[go: up one dir, main page]

JP2009012996A - Porous fine particles and method for producing the same - Google Patents

Porous fine particles and method for producing the same Download PDF

Info

Publication number
JP2009012996A
JP2009012996A JP2007174762A JP2007174762A JP2009012996A JP 2009012996 A JP2009012996 A JP 2009012996A JP 2007174762 A JP2007174762 A JP 2007174762A JP 2007174762 A JP2007174762 A JP 2007174762A JP 2009012996 A JP2009012996 A JP 2009012996A
Authority
JP
Japan
Prior art keywords
fine particles
substance
porous
resin
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007174762A
Other languages
Japanese (ja)
Inventor
Naoyuki Fujii
直幸 藤井
Ichiro Miura
一郎 三浦
Yoshio Ito
美穂 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENEX CO Ltd
Original Assignee
ENEX CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENEX CO Ltd filed Critical ENEX CO Ltd
Priority to JP2007174762A priority Critical patent/JP2009012996A/en
Publication of JP2009012996A publication Critical patent/JP2009012996A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem wherein, though a fine particle formed by causing porous fine particles to envelope a pigment, a perfume, an agrichemical, etc., controls the discharge rate of a supported substance and can produce a slow-release porous fine particle or in-water drug slow-release fine particles slowly releasing a drug in water, a fine particles preventing the discharge of a supported substance during storage time and having such a function as to discharge the supported substance factor, such as heat, light, mechanical impact, etc., does not exist, and therefore, the function for rapidly discharging the supported substance from the fine particle by giving a specific condition at any time is required. <P>SOLUTION: There are provided porous fine particles which involve a supported substance in it, of which the surface is covered with a curable compound or a polymer compound, thus holding the supported substance, and which discharges the supported substance by an external factor, and its production method. There are also provided porous fine particles which involve a supported substance and a compatibilizer of a curable compound or a polymer compound in it, thus holding the supported substance, and which discharges the supported substance by an external factor, and its production method. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は被担持物質を多孔質微粒子に内包し、さらにその表面を硬化性化合物もしくは高分子化合物で被覆することにより被担持物質を保持した、または被担持物質と硬化性化合物もしくは高分子化合物の相溶化物とを、多孔質微粒子内に内包することにより被担持物質を保持した、特定の外部要因により被担持物質を放出することができる多孔質微粒子およびその製造方法に関する。   In the present invention, the supported material is held by encapsulating the supported material in porous fine particles and the surface thereof is further coated with a curable compound or polymer compound, or the supported material and the curable compound or polymer compound are retained. The present invention relates to a porous fine particle in which a supported substance is held by encapsulating a compatibilized substance in the porous fine particle, and the supported substance can be released by a specific external factor, and a method for producing the same.

従来、有機物または無機物からなる多孔質微粒子に、色素、香料、機能性物質、農薬、医薬、酵素、生理活性物質などを内包あるいは吸着させた微粒子は、種々の用途に供されてきた。例えば、香料については合成樹脂などに直接混合することが難しい場合には、一旦多孔質微粒子に吸着させた後、樹脂に混合するということが行われていた。防虫剤などの機能性物質についても直接繊維に付着させることが難しい場合には、一旦多孔質微粒子に吸着させて、その後防虫剤を吸着した多孔質微粒子を繊維に付着させることが行われてきた。また、外用剤を多孔質樹脂微粒子に配合して、塗布時の擦り付けや押し付けによる変形を利用して有効成分を微粒子外へ放出することが提案された(例えば、特許文献1など参照。)。しかし、これらの多孔質微粒子に吸着させた色素、香料、機能性物質、農薬、医薬、酵素、生理活性物質などは、速やかに放散されて、その効果を長期間持続させることはできなかった。   Conventionally, fine particles in which pigments, fragrances, functional substances, agricultural chemicals, pharmaceuticals, enzymes, physiologically active substances and the like are encapsulated or adsorbed in porous fine particles made of organic or inorganic substances have been used for various applications. For example, when it is difficult to directly mix a fragrance with a synthetic resin or the like, the fragrance has been once adsorbed on porous fine particles and then mixed with the resin. In the case where it is difficult to directly attach a functional substance such as an insect repellent to the fiber, once it is adsorbed to the porous fine particles, and then the porous fine particles adsorbed with the insect repellent are adhered to the fiber. . In addition, it has been proposed that an external preparation is blended with porous resin fine particles and the active ingredient is released out of the fine particles by using deformation by rubbing or pressing during application (see, for example, Patent Document 1). However, pigments, fragrances, functional substances, agricultural chemicals, pharmaceuticals, enzymes, physiologically active substances and the like adsorbed on these porous fine particles are rapidly released and the effects cannot be sustained for a long time.

さらに、色素、香料、機能性物質、農薬、医薬、酵素、生理活性物質などの被担持物質を透過性物質で被覆した内包物を多孔質微粒子に担持させた徐放性多孔質微粒子あるいは水中において薬剤を徐放する水中薬剤徐放性微粒子が提案された(例えば、特許文献2、特許文献3など参照。)。この多孔質微粒子は徐放効果を長時間持続させる効果はあるものの、吸着させた物質の効果を潜在化させ、何らかの外部要因が加わった際にその効果を速やかに発現させることはできなかった。   Furthermore, in sustained-release porous fine particles in which inclusions in which supported substances such as pigments, fragrances, functional substances, agricultural chemicals, pharmaceuticals, enzymes, and physiologically active substances are coated with permeable substances are supported on porous fine particles or in water In-water drug sustained-release fine particles for slow-release of drugs have been proposed (see, for example, Patent Document 2 and Patent Document 3). Although the porous fine particles have the effect of sustaining the sustained release effect for a long time, the effect of the adsorbed substance is made latent, and when any external factor is added, the effect cannot be rapidly expressed.

特開2002−265529号公報JP 2002-265529 A 特開2003−286196号公報JP 2003-286196 A 特開2007−91716号公報JP 2007-91716 A

上述のように、従来採用されてきた多孔質微粒子に色素、香料、機能性物質、農薬、医薬、酵素、生理活性物質などを内包させた微粒子は、一旦保持した被担持物質の放出速度を制御し、徐放性の多孔質微粒子あるいは薬剤を水中で徐放する水中薬剤徐放性微粒子を製造することはできたが、保管時には被担持物質の放出を防止し、熱、光、機械的衝撃などの外部要因により、被担持物質が放出されるという機能をもった微粒子は存在せず、任意の時期に特定の条件を付与することにより、被担持物質を微粒子から速やかに放出するという機能が求められていた。   As mentioned above, fine particles in which pigments, fragrances, functional substances, agricultural chemicals, medicines, enzymes, bioactive substances, etc. are encapsulated in porous fine particles that have been conventionally used, control the release rate of the retained substance once held However, sustained-release porous microparticles or submerged drug sustained-release microparticles that release the drug in water could be manufactured, but during storage, release of the supported substance was prevented, and heat, light, mechanical shock There is no fine particle that has the function of releasing the supported substance due to external factors such as, and the function of quickly releasing the supported substance from the fine particle by applying specific conditions at any time It was sought after.

本発明者らは、上記課題を解決するために種々検討を行った結果、本発明を完成するに至った。すなわち、被担持物質を多孔質微粒子内に内包し、さらにその表面を硬化性化合物または高分子化合物で被覆することにより被担持物質を保持し、特定の外部要因により被担持物質を放出することを特徴とする多孔質微粒子であって、上記多孔質微粒子が、無機物質からなる場合には、無機物質が、二酸化珪素、珪酸カルシウム、アパタイト、アルミナ、ゼオライト、リン酸塩および炭酸塩のいずれか1種または2種以上からなることが好ましい。   As a result of various studies to solve the above problems, the present inventors have completed the present invention. In other words, the supported material is encapsulated in the porous fine particles, and the surface of the supported material is covered with a curable compound or a polymer compound to hold the supported material, and the supported material is released by a specific external factor. When the porous fine particles are characterized by being made of an inorganic substance, the inorganic substance is any one of silicon dioxide, calcium silicate, apatite, alumina, zeolite, phosphate, and carbonate. It is preferable that it consists of seed | species or 2 or more types.

また、上記多孔質微粒子が、有機物質からなる場合には、有機物質が、ポリエチレン、ポリウレタン、セルロース、ポリアミド、ポリビニルホルマール、フェノール樹脂、エポキシ樹脂、尿素樹脂および天然繊維物質のいずれか1種または2種以上からなる複合物であることが好ましい。   Further, when the porous fine particles are made of an organic material, the organic material is any one or two of polyethylene, polyurethane, cellulose, polyamide, polyvinyl formal, phenol resin, epoxy resin, urea resin, and natural fiber material. A composite composed of more than one species is preferable.

さらに、上記被担持物質が、色素、香料、機能性物質、農薬、医薬、酵素および生理活性物質のいずれか1種であることが好ましい。   Furthermore, the supported substance is preferably any one of a pigment, a fragrance, a functional substance, an agrochemical, a pharmaceutical, an enzyme, and a physiologically active substance.

次いで、上記硬化性化合物または高分子化合物が、アクリル樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、シリコン樹脂、ウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、有機珪素化合物および天然有機高分子化合物のいずれか1種または2種以上からなる複合物であることが好ましい。   Next, the curable compound or the polymer compound is any one of acrylic resin, epoxy resin, phenol resin, melamine resin, silicon resin, urethane resin, polyester resin, polyamide resin, organic silicon compound, and natural organic polymer compound. Or it is preferable that it is a composite which consists of 2 or more types.

本発明の第2は、被担持物質並びに硬化性化合物および高分子化合物のいずれか1種の相溶化物を、多孔質微粒子内に内包することにより、被担持物質を保持し、特定の外部要因により被担持物質を放出することを特徴とする多孔質微粒子であって、上記多孔質微粒子が、無機物質からなる場合には、無機物質が、二酸化珪素、珪酸カルシウム、アパタイト、アルミナ、ゼオライト、リン酸塩および炭酸塩のいずれか1種または2種以上からなることが好ましい。   In the second aspect of the present invention, the supported substance is retained by encapsulating the supported substance and any one of the curable compound and the polymer compound in the porous fine particles, and the specific external factors are retained. When the porous fine particles are made of an inorganic substance, the inorganic substance is silicon dioxide, calcium silicate, apatite, alumina, zeolite, phosphorus, and the like. It is preferable to consist of any one or more of acid salts and carbonates.

また、上記多孔質微粒子が、有機物質からなる場合には、有機物質が、ポリエチレン、ポリウレタン、セルロース、ポリアミド、ポリビニルホルマール、フェノール樹脂、エポキシ樹脂、尿素樹脂および天然繊維物質のいずれか1種または2種以上からなる複合物であることが好ましい。   Further, when the porous fine particles are made of an organic material, the organic material is any one or two of polyethylene, polyurethane, cellulose, polyamide, polyvinyl formal, phenol resin, epoxy resin, urea resin, and natural fiber material. A composite composed of more than one species is preferable.

さらに、上記被担持物質が、色素、香料、機能性物質、農薬、医薬、酵素および生理活性物質のいずれか1種であることが好ましい。   Furthermore, the supported substance is preferably any one of a pigment, a fragrance, a functional substance, an agrochemical, a pharmaceutical, an enzyme, and a physiologically active substance.

次いで、上記硬化性化合物または高分子化合物が、アクリル樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、シリコン樹脂、ウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、有機珪素化合物および天然有機高分子化合物のいずれか1種または2種以上からなる複合物であることが好ましい。   Next, the curable compound or the polymer compound is any one of acrylic resin, epoxy resin, phenol resin, melamine resin, silicon resin, urethane resin, polyester resin, polyamide resin, organic silicon compound, and natural organic polymer compound. Or it is preferable that it is a composite which consists of 2 or more types.

被担持物質を放出させるための上記特定の外部要因が、熱、機械的破壊、溶媒および光のいずれか1種であることがさらに好ましい。   More preferably, the specific external factor for releasing the supported substance is any one of heat, mechanical destruction, solvent and light.

本発明の第3は、被担持物質を内包した多孔質微粒子を硬化性化合物および高分子化合物のいずれか1種を用いて被覆することを特徴とする多孔質微粒子の製造方法であって、上記硬化性化合物または高分子化合物が、アクリル樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、シリコン樹脂、ウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、有機珪素化合物および天然有機高分子化合物のいずれか1種または2種以上からなる複合物であることが好ましい。   According to a third aspect of the present invention, there is provided a method for producing porous fine particles characterized in that the porous fine particles encapsulating a supported substance are coated with any one of a curable compound and a polymer compound. The curable compound or polymer compound is one or two of acrylic resin, epoxy resin, phenol resin, melamine resin, silicon resin, urethane resin, polyester resin, polyamide resin, organic silicon compound, and natural organic polymer compound. A composite comprising the above is preferred.

本発明の第4は、被担持物質並びに硬化性化合物および高分子化合物のいずれか1種の相溶化物を多孔質微粒子に内包させ多孔質微粒子内で硬化物を調製することを特徴とする多孔質微粒子の製造方法であって、上記硬化性化合物または高分子化合物が、アクリル樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、シリコン樹脂、ウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、有機珪素化合物および天然有機高分子化合物のいずれか1種または2種以上からなる複合物であることが好ましい。   According to a fourth aspect of the present invention, a porous material is characterized in that a material to be supported, a compatibilized material of any one of a curable compound and a polymer compound is encapsulated in porous fine particles, and a cured product is prepared in the porous fine particles. The curable compound or polymer compound is an acrylic resin, epoxy resin, phenol resin, melamine resin, silicon resin, urethane resin, polyester resin, polyamide resin, organic silicon compound and natural organic compound. A composite composed of any one or more of the molecular compounds is preferable.

本発明の多孔質微粒子は、被担持物質を長期間安定的に保持し、被担持物質を必要とする際には、特定の外的要因を与えることにより、外部に速やかに放出することができるという有用な微粒子である。このことは、被担持物質が触媒あるいはインディケーターなどの場合には、極めて有用である。   The porous fine particles of the present invention can hold a supported substance stably for a long period of time, and when a supported substance is required, can be quickly released to the outside by giving a specific external factor. This is a useful fine particle. This is extremely useful when the supported material is a catalyst or an indicator.

本発明における被担持物質とは、多孔質微粒子に内包される色素、香料、機能性物質、農薬、医薬、酵素、生理活性物質などをいい、色素としては各種染料、香料としては植物から抽出された精油、合成香料など、機能性物質としては反応を制御するための触媒、染料と組み合わせて使用する発色剤、消色剤、難燃剤、消泡剤、帯電防止剤など、農薬としては防虫剤、昆虫忌避剤、猫忌避剤など、医薬としては抗菌剤、消毒剤など、酵素としてはジャスターゼ、プロテアーゼ、セルラーゼ、リパーゼなど、生理活性物質としてはビタミンB1、ビタミンB2、ビタミンB6、ビタミンB12、 ビタミンCなどの水溶性ビタミン類、ビタミンA、ビタミンD、ビタミンEなどの脂溶性ビタミン類、リジン、グルタミン酸などのアミノ酸類などを例示することができる。 The supported substance in the present invention refers to a pigment, a fragrance, a functional substance, an agrochemical, a pharmaceutical, an enzyme, a physiologically active substance and the like encapsulated in porous fine particles, and the pigment is extracted from various dyes and the fragrance is extracted from a plant. As an agrochemical, an insecticide is used as a functional substance such as a catalyst for controlling the reaction, a color former used in combination with a dye, a color erasing agent, a flame retardant, an antifoaming agent, an antistatic agent, etc. , Insect repellents, cat repellents, antibacterial agents, disinfectants, etc. as medicines, enzymes such as jastase, protease, cellulase, lipase, etc., bioactive substances such as vitamin B 1 , vitamin B 2 , vitamin B 6 , vitamins B 12, water-soluble vitamins such as vitamin C, vitamin a, vitamin D, fat-soluble vitamins such as vitamin E, lysine, an amino acid or the like such as glutamic acid It can Shimesuru.

本発明における多孔質微粒子とは、図1乃至図3の模式図に示したように、無機物質または有機物質の粒子骨格からなり、多孔質微粒子が無機物質からなる場合には、炭酸カルシウム、炭酸バリウムなどの炭酸塩、ケイ酸カルシウム、ケイ酸バリウム、ケイ酸マグネシウムなどのケイ酸塩、リン酸カルシウム、リン酸バリウム、リン酸マグネシウム、リン酸ジルコニウム、アパタイトなどのリン酸塩、金属酸化物として二酸化ケイ素、アルミナなどを、例示することができる。多孔質微粒子が有機物質からなる場合には、ポリエチレン、ポリウレタン、セルロース、ポリアミド、ポリビニルホルマール、フェノール樹脂、エポキシ樹脂、尿素樹脂および天然繊維物質などを例示することができる。なお、天然繊維物質としては、各種木材の粉砕チップをあげることができる。   The porous fine particles in the present invention are composed of a particle skeleton of an inorganic substance or an organic substance as shown in the schematic diagrams of FIGS. 1 to 3, and when the porous fine particles are made of an inorganic substance, calcium carbonate, carbonic acid Carbonates such as barium, silicates such as calcium silicate, barium silicate and magnesium silicate, phosphates such as calcium phosphate, barium phosphate, magnesium phosphate, zirconium phosphate and apatite, silicon dioxide as metal oxide Alumina and the like can be exemplified. When the porous fine particles are made of an organic substance, examples thereof include polyethylene, polyurethane, cellulose, polyamide, polyvinyl formal, phenol resin, epoxy resin, urea resin, and natural fiber substance. In addition, as a natural fiber substance, the grinding | pulverization chip | tip of various wood can be mention | raise | lifted.

本発明における硬化性化合物あるいは高分子化合物とは、被担持物質を内包した多孔質微粒子の表面を被覆するため、あるいは被担持物質を相溶させる物質をいい、被担持物質の保護と拡散防止の効果を持つ物質であって、特定の外部要因を受けた際に破壊されることで被担持物質の放出を行うことができる物質をいう。硬化性化合物あるいは高分子化合物としては、アクリル樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、シリコン樹脂、ウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、有機珪素化合物、天然有機高分子化合物などが挙げることができる。   The curable compound or polymer compound in the present invention refers to a material that covers the surface of the porous fine particles encapsulating the supported material, or that compatibilizes the supported material, and protects the supported material and prevents diffusion. A substance that has an effect and can release a supported substance by being destroyed when subjected to a specific external factor. Examples of the curable compound or polymer compound include acrylic resin, epoxy resin, phenol resin, melamine resin, silicon resin, urethane resin, polyester resin, polyamide resin, organic silicon compound, and natural organic polymer compound.

これらの樹脂をより詳細に例示すると、エポキシ樹脂としては、ノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、グリシジルアミン型樹脂を挙げることができる。フェノール樹脂としては、ノボラック型フェノール樹脂、ビスフェノール樹脂などが挙げられる。シリコン樹脂としては、自己架橋型、付加重合型などを挙げることができる。アクリル樹脂としては、ポリメタクリル酸エステル、ポリアクリル酸エステルなどを挙げることができる。また、有機珪素化合物としては、テトラエトキシシラン、テトラメトキシシラン、ブチルシリケート、アルキルアルコキシシラン、ポリシロキサンオリゴマーなどを挙げることができる。   When these resins are illustrated in more detail, examples of the epoxy resin include novolac type epoxy resins, bisphenol type epoxy resins, biphenyl type epoxy resins, and glycidylamine type resins. Examples of the phenol resin include novolak type phenol resins and bisphenol resins. Examples of the silicone resin include a self-crosslinking type and an addition polymerization type. Examples of the acrylic resin include polymethacrylic acid ester and polyacrylic acid ester. Examples of the organosilicon compound include tetraethoxysilane, tetramethoxysilane, butyl silicate, alkylalkoxysilane, and polysiloxane oligomer.

本発明にいう天然有機高分子化合物とは、セルロースおよびセルロース誘導体、タンパク質、などであって、ゼラチン、アラビアゴム、シェラック、蝋、パラフィンワックス、セレシンワックスなどを挙げることができる。   The natural organic polymer compound referred to in the present invention includes cellulose, cellulose derivatives, proteins, and the like, and examples thereof include gelatin, gum arabic, shellac, wax, paraffin wax, and ceresin wax.

本発明にいう相溶化物とは、被担持物質と硬化性化合物または高分子化合物が、完全に溶け合ったもので、放置しても被担持物質と分離しない状態のものをいう。   The compatibilized product as used in the present invention refers to a material in which a supported material and a curable compound or a polymer compound are completely dissolved and are not separated from the supported material even if left to stand.

本発明にいう複合物とは、被担持物質と硬化性化合物または高分子化合物の混合物を指し、存在状態において各成分が分離している場合も含めたものをいう。   The composite referred to in the present invention refers to a mixture of a supported substance and a curable compound or a polymer compound, and includes a case where each component is separated in the existing state.

本発明の多孔質微粒子の製造において、被担持物質を被覆する硬化性化合物あるいは高分子化合物は、被担持物質の物理的、化学的特性および使用条件に基づいて選定するが、多孔質微粒子を被覆した後に硬化して皮膜を形成するもの、または溶媒除去により皮膜を形成するものを用いることが好ましい。また、被担持物質と相溶させて製造する場合においては、被担持物質と相溶するかもしくは溶剤中で相溶するものを用いることが好ましい。   In the production of the porous fine particles of the present invention, the curable compound or polymer compound that coats the supported material is selected based on the physical and chemical characteristics of the supported material and the use conditions. It is preferable to use a material that is cured to form a film, or that forms a film by removing the solvent. In the case of manufacturing by being compatible with the supported material, it is preferable to use a material compatible with the supported material or in a solvent.

多孔質微粒子の製造方法としては、被担持物質を多孔質に内包させた後、膜剤により被覆させる方法、膜剤に被担持物質を相溶させたものを多孔質微粒子に内包させる方法のいずれの手法を用いてもよく、被担持物質の物理的、化学的特性および使用条件に基づいて選定を行えばよく、また被担持物質を内包した多孔質微粒子の表面をさらに膜剤で被覆してもよい。   As a method for producing porous fine particles, either a method in which a supported substance is encapsulated in a porous form and then coated with a film agent, or a method in which a supported substance is mixed in a film agent is encapsulated in porous fine particles. This method may be used, and the selection may be made based on the physical and chemical characteristics of the supported substance and the use conditions, and the surface of the porous fine particles enclosing the supported substance may be further coated with a film agent. Also good.

多孔質微粒子に被担持物質を内包させる方法としては、特に限定はないが、被担持物質を融点以上に加熱し、液状化させたものを多孔質微粒子に圧入する方法、あるいは溶媒に溶解させたものを多孔質微粒子に圧入させた後に溶媒を取り除く方法などが挙げられる。   The method for encapsulating the supported substance in the porous fine particles is not particularly limited. However, the supported substance is heated to a melting point or higher and the liquefied material is pressed into the porous fine particles or dissolved in a solvent. For example, a method of removing the solvent after the material is pressed into the porous fine particles can be mentioned.

本発明の詳細を実施例に基づいて説明するが、本発明の趣旨はこれに限定されるものではない。   Details of the present invention will be described based on examples, but the gist of the present invention is not limited thereto.

(実施例1)
発色剤内包多孔質微粒子の調製
真空チャンバー内に平均粒径4μm、比表面積300m2/gの多孔質シリカ(エネック
ス社製MCB−FP/4)40重量部を投入した。これとは別に、被担持物質として用意した発色剤(ビスフェノールA)30重量部をメチルエチルケトン100重量部に溶解したものを用意した。さらに、ガラス転移温度(Tg)100℃のアクリル樹脂30重量部をメチルエチルケトン100重量部に溶解したものを用意した。真空チャンバー内を減圧下におきながら、先に調製した発色剤の溶液を加え、多孔質シリカに充分浸透させた後、30分間攪拌して大気圧に戻した。真空チャンバー内を60℃に加熱しながら減圧し、メチルエチルケトンを蒸発分離させた。次いで、アクリル樹脂溶液を真空チャンバーに投入し、減圧下で攪拌しながら浸透させた。次に、再び真空チャンバー内を60℃に加熱しながら減圧し、メチルエチルケトンを蒸発分離させてアクリル樹脂を皮膜物質とする発色剤内包シリカ微粒子を得た。
Example 1
Preparation of color former-containing porous fine particles In a vacuum chamber, 40 parts by weight of porous silica (MCB-FP / 4 manufactured by Enex Co., Ltd.) having an average particle diameter of 4 μm and a specific surface area of 300 m 2 / g was charged. Separately, 30 parts by weight of a color former (bisphenol A) prepared as a supported material was dissolved in 100 parts by weight of methyl ethyl ketone. Furthermore, what melt | dissolved 30 weight part of acrylic resins with a glass transition temperature (Tg) of 100 degreeC in 100 weight part of methyl ethyl ketone was prepared. While keeping the inside of the vacuum chamber under reduced pressure, the previously prepared solution of the color former was added and sufficiently infiltrated into the porous silica, and then stirred for 30 minutes to return to atmospheric pressure. The pressure in the vacuum chamber was reduced while heating to 60 ° C., and methyl ethyl ketone was evaporated and separated. Next, the acrylic resin solution was put into a vacuum chamber and allowed to permeate with stirring under reduced pressure. Next, the pressure inside the vacuum chamber was reduced again while being heated to 60 ° C., and methyl ethyl ketone was evaporated and separated to obtain color former-encapsulating silica fine particles having an acrylic resin as a coating material.

(実施例2)
ロイコ染料内包多孔質微粒子の調製
真空チャンバー内に平均粒径4μm、比表面積300m2/gの多孔質シリカ(エネック
ス社製MCB−FP/4)40重量部を投入した。これとは別に、被担持物質として用意したロイコ染料(クリスタルバイオレット)30重量部をメチルエチルケトン100重量部に溶解したものを用意した。さらに、ガラス転移温度(Tg)100℃のアクリル樹脂30重量部をメチルエチルケトン100重量部に溶解したものを用意した。真空チャンバー内を減圧下におきながら、先に調製したロイコ染料の溶液を加え、多孔質シリカに充分浸透させた後、30分間攪拌して大気圧に戻した。真空チャンバー内を60℃に加熱しながら減圧し、メチルエチルケトンを蒸発分離させた。次いで、アクリル樹脂溶液を真空チャンバーに投入し、減圧下で攪拌しながら浸透させた。次に、再び真空チャンバー内を60℃に加熱しながら減圧し、メチルエチルケトンを蒸発分離させてアクリル樹脂を皮膜物質とするロイコ染料内包シリカ微粒子を得た。
(Example 2)
Preparation of leuco dye-containing porous fine particles In a vacuum chamber, 40 parts by weight of porous silica (MCB-FP / 4 manufactured by Enex Co., Ltd.) having an average particle size of 4 μm and a specific surface area of 300 m 2 / g was charged. Separately, 30 parts by weight of leuco dye (crystal violet) prepared as a supported substance was dissolved in 100 parts by weight of methyl ethyl ketone. Furthermore, what melt | dissolved 30 weight part of acrylic resins with a glass transition temperature (Tg) of 100 degreeC in 100 weight part of methyl ethyl ketone was prepared. While the vacuum chamber was kept under reduced pressure, the previously prepared leuco dye solution was added and sufficiently infiltrated into the porous silica, and then stirred for 30 minutes to return to atmospheric pressure. The pressure in the vacuum chamber was reduced while heating to 60 ° C., and methyl ethyl ketone was evaporated and separated. Next, the acrylic resin solution was put into a vacuum chamber and allowed to permeate with stirring under reduced pressure. Next, the inside of the vacuum chamber was again decompressed while being heated to 60 ° C., and methyl ethyl ketone was evaporated and separated to obtain leuco dye-containing silica fine particles having an acrylic resin as a coating material.

(実施例3)
イミダゾール内包多孔質微粒子の調製
真空チャンバー内に平均粒径18μm、比表面積350m2/gの多孔質シリカ(エネッ
クス社製MCB−FP/18)50重量部を投入した。これとは別に、被担持物質として用意したイミダゾール(四国化成社製 2E4MZ)20重量部をメチルエチルケトン100重量部に溶解したものを用意した。さらに、ビスフェノール型エポキシ樹脂(ジャパンエポキシレジン社製 JER828)30重量部をメチルエチルケトン100重量部に溶解したものを用意した。真空チャンバー内を減圧下におきながら、先に調製したイミダゾールの溶液を加え、多孔質シリカに充分浸透させた後、30分間攪拌して大気圧に戻した。真空チャンバー内を60℃に加熱しながら減圧し、メチルエチルケトンを蒸発分離させた。次いで、エポキシ樹脂溶液を真空チャンバーに投入し、減圧下で攪拌しながら浸透させた。次に、再び真空チャンバー内を60℃に加熱しながら減圧し、メチルエチルケトンを蒸発分離させ、さらに、80℃で2時間加熱してエポキシ樹脂を硬化させ皮膜物質とし、イミダゾール内包シリカ微粒子を得た。
(Example 3)
Preparation of Imidazole-Encapsulated Porous Fine Particles 50 parts by weight of porous silica (MCB-FP / 18 manufactured by Enex Co., Ltd.) having an average particle size of 18 μm and a specific surface area of 350 m 2 / g was put into a vacuum chamber. Separately, 20 parts by weight of imidazole (2E4MZ manufactured by Shikoku Kasei Co., Ltd.) prepared as a supported substance was dissolved in 100 parts by weight of methyl ethyl ketone. Furthermore, what melt | dissolved 30 weight part of bisphenol type epoxy resins (Japan Epoxy Resin company make JER828) in 100 weight part of methyl ethyl ketone was prepared. While keeping the inside of the vacuum chamber under reduced pressure, the previously prepared imidazole solution was added and sufficiently infiltrated into the porous silica, and then stirred for 30 minutes to return to atmospheric pressure. The pressure in the vacuum chamber was reduced while heating to 60 ° C., and methyl ethyl ketone was evaporated and separated. Next, the epoxy resin solution was put into a vacuum chamber and allowed to permeate with stirring under reduced pressure. Next, the inside of the vacuum chamber was again decompressed while being heated to 60 ° C. to evaporate and separate methyl ethyl ketone, and further heated at 80 ° C. for 2 hours to cure the epoxy resin to form a coating substance, whereby imidazole-encapsulated silica fine particles were obtained.

(実施例4)
硬化剤内包多孔質微粒子の調製
真空チャンバー内に平均粒径6μm、比表面積350m2/gの多孔質シリカ(エネック
ス社製MCB−FP/6)45重量部を投入した。これとは別に、被担持物質として用意した硬化剤(ジアミノジフェニルスルホン)45重量部をメチルエチルケトン200重量部に溶解したものを用意した。さらに、ビスフェノール型エポキシ樹脂(ジャパンエポキシレジン社製 JER828)10重量部を純水100重量部に分散したものを用意した。真空チャンバー内を減圧下におきながら、先に調製した硬化剤の溶液を加え、多孔質シリカに充分浸透させた後、30分間攪拌して大気圧に戻した。真空チャンバー内を60℃に加熱しながら減圧し、メチルエチルケトンを蒸発分離させた。次いで、エポキシ樹脂溶液を真空チャンバーに投入し、減圧下で攪拌しながら浸透させた。次に、再び真空チャンバー内を80℃に加熱しながら減圧し、純水を蒸発分離させ、さらに、100℃で3時間加熱してエポキシ樹脂を硬化させ皮膜物質とし、硬化剤内包シリカ微粒子を得た。
Example 4
Preparation of Curing Agent-Incorporated Porous Fine Particles 45 parts by weight of porous silica (MCB-FP / 6 manufactured by Enex Co., Ltd.) having an average particle diameter of 6 μm and a specific surface area of 350 m 2 / g was put into a vacuum chamber. Separately from this, a solution prepared by dissolving 45 parts by weight of a curing agent (diaminodiphenyl sulfone) prepared as a supported substance in 200 parts by weight of methyl ethyl ketone was prepared. Furthermore, what disperse | distributed 10 weight part of bisphenol type epoxy resins (Japan Epoxy Resin company make JER828) in 100 weight part of pure water was prepared. While keeping the inside of the vacuum chamber under reduced pressure, the previously prepared solution of the curing agent was added and sufficiently infiltrated into the porous silica, and then stirred for 30 minutes to return to atmospheric pressure. The pressure in the vacuum chamber was reduced while heating to 60 ° C., and methyl ethyl ketone was evaporated and separated. Next, the epoxy resin solution was put into a vacuum chamber and permeated with stirring under reduced pressure. Next, the inside of the vacuum chamber is again decompressed while being heated to 80 ° C. to evaporate and separate pure water, and further heated at 100 ° C. for 3 hours to cure the epoxy resin to obtain a coating substance, whereby hardener-encapsulating silica fine particles are obtained. It was.

(実施例5)
除草剤内包多孔質微粒子の調製
真空チャンバー内に平均粒径50μm、比表面積300m2/gの多孔質シリカ(エネッ
クス社製MCB−FP/50)50重量部を投入した。これとは別に、被担持物質として用意した除草剤(2,4−ジクロロフェノキシ酢酸)30重量部を純水100重量部に溶解したものを用意した。さらに、ゼラチン(ゼライス社製 AU−G)20重量部を純水200重量部に溶解したものを用意した。真空チャンバー内を減圧下におきながら、先に調製した除草剤の溶液を加え、多孔質シリカに充分浸透させた後、30分間攪拌して大気圧に戻した。真空チャンバー内を80℃に加熱しながら減圧し、水を蒸発分離させた。次いで、ゼラチン溶液を真空チャンバーに投入し、減圧下で攪拌しながら浸透させた。次に、再び真空チャンバー内を80℃に加熱しながら減圧し、純水を蒸発分離させ、徐々に冷却しながらゼラチンを硬化させ皮膜物質とし、除草剤内包シリカ微粒子を得た。
(Example 5)
Preparation of herbicide-containing porous fine particles 50 parts by weight of porous silica (MCB-FP / 50 manufactured by Enex Co., Ltd.) having an average particle size of 50 μm and a specific surface area of 300 m 2 / g was put into a vacuum chamber. Separately, a solution prepared by dissolving 30 parts by weight of a herbicide (2,4-dichlorophenoxyacetic acid) prepared as a supported substance in 100 parts by weight of pure water was prepared. Further, a solution prepared by dissolving 20 parts by weight of gelatin (AU-G manufactured by Zerais Co., Ltd.) in 200 parts by weight of pure water was prepared. While keeping the inside of the vacuum chamber under reduced pressure, the previously prepared herbicide solution was added and sufficiently infiltrated into the porous silica, and then stirred for 30 minutes to return to atmospheric pressure. The inside of the vacuum chamber was depressurized while being heated to 80 ° C., and water was evaporated and separated. Next, the gelatin solution was put into a vacuum chamber and permeated with stirring under reduced pressure. Next, the inside of the vacuum chamber was again decompressed while being heated to 80 ° C. to evaporate and separate pure water, and while gradually cooling, gelatin was hardened to form a coating substance, thereby obtaining herbicide-encapsulating silica fine particles.

(実施例6)
食品香料内包多孔質微粒子の調製
真空チャンバー内に平均粒径3μm、比表面積250m2/gの多孔質シリカ(エネック
ス社製MCB−FP/3)50重量部を投入した。これとは別に、被担持物質として用意した食品香料(バニラエッセンス)10重量部と寒天(松木寒天社製)10重量部を純水100重量部に溶解したものを用意した。真空チャンバー内を減圧下におきながら、先に調製した食品香料の溶液を加え、多孔質シリカに充分浸透させた後、30分間攪拌して大気圧に戻した。真空チャンバー内を80℃に加熱しながら減圧し、純水を蒸発分離させた。徐々に冷却しながらゼラチンを硬化させ皮膜物質とし、食品香料内包シリカ微粒子を得た。
(Example 6)
Preparation of food fragrance-encapsulating porous fine particles 50 parts by weight of porous silica (MCB-FP / 3 manufactured by Enex Co., Ltd.) having an average particle diameter of 3 μm and a specific surface area of 250 m 2 / g was put into a vacuum chamber. Separately, 10 parts by weight of food fragrance (vanilla essence) prepared as a supported substance and 10 parts by weight of agar (made by Matsuki Agar) were dissolved in 100 parts by weight of pure water. While keeping the inside of the vacuum chamber under reduced pressure, the previously prepared food flavor solution was added and sufficiently infiltrated into the porous silica, and then stirred for 30 minutes to return to atmospheric pressure. The inside of the vacuum chamber was depressurized while being heated to 80 ° C., and pure water was evaporated and separated. Gelatin was hardened while gradually cooling to form a coating substance, and food flavor-encapsulated silica fine particles were obtained.

(実施例7)
難燃剤内包多孔質微粒子の調製
真空チャンバー内に平均粒径6μm、比表面積350m2/gの多孔質シリカ(エネック
ス社製MCB−FP/6)45重量部を投入した。これとは別に、被担持物質として用意した難燃剤(ペンタブロモジフェニルエーテル)45重量部をメチルエチルケトン200重量部に溶解したものを用意した。さらに、ビスフェノール型エポキシ樹脂(ジャパンエポキシレジン社製JER828)10重量部を純水100重量部に分散したものを用意した。真空チャンバー内を減圧下におきながら、先に調製した難燃剤の溶液を加え、多孔質シリカに充分浸透させた後、30分間攪拌して大気圧に戻した。真空チャンバー内を60℃に加熱しながら減圧し、メチルエチルケトンを蒸発分離させた。次いで、エポキシ樹脂溶液を真空チャンバーに投入し、減圧下で攪拌しながら浸透させた。次に、再び真空チャンバー内を80℃に加熱しながら減圧し、純水を蒸発分離させ、さらに、100℃で3時間加熱してエポキシ樹脂を硬化させ皮膜物質とし、難燃剤内包シリカ微粒子を得た。
(Example 7)
Preparation of flame retardant-containing porous fine particles 45 parts by weight of porous silica (MCB-FP / 6 manufactured by Enex Co., Ltd.) having an average particle diameter of 6 μm and a specific surface area of 350 m 2 / g was put into a vacuum chamber. Separately from this, a solution prepared by dissolving 45 parts by weight of a flame retardant (pentabromodiphenyl ether) prepared as a supported substance in 200 parts by weight of methyl ethyl ketone was prepared. Further, 10 parts by weight of a bisphenol type epoxy resin (JER828 manufactured by Japan Epoxy Resin Co., Ltd.) dispersed in 100 parts by weight of pure water was prepared. While keeping the inside of the vacuum chamber under reduced pressure, the previously prepared flame retardant solution was added and sufficiently infiltrated into the porous silica, and then stirred for 30 minutes to return to atmospheric pressure. The pressure in the vacuum chamber was reduced while heating to 60 ° C., and methyl ethyl ketone was evaporated and separated. Next, the epoxy resin solution was put into a vacuum chamber and permeated with stirring under reduced pressure. Next, the inside of the vacuum chamber is again decompressed while being heated to 80 ° C. to evaporate and separate pure water, and further heated at 100 ° C. for 3 hours to cure the epoxy resin to form a coating material, thereby obtaining flame retardant encapsulating silica fine particles. It was.

(比較例1)
発色剤内包多孔質微粒子の調製
真空チャンバー内に平均粒径4μm、比表面積300m2/gの多孔質シリカ(エネック
ス社製MCB−FP/4)40重量部を投入した。これとは別に、被担持物質として用意した発色剤(ビスフェノールA)30重量部をメチルエチルケトン100重量部に溶解したものを用意した。真空チャンバー内を減圧下におきながら、先に調製した発色剤の溶液を加え、多孔質シリカに充分浸透させた後、30分間攪拌して大気圧に戻した。真空チャンバー内を60℃に加熱しながら減圧し、メチルエチルケトンを蒸発分離させ発色剤内包シリカ微粒子を得た。
(Comparative Example 1)
Preparation of color former-containing porous fine particles In a vacuum chamber, 40 parts by weight of porous silica (MCB-FP / 4 manufactured by Enex Co., Ltd.) having an average particle diameter of 4 μm and a specific surface area of 300 m 2 / g was charged. Separately, 30 parts by weight of a color former (bisphenol A) prepared as a supported material was dissolved in 100 parts by weight of methyl ethyl ketone. While keeping the inside of the vacuum chamber under reduced pressure, the previously prepared solution of the color former was added and sufficiently infiltrated into the porous silica, and then stirred for 30 minutes to return to atmospheric pressure. The pressure inside the vacuum chamber was reduced while heating to 60 ° C., and methyl ethyl ketone was evaporated and separated to obtain color former-encapsulating silica fine particles.

(比較例2)
ロイコ染料内包多孔質微粒子の調製
真空チャンバー内に平均粒径4μm、比表面積300m2/gの多孔質シリカ(エネック
ス社製MCB−FP/4)40重量部を投入した。これとは別に、被担持物質として用意したロイコ染料(クリスタルバイオレット)30重量部をメチルエチルケトン100重量部に溶解したものを用意した。真空チャンバー内を減圧下におきながら、先に調製したロイコ染料の溶液を加え、多孔質シリカに充分浸透させた後、30分間攪拌して大気圧に戻した。真空チャンバー内を60℃に加熱しながら減圧し、メチルエチルケトンを蒸発分離させロイコ染料内包シリカ微粒子を得た。
(Comparative Example 2)
Preparation of leuco dye-containing porous fine particles In a vacuum chamber, 40 parts by weight of porous silica (MCB-FP / 4 manufactured by Enex Co., Ltd.) having an average particle size of 4 μm and a specific surface area of 300 m 2 / g was charged. Separately, 30 parts by weight of leuco dye (crystal violet) prepared as a supported substance was dissolved in 100 parts by weight of methyl ethyl ketone. While the vacuum chamber was kept under reduced pressure, the previously prepared leuco dye solution was added and sufficiently infiltrated into the porous silica, and then stirred for 30 minutes to return to atmospheric pressure. The pressure in the vacuum chamber was reduced while heating to 60 ° C., and methyl ethyl ketone was evaporated and separated to obtain silica particles encapsulating leuco dye.

(比較例3)
イミダゾール内包多孔質微粒子の調製
真空チャンバー内に平均粒径18μm、比表面積350m2/gの多孔質シリカ(エネッ
クス社製MCB−FP/18)50重量部を投入した。これとは別に、被担持物質として用意したイミダゾール(四国化成社製 2E4MZ)20重量部をメチルエチルケトン100重量部に溶解したものを用意した。真空チャンバー内を減圧下におきながら、先に調製したイミダゾールの溶液を加え、多孔質シリカに充分浸透させた後、30分間攪拌して大気圧に戻した。真空チャンバー内を60℃に加熱しながら減圧し、メチルエチルケトンを蒸発分離させイミダゾール内包シリカ微粒子を得た。
(Comparative Example 3)
Preparation of Imidazole-Encapsulated Porous Fine Particles 50 parts by weight of porous silica (MCB-FP / 18 manufactured by Enex Co., Ltd.) having an average particle size of 18 μm and a specific surface area of 350 m 2 / g was put into a vacuum chamber. Separately, 20 parts by weight of imidazole (2E4MZ manufactured by Shikoku Kasei Co., Ltd.) prepared as a supported substance was dissolved in 100 parts by weight of methyl ethyl ketone. While keeping the inside of the vacuum chamber under reduced pressure, the previously prepared imidazole solution was added and sufficiently infiltrated into the porous silica, and then stirred for 30 minutes to return to atmospheric pressure. The pressure inside the vacuum chamber was reduced while heating to 60 ° C., and methyl ethyl ketone was evaporated and separated to obtain imidazole-encapsulated silica fine particles.

(比較例4)
硬化剤内包多孔質微粒子の調製
真空チャンバー内に平均粒径6μm、比表面積350m2/gの多孔質シリカ(エネック
ス社製MCB−FP/6)45重量部を投入した。これとは別に、被担持物質として用意した硬化剤(ジアミノジフェニルスルホン)45重量部をメチルエチルケトン200重量部に溶解したものを用意した。真空チャンバー内を減圧下におきながら、先に調製した硬化剤の溶液を加え、多孔質シリカに充分浸透させた後、30分間攪拌して大気圧に戻した。真空チャンバー内を60℃に加熱しながら減圧し、メチルエチルケトンを蒸発分離させ硬化剤内包シリカ微粒子を得た。
(Comparative Example 4)
Preparation of Curing Agent-Incorporated Porous Fine Particles 45 parts by weight of porous silica (MCB-FP / 6 manufactured by Enex Co., Ltd.) having an average particle diameter of 6 μm and a specific surface area of 350 m 2 / g was put into a vacuum chamber. Separately from this, a solution prepared by dissolving 45 parts by weight of a curing agent (diaminodiphenyl sulfone) prepared as a supported substance in 200 parts by weight of methyl ethyl ketone was prepared. While keeping the inside of the vacuum chamber under reduced pressure, the previously prepared solution of the curing agent was added and sufficiently infiltrated into the porous silica, and then stirred for 30 minutes to return to atmospheric pressure. The pressure inside the vacuum chamber was reduced while heating to 60 ° C. to evaporate and separate methyl ethyl ketone to obtain hardener-encapsulating silica fine particles.

(比較例5)
除草剤内包多孔質微粒子の調製
真空チャンバー内に平均粒径50μm、比表面積300m2/gの多孔質シリカ(エネッ
クス社製MCB−FP/50)50重量部を投入した。これとは別に、被担持物質として用意した除草剤(2,4−ジクロロフェノキシ酢酸)30重量部を純水100重量部に溶解したものを用意した。真空チャンバー内を減圧下におきながら、先に調製した除草剤の溶液を加え、多孔質シリカに充分浸透させた後、30分間攪拌して大気圧に戻した。真空チャンバー内を80℃に加熱しながら減圧し、水を蒸発分離させ除草剤内包シリカ微粒子を得た。
(Comparative Example 5)
Preparation of herbicide-containing porous fine particles 50 parts by weight of porous silica (MCB-FP / 50 manufactured by Enex Co., Ltd.) having an average particle size of 50 μm and a specific surface area of 300 m 2 / g was put into a vacuum chamber. Separately, a solution prepared by dissolving 30 parts by weight of a herbicide (2,4-dichlorophenoxyacetic acid) prepared as a supported substance in 100 parts by weight of pure water was prepared. While keeping the inside of the vacuum chamber under reduced pressure, the previously prepared herbicide solution was added and sufficiently infiltrated into the porous silica, and then stirred for 30 minutes to return to atmospheric pressure. The inside of the vacuum chamber was depressurized while being heated to 80 ° C. to evaporate and separate water to obtain herbicide-encapsulating silica fine particles.

(比較例6)
食品香料内包多孔質微粒子の調製
真空チャンバー内に平均粒径3μm、比表面積250m2/gの多孔質シリカ(エネック
ス社製MCB−FP/3)50重量部を投入した。これとは別に、被担持物質として用意した食品香料(バニラエッセンス)10重量部を純水100重量部に溶解したものを用意した。真空チャンバー内を減圧下におきながら、先に調製した食品香料の溶液を加え、多孔質シリカに充分浸透させた後、30分間攪拌して大気圧に戻した。真空チャンバー内を80℃に加熱しながら減圧し、純水を蒸発分離させ食品香料内包シリカ微粒子を得た。
(Comparative Example 6)
Preparation of food fragrance-encapsulating porous fine particles 50 parts by weight of porous silica (MCB-FP / 3 manufactured by Enex Co., Ltd.) having an average particle diameter of 3 μm and a specific surface area of 250 m 2 / g was put into a vacuum chamber. Separately, 10 parts by weight of food fragrance (vanilla essence) prepared as a supported substance was dissolved in 100 parts by weight of pure water. While keeping the inside of the vacuum chamber under reduced pressure, the previously prepared food flavor solution was added and sufficiently infiltrated into the porous silica, and then stirred for 30 minutes to return to atmospheric pressure. The inside of the vacuum chamber was decompressed while being heated to 80 ° C. to evaporate and separate pure water to obtain food flavor-encapsulated silica fine particles.

(比較例7)
難燃剤内包多孔質微粒子の調製
真空チャンバー内に平均粒径6μm、比表面積350m2/gの多孔質シリカ(エネック
ス社製MCB−FP/6)45重量部を投入した。これとは別に、被担持物質として用意した難燃剤(ペンタブロモジフェニルエーテル)45重量部をメチルエチルケトン200重量部に溶解したものを用意した。真空チャンバー内を減圧下におきながら、先に調製した難燃剤の溶液を加え、多孔質シリカに充分浸透させた後、30分間攪拌して大気圧に戻した。真空チャンバー内を60℃に加熱しながら減圧し、メチルエチルケトンを蒸発分離させ難燃剤内包シリカ微粒子を得た。
(Comparative Example 7)
Preparation of flame retardant-containing porous fine particles 45 parts by weight of porous silica (MCB-FP / 6 manufactured by Enex Co., Ltd.) having an average particle diameter of 6 μm and a specific surface area of 350 m 2 / g was put into a vacuum chamber. Separately from this, a solution prepared by dissolving 45 parts by weight of a flame retardant (pentabromodiphenyl ether) prepared as a supported substance in 200 parts by weight of methyl ethyl ketone was prepared. While keeping the inside of the vacuum chamber under reduced pressure, the previously prepared flame retardant solution was added and sufficiently infiltrated into the porous silica, and then stirred for 30 minutes to return to atmospheric pressure. The inside of the vacuum chamber was depressurized while being heated to 60 ° C., and methyl ethyl ketone was evaporated and separated to obtain flame retardant-encapsulating silica fine particles.

(試験例1)
発色剤内包シリカ微粒子、ロイコ染料内包シリカ微粒子による発色性試験
実施例1及び2、比較例1及び2で得られた発色剤内包シリカ微粒子、ロイコ染料内包シリカ微粒子及び発色剤、ロイコ染料を混合し、長期保管性、耐水性および加熱時、溶剤添加時の発色応答性について評価したところ、膜剤を使用することにより長期保管性の向上、耐水性の向上が確認された。また加熱時、溶剤添加時には容易に発色することが確認された。発色試験の結果を表1に示した。
(Test Example 1)
Color development test with color former-encapsulated silica fine particles and leuco dye-encapsulated silica fine particles Example 1 and 2, color former-encapsulated silica fine particles obtained in Comparative Examples 1 and 2, leuco dye-encapsulated silica fine particles, color former, and leuco dye were mixed. Evaluation of long-term storage stability, water resistance, and color development response upon heating and addition of a solvent confirmed that long-term storage stability and water resistance were improved by using a film agent. In addition, it was confirmed that the color was easily developed during heating and when the solvent was added. The results of the color development test are shown in Table 1.

Figure 2009012996
Figure 2009012996

(試験例2)
イミダゾール内包シリカ微粒子によるエポキシ樹脂の硬化試験
実施例3及び比較例3で得られたイミダゾール内包シリカ微粒子及びイミダゾール(未処理)を硬化触媒に用いて液状エポキシ樹脂(JER製 JER828)の硬化促進試験を実施した。エポキシ樹脂に対してイミダゾールが5phrになるように添加し、常温(25℃)及び昇温時(10℃/分)の粘度変化を測定したところ、膜剤を使用することにより、常温での反応性を制御し、高温時の反応性を維持していることが確認された。硬化試験の結果を図4及び図5に示した。
(Test Example 2)
Curing acceleration test of epoxy resin with imidazole-encapsulated silica particles Using imidazole-encapsulated silica particles and imidazole (untreated) obtained in Example 3 and Comparative Example 3 as a curing catalyst, a curing acceleration test of liquid epoxy resin (JER828 made by JER) Carried out. Addition of imidazole to epoxy resin to 5 phr and measure the viscosity change at room temperature (25 ° C) and at elevated temperature (10 ° C / min). It was confirmed that the reactivity was controlled and the reactivity at high temperature was maintained. The results of the curing test are shown in FIGS.

(試験例3)
硬化剤内包シリカ微粒子によるエポキシ樹脂の硬化試験
実施例4及び比較例4で得られた硬化剤内包シリカ微粒子および硬化剤(未処理)を硬化剤に用いて液状エポキシ樹脂(JER製 JER828)の硬化促進試験を実施した。エポキシ樹脂に対して硬化剤が70phrになるように添加し、恒温(70℃)、昇温時(10℃/分)の粘度変化を測定したところ、膜剤を使用することにより、恒温(70℃)での反応性を制御し、高温時の反応性を維持していることが確認された。硬化試験の結果を図5及び図6に示した。
(Test Example 3)
Curing test of epoxy resin with curing agent-encapsulated silica fine particles Curing of liquid epoxy resin (JER828 made by JER) using curing agent-encapsulated silica fine particles and curing agent (untreated) obtained in Example 4 and Comparative Example 4 as curing agents An accelerated test was conducted. The curing agent was added to the epoxy resin so as to be 70 phr, and the viscosity change at a constant temperature (70 ° C.) and when the temperature was increased (10 ° C./min) was measured. It was confirmed that the reactivity at high temperature was controlled and the reactivity at high temperature was maintained. The results of the curing test are shown in FIGS.

(試験例4)
除草剤内包シリカ微粒子による成分保持試験
実施例5及び比較例5で得られた除草剤内包シリカ微粒子を用いて、除草剤成分の長期保持試験を実施した。除草剤成分残存量の比較と散布時の除草剤の溶出性の試験をしたところ、常温放置条件では除草剤の減量はなく、散布時(水付加)により除草剤成分の溶出が確認された。除草剤成分の揮発を防止できることが判明した。除草剤有効成分量は、水抽出による溶出量を測定し、その試験結果を表2に示した。
(Test Example 4)
Component retention test using herbicide-encapsulated silica fine particles Using the herbicide-encapsulated silica fine particles obtained in Example 5 and Comparative Example 5, a long-term retention test of herbicide components was performed. Comparison of the amount of herbicide component remaining and the test of herbicide elution at the time of spraying showed no loss of herbicide under normal temperature conditions, and the elution of the herbicide component was confirmed by spraying (water addition). It has been found that the herbicide components can be prevented from volatilizing. The amount of herbicide active ingredient was measured by the amount of elution by water extraction, and the test results are shown in Table 2.

Figure 2009012996
Figure 2009012996

(試験例5)
食品香料内包シリカ微粒子による、香気保持、加熱時の発香試験
実施例6及び比較例6で得られた食品香料内包シリカ微粒子を用いて、香気成分の長期保持試験及び加熱時の香気試験を実施した。長期放置後の過熱による香気の確認をしたところ、長期保管後においても香料の劣化、減少がなく、加熱時に香気が確認された。その試験結果を表3に示した。
(Test Example 5)
Fragrance test at the time of aroma retention and heating with silica fine particles encapsulated in food fragrance Using the silica fine particles encapsulated in food fragrance obtained in Example 6 and Comparative Example 6, a long-term retention test of aroma components and an aroma test at heating did. The fragrance was confirmed by overheating after being left for a long time. As a result, the fragrance was not deteriorated or decreased even after long-term storage, and the fragrance was confirmed during heating. The test results are shown in Table 3.

Figure 2009012996
Figure 2009012996

(試験例6)
難燃剤内包シリカ微粒子による、難燃性、耐洗濯試験
実施例7及び比較例7で得られた難燃剤内包シリカ微粒子を、バインダーを用いて生地加工を行った。加工生地の複数回の洗濯後の難燃性を試験したところ、洗濯後も難燃性の維持をしていることが確認された。その試験結果を表4に示した。
(Test Example 6)
Flame retardancy and washing resistance test using flame retardant-encapsulated silica fine particles The flame retardant-encapsulated silica fine particles obtained in Example 7 and Comparative Example 7 were processed into a fabric using a binder. When the fire resistance of the processed fabric after multiple washings was tested, it was confirmed that the fire resistance was maintained even after washing. The test results are shown in Table 4.

Figure 2009012996
Figure 2009012996

以上の結果より、本発明により確立された製造方法で得られる多孔質微粒子は、微粒子内の被担持物質を強く保持するとともに、特定の条件を与えることにより被担持物質を放出し、その機能を発現することが判明した。   From the above results, the porous fine particles obtained by the production method established according to the present invention strongly hold the supported substance in the fine particles, and release the supported substance by giving specific conditions, and the function thereof is reduced. It was found to develop.

多孔質粒子構造の1例Example of porous particle structure 多孔質粒子構造の他の1例Another example of porous particle structure 多孔質粒子構造の他の1例Another example of porous particle structure 常温におけるエポキシ樹脂の粘度変化Change in viscosity of epoxy resin at room temperature 昇温時におけるエポキシ樹脂の粘度変化Change in viscosity of epoxy resin at elevated temperature 恒温(70℃)におけるエポキシ樹脂の粘度変化Change in viscosity of epoxy resin at constant temperature (70 ° C) 昇温時におけるエポキシ樹脂の粘度変化Change in viscosity of epoxy resin at elevated temperature

符号の説明Explanation of symbols

1.多孔質微粒子
2.多孔質微粒子骨格
3.被担持物質
4.硬化性化合物または高分子化合物
5.被担持物質と硬化性化合物または高分子化合物の相溶化物
1. 1. Porous fine particles 2. Porous fine particle skeleton 3. Supported material 4. Curing compound or polymer compound Compatibilized material of supported material and curable compound or polymer compound

Claims (13)

被担持物質を多孔質微粒子内に内包し、さらにその表面を硬化性化合物または高分子化合物で被覆することにより被担持物質を保持し、特定の外部要因により被担持物質を放出することを特徴とする多孔質微粒子。   It is characterized in that the supported substance is encapsulated in porous fine particles, and the surface of the supported substance is covered with a curable compound or a polymer compound to hold the supported substance, and the supported substance is released by a specific external factor. Porous fine particles. 被担持物質並びに硬化性化合物および高分子化合物のいずれか1種の相溶化物を、多孔質微粒子内に内包することにより、被担持物質を保持し、特定の外部要因により被担持物質を放出することを特徴とする多孔質微粒子。   By holding the supported substance and the compatibilized material of any one of the curable compound and the polymer compound in the porous fine particles, the supported substance is held, and the supported substance is released by a specific external factor. Porous fine particles characterized by that. 上記多孔質微粒子が、無機物質からなることを特徴とする請求項1または2に記載の多孔質微粒子。   The porous fine particle according to claim 1, wherein the porous fine particle is made of an inorganic substance. 上記無機物質が、二酸化珪素、珪酸カルシウム、アパタイト、アルミナ、ゼオライト、リン酸塩および炭酸塩のいずれか1種または2種以上からなることを特徴とする請求項3に記載の多孔質微粒子。   The porous fine particle according to claim 3, wherein the inorganic substance is composed of one or more of silicon dioxide, calcium silicate, apatite, alumina, zeolite, phosphate and carbonate. 上記多孔質微粒子が、有機物質からなることを特徴とする請求項1または2に記載の多孔質微粒子。   The porous fine particle according to claim 1 or 2, wherein the porous fine particle is made of an organic substance. 上記有機物質が、ポリエチレン、ポリウレタン、セルロース、ポリアミド、ポリビニルホルマール、フェノール樹脂、エポキシ樹脂、尿素樹脂および天然繊維物質のいずれか1種または2種以上からなる複合物であることを特徴とする請求項5に記載の多孔質微粒子。   The organic material is a composite composed of one or more of polyethylene, polyurethane, cellulose, polyamide, polyvinyl formal, phenol resin, epoxy resin, urea resin, and natural fiber material. 5. Porous fine particles according to 5. 上記硬化性化合物または高分子化合物が、アクリル樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、シリコン樹脂、ウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、有機珪素化合物および天然有機高分子化合物のいずれか1種または2種以上からなる複合物であることを特徴とする請求項1乃至6のいずれか1項に記載の多孔質微粒子。   The curable compound or polymer compound is one or two of acrylic resin, epoxy resin, phenol resin, melamine resin, silicon resin, urethane resin, polyester resin, polyamide resin, organic silicon compound, and natural organic polymer compound. The porous fine particle according to any one of claims 1 to 6, wherein the porous fine particle is a composite comprising at least species. 上記被担持物質が、色素、香料、機能性物質、農薬、医薬、酵素および生理活性物質のいずれか1種であることを特徴とする請求項1乃至7のいずれか1項に記載の多孔質微粒子。   The porous material according to any one of claims 1 to 7, wherein the supported substance is any one of a pigment, a fragrance, a functional substance, an agrochemical, a medicine, an enzyme, and a physiologically active substance. Fine particles. 被担持物質を放出させるための上記特定の外部要因が、熱、機械的破壊、溶媒および光のいずれか1種であることを特徴とする請求項1乃至8のいずれか1項に記載の多孔質微粒子。   The porous material according to any one of claims 1 to 8, wherein the specific external factor for releasing the supported material is any one of heat, mechanical destruction, solvent and light. Fine particles. 被担持物質を内包した多孔質微粒子を硬化性化合物および高分子化合物のいずれか1種を用いて被覆することを特徴とする多孔質微粒子の製造方法。   A method for producing porous fine particles, comprising coating porous fine particles encapsulating a supported substance with one of a curable compound and a polymer compound. 被担持物質並びに硬化性化合物および高分子化合物のいずれか1種の相溶化物を多孔質微粒子に内包させ多孔質微粒子内で硬化物を調製することを特徴とする多孔質微粒子の製造方法。   A method for producing porous microparticles, comprising preparing a cured product in a porous microparticle by encapsulating in the porous microparticles a compatibilized material of any one of a supported material, a curable compound, and a polymer compound. 上記硬化性化合物または高分子化合物が、アクリル樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、シリコン樹脂、ウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、有機珪素化合物および天然有機高分子化合物のいずれか1種または2種以上からなる複合物であることを特徴とする請求項10または11に記載の多孔質微粒子の製造方法。   The curable compound or polymer compound is one or two of acrylic resin, epoxy resin, phenol resin, melamine resin, silicon resin, urethane resin, polyester resin, polyamide resin, organic silicon compound, and natural organic polymer compound. The method for producing porous fine particles according to claim 10 or 11, wherein the method is a composite composed of at least seeds. 上記被担持物質が、色素、香料、機能性物質、農薬、医薬、酵素および生理活性物質のいずれか1種であることを特徴とする請求項10乃至12のいずれか1項に記載の多孔質微粒子。

The porous material according to any one of claims 10 to 12, wherein the supported substance is any one of a pigment, a fragrance, a functional substance, an agricultural chemical, a medicine, an enzyme, and a physiologically active substance. Fine particles.

JP2007174762A 2007-07-03 2007-07-03 Porous fine particles and method for producing the same Pending JP2009012996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007174762A JP2009012996A (en) 2007-07-03 2007-07-03 Porous fine particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007174762A JP2009012996A (en) 2007-07-03 2007-07-03 Porous fine particles and method for producing the same

Publications (1)

Publication Number Publication Date
JP2009012996A true JP2009012996A (en) 2009-01-22

Family

ID=40354353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007174762A Pending JP2009012996A (en) 2007-07-03 2007-07-03 Porous fine particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP2009012996A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011121813A (en) * 2009-12-10 2011-06-23 Kao Corp Composite silica particle
WO2012008562A1 (en) * 2010-07-15 2012-01-19 協友アグリ株式会社 Sustained-release microparticles and drug formulation containing sustained-release microparticles
WO2013011898A1 (en) * 2011-07-15 2013-01-24 日本たばこ産業株式会社 Fragrance-supporting adsorbent particles, cigarette filter, filtered cigarette, and method for manufacturing fragrance-supporting adsorbent particles
WO2013011899A1 (en) * 2011-07-15 2013-01-24 日本たばこ産業株式会社 Fragrance-supporting low-adsorption particles, cigarette filter, filter cigarette, and method for manufacturing fragrance-supporting low-adsorption particles
JP2013091166A (en) * 2011-10-24 2013-05-16 Dainippon Printing Co Ltd Thermal transfer sheet and printed matter with perfume
US9243144B2 (en) 2008-09-30 2016-01-26 Psimedica Limited Composition containing loaded and capped porous silica particles
WO2017163944A1 (en) * 2016-03-24 2017-09-28 大阪瓦斯株式会社 Carbon dioxide absorber and process for producing carbon dioxide absorber
WO2017169669A1 (en) * 2016-03-30 2017-10-05 大阪瓦斯株式会社 Gas absorbing material, carbon dioxide separation and recovery system, and carbon dioxide separation and recovery method
US20180110685A1 (en) * 2016-10-26 2018-04-26 Elc Management Llc Delayed Release Delivery Systems And Methods
WO2018155494A1 (en) * 2017-02-21 2018-08-30 大阪ガスケミカル株式会社 Gas adsorbent carrier and method for producing same
JP2018140962A (en) * 2017-02-28 2018-09-13 エネックス株式会社 Composite particle
CN109006990A (en) * 2018-07-18 2018-12-18 浙江科技学院 A kind of fruit and vegetable fresh-keeping agent and preparation method thereof
US10363205B2 (en) 2016-10-26 2019-07-30 Elc Management Llc Delayed release delivery systems and methods
US10661244B2 (en) 2016-10-26 2020-05-26 Elc Management Llc Delayed release delivery systems and methods
EP4092072A1 (en) 2021-05-17 2022-11-23 Panasonic Intellectual Property Management Co., Ltd. Composite resin molded body having sustained release property of medicinal agent, and method for manufacturing same
US12246077B2 (en) 2016-10-26 2025-03-11 Elc Management Llc Delayed release delivery systems and methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02136141A (en) * 1988-11-17 1990-05-24 Taiyo Chem Kk Deodorizing material and preparation thereof
JPH06271472A (en) * 1992-10-14 1994-09-27 Matsushita Electric Ind Co Ltd Antiviral composition and method for producing the same
JPH07173452A (en) * 1993-12-18 1995-07-11 Suzuki Yushi Kogyo Kk Fine porous inorganic particle
JP2003252619A (en) * 2001-12-27 2003-09-10 Mitsubishi Chemicals Corp Sustained release carrier and sustained release agent
JP2003286196A (en) * 2002-03-28 2003-10-07 Enex Co Ltd Sustained release porous fine particle and method for producing the same
JP2006249308A (en) * 2005-03-11 2006-09-21 Sumitomo Osaka Cement Co Ltd Colored powder and its manufacturing method
JP2007091716A (en) * 2005-08-29 2007-04-12 Kuraray Co Ltd Underwater drug sustained-release fine particles and method for producing the same
JP2008144054A (en) * 2006-12-11 2008-06-26 Enex Co Ltd Particulate heat storage material and manufacturing method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02136141A (en) * 1988-11-17 1990-05-24 Taiyo Chem Kk Deodorizing material and preparation thereof
JPH06271472A (en) * 1992-10-14 1994-09-27 Matsushita Electric Ind Co Ltd Antiviral composition and method for producing the same
JPH07173452A (en) * 1993-12-18 1995-07-11 Suzuki Yushi Kogyo Kk Fine porous inorganic particle
JP2003252619A (en) * 2001-12-27 2003-09-10 Mitsubishi Chemicals Corp Sustained release carrier and sustained release agent
JP2003286196A (en) * 2002-03-28 2003-10-07 Enex Co Ltd Sustained release porous fine particle and method for producing the same
JP2006249308A (en) * 2005-03-11 2006-09-21 Sumitomo Osaka Cement Co Ltd Colored powder and its manufacturing method
JP2007091716A (en) * 2005-08-29 2007-04-12 Kuraray Co Ltd Underwater drug sustained-release fine particles and method for producing the same
JP2008144054A (en) * 2006-12-11 2008-06-26 Enex Co Ltd Particulate heat storage material and manufacturing method thereof

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9243144B2 (en) 2008-09-30 2016-01-26 Psimedica Limited Composition containing loaded and capped porous silica particles
JP2011121813A (en) * 2009-12-10 2011-06-23 Kao Corp Composite silica particle
WO2012008562A1 (en) * 2010-07-15 2012-01-19 協友アグリ株式会社 Sustained-release microparticles and drug formulation containing sustained-release microparticles
JP2012036182A (en) * 2010-07-15 2012-02-23 Kyoyu Agri Kk Sustained-release microparticle and drug formulation containing the sustained-release microparticle
WO2013011898A1 (en) * 2011-07-15 2013-01-24 日本たばこ産業株式会社 Fragrance-supporting adsorbent particles, cigarette filter, filtered cigarette, and method for manufacturing fragrance-supporting adsorbent particles
WO2013011899A1 (en) * 2011-07-15 2013-01-24 日本たばこ産業株式会社 Fragrance-supporting low-adsorption particles, cigarette filter, filter cigarette, and method for manufacturing fragrance-supporting low-adsorption particles
CN103649287A (en) * 2011-07-15 2014-03-19 日本烟草产业株式会社 Fragrance-supporting low-adsorption particles, cigarette filter, filter cigarette, and method for manufacturing fragrance-supporting low-adsorption particles
TWI481705B (en) * 2011-07-15 2015-04-21 Japan Tobacco Inc Flavoring agent-carrying low adsorbent particle, cigarret filter, cigarret with filter, and method for making a flavoring agent-carrying low adsordent particle
RU2570785C2 (en) * 2011-07-15 2015-12-10 Джапан Тобакко Инк. Aromatiser-carrying weakly-adsorbing particle, cigarette filter, filter-tipped cigarette and method of producing aromatiser-carrying weakly-adsorbing particle
JP2013091166A (en) * 2011-10-24 2013-05-16 Dainippon Printing Co Ltd Thermal transfer sheet and printed matter with perfume
JPWO2017163944A1 (en) * 2016-03-24 2019-02-14 大阪瓦斯株式会社 Carbon dioxide absorbent and method for producing carbon dioxide absorbent
CN108883392A (en) * 2016-03-24 2018-11-23 大阪瓦斯株式会社 The manufacturing method of carbon-dioxide absorbent and carbon-dioxide absorbent
WO2017163944A1 (en) * 2016-03-24 2017-09-28 大阪瓦斯株式会社 Carbon dioxide absorber and process for producing carbon dioxide absorber
WO2017169669A1 (en) * 2016-03-30 2017-10-05 大阪瓦斯株式会社 Gas absorbing material, carbon dioxide separation and recovery system, and carbon dioxide separation and recovery method
JPWO2017169669A1 (en) * 2016-03-30 2019-02-14 大阪瓦斯株式会社 Gas absorbent, carbon dioxide separation and recovery system, carbon dioxide separation and recovery method
US10363205B2 (en) 2016-10-26 2019-07-30 Elc Management Llc Delayed release delivery systems and methods
US20180110685A1 (en) * 2016-10-26 2018-04-26 Elc Management Llc Delayed Release Delivery Systems And Methods
US12246077B2 (en) 2016-10-26 2025-03-11 Elc Management Llc Delayed release delivery systems and methods
US10661244B2 (en) 2016-10-26 2020-05-26 Elc Management Llc Delayed release delivery systems and methods
JPWO2018155494A1 (en) * 2017-02-21 2019-12-12 大阪ガスケミカル株式会社 Gas adsorbent carrier and method for producing the same
JP7101162B2 (en) 2017-02-21 2022-07-14 大阪ガスケミカル株式会社 Gas adsorbent carrier and its manufacturing method
WO2018155494A1 (en) * 2017-02-21 2018-08-30 大阪ガスケミカル株式会社 Gas adsorbent carrier and method for producing same
JP2018140962A (en) * 2017-02-28 2018-09-13 エネックス株式会社 Composite particle
CN109006990A (en) * 2018-07-18 2018-12-18 浙江科技学院 A kind of fruit and vegetable fresh-keeping agent and preparation method thereof
EP4092072A1 (en) 2021-05-17 2022-11-23 Panasonic Intellectual Property Management Co., Ltd. Composite resin molded body having sustained release property of medicinal agent, and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP2009012996A (en) Porous fine particles and method for producing the same
US11654410B2 (en) Method for preparing biodegradable microcapsules and microcapsules thus obtained
US7629394B2 (en) UV curable coating material of encapsulated water dispersed core material
JP2003286196A (en) Sustained release porous fine particle and method for producing the same
US20090181254A1 (en) Multi-capsule system and its use for encapsulating active agents
RU2403934C1 (en) Fire-extinguishing composition and method of its obtaining
JPS585697B2 (en) Encapsulation method
JP6804384B2 (en) Function-expressing particles and their manufacturing method
KR20240019382A (en) Method for preparing biodegradable capsules and capsules obtained
US20140066357A1 (en) Heat-stable microencapsulated fragrance oils
MXPA06013734A (en) Compositions and articles containing a crosslinked polymer matrix and an immobilized active liquid, as well as methods of making and using the same.
JPH0620535B2 (en) Microcapsule manufacturing method
CN107466206A (en) Particle and production method containing pheromones
US7488703B2 (en) System and method for a fragrant polymer configured for use in a growing medium
CN102481262A (en) Encapsulation using wax-like substances
JPS63178840A (en) Slowly-releasable microcapsule
Fulzele et al. Preparation and evaluation of microcapsules using polymerized rosin as a novel wall forming material
US20130313734A1 (en) Method of preventing agglomeration during microencapsulation of fragrance oils
KR100837793B1 (en) Composite fragrance composition showing long-term uniform divergence
JPH0957091A (en) Volatile matter housed microcapsule and its production
KR20170025782A (en) Manufacturing method of controlled release micropowder with nanoporosity
HU194504B (en) Method for filling inmiscibles in water materials into microcapsules
JPH0240233A (en) Microcapsule and capsule composition for encapsulating volatile material
US11517511B2 (en) Controlled release polymer encapsulated fragrances
JP6910539B2 (en) A method for producing hollow particles, a method for producing a pore-forming material, a method for producing cosmetic particles, and a method for producing a lightweight material.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100415

A977 Report on retrieval

Effective date: 20120123

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A02 Decision of refusal

Effective date: 20120605

Free format text: JAPANESE INTERMEDIATE CODE: A02