shell 11 is connected to an exhaust pipe that forms an EGR passage (corresponding to the EGR passage 6 of the conventional example shown in FIG. 16) (not shown) by the flange portions 11a and 11b at both ends.

図5および図6に示すように、複数の扁平チューブ12は、一面側で互いに対向する各一対の板状部材21、22によって、それら板状部材21、22の一面側を内面側とし、板状部材21、22の他面側を外面側とする扁平な筒状に形成されている。なお、複数の板状部材21、22は、例えば板面方向を鉛直方向に向けた鉛直姿勢(水平姿勢または傾斜姿勢でもよい)になっている。これら板状部材21、22は、熱伝導率の高い金属からなる板金製のものである。   As shown in FIG. 5 and FIG. 6, the plurality of flat tubes 12 includes a pair of plate-like members 21 and 22 facing each other on one surface side, and the one surface side of the plate-like members 21 and 22 is set as an inner surface side. The other members 21 and 22 are formed in a flat cylindrical shape having the other surface side as the outer surface side. In addition, the some plate-shaped members 21 and 22 are the vertical attitude | positions (a horizontal attitude | position or an inclination attitude | position) which orient | assigned the plate | board surface direction to the perpendicular direction, for example. These plate-like members 21 and 22 are made of sheet metal made of a metal having high thermal conductivity.

板状部材21、22は、具体的には、図1〜図6に示すように、それぞれ一面側に凸状をなす第1凸部21a、22aと、他面側に凸状をなす第2凸部21b、22bと、平板部21c、22cとを有している。また、板状部材21、22は、それぞれ例えばプレス加工された板金からなり、第1凸部21a、22aおよび第2凸部21b、22bはそれらの凸状の背面側が凹状をなしている。第1凸部21a、22aおよび第2凸部21b、22bはそれぞれ例えば略円錐台形状(コーナー部が丸められた略角錐台形状でもよい)に形成されている。そして、複数の扁平チューブ12は、板状部材21、22の第1凸部21a、22a同士を当接するように対向させて接合することで、その内面側である板状部材21、22の間に図2中のD1、D2方向に広がる冷却水通路31(D1方向に延びる一方の流体通路)を形成している。   Specifically, as shown in FIGS. 1 to 6, the plate-like members 21, 22 are first convex portions 21 a, 22 a each having a convex shape on one surface side and a second convex shape on the other surface side. Convex portions 21b and 22b and flat plate portions 21c and 22c are provided. Each of the plate-like members 21 and 22 is made of, for example, a pressed metal sheet, and the first convex portions 21a and 22a and the second convex portions 21b and 22b have concave shapes on the convex back side. The first convex portions 21a and 22a and the second convex portions 21b and 22b are each formed in, for example, a substantially truncated cone shape (may be a substantially truncated pyramid shape with rounded corner portions). The plurality of flat tubes 12 are joined so that the first convex portions 21a and 22a of the plate-like members 21 and 22 are opposed to each other so as to be in contact with each other, thereby connecting the plate-like members 21 and 22 on the inner surface side thereof. In FIG. 2, a cooling water passage 31 (one fluid passage extending in the D1 direction) extending in the D1 and D2 directions is formed.

また、複数の扁平チューブ12は、その外面側の第2凸部21b、22b同士を当接させるように図2中のD1、D2方向と直交するD3方向(図3参照)に積層されており、隣り合う各一対の扁平チューブ12の間にD2方向に延在する排気ガス通路32(D2方向に延びる他方の流体通路)が形成されている。すなわち、本実施形態の熱交換器10においては、各板状部材21、22の一面側と他面側とに、一方の流体通路である冷却水通路31と、他方の流体通路である排気ガス通路32とが形成されている。なお、第1凸部21a、22aおよび第2凸部21b、22bの大きさや形状、配設位置およびピッチは、流体通路内を流れる流体の流量や圧力損失、エンジンにより要求されるEGRクーラの要求冷却性能等に応じて決定されるが、基本的には、流体通路31、32を通る流体の比熱を考慮し、板状部材21、22の平板部21c、22cの板面上における第1凸部21a、22aの高さ(以下、高さHwともいう)および直径は第2凸部21b、22bの高さ(以下、高さHgともいう)および直径よりもそれぞれ小さくなる(例えば、Hg/Hw>1)ように設定されている。   Further, the plurality of flat tubes 12 are laminated in the D3 direction (see FIG. 3) perpendicular to the D1 and D2 directions in FIG. 2 so that the second convex portions 21b and 22b on the outer surface side thereof are brought into contact with each other. An exhaust gas passage 32 (the other fluid passage extending in the D2 direction) extending in the D2 direction is formed between each pair of adjacent flat tubes 12. That is, in the heat exchanger 10 of the present embodiment, the cooling water passage 31 that is one fluid passage and the exhaust gas that is the other fluid passage on one surface side and the other surface side of each plate-like member 21 and 22. A passage 32 is formed. The size, shape, arrangement position and pitch of the first and second convex portions 21a, 22a and 21b, 22b are the flow rate and pressure loss of the fluid flowing in the fluid passage, and the EGR cooler requirements required by the engine. Although it is determined according to the cooling performance or the like, basically, the first protrusion on the plate surface of the flat plate portions 21c, 22c of the plate members 21, 22 is considered in consideration of the specific heat of the fluid passing through the fluid passages 31, 32. The height (hereinafter also referred to as height Hw) and the diameter of the portions 21a and 22a are smaller than the height (hereinafter also referred to as height Hg) and the diameter of the second convex portions 21b and 22b (for example, Hg / Hw> 1) is set.

図4から図6に示すように、冷却水通路31は、より具体的には、板状部材21、22の一面側の対向平面間距離に相当する通路高さ(積層方向における一対の第1凸部21a、22aの高さ分の通路高さ)を有するとともに第1凸部21a、22aの当接部の周りを取り囲む平坦部31fと、その平坦部31fから第2凸部21b、22bの背面まで膨出した複数の膨出部31eと、その平坦部31fから第1凸部21a、22aの形状に対応して穴状に没入した複数の没入部31cとを有している。また、排気ガス通路32は、板状部材21、22の他面側の対向平面間距離に相当する通路高さ(積層方向における一対の第2凸部21b、22bの高さ分の通路高さ)を有するとともに第2凸部21b、22bの当接部の周りを取り囲む平坦部32fと、その平坦部32fから第1凸部21a、22aの背面まで膨出した複数の膨出部32eと、その平坦部32fから第2凸部21b、22bの形状に対応して穴状に没入した複数の没入部32cとを有している。   As shown in FIG. 4 to FIG. 6, the cooling water passage 31 is more specifically a passage height (a pair of first in the stacking direction) corresponding to the distance between the opposing planes on one surface side of the plate-like members 21 and 22. A flat portion 31f having a height corresponding to the height of the convex portions 21a and 22a) and surrounding the contact portion of the first convex portions 21a and 22a, and the flat portions 31f to the second convex portions 21b and 22b. It has a plurality of bulging portions 31e that bulge to the back surface, and a plurality of immersing portions 31c that are recessed from the flat portion 31f into holes corresponding to the shapes of the first convex portions 21a and 22a. The exhaust gas passage 32 has a passage height corresponding to the distance between the opposing flat surfaces on the other surface side of the plate-like members 21 and 22 (the passage height corresponding to the height of the pair of second convex portions 21b and 22b in the stacking direction). A flat portion 32f surrounding the contact portion of the second convex portions 21b and 22b, and a plurality of bulged portions 32e bulging from the flat portion 32f to the back surfaces of the first convex portions 21a and 22a, The flat portion 32f has a plurality of recessed portions 32c that are recessed into holes corresponding to the shapes of the second convex portions 21b and 22b.

また、第1凸部21a、22aと第2凸部21b、22bとは、、第1凸部21a、22aについて図2に示すように、一方の流体通路である冷却水通路31内の流体の流れ方向(D1方向)に交互に複数配置されるとともに、他方の流体通路である排気ガス通路32内の流体の流れ方向(D2方向)にも交互に複数配置されている。さらに、本実施形態では、冷却水通路31内の流体の流れ方向と排気ガス通路32内の流体の流れ方向とは、図2にD1方向およびD2方向で示すように互いに直交しており、第1凸部21a、22aと第2凸部21b、22bとは、冷却水通路31内の流体の流れ方向D1と直交する流れ方向D2に交互に離間するとともに、排気ガス通路32内の流体の流れ方向D2と直交する流れ方向D1にも交互に離間している。すなわち、第1凸部21a、22aおよび第2凸部21b、22bは、それぞれ同一のピッチで逆の配置をとるように千鳥配置されている。   Moreover, the 1st convex parts 21a and 22a and the 2nd convex parts 21b and 22b are the fluids in the cooling water channel | path 31 which is one fluid channel | path, as shown in FIG. A plurality of them are alternately arranged in the flow direction (D1 direction), and a plurality of fluids are alternately arranged in the flow direction (D2 direction) of the fluid in the exhaust gas passage 32 which is the other fluid passage. Furthermore, in this embodiment, the flow direction of the fluid in the cooling water passage 31 and the flow direction of the fluid in the exhaust gas passage 32 are orthogonal to each other as shown in the D1 direction and the D2 direction in FIG. The first convex portions 21a and 22a and the second convex portions 21b and 22b are alternately separated in the flow direction D2 orthogonal to the fluid flow direction D1 in the cooling water passage 31 and the fluid flow in the exhaust gas passage 32. The flow direction D1 perpendicular to the direction D2 is also alternately spaced. That is, the 1st convex parts 21a and 22a and the 2nd convex parts 21b and 22b are staggered so that the opposite arrangement may be taken at the same pitch, respectively.

一方、シェル11と複数の扁平チューブ12との間には、図5および図6に示すように、D1方向における複数の扁平チューブ12の両側端部12a、12bを支持する一対の側壁部材41、42が設けられており、これらの側壁部材41、42は、シェル11との間に複数の扁平チューブ12内の冷却水通路31同士を互いに連通させる連通路33、34を形成している。
また、排気ガス通路32は、複数の扁平チューブ12の間で一対の側壁部材41、42の対向内壁面に挟まれた扁平な通路となっている。すなわち、一対の側壁部材41、42および複数の扁平チューブ12によって、複数の扁平チューブ12の間に排気ガス通路32が形成されている。
On the other hand, between the shell 11 and the plurality of flat tubes 12, as shown in FIGS. 5 and 6, a pair of side wall members 41 that support both side ends 12 a and 12 b of the plurality of flat tubes 12 in the D1 direction, The side wall members 41 and 42 form communication passages 33 and 34 that allow the cooling water passages 31 in the plurality of flat tubes 12 to communicate with each other between the side wall members 41 and 42.
Further, the exhaust gas passage 32 is a flat passage sandwiched between opposed inner wall surfaces of the pair of side wall members 41, 42 between the plurality of flat tubes 12. In other words, the exhaust gas passage 32 is formed between the plurality of flat tubes 12 by the pair of side wall members 41 and 42 and the plurality of flat tubes 12.

連通路33、34は、シェル11に形成された冷却水導入口11c、冷却水排出口11dおよび複数の扁平チューブ12内の冷却水通路31を通して、エンジンを冷却するラジエータから放熱後の冷却水をD1方向に通過させるようになっている。なお、熱交換器10内を通る冷却水およびEGRガスの流量は、図示しないコントロールバルブによってエンジンの運転状態に応じて可変制御される。   The communication passages 33 and 34 pass the cooling water after heat dissipation from the radiator that cools the engine through the cooling water introduction port 11c, the cooling water discharge port 11d formed in the shell 11, and the cooling water passage 31 in the plurality of flat tubes 12. It is made to pass in the direction D1. The flow rates of the cooling water and the EGR gas passing through the heat exchanger 10 are variably controlled according to the operating state of the engine by a control valve (not shown).

本実施形態の熱交換器10は、このように複数の板状部材21、22により形成される冷却水通路31と排気ガス通路32とを流れる熱伝導性の流体、すなわち冷却水とエンジンの吸気側に再循環される排気ガス(EGRガス)との間で熱交換させるEGRクーラとなっている。   The heat exchanger 10 of the present embodiment has a heat conductive fluid flowing through the cooling water passage 31 and the exhaust gas passage 32 formed by the plurality of plate-like members 21 and 22 as described above, that is, the cooling water and the intake air of the engine. This is an EGR cooler that exchanges heat with exhaust gas (EGR gas) recirculated to the side.

なお、図1および図2に示すシェル11は両端の開口部11h、11iがEGR通路の断面形状に対応する断面形状(例えば円形断面)となっているが、複数の扁平チューブ12および一対の側壁部材41、42を収納する熱交換室部11kは方形断面となっている。また、図1および図2に示すように、開口部11h、11iと熱交換室部11kとの間は、熱交換室部11k側ほど通路断面積が大きくなるように通路断面積が変化した接続管部11m、11nとなっており、EGRガスの流入側の接続管部11mは熱交換室部11kの中心より冷却水導入口11c側にオフセットされ、流出側の接続管部11nは熱交換室部11kの中心より冷却水排出口11d側にオフセットされている。   The shell 11 shown in FIGS. 1 and 2 has a cross-sectional shape (for example, a circular cross-section) corresponding to the cross-sectional shape of the EGR passage in the openings 11h and 11i at both ends, but a plurality of flat tubes 12 and a pair of side walls. The heat exchange chamber portion 11k that houses the members 41 and 42 has a square cross section. Further, as shown in FIGS. 1 and 2, the connection between the openings 11h and 11i and the heat exchange chamber 11k is such that the passage sectional area is changed so that the passage sectional area becomes larger toward the heat exchange chamber 11k. The connecting pipe part 11m on the inflow side of the EGR gas is offset to the cooling water inlet 11c side from the center of the heat exchange chamber part 11k, and the connecting pipe part 11n on the outflow side is the heat exchange chamber. It is offset from the center of the part 11k to the cooling water discharge port 11d side.

また、熱交換室部11k内の複数層、例えば4層の排気ガス通路32の出入口には、図3、図4および図7に示すように、積層方向中央部の扁平チューブ12のD2(長手)方向両端部を支持するとともに連通路33、34のD2方向両端部を閉塞し、かつ、積層された複数(例えば5枚)の扁平チューブ12の積層厚さ(D2方向両端部での厚さ)と複数の扁平チューブ12のD1方向の位置とを規定する端板51、52が設けられている。端板51、52は、図7に示すように、中間支持部51a、52aのスリット51b、52bに積層方向中心部の扁平チューブ12の長手方向両端部を挿入することで、その扁平チューブ12を中間支持部51a、52aに支持するようになっているが、図8に示すように、積層方向中央部の支持部51a、52aを有しない開口形状(全体としてのガス通過口形状)でもよい。   Further, as shown in FIGS. 3, 4 and 7, D2 (longitudinal length) of the flat tube 12 at the center in the stacking direction is provided at the entrances and exits of a plurality of layers, for example, four layers of the exhaust gas passage 32 in the heat exchange chamber 11k. ) The both end portions in the direction are supported and the both end portions in the D2 direction of the communication passages 33 and 34 are closed, and the laminated thickness of the laminated flat tubes 12 (for example, the thickness at the both end portions in the D2 direction). And end plates 51 and 52 that define the positions of the plurality of flat tubes 12 in the D1 direction. As shown in FIG. 7, the end plates 51 and 52 are inserted into the slits 51 b and 52 b of the intermediate support portions 51 a and 52 a by inserting both longitudinal ends of the flat tube 12 at the center in the stacking direction, thereby Although it supports to the intermediate support parts 51a and 52a, as shown in FIG. 8, the opening shape (gas passage port shape as a whole) which does not have the support parts 51a and 52a of the center part of a lamination direction may be sufficient.

側壁部材41、42は、それぞれ図9に示すように、扁平チューブ12のD1方向における両端部が挿入される複数の平行なプレート保持穴部41a、42aと、積層方向両側の扁平チューブ12とシェル11との間に形成される空間35、36内に連通路33、34内の冷却水を導く複数の異径の連通孔41b、41c、41d、41e、41fおよび42b、42c、42d、42e、42fが形成されている。これら連通孔41b〜41fおよび42b〜42fは、D2方向に所定間隔で離間し、D2方向でシェル11の冷却水導入口11c側に近いほど孔径が大きくなっている。   As shown in FIG. 9, each of the side wall members 41 and 42 includes a plurality of parallel plate holding holes 41a and 42a into which both ends of the flat tube 12 in the D1 direction are inserted, and the flat tubes 12 and shells on both sides in the stacking direction. 11, a plurality of communication holes 41b, 41c, 41d, 41e, 41f and 42b, 42c, 42d, 42e having different diameters for guiding the cooling water in the communication passages 33, 34 into the spaces 35, 36 formed between them. 42f is formed. These communication holes 41b to 41f and 42b to 42f are spaced apart at a predetermined interval in the D2 direction, and the hole diameter is larger as the distance from the cooling water inlet 11c side of the shell 11 is closer to the D2 direction.

なお、側壁部材41、42および端板51、52は、予め一組の扁平チューブ12に組み付けられて、シェル11内の熱交換室部11k内に装填される。また、シェル11は、例えばこれら複数の扁平チューブ12の熱交換室部11kへの収納後に閉蓋される蓋部(例えばシェル11の冷却水導入口11cおよび冷却水排出口11dを形成した部分)を有している。   Note that the side wall members 41 and 42 and the end plates 51 and 52 are assembled in advance into a set of flat tubes 12 and loaded into the heat exchange chamber portion 11 k in the shell 11. In addition, the shell 11 is, for example, a lid portion that is closed after the plurality of flat tubes 12 are stored in the heat exchange chamber portion 11k (for example, a portion in which the cooling water introduction port 11c and the cooling water discharge port 11d of the shell 11 are formed). have.

次に、作用について説明する。   Next, the operation will be described.

上述のように構成された本実施形態の熱交換器10においては、エンジンの負荷等に応じた排気再循環がなされるとき、シェル11の冷却水導入口11cから連通路33内にラジエータから放熱後の冷却水が流入し、連通路33から複数の冷却水通路31を通って連通路34に流れる段階で、冷却水は複数の扁平チューブ12内の冷却水通路31に分岐して流れ、連通路34において合流する。また、連通路34で合流した冷却水は、冷却水排出口11dを通してラジエータ側に流れて再度冷却される。さらに、冷却水循環経路中に配置されるコントロールバルブ等によってその冷却水量が可変制御され、あるいは、EGRバルブによって排気ガス流量が制御されることで、冷却水通路31を流れる冷却水と排気ガス通路32を流れるEGRガスとの間での熱交換量が制御される。   In the heat exchanger 10 of the present embodiment configured as described above, when exhaust gas recirculation is performed according to the engine load or the like, heat is radiated from the radiator into the communication path 33 from the cooling water inlet 11c of the shell 11. When the later cooling water flows in and flows from the communication path 33 to the communication path 34 through the plurality of cooling water paths 31, the cooling water branches and flows to the cooling water paths 31 in the plurality of flat tubes 12. Merge in the passage 34. Further, the cooling water merged in the communication path 34 flows to the radiator side through the cooling water discharge port 11d and is cooled again. Further, the amount of the cooling water is variably controlled by a control valve or the like disposed in the cooling water circulation path, or the exhaust gas flow rate is controlled by the EGR valve, whereby the cooling water and the exhaust gas path 32 flowing through the cooling water passage 31 are controlled. The amount of heat exchange with the EGR gas flowing through is controlled.

図10〜図11は、そのような熱交換がなされる状態における熱交換器10内の流体の流れの状態を示す作用説明図であり、図10(a)は図3のE−E断面に対応し、図10(b)は図3のG−G断面に対応する。図11(a)は第1の実施の形態に係る熱交換器で熱交換時における流体の流れの状態を図5と同様の断面で示す作用説明図、同図(b)はその流体の流れの状態を図6と同様の断面で示す作用説明図である。   10 to 11 are action explanatory views showing the state of fluid flow in the heat exchanger 10 in a state where such heat exchange is performed, and FIG. 10A is a cross-sectional view taken along the line EE of FIG. Correspondingly, FIG. 10B corresponds to the GG cross section of FIG. FIG. 11A is an operation explanatory view showing the state of the flow of fluid during heat exchange in the heat exchanger according to the first embodiment in the same cross section as FIG. 5, and FIG. 11B is the flow of the fluid. FIG. 7 is an operation explanatory view showing the state of FIG.

EGRガスは、図10に示すように複数の扁平チューブ12の間の排気ガス通路32をD2方向に通って熱交換器10の熱交換室部11kを通過し、一方、冷却水は、図11に示すように、複数の扁平チューブ12内の冷却水通路31を通って熱交換器10の熱交換室部11kをD1方向に通過する。   As shown in FIG. 10, the EGR gas passes through the exhaust gas passage 32 between the plurality of flat tubes 12 in the direction D <b> 2 and passes through the heat exchange chamber portion 11 k of the heat exchanger 10. As shown in FIG. 4, the heat exchange chamber portion 11k of the heat exchanger 10 passes through the cooling water passages 31 in the plurality of flat tubes 12 in the D1 direction.

このような本実施形態の熱交換器10では、板状部材21、22に第1凸部21a、22aおよび第2凸部21b、22bとこれらに対応する凹部とが形成されることで、冷却水通路31および排気ガス通路32のそれぞれに交互に凹凸が形成されている。したがって、これら第1凸部21a、22aおよび第2凸部21b、22bの大きさや配置を適宜設定することで、従来のようにフィン部材を別に設けることなく冷却水通路31内の冷却水や排気ガス通路32内のEGRガスの流れの方向や流量を調整することができる。また、板状部材21、22をプレス加工によって低コストに製造できる。その結果、EGRガスの温度を低下させ、EGR装置によるNOx低減効果を高めることができる、高熱交換効率で小型・低コストのEGRクーラを提供することができる。   In such a heat exchanger 10 of this embodiment, the plate-like members 21 and 22 are formed with the first convex portions 21a and 22a and the second convex portions 21b and 22b and the concave portions corresponding to these, thereby cooling. Unevenness is alternately formed in each of the water passage 31 and the exhaust gas passage 32. Therefore, by appropriately setting the size and arrangement of the first protrusions 21a and 22a and the second protrusions 21b and 22b, the cooling water and the exhaust gas in the cooling water passage 31 can be provided without providing a fin member as in the prior art. The direction and flow rate of the EGR gas in the gas passage 32 can be adjusted. Moreover, the plate-like members 21 and 22 can be manufactured at low cost by press working. As a result, it is possible to provide a small and low-cost EGR cooler with high heat exchange efficiency that can reduce the temperature of the EGR gas and enhance the NOx reduction effect of the EGR device.

また、本実施形態では、第1凸部21a、22aと第2凸部21b、22bとが、冷却水通路31内の冷却水の流れ方向であるD1方向に交互に複数配置されるとともに、排気ガス通路32内のEGRガスの流れ方向であるD2方向にも交互に複数配置されているので、冷却水通路31および排気ガス通路32の双方で、図2に示すような乱流を通路断面上の上下左右に生じさせ、それにより伝熱効率を向上させることができる。   In the present embodiment, a plurality of first protrusions 21a, 22a and second protrusions 21b, 22b are alternately arranged in the direction D1 which is the flow direction of the cooling water in the cooling water passage 31, and the exhaust gas is exhausted. 2 are alternately arranged in the direction D2 which is the flow direction of the EGR gas in the gas passage 32, so that the turbulent flow as shown in FIG. The heat transfer efficiency can be improved.

さらに、本実施形態では、冷却水通路31内の冷却水の流れ方向と排気ガス通路32内のEGRガスの流れ方向とが互いに直交し、第1凸部21a、22aと第2凸部21b、22bとが、D1方向およびD2方向のそれぞれで交互に離間するように、複数配置されているので、冷却水通路31および排気ガス通路32における更なる乱流効果と伝熱効果の向上が期待できる。しかも、シェル11内への冷却水およびEGRガスの通過方向が直交するので、シェル11内への冷却水の流通経路およびEGRガスの流通経路を共に容易に配置できる。   Furthermore, in this embodiment, the flow direction of the cooling water in the cooling water passage 31 and the flow direction of the EGR gas in the exhaust gas passage 32 are orthogonal to each other, and the first convex portions 21a and 22a and the second convex portions 21b, 22b are arranged so as to be alternately separated in each of the D1 direction and the D2 direction, so that further improvement of the turbulent flow effect and the heat transfer effect in the cooling water passage 31 and the exhaust gas passage 32 can be expected. . Moreover, since the passage directions of the cooling water and the EGR gas into the shell 11 are orthogonal to each other, both the circulation path of the cooling water and the circulation path of the EGR gas into the shell 11 can be easily arranged.

しかも、第1凸部21a、22aと第2凸部21b、22bとが、それぞれ錐台形状に形成され、千鳥配置されているので、伝熱面積が増加するのみならず、冷却水の流れとEGRガスの流れとが共に流体通路断面上の上下左右方向に適度に乱され、伝熱効率が向上する。   In addition, since the first convex portions 21a and 22a and the second convex portions 21b and 22b are each formed in a frustum shape and arranged in a staggered manner, not only the heat transfer area increases, but also the flow of cooling water Both the flow of EGR gas are moderately disturbed in the vertical and horizontal directions on the fluid passage cross section, and the heat transfer efficiency is improved.

また、複数の板状部材21、22のうち一面側で互いに対向する各一対の板状部材21、22が扁平チューブ12を構成し、複数対の板状部材21、22によって構成される複数の扁平チューブ12が第2凸部21b、22b同士を対向させるように積層されているので、一対の板状部材21、22を予め扁平チューブ12としてそのシール性や形状精度を担保しておけば、その扁平チューブ12を同一姿勢で順次積層することで熱交換器10の組立が容易にできる。   In addition, each of the pair of plate-like members 21, 22 facing each other on one surface side among the plurality of plate-like members 21, 22 constitutes the flat tube 12, and a plurality of pairs of plate-like members 21, 22 are configured. Since the flat tube 12 is laminated so that the second convex portions 21b and 22b are opposed to each other, if the pair of plate-like members 21 and 22 are preliminarily formed as the flat tube 12 and the sealing performance and shape accuracy are secured, The heat exchanger 10 can be easily assembled by sequentially laminating the flat tubes 12 in the same posture.

加えて、複数の扁平チューブ12を収納するシェル11と、シェル11内の扁平チューブ12の両端側に設けた一対の側壁部材41、42とによって、複数の扁平チューブ12内の冷却水通路31同士を連通させる連通路33、34を形成しているので、複数の扁平チューブ12と一対の側壁部材41、42および端板51、52とによって、冷却水通路31、排気ガス通路32および連通路33、34を少ない部品点数で形成することができる。   In addition, the cooling water passages 31 in the plurality of flat tubes 12 are formed by the shell 11 that houses the plurality of flat tubes 12 and the pair of side wall members 41, 42 provided on both ends of the flat tube 12 in the shell 11. Since the communication passages 33 and 34 that communicate with each other are formed, the cooling water passage 31, the exhaust gas passage 32, and the communication passage 33 are formed by the plurality of flat tubes 12, the pair of side wall members 41 and 42, and the end plates 51 and 52. , 34 can be formed with a small number of parts.

なお、本実施形態における複数の扁平チューブ12は、対向する各一対の板状部材21、22をそれらの第1凸部21a、22a同士を当接するように接合する構成となっているが、板状部材21、22の第2凸部21b、22b同士を当接するように接合することで、その扁平チューブ内(板状部材21、22の間)に他方の流体通路である排気ガス通路32を形成したものとすることもできる。その場合には、複数の扁平チューブ12は、排気ガス通路32の延在方向(図4中の左右方向)に管路を形成することになる。   In addition, although the several flat tube 12 in this embodiment becomes a structure which joins each pair of opposing plate-shaped members 21 and 22 so that those 1st convex parts 21a and 22a may contact | abut, The exhaust gas passage 32 which is the other fluid passage is formed in the flat tube (between the plate-like members 21 and 22) by joining the second convex portions 21b and 22b of the member 21 and 22 so as to contact each other. It can also be formed. In this case, the plurality of flat tubes 12 form a pipe line in the extending direction of the exhaust gas passage 32 (left and right direction in FIG. 4).

(第2の実施の形態)
図12は本発明の第2の実施の形態に係る熱交換器を示す図である。なお、以下に説明する各実施形態は、上述した第1の実施形態と類似の全体構成を有し、その扁平チューブ(板状部材)に設けられる凸部形状のみが上述例と異なるものである。したがって、上述の実施形態と同一の構成または類似する構成については図1〜図11に示した符号を付し、相違点について詳述する。
(Second Embodiment)
FIG. 12 is a view showing a heat exchanger according to the second embodiment of the present invention. In addition, each embodiment described below has an overall configuration similar to that of the first embodiment described above, and only the convex shape provided on the flat tube (plate-like member) is different from the above-described example. . Therefore, the same or similar configurations as those of the above-described embodiment are denoted by the reference numerals shown in FIGS. 1 to 11 and the differences will be described in detail.

本実施形態の熱交換器60においては、扁平チューブ12を構成する板状部材21、22に設けられる第2凸部21b、22bの一部が、小判形凸部あるいは所定長さの突条である複数の異形第2凸部61cあるいはこれに対向する同様な図示しない異形第2凸部(以下、両者を合わせて異形第2凸部61c等という)に置き換えられており、これら異形第2凸部61c等は、排気ガス通路32へのEGRガスの流入出(排気ガスの通過)方向であるD2方向に対し、所定角度θ1で交差する長手方向を有している。なお、異形第2凸部61c等の背面側には冷却水通路31の膨出部31eが小判形あるいは所定長さの突条の形で形成されることになる。なお、板状部材21、22の一方側のみに異形第2凸部を設けてもよい。   In the heat exchanger 60 of this embodiment, a part of 2nd convex part 21b, 22b provided in the plate-shaped members 21 and 22 which comprise the flat tube 12 is an oval convex part or the protrusion of predetermined length. A plurality of deformed second convex portions 61c or similar non-illustrated deformed second convex portions (hereinafter referred to as deformed second convex portions 61c, etc.) facing each other are replaced by these deformed second convex portions 61c. The part 61c and the like have a longitudinal direction that intersects the D2 direction, which is the direction in which the EGR gas flows into and out of the exhaust gas passage 32 (exhaust gas passage), at a predetermined angle θ1. Note that the bulging portion 31e of the cooling water passage 31 is formed on the back side of the deformed second convex portion 61c or the like in the form of an oval shape or a protrusion having a predetermined length. In addition, you may provide a deformed 2nd convex part only in the one side of the plate-shaped members 21 and 22. FIG.

これら異形第2凸部61c等は、冷却水導入口11c近傍の排気ガス通路32内のEGRガスの流れの方向を、図12に示すように、排気ガス通路32へのEGRガスの流入出(通過)方向であるD2方向に対し、冷却水導入口11c側に、すなわち冷却水通路31内における冷却水の流入側に偏倚させる(EGRガスの流れの方向を冷却水の低温側に傾ける意)ようになっており、そのEGRガスの流れに沿った異形第2凸部61c等の側壁面部分によって伝熱面積も大きくなっている。   These irregularly shaped second convex portions 61c and the like change the direction of the flow of EGR gas in the exhaust gas passage 32 in the vicinity of the cooling water inlet 11c so that the EGR gas flows into and out of the exhaust gas passage 32 as shown in FIG. It is biased toward the cooling water inlet 11c side, that is, the cooling water inflow side in the cooling water passage 31 with respect to the D2 direction (passing) direction (intention to tilt the EGR gas flow direction toward the low temperature side of the cooling water). The heat transfer area is also increased by the side wall surface portion such as the deformed second convex portion 61c along the flow of the EGR gas.

本実施形態では、上述の第1の実施形態の効果に加えて、高温側のEGRガスの流れが、熱交換の進行していない低温側の冷却水の流入側に偏倚する流れとなることから、EGRガスと冷却水との温度差が大きい領域で熱交換が促進され、熱交換効率が高まることになる。   In the present embodiment, in addition to the effects of the first embodiment described above, the flow of the EGR gas on the high temperature side becomes a flow that is biased toward the inflow side of the cooling water on the low temperature side where heat exchange is not progressing. Heat exchange is promoted in a region where the temperature difference between the EGR gas and the cooling water is large, and the heat exchange efficiency is increased.

(第3の実施の形態)
図13は本発明の第3の実施の形態に係る熱交換器を示す図である。
(Third embodiment)
FIG. 13 is a view showing a heat exchanger according to the third embodiment of the present invention.

本実施形態の熱交換器70においては、扁平チューブ12を構成する板状部材21、22に設けられる第1凸部21a、22aの一部が、小判形凸部あるいは所定長さの突条である異形第1凸部71cあるいはこれに対向する同様な図示しない異形第1凸部(以下、両者を合わせて異形第1凸部71c等という)に置き換えられており、これら異形第1凸部71c等は、冷却水通路31への冷却水の流入出(通過)方向であるD1方向に対し、所定角度θ2で交差する長手方向を有している。なお、異形第1凸部71c等の背面側には排気ガス通路32の膨出部32eが小判形あるいは所定長さの突条の形で形成されることになる。   In the heat exchanger 70 of this embodiment, some of the first convex portions 21a and 22a provided on the plate-like members 21 and 22 constituting the flat tube 12 are oval convex portions or protrusions having a predetermined length. It is replaced by a certain deformed first convex portion 71c or a similar deformed first convex portion (not shown) opposite to the first convex portion 71c (hereinafter referred to as the deformed first convex portion 71c or the like together). And the like have a longitudinal direction that intersects the direction D1 that is the inflow / outflow (passage) direction of the cooling water into the cooling water passage 31 at a predetermined angle θ2. Note that the bulging portion 32e of the exhaust gas passage 32 is formed in the shape of an oval shape or a protrusion having a predetermined length on the back side of the deformed first convex portion 71c and the like.

異形第1凸部71c等は、冷却水通路31内の冷却水の流れを、排気ガス通路32内におけるEGRガス(排気ガス)の流入側に偏倚させる(図13に示すように、すなわち冷却水の冷却水導入口11cからシェル11内への流入方向であるD1方向に対して排気ガス通路32内への排気ガスの流入口側に流れの方向を傾ける)ようになっている。   The deformed first convex portion 71c or the like biases the flow of the cooling water in the cooling water passage 31 toward the inflow side of EGR gas (exhaust gas) in the exhaust gas passage 32 (ie, as shown in FIG. The direction of the flow is inclined toward the inflow side of the exhaust gas into the exhaust gas passage 32 with respect to the direction D1 which is the inflow direction into the shell 11 from the cooling water inlet 11c.

本実施形態では、上述の第1の実施形態の効果に加えて、低温側の流体である冷却水が熱交換の進行していない高温側の流体、すなわちEGRガスの流入側に偏倚する流れとなることから、冷却水とEGRガスの温度差が大きい領域で熱交換が促進され、熱交換効率が高まることになる。   In the present embodiment, in addition to the effects of the first embodiment described above, the cooling water that is the low temperature side fluid is biased toward the high temperature side fluid in which heat exchange does not proceed, that is, the EGR gas inflow side. Therefore, heat exchange is promoted in a region where the temperature difference between the cooling water and the EGR gas is large, and the heat exchange efficiency is increased.

(第4の実施の形態)
図14は本発明の第4の実施の形態に係る熱交換器を示す図である。
(Fourth embodiment)
FIG. 14 is a view showing a heat exchanger according to the fourth embodiment of the present invention.

本実施形態の熱交換器80においては、扁平チューブ12を構成する板状部材21、22に設けられる第1凸部21a、22aの一部が、図14に示すようにジグザグに屈曲した突条であって互いにD2方向に離間する複数の異形第1凸部81cあるいはこれに対向する同様な図示しない異形第1凸部(以下、両者を合わせて異形第1凸部81c等という)に置き換えられている。   In the heat exchanger 80 of the present embodiment, the first protrusions 21a and 22a provided on the plate-like members 21 and 22 constituting the flat tube 12 are partly bent in a zigzag manner as shown in FIG. However, it is replaced with a plurality of deformed first convex portions 81c that are spaced apart from each other in the D2 direction, or similar non-illustrated deformed first convex portions (hereinafter referred to as the deformed first convex portions 81c, etc.) that oppose each other. ing.

これら異形第1凸部81c等は、排気ガス通路32へのEGRガスの流入出方向であるD2方向に対し直交するD1方向において、排気ガス通路32の幅の全域に及ぶ長さを有しており、冷却水通路31内の冷却水が各異形第1凸部81c等を挟んで排気ガス通路32の通路幅方向(D1方向)における一方側から他方側に、あるいは他方側から一方側に折り返して流れるようになっている。なお、異形第1凸部81c等の背面側には排気ガス通路32の膨出部32eが屈曲した突条の形で形成されることになる。   These deformed first convex portions 81c and the like have a length extending over the entire width of the exhaust gas passage 32 in the D1 direction orthogonal to the D2 direction, which is the flow direction of EGR gas into and out of the exhaust gas passage 32. The cooling water in the cooling water passage 31 is folded back from one side to the other side in the passage width direction (D1 direction) of the exhaust gas passage 32 or from the other side to the one side across each of the deformed first convex portions 81c and the like. Is flowing. In addition, the bulging portion 32e of the exhaust gas passage 32 is formed in the shape of a bent ridge on the back side of the deformed first convex portion 81c and the like.

また、連通路33、34を所定箇所で仕切り、冷却水導入口11cから冷却水排出口11dへのジグザグの冷却水通路31を形成するように、シェル11と側壁部材41、42との間に冷却水通路31の折返し方向を規定する仕切部材53、54、55が設けられている。なお、これらの仕切部材53、54、55は、複数の扁平チューブ12、側壁部材41、42および端板51、52と一体にろう付けされている。   Further, the communication passages 33 and 34 are partitioned at predetermined positions, and a zigzag cooling water passage 31 from the cooling water introduction port 11c to the cooling water discharge port 11d is formed between the shell 11 and the side wall members 41 and 42. Partition members 53, 54, and 55 that define the direction in which the cooling water passage 31 is folded back are provided. The partition members 53, 54, and 55 are brazed integrally with the plurality of flat tubes 12, the side wall members 41 and 42, and the end plates 51 and 52.

本実施形態では、異形第1凸部81c等を挟んで折り返す冷却水通路31が排気ガス通路32の幅方向全域を往復する折り返し通路となることから、熱交換効率が高まることになる。   In the present embodiment, since the cooling water passage 31 that turns back with the deformed first convex portion 81c and the like interposed therebetween becomes a turning passage that reciprocates in the entire width direction of the exhaust gas passage 32, the heat exchange efficiency is increased.

(第5の実施の形態)
図15は本発明の第5の実施の形態に係る熱交換器を示す図である。
(Fifth embodiment)
FIG. 15 is a view showing a heat exchanger according to the fifth embodiment of the present invention.

本実施形態の熱交換器90においては、扁平チューブ12を構成する板状部材21、22が、その平板部21c、22cの一面側からの第1凸部21a、22aの突出高さまたは平板部21c、22cの他面側からの第2凸部21b、22bの突出高さが互いに異なる複数種、例えば各3種類の板状部材21S、21T、21U、22S、22T、22U(以下、これらを総称して板状部材21、22という)からなる。   In the heat exchanger 90 of the present embodiment, the plate-like members 21 and 22 constituting the flat tube 12 are protruded heights or flat plate portions of the first convex portions 21a and 22a from one surface side of the flat plate portions 21c and 22c. Plural types with different protrusion heights of the second convex portions 21b, 22b from the other surface side of 21c, 22c, for example, three types of plate-like members 21S, 21T, 21U, 22S, 22T, 22U (hereinafter referred to as these) It is generally referred to as plate-like members 21 and 22).

そして、第1凸部21a、22aの突出高さおよび第2凸部21b、22bの突出高さが互いに等しい同一種の板状部材21S、22S同士から積層方向で最も外側の扁平チューブ12Sが構成され、第1凸部21a、22aの突出高さが板状部材21S、22Sより大きく、板状部材21U、22Uより小さい板状部材21T、22T同士によって積層方向で外側から2番目の扁平チューブ12Tが構成され、第1凸部21a、22aの突出高さが最も大きい板状部材21U、22U同士によって積層方向中心部の扁平チューブ12Uが構成されている。   Then, the outermost flat tube 12S in the stacking direction is composed of the same type of plate-like members 21S and 22S having the same protruding height of the first protruding portions 21a and 22a and the protruding height of the second protruding portions 21b and 22b. The projecting height of the first protrusions 21a and 22a is larger than the plate-like members 21S and 22S, and the plate-like members 21T and 22T smaller than the plate-like members 21U and 22U are the second flat tubes 12T from the outside in the stacking direction. The flat tube 12U at the center in the stacking direction is configured by the plate-like members 21U and 22U having the largest protruding heights of the first convex portions 21a and 22a.

一方、扁平チューブ12S、12Tおよび12Uの積層ピッチは、図15に示すようにピッチPAで一定であり、板状部材21S、22Sの第2凸部21b、22bの突出高さは板状部材21T、22Tの第2凸部21b、22bの突出高さより大きく、かつ、板状部材21T、22Tの第2凸部21b、22bの突出高さは板状部材21U、22Uの第2凸部21b、22bの突出高さより大きくなっている。   On the other hand, the stacking pitch of the flat tubes 12S, 12T, and 12U is constant at the pitch PA as shown in FIG. 15, and the protruding heights of the second convex portions 21b, 22b of the plate-like members 21S, 22S are the plate-like members 21T. , Larger than the projecting height of the second projecting portions 21b, 22b of 22T, and the projecting height of the second projecting portions 21b, 22b of the plate-like members 21T, 22T is the second projecting portion 21b of the plate-like members 21U, 22U, It is larger than the protruding height of 22b.

すなわち、本実施形態の熱交換器90においては、冷却水通路31および排気ガス通路32のうち低温側の流体通路である冷却水通路31の断面積が、扁平チューブ12(複数の板状部材21、22)の積層方向における外側ほど小さくなるように、さらに、高温側の流体通路である排気ガス通路32の断面積が扁平チューブ12の積層方向における外側ほど大きくなるように、図15中の冷却水通路の平坦部31fの厚さに対応する扁平チューブ12の平坦部高さB0、B1、B2が、B2>B1>B0の関係に設定され、排気ガス通路32の平坦部32fの厚さG1、G2が、G1>G2の関係に設定されている。   That is, in the heat exchanger 90 of the present embodiment, the cross-sectional area of the cooling water passage 31 that is the low temperature side fluid passage of the cooling water passage 31 and the exhaust gas passage 32 is the flat tube 12 (the plurality of plate-like members 21. 15) so that the cross-sectional area of the exhaust gas passage 32, which is a high temperature side fluid passage, becomes larger toward the outer side in the laminating direction of the flat tubes 12, so that the outer side in the laminating direction of FIG. The flat portion heights B0, B1, B2 of the flat tube 12 corresponding to the thickness of the flat portion 31f of the water passage are set to the relationship of B2> B1> B0, and the thickness G1 of the flat portion 32f of the exhaust gas passage 32 is set. , G2 are set in a relationship of G1> G2.

このように構成された本実施形態では、上述の第1の実施形態の効果に加えて、熱交換器90の中心部における熱交換が十分でないために熱交換器90の中心部に熱が溜まる、いわゆる熱溜りが抑えられることになる。   In the present embodiment configured as described above, in addition to the effects of the first embodiment described above, heat is accumulated at the center of the heat exchanger 90 because heat exchange at the center of the heat exchanger 90 is not sufficient. In other words, so-called heat accumulation is suppressed.

なお、上述の各実施形態においては、第1凸部と第2凸部とが流体通過方向において1つずつ交互に配置されるのでなく、複数毎に交互に、あるいは、異なる数で交互に配置されてもよい。また、同一通路の流体通過方向の異なる位置に膨出部と没入部が存在するようにすれば、板状部材の一面側の流体通路と他面側の流体通路とのうち少なくとも一方の流体通過のみに凹凸が形成されるようにしてもよい。さらに、第1凸部および第2凸部の凸部形状は、共に円錐台形状を例示したが、球面状に傾斜した周壁面を有する凸部や湾曲した所定長さの突条等であってもよく、第2実施形態から第4実施形態で例示したごとくに、同一板状部材の同一面上に形状の異なる複数種の凸部を組み合わせて配置してもよいことはいうまでもない。   In each of the above-described embodiments, the first convex portions and the second convex portions are not alternately arranged one by one in the fluid passage direction, but are alternately arranged every plural numbers or alternately in a different number. May be. Further, if the bulging portion and the immersion portion are present at different positions in the same passage in the fluid passage direction, at least one of the fluid passage on the one surface side of the plate-like member and the fluid passage on the other surface side passes through the fluid. Unevenness may be formed only on the surface. Furthermore, the convex shapes of the first convex portion and the second convex portion are both frustoconical shapes, but are convex portions having a circumferential wall surface inclined in a spherical shape, curved protrusions having a predetermined length, and the like. Of course, as exemplified in the second to fourth embodiments, it is needless to say that a plurality of types of convex portions having different shapes may be combined on the same surface of the same plate-like member.

以上説明したように、本発明は、一方の流体通路と他方の流体通路のそれぞれに第1凸部および第2凸部のうちいずれか一方とそれに対応する凹部とが形成されるようにしているので、これら第1凸部および第2凸部の大きさや配置を適宜設定することで、フィン部材を別に設けることなく流体の流れの方向や流量バランスを調整することができ、伝熱面積も十分に確保することができる、低コストで冷却効率の高い熱交換器を提供することができるという効果を奏するものであり、熱交換器、特に内燃機関の排気再循環装置における排気冷却用として好適な熱交換器全般に有用である。   As described above, according to the present invention, one of the first convex portion and the second convex portion and the corresponding concave portion are formed in each of the one fluid passage and the other fluid passage. Therefore, by appropriately setting the size and arrangement of the first convex portion and the second convex portion, it is possible to adjust the fluid flow direction and the flow rate balance without providing a fin member separately, and the heat transfer area is sufficient. It is possible to provide a heat exchanger having a low cost and high cooling efficiency, and suitable for exhaust cooling in a heat exchanger, particularly an exhaust gas recirculation device for an internal combustion engine. Useful for heat exchangers in general.

本発明の第1の実施の形態に係る熱交換器の一部断面平面図である。It is a partial cross section top view of the heat exchanger which concerns on the 1st Embodiment of this invention. 図1のA−A断面図である。It is AA sectional drawing of FIG. 図1のB−B断面図である。It is BB sectional drawing of FIG. (a)は図3のE−E断面図、(b)は図3のF−F断面図である。(A) is EE sectional drawing of FIG. 3, (b) is FF sectional drawing of FIG. 図1のC−C断面図である。It is CC sectional drawing of FIG. 図1のD−D断面図である。It is DD sectional drawing of FIG. 図3に示される排気ガス導入口の形状説明図である。It is shape explanatory drawing of the exhaust-gas inlet shown by FIG. 図3に示される排気ガス導入口の変形態様の形状説明図である。It is shape explanatory drawing of the deformation | transformation aspect of the exhaust-gas inlet shown by FIG. 第1の実施の形態に係る熱交換器の内部の側壁部材の平面図である。It is a top view of the side wall member inside the heat exchanger which concerns on 1st Embodiment. 第1の実施の形態に係る熱交換器で熱交換がなされる状態における流体の流れの状態を高さ位置の異なる平面断面で示す作用説明図で、(a)は図3のE−E断面に対応し、(b)は図3のG−G断面に対応する。FIG. 4 is an operation explanatory view showing the state of fluid flow in a state where heat is exchanged in the heat exchanger according to the first embodiment in a plane cross section having different height positions, and (a) is a cross section taken along line EE in FIG. 3. (B) corresponds to the GG cross section of FIG. (a)は第1の実施の形態に係る熱交換器で熱交換時における流体の流れの状態を図5と同様の断面で示す作用説明図、(b)はその流体の流れの状態を図6と同様の断面で示す作用説明図である。(A) is an action explanatory view showing the state of fluid flow at the time of heat exchange in the heat exchanger according to the first embodiment in the same cross section as FIG. 5, and (b) shows the state of fluid flow. 6 is an operation explanatory view showing the same cross section as FIG. 本発明の第2の実施の形態に係る熱交換器の側面断面図である。It is side surface sectional drawing of the heat exchanger which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る熱交換器の側面断面図である。It is side surface sectional drawing of the heat exchanger which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る熱交換器の側面断面図である。It is side surface sectional drawing of the heat exchanger which concerns on the 4th Embodiment of this invention. 本発明の第5の実施の形態に係る熱交換器の要部平面断面図である。It is a principal part plane sectional view of the heat exchanger concerning a 5th embodiment of the present invention. 従来例のEGRクーラ付の排気再循環装置を備えた内燃機関の概略構成図である。It is a schematic block diagram of the internal combustion engine provided with the exhaust gas recirculation apparatus with an EGR cooler of a prior art example.

符号の説明Explanation of symbols

10、60、70、80、90 熱交換器(EGRクーラ)
11 シェル
11a、11b フランジ部
11c 冷却水導入口
11d 冷却水排出口
11h、11i 開口部
11k 熱交換室部
11m、11n 接続管部
12、12S、12T、12U 扁平チューブ
12a、12b 両端部
21、22、21S、22S、21T、22T、21U、22U 板状部材
21a、22a 第1凸部
21b、22b 第2凸部
21c、22c 平板部
31 冷却水通路
31c 没入部
31e 膨出部
31f、32f 平坦部
32 排気ガス通路
32c 没入部
32e 膨出部
32f 平坦部
33、34 連通路
35、36 空間
41、42 側壁部材
41a、42a プレート保持穴部
41b、41c、41d、41e、41f 連通孔
51、52 端板
53、54、55 仕切部材
61c等 異形第2凸部
71c等 異形第1凸部
81c等 異形第1凸部
B0、B1、B2 扁平チューブの平坦部の厚さ
D1 冷却水通路の冷却水通過方向(一方の流体通路内の流体の流入出方向)
D2 排気ガス通路のEGRガス通過方向(他方の流体通路内の流体の流入出方向)
G1、G2 排気ガス通路の平坦部の厚さ
θ1、θ2 所定角度
10, 60, 70, 80, 90 Heat exchanger (EGR cooler)
11 shell 11a, 11b flange part 11c cooling water inlet 11d cooling water outlet 11h, 11i opening 11k heat exchange chamber part 11m, 11n connecting pipe part 12, 12S, 12T, 12U flat tube 12a, 12b both end parts 21, 22 , 21S, 22S, 21T, 22T, 21U, 22U Plate-like member 21a, 22a First convex portion 21b, 22b Second convex portion 21c, 22c Flat plate portion 31 Cooling water passage 31c Immersion portion 31e Swelling portion 31f, 32f Flat portion 32 Exhaust gas passage 32c Immersion part 32e Expansion part 32f Flat part 33, 34 Communication path 35, 36 Space 41, 42 Side wall member 41a, 42a Plate holding hole part 41b, 41c, 41d, 41e, 41f Communication hole 51, 52 End Plate 53, 54, 55 Partition member 61c etc. Modified second convex portion 71c etc. Modified first convex 81c such variant the first convex portion B0, B1, B2 of the flat portion of the flat tube thickness D1 coolant passage direction of the cooling water passage (inflow out direction of the fluid in the one fluid passage)
D2 EGR gas passage direction of exhaust gas passage (flow direction of fluid in the other fluid passage)
G1, G2 Thickness of flat part of exhaust gas passage θ1, θ2 Predetermined angle

Claims (10)

複数の板状部材により形成される一方の流体通路と他方の流体通路とを流れる流体の間で熱交換させる熱交換器において、
前記複数の板状部材のそれぞれが、一面側に凸状をなす第1凸部と該第1凸部から前記一方または他方の流体通路の流体通過方向に離間して他面側に凸状をなす第2凸部とを有するとともに、前記一面側同士もしくは他面側同士で対向するように積層され、前記複数の板状部材の前記一面側と前記他面側とに前記一方の流体通路と前記他方の流体通路とが形成されたことを特徴とする熱交換器。
In a heat exchanger for exchanging heat between fluid flowing in one fluid passage and the other fluid passage formed by a plurality of plate-like members,
Each of the plurality of plate-like members has a first convex portion convex on one surface side and a convex shape on the other surface side away from the first convex portion in the fluid passage direction of the one or other fluid passage. A second convex portion formed and stacked so as to face each other or the other surface side, and the one fluid passage on the one surface side and the other surface side of the plurality of plate-like members. A heat exchanger characterized in that the other fluid passage is formed.
前記第1凸部と前記第2凸部とが、前記一方の流体通路内の流体の流れ方向に交互に複数配置されるとともに、前記他方の流体通路内の流体の流れ方向にも交互に複数配置されたことを特徴とする請求項1に記載の熱交換器。   A plurality of the first convex portions and the second convex portions are alternately arranged in the fluid flow direction in the one fluid passage, and the plurality of the first convex portions and the second convex portions are alternately arranged in the fluid flow direction in the other fluid passage. The heat exchanger according to claim 1, wherein the heat exchanger is arranged. 前記一方の流体通路内の流体の流れ方向と前記他方の流体通路内の流体の流れ方向とが互いに直交し、前記第1凸部と前記第2凸部とが、前記一方の流体通路内の流体の流れ方向と直交する方向に交互に離間するとともに、前記他方の流体通路内の流体の流れ方向と直交する方向に交互に離間するように、複数配置されたことを特徴とする請求項2に記載の熱交換器。   The flow direction of the fluid in the one fluid passage and the flow direction of the fluid in the other fluid passage are orthogonal to each other, and the first protrusion and the second protrusion are in the one fluid passage. 3. A plurality of elements are arranged so as to be alternately spaced in a direction orthogonal to the fluid flow direction and alternately spaced in a direction orthogonal to the fluid flow direction in the other fluid passage. The heat exchanger as described in. 前記複数の板状部材のうち前記一面側で互いに対向する各一対の板状部材が、前記一面側を内面側とし、前記他面側を外面側とする扁平チューブを構成し、
前記複数の板状部材によって構成される複数の前記扁平チューブが前記第2凸部同士を当接するように積層されたことを特徴とする請求項1ないし請求項3のいずれか1項に記載の熱交換器。
Each of the pair of plate members facing each other on the one surface side among the plurality of plate members constitutes a flat tube having the one surface side as an inner surface side and the other surface side as an outer surface side,
The said flat tube comprised by these several plate-shaped members was laminated | stacked so that said 2nd convex part might contact | abut, The Claim 1 characterized by the above-mentioned. Heat exchanger.
前記複数の扁平チューブを収納するシェルと、
前記シェル内で前記複数の扁平チューブの両端側に設けられ、前記シェルとの間に前記複数の扁平チューブ内の前記一方の流体通路同士を連通させる連通路を形成する一対の側壁部材と、を備え、
前記一対の側壁部材と前記複数の扁平チューブとによって前記複数の扁平チューブの間に前記他方の流体通路が形成されたことを特徴とする請求項4に記載の熱交換器。
A shell for storing the plurality of flat tubes;
A pair of side wall members that are provided at both ends of the plurality of flat tubes in the shell and that form communication passages between the shells and the one fluid passages in the plurality of flat tubes. Prepared,
The heat exchanger according to claim 4, wherein the other fluid passage is formed between the plurality of flat tubes by the pair of side wall members and the plurality of flat tubes.
前記第1凸部が、前記一方の流体通路への前記流体の流入出方向と交差する長手方向を有し、前記一方の流体通路内の流体の流れを前記他方の流体通路内における流体の流入側に偏倚させることを特徴とする請求項4または請求項5に記載の熱交換器。   The first convex portion has a longitudinal direction intersecting with the inflow / outflow direction of the fluid into the one fluid passage, and the flow of the fluid in the one fluid passage is changed to the inflow of the fluid in the other fluid passage. The heat exchanger according to claim 4 or 5, wherein the heat exchanger is biased to the side. 前記第2凸部が、前記他方の流体通路への前記流体の流入出方向と交差する長手方向を有し、前記他方の流体通路内の流体の流れを前記一方の流体通路内における流体の流入側に偏倚させることを特徴とする請求項4または請求項5に記載の熱交換器。   The second convex portion has a longitudinal direction that intersects the inflow / outflow direction of the fluid into the other fluid passage, and the flow of the fluid in the other fluid passage is changed to the inflow of fluid in the one fluid passage. The heat exchanger according to claim 4 or 5, wherein the heat exchanger is biased to the side. 前記第1凸部が前記他方の流体通路への流体の流入出方向と直交する他方の流体通路幅の全域に及ぶ長さを有し、前記一方の流体通路内の流体が該第1凸部を挟んで前記他方の流体通路幅方向における一方側と他方側に折り返して流れるようにしたことを特徴とする請求項4または請求項5に記載の熱交換器。   The first convex portion has a length extending over the entire width of the other fluid passage width orthogonal to the fluid inflow / outflow direction to the other fluid passage, and the fluid in the one fluid passage is the first convex portion. 6. The heat exchanger according to claim 4, wherein the heat exchanger is configured to flow while being folded back to one side and the other side in the width direction of the other fluid passage. 前記複数の板状部材が、前記一面側の平面部からの前記第1凸部の突出高さまたは前記他面側の平面部からの前記第2凸部の突出高さが互いに異なる複数種の板状部材からなり、
前記一方の流体通路および前記他方の流体通路のうち低温側の流体通路の断面積が前記複数の板状部材の積層方向における外側ほど小さくなるように、あるいは、前記一方の流体通路および前記他方の流体通路のうち高温側の流体通路の断面積が前記複数の板状部材の積層方向における外側ほど大きくなるように、前記複数種の板状部材が積層されたことを特徴とする請求項1ないし請求項8のいずれか1項に記載の熱交換器。
The plurality of plate-shaped members are different from each other in the protruding height of the first convex portion from the flat portion on the one surface side or the protruding height of the second convex portion from the flat portion on the other surface side. It consists of a plate-shaped member
Of the one fluid passage and the other fluid passage, the cross-sectional area of the fluid passage on the low temperature side becomes smaller toward the outside in the stacking direction of the plurality of plate-like members, or the one fluid passage and the other fluid passage 2. The plurality of types of plate-like members are stacked so that a cross-sectional area of a fluid passage on a high temperature side of the fluid passages increases toward the outside in the stacking direction of the plurality of plate-like members. The heat exchanger according to claim 8.
内燃機関の排気再循環通路を通る排気ガスを冷却するよう、前記他方の流体通路が内燃機関の排気再循環通路の一部を形成し、
前記一方の流体通路内に冷却液が供給されることを特徴とする請求項1ないし請求項9のいずれか1項に記載の熱交換器。
The other fluid passage forms part of the exhaust gas recirculation passage of the internal combustion engine so as to cool the exhaust gas passing through the exhaust gas recirculation passage of the internal combustion engine;
The heat exchanger according to any one of claims 1 to 9, wherein a coolant is supplied into the one fluid passage.
JP2007174230A 2007-07-02 2007-07-02 Heat exchanger Pending JP2009014220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007174230A JP2009014220A (en) 2007-07-02 2007-07-02 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007174230A JP2009014220A (en) 2007-07-02 2007-07-02 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2009014220A true JP2009014220A (en) 2009-01-22

Family

ID=40355335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007174230A Pending JP2009014220A (en) 2007-07-02 2007-07-02 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2009014220A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037136A (en) * 2010-08-06 2012-02-23 T Rad Co Ltd High-density laminated heat exchanger
JP2012112645A (en) * 2010-11-19 2012-06-14 Danfoss As Heat exchanger
JP2012112644A (en) * 2010-11-19 2012-06-14 Danfoss As Heat exchanger
JP2013521466A (en) * 2010-03-08 2013-06-10 アルファ・ラバル・コーポレイト・エービー Spiral heat exchanger
CN109019511A (en) * 2018-10-11 2018-12-18 广东索特能源科技有限公司 A kind of methane reformer system using SOFC high-temperature flue gas
JP2019138553A (en) * 2018-02-09 2019-08-22 三桜工業株式会社 Heat exchanger, egr cooler and method for manufacturing heat exchanger
US10697406B2 (en) 2016-03-31 2020-06-30 Mikutay Corporation Heat exchanger utilizing flow path assemblies
RU209787U1 (en) * 2021-04-19 2022-03-23 Федеральное государственное бюджетное образовательное учреждение высшего образования «Брянский государственный технический университет» Plate Heat Exchanger Matrix

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013521466A (en) * 2010-03-08 2013-06-10 アルファ・ラバル・コーポレイト・エービー Spiral heat exchanger
US8573290B2 (en) 2010-03-08 2013-11-05 Alfa Laval Corporate Ab Spiral heat exchanger
JP2012037136A (en) * 2010-08-06 2012-02-23 T Rad Co Ltd High-density laminated heat exchanger
EP2455695A3 (en) * 2010-11-19 2014-04-02 Danfoss A/S Heat exchanger
JP2012112644A (en) * 2010-11-19 2012-06-14 Danfoss As Heat exchanger
EP2455694A3 (en) * 2010-11-19 2014-04-02 Danfoss A/S Heat exchanger
JP2012112645A (en) * 2010-11-19 2012-06-14 Danfoss As Heat exchanger
CN106123655A (en) * 2010-11-19 2016-11-16 丹佛斯公司 Heat exchanger
US10473403B2 (en) 2010-11-19 2019-11-12 Danfoss A/S Heat exchanger
US10697406B2 (en) 2016-03-31 2020-06-30 Mikutay Corporation Heat exchanger utilizing flow path assemblies
JP2019138553A (en) * 2018-02-09 2019-08-22 三桜工業株式会社 Heat exchanger, egr cooler and method for manufacturing heat exchanger
CN109019511A (en) * 2018-10-11 2018-12-18 广东索特能源科技有限公司 A kind of methane reformer system using SOFC high-temperature flue gas
RU209787U1 (en) * 2021-04-19 2022-03-23 Федеральное государственное бюджетное образовательное учреждение высшего образования «Брянский государственный технический университет» Plate Heat Exchanger Matrix

Similar Documents

Publication Publication Date Title
JP2009014220A (en) Heat exchanger
US20070193732A1 (en) Heat exchanger
US7984753B2 (en) Heat exchanger
US8069905B2 (en) EGR gas cooling device
JP5193310B2 (en) Recirculation exhaust gas cooler for internal combustion engines
US8033326B2 (en) Heat exchanger
JP5579428B2 (en) Exhaust gas cooler
JP4938610B2 (en) EGR cooler
KR20170085453A (en) Heat exchange device
CN105247312B (en) Heat exchanger
US20190137197A1 (en) Printed circuit-type heat exchanger having integral structure
KR20140118878A (en) Air to air heat exchanger
JP5510027B2 (en) EGR cooler
JP2001174169A (en) Heat exchanger
JP2003090693A (en) Exhaust gas heat exchanger
US20070235174A1 (en) Heat exchanger
US20130081794A1 (en) Layered core heat exchanger
JP6104107B2 (en) Heat exchanger
JP2001304787A (en) Exhaust heat exchanger
JP5393606B2 (en) Heat exchanger
CN114608368A (en) Heat exchanger
JP2010164244A (en) Primary heat transfer surface heat exchanger
JP2010127604A (en) Plate fin type heat exchanger
JP2005351520A (en) Heat exchanger
JP5531103B2 (en) Heat exchanger