[go: up one dir, main page]

JP2009009897A - All-solid-state thin film battery, manufacturing method thereof and manufacturing apparatus thereof - Google Patents

All-solid-state thin film battery, manufacturing method thereof and manufacturing apparatus thereof Download PDF

Info

Publication number
JP2009009897A
JP2009009897A JP2007172325A JP2007172325A JP2009009897A JP 2009009897 A JP2009009897 A JP 2009009897A JP 2007172325 A JP2007172325 A JP 2007172325A JP 2007172325 A JP2007172325 A JP 2007172325A JP 2009009897 A JP2009009897 A JP 2009009897A
Authority
JP
Japan
Prior art keywords
solid
chamber
thin film
state thin
film battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007172325A
Other languages
Japanese (ja)
Inventor
Hideaki Awata
英章 粟田
Katsuji Emura
勝治 江村
Taku Kamimura
卓 上村
Kentaro Yoshida
健太郎 吉田
Rikizo Ikuta
力三 生田
Mitsuyasu Ogawa
光靖 小川
Yukihiro Ota
進啓 太田
Osamu Mizuno
修 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Research Institute of Innovative Technology for the Earth RITE
Original Assignee
Sumitomo Electric Industries Ltd
Research Institute of Innovative Technology for the Earth RITE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Research Institute of Innovative Technology for the Earth RITE filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007172325A priority Critical patent/JP2009009897A/en
Publication of JP2009009897A publication Critical patent/JP2009009897A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physical Vapour Deposition (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】 内部抵抗を低減した全固相薄膜電池、その製造方法およびその製造装置を提供する。
【解決手段】 固体電解質層3を気相プロセスにより形成する工程、正極層2を気相プロセスにより形成する工程、および負極層4を気相プロセスにより形成する工程を備え、気相プロセスの間の各非処理時間中、全固体薄膜電池の中間品を、真空引きの雰囲気中に保持することを特徴とする。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide an all-solid-state thin film battery with reduced internal resistance, a manufacturing method thereof, and a manufacturing apparatus thereof.
A solid electrolyte layer 3 is formed by a gas phase process, a positive electrode layer 2 is formed by a gas phase process, and a negative electrode layer 4 is formed by a gas phase process. During each non-treatment time, the intermediate product of the all-solid-state thin film battery is maintained in an evacuated atmosphere.
[Selection] Figure 1

Description

本発明は、全固体薄膜電池、その製造方法およびその製造装置に関し、より具体的には、内部抵抗を低くした全固体薄膜電池、その製造方法およびその製造装置に関するものである。   The present invention relates to an all-solid-state thin film battery, a method for manufacturing the same, and a manufacturing apparatus therefor, and more specifically to an all-solid-state thin film battery having a low internal resistance, a manufacturing method therefor, and a manufacturing apparatus therefor.

携帯用の電子機器に多様な電池が搭載される時代、電池には、常に軽量化、小型化または高エネルギー密度化が求められ、充放電電圧などの電池特性の改善が図られている。たとえばリチウム電池において、用いる電極によって、充放電電圧、充放電サイクル寿命などの電池特性が大きく左右される状況を改善するために、シート状の負極電極を、非酸化でかつ非吸湿の雰囲気中で形成して、上記雰囲気中に保持したまま、別に形成した正極シート等とともに電池に組み込む方法が提案されている(特許文献1)。この方法の対象となるリチウム電池は、液相の電解質を有し、短絡防止のためにセパレータを用い、このセパレータシートと、正極シートと、上記雰囲気中で形成した負極シートとを、上述の雰囲気中で捲回した後に、セパレータシートに液相の電解質をしみ込ませる。この方法によれば、水分を排除できるので、電解液に用いられるリチウム塩(LiPFなど)と水分との反応を防止でき、したがってその反応で生成するフッ酸の発生を防止して電池特性の劣化を防ぐことができる。また負極活物質の表面酸化を防止でき、酸化した負極活物質の還元のためにリチウムを費消することなく済ますことができるので、正極容量または電池容量の低下を防止することができる。
特開2003−7343号公報
In the era when various types of batteries are mounted on portable electronic devices, the batteries are always required to be lighter, smaller, or have higher energy density, and battery characteristics such as charge / discharge voltage are improved. For example, in a lithium battery, in order to improve the situation where battery characteristics such as charge / discharge voltage and charge / discharge cycle life are greatly affected by the electrode used, the sheet-like negative electrode is placed in a non-oxidizing and non-hygroscopic atmosphere. There has been proposed a method of forming and incorporating it into a battery together with a separately formed positive electrode sheet or the like while being maintained in the atmosphere (Patent Document 1). A lithium battery that is an object of this method has a liquid-phase electrolyte and uses a separator to prevent a short circuit. The separator sheet, the positive electrode sheet, and the negative electrode sheet formed in the above atmosphere are mixed with the above atmosphere. After winding in, the separator sheet is impregnated with a liquid phase electrolyte. According to this method, moisture can be eliminated, so that the reaction between the lithium salt (LiPF 6 or the like) used in the electrolyte and moisture can be prevented, and thus generation of hydrofluoric acid generated by the reaction can be prevented, and the battery characteristics can be reduced. Deterioration can be prevented. In addition, the surface oxidation of the negative electrode active material can be prevented, and lithium can be consumed for the reduction of the oxidized negative electrode active material, so that the decrease in the positive electrode capacity or the battery capacity can be prevented.
JP 2003-7343 A

しかしながら上記の電池は、電解質に液相を用いるため安全性の点で完璧とは言いがたく、とくに携帯機器、ICタグ等、ヒトが手にする機器の実用化が広範に進展する昨今、これら携帯機器、ICタグ等に用いられる薄膜電池には、固体電解質を用いた電池の搭載が望まれ、とくに全固相薄膜電池が望まれている。しかし、全固相薄膜電池は、現状、実用化されていない。   However, the above-mentioned battery is not perfect in terms of safety because it uses a liquid phase as an electrolyte. In recent years, practical use of devices such as portable devices, IC tags, etc. that humans have been in widespread progress. For thin film batteries used for portable devices, IC tags, etc., it is desired to mount a battery using a solid electrolyte, and in particular, an all-solid-state thin film battery is desired. However, all solid-phase thin-film batteries have not been put into practical use at present.

全固相薄膜電池の実用化を阻む大きな理由の一つが、内部抵抗が高いという点にある。全固体薄膜電池の充放電電圧は数ボルトであり、その内部抵抗は、現状、1MΩcmのレベルにある。したがって、充放電において1mA/cm程度の電流を流そうとしても、その電圧は形式的に1000ボルトと見積られるので、動作不能となる。動作可能とするためには、充放電において1μA/cmレベルの電流に制限しなければならないが、このレベルの電流で足りる用途を見出すことが難しい。そこで、全固体薄膜電池の内部抵抗を低減することが望まれてきた。 One of the main reasons for hindering the practical application of all-solid-state thin film batteries is the high internal resistance. The charge / discharge voltage of the all-solid-state thin film battery is several volts, and its internal resistance is currently at a level of 1 MΩcm 2 . Therefore, even if an electric current of about 1 mA / cm 2 is applied in charging / discharging, the voltage is formally estimated to be 1000 volts, so that the operation becomes impossible. In order to be operable, charging / discharging must be limited to a current of 1 μA / cm 2, but it is difficult to find an application that requires this level of current. Therefore, it has been desired to reduce the internal resistance of the all-solid-state thin film battery.

本発明は、内部抵抗を低減した全固相薄膜電池、その製造方法およびその製造装置を提供することを目的とする。   An object of the present invention is to provide an all-solid-state thin film battery with reduced internal resistance, a manufacturing method thereof, and a manufacturing apparatus thereof.

本発明の全固体薄膜電池の製造方法は、基材上に、正負極層および固体電解質層を備える全固体薄膜電池の製造方法である。この製造方法は、基材上に正負極層の一方を気相プロセスにより形成する工程、固体電解質層を気相プロセスにより形成する工程、および正負極層の他方を気相プロセスにより形成する工程を備える。そして、気相プロセスの間の各非処理時間中、全固体薄膜電池の中間品を、真空引きの雰囲気中に保持することを特徴とする。   The manufacturing method of the all-solid-state thin film battery of this invention is a manufacturing method of the all-solid-state thin film battery provided with a positive / negative electrode layer and a solid electrolyte layer on a base material. This manufacturing method includes a step of forming one of the positive and negative electrode layers on a base material by a gas phase process, a step of forming a solid electrolyte layer by a gas phase process, and a step of forming the other of the positive and negative electrode layers by a gas phase process. Prepare. The intermediate product of the all-solid-state thin film battery is held in a vacuum-evacuated atmosphere during each non-treatment time during the gas phase process.

上記の方法によれば、全固体薄膜電池の中間品は、各気相プロセスの間の非処理時間、雰囲気中の酸素濃度を低く保たれる。このため、固体電解質層を挟んで位置する2つの電極層の各層間に、電気伝導性の障害となる酸素化物富化層(酸化物富化層)が形成されにくくなる。この結果、内部抵抗を大幅に低減することができ、実用化の途が拓けるようになる。すなわち各層間において清浄な界面が得られることが内部抵抗の大幅な低減に有効である。また、酸素以外の他の不純物の混入も防止できるので、電池の信頼性を高め、またサイクル寿命の向上など電池性能の向上を得ることができる。また、全固体薄膜電池であり、セパレータを用いる必要がないので、高い容量密度を確保することができ、小型化に資することができる。   According to the above method, the intermediate product of the all-solid-state thin film battery can keep the oxygen concentration in the atmosphere low during the non-treatment time between each gas phase process. For this reason, it is difficult to form an oxygenate-enriched layer (oxide-enriched layer) that hinders electrical conductivity between the two electrode layers located between the solid electrolyte layers. As a result, the internal resistance can be greatly reduced, and the way to practical use can be opened. That is, obtaining a clean interface between the layers is effective for greatly reducing internal resistance. In addition, since impurities other than oxygen can be prevented from being mixed, the battery performance can be improved and the battery performance can be improved, such as the cycle life. Moreover, since it is an all-solid-state thin film battery and it is not necessary to use a separator, a high capacity | capacitance density can be ensured and it can contribute to size reduction.

なお、気相プロセスとは、上記の各工程で用いる材料を、原子状、分子状、イオン、プラズマ、アブレーションなどの気相状態を経由させて、基材または下層に当てて下層をはじき出し、または下層に当該気相状態からの材料を付着させる処理方法をいい、当然に、排気しながら処理(気相プロセス)を行う。換言すれば、気相プロセスとはウエットプロセス以外の処理をいい、したがってドライプロセスと言ってもよい。気相状態という語は、日進月歩のこの分野の技術進歩を考慮して、上記例示した状態に限定せず、できるだけ広く解釈すべきである。各工程の気相プロセスは、それぞれ異なってもよいことは言うまでもない。また、基材上に、層を形成する順序は、固体電解質層形成工程を挟むように、負極層形成工程と正極層形成工程とが位置していればよく、負極層形成工程および正極層形成工程の先後は問わない。また、基材は集電材を兼ねていてもよく、むしろ集電材を兼ねるのが一般的である。中間品は、全固体薄膜電池の製造工程における仕掛品をいい、製造ラインに投入されていれば、基材だけでも中間品に該当する。   The vapor phase process means that the material used in each of the above steps is applied to the base material or the lower layer via a gas phase state such as atomic, molecular, ion, plasma, ablation, or the lower layer is ejected, or A processing method in which a material from the gas phase is attached to the lower layer. Naturally, the processing (gas phase process) is performed while exhausting. In other words, the gas phase process refers to a process other than the wet process, and thus may be referred to as a dry process. The term “gas phase state” should be interpreted as widely as possible without being limited to the above-described state state in view of technological progress in this field. Needless to say, the gas phase process in each step may be different. In addition, the order of forming the layers on the substrate is such that the negative electrode layer forming step and the positive electrode layer forming step are positioned so as to sandwich the solid electrolyte layer forming step. It doesn't matter what happens in the process. In addition, the base material may also serve as a current collector, but rather generally serves as a current collector. The intermediate product refers to a work-in-process in the manufacturing process of the all-solid-state thin film battery.

また、上記の非処理時間の雰囲気の形成の際、圧力3×10−3Pa以下に到達するように排気することができる。この方法により、上記の各界面における酸素富化層の発生をより確実に防止することができる。真空引きの雰囲気の圧力を、3×10−3Pa以下とすることにより、上記の界面における酸素富化層を確実に防止することができる。 Further, when forming the atmosphere for the non-treatment time, the exhaust can be performed so as to reach a pressure of 3 × 10 −3 Pa or less. By this method, the generation of the oxygen-enriched layer at each interface can be more reliably prevented. By setting the pressure of the vacuuming atmosphere to 3 × 10 −3 Pa or less, the oxygen-enriched layer at the interface can be reliably prevented.

また、上記の基材は、全固体薄膜電池の製造一単位ごとに分かれており、非処理時間に、中間品を次の気相プロセスのために移動することができる。この方法によれば、バッチ方式的に製造一単位ごとに清浄な雰囲気中で層形成(成膜)を行うので、製造工程の多少の変更にも容易に即応することができる。すなわち不測の事態が生じても、安定的に対処することができる。なお、基材の製造一単位は、全固体薄膜電池の1個分を複数個含む、製造上の一単位である。上記の基材を含んでその上に形成される中間品も自ずと基材と同様となる。   Moreover, said base material is divided | segmented for every manufacturing unit of an all-solid-state thin film battery, and can transfer an intermediate | middle product for the next gaseous-phase process in non-processing time. According to this method, layer formation (film formation) is performed in a clean atmosphere for each manufacturing unit in a batch system, so that it is possible to easily adapt to slight changes in the manufacturing process. That is, even if an unexpected situation occurs, it can be dealt with stably. In addition, the manufacturing unit of the substrate is a manufacturing unit including a plurality of all solid-state thin film batteries. The intermediate product formed on the substrate including the substrate is naturally the same as the substrate.

また、上記の気相プロセスの後段に、基材、正負極層および固体電解質層の積層体を封止部材に封止する工程を備え、該封止工程では、中間品を露点−45℃以下の不活性雰囲気中に保持することができる。この方法によれば、上記の積層体を封止部材に封止するという段階まで、酸化、湿分等を制限した環境中に途切れることなく連続して保持するので、より完全度高く、内部抵抗の低減と、湿分など不純物混入の排除とを推進することができる。この結果、電池の信頼性の向上や、サイクル寿命の向上など電池性能を高めることができる。露点が−45℃以下は、雰囲気中の水分濃度が80ppm以下になり、固体電解質等と反応して固体電解質が変質するのを事実上無視してよい範囲となる。   In addition, a step of sealing the laminate of the base material, the positive and negative electrode layers and the solid electrolyte layer in a sealing member is provided after the gas phase process, and in this sealing step, the intermediate product has a dew point of −45 ° C. or lower. In an inert atmosphere. According to this method, since the laminate is sealed continuously in an environment in which oxidation, moisture, and the like are restricted, until the stage of sealing the laminate to a sealing member, the degree of completeness is increased. And the elimination of impurities such as moisture can be promoted. As a result, it is possible to improve battery performance such as improvement in battery reliability and cycle life. When the dew point is −45 ° C. or lower, the moisture concentration in the atmosphere is 80 ppm or lower, and the range in which the solid electrolyte is altered by reaction with the solid electrolyte or the like is virtually negligible.

また、上記の基材の表面酸化層を気相プロセスで除去する工程を、正負極層の一方を気相プロセスで形成する工程の前に備え、表面酸化層を除去する気相プロセスと正負極層の一方を形成する気相プロセスとの間の非処理時間中、基材を真空引きの雰囲気中に保持することができる。この方法によれば、基材表面に酸化層が分厚く生ずることがなくなり、内部抵抗を大きく低下することができる。   Further, the step of removing the surface oxide layer of the base material by a gas phase process is provided before the step of forming one of the positive and negative electrode layers by the gas phase process, and the gas phase process and the positive and negative electrodes for removing the surface oxide layer The substrate can be kept in an evacuated atmosphere during the non-treatment time between the gas phase processes forming one of the layers. According to this method, a thick oxide layer is not generated on the surface of the substrate, and the internal resistance can be greatly reduced.

本発明の全固体薄膜電池の製造装置は、基材上に正負極層および固体電解質層を備える全固体薄膜電池の製造装置である。この製造装置は、少なくとも固体電解質層を形成するための、気相プロセス用の第1のチャンバと、第1のチャンバに連続する少なくとも1つの気相プロセス用の第2のチャンバと、第1のチャンバおよび第2のチャンバの各チャンバ間を隔離する隔離手段と、第1のチャンバおよび第2のチャンバにわたって、全固体薄膜電池の中間品を搬送する搬送手段とを備えることを特徴とする。   The manufacturing apparatus of the all-solid-state thin film battery of this invention is a manufacturing apparatus of the all-solid-state thin film battery provided with a positive / negative electrode layer and a solid electrolyte layer on a base material. The manufacturing apparatus includes: a first chamber for a gas phase process for forming at least a solid electrolyte layer; at least one second chamber for a gas phase process continuous with the first chamber; Isolation means for isolating the chamber and the second chamber from each other, and transport means for transporting an intermediate product of the all-solid-state thin film battery across the first chamber and the second chamber.

上記の製造装置によれば、積層体を、連続して、チャンバ内で、真空雰囲気中で形成することができるので、(負極層/固体電解質層/正極層)の層間に、電気伝導性の障害となる酸素富化層(酸化物層)の形成を防止できる。この結果、内部抵抗を大幅に低減することができる。また、酸素以外の他の不純物の混入も防止できるので、電池の信頼性を高め、またサイクル寿命の向上など電池性能の向上を得ることができる。なお、第1のチャンバでは、固体電解質層の他に正負のいずれかの電極層が形成されてもよい。   According to the above manufacturing apparatus, since the laminate can be continuously formed in a vacuum atmosphere in a chamber, an electrically conductive layer is provided between (negative electrode layer / solid electrolyte layer / positive electrode layer). Formation of an oxygen-enriched layer (oxide layer) that becomes an obstacle can be prevented. As a result, the internal resistance can be greatly reduced. In addition, since impurities other than oxygen can be prevented from being mixed, battery reliability can be improved and battery performance can be improved such as cycle life. In the first chamber, any of positive and negative electrode layers may be formed in addition to the solid electrolyte layer.

また、上記の第2のチャンバとして、第1のチャンバを挟むように、正極層を形成するための正極層形成チャンバおよび負極層を形成するための負極層形成チャンバを備えることができる。この構成によれば、正極層と、固体電解質層と、負極層とを、各別のチャンバで形成することができ、チャンバを共通して異なる層を形成する場合に起こり易いコンタミネーション等のおそれがなくなる。また、一定方向に中間品を流して能率よく全固体薄膜電池を製造することが可能になる。   Further, as the second chamber, a positive electrode layer forming chamber for forming a positive electrode layer and a negative electrode layer forming chamber for forming a negative electrode layer can be provided so as to sandwich the first chamber. According to this configuration, the positive electrode layer, the solid electrolyte layer, and the negative electrode layer can be formed in separate chambers, and there is a risk of contamination that easily occurs when different layers are formed in common with the chamber. Disappears. Further, it becomes possible to efficiently produce an all-solid-state thin film battery by flowing an intermediate product in a certain direction.

また、上記の第1のチャンバおよび第2のチャンバの少なくとも一方と隔離手段を介在させて接続し、基材、正負極層および固体電解質層の積層体を封止する封止チャンバをさらに備えることができる。この構成によれば、チャンバ内で形成された積層体を大気雰囲気に曝すことなく、湿分や酸素濃度を制限された雰囲気中で封止部材に封止することができる。このため、より完全度高く、内部抵抗の低減と、湿分など不純物混入の排除とを推進することができ、電池の信頼性の向上や、サイクル寿命の向上など電池性能を高めることができる。   And a sealing chamber that is connected to at least one of the first chamber and the second chamber with an isolation means interposed therebetween and seals the laminate of the base material, the positive and negative electrode layers, and the solid electrolyte layer. Can do. According to this configuration, the laminated body formed in the chamber can be sealed with the sealing member in an atmosphere in which moisture and oxygen concentration are limited without being exposed to the air atmosphere. For this reason, it is possible to promote the reduction of internal resistance and the elimination of impurities such as moisture, and the battery performance can be improved such as improvement of battery reliability and improvement of cycle life.

また、上記の第1のチャンバまたは第2のチャンバと、隔離手段を介在させて接続し、基材の表面酸化層を気相プロセスで除去する表面酸化層除去チャンバを備えることができる。これにより、基材の表面酸化層を分厚い状態で使用することがなくなり、内部抵抗を大幅に低下することができる。   In addition, a surface oxide layer removal chamber that is connected to the first chamber or the second chamber with an isolation means interposed therebetween and removes the surface oxide layer of the substrate by a vapor phase process can be provided. As a result, the surface oxide layer of the substrate is not used in a thick state, and the internal resistance can be greatly reduced.

本発明の全固体薄膜電池は、正負集電材、正負極層および固体電解質層を備える全固体薄膜電池である。この全固体薄膜電池は、正極層、固体電解質層および負極層の各層間の界面において、両側の層の酸素濃度の高いほうの層における酸素濃度より酸素濃度が高くなく、正負集電材を含む全固体薄膜電池の本体部の内部抵抗が5kΩcm以下であることを特徴とする。 The all-solid-state thin film battery of the present invention is an all-solid-state thin film battery including a positive and negative current collector, a positive and negative electrode layer, and a solid electrolyte layer. This all-solid-state thin film battery has an oxygen concentration that is not higher than the oxygen concentration in the higher oxygen concentration layer on both sides of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer. The internal resistance of the main body of the solid thin film battery is 5 kΩcm 2 or less.

この全固体薄膜電池は、固体電解質層を挟む正負極層の界面に、上述のように酸素が富化した界面を持たないため内部抵抗を低減することができ、5kΩcm以下とすることができる。このように内部抵抗を低くすることにより、数mA/cmレベルの電流を充放電で流すことができるため、ICタグなどRFID(Radio Frequency Identification)等への用途が拓けてくる。内部抵抗は5kΩcmを超えると、RFIDを含め、適用可能な電子機器はほとんど見当たらない。5kΩcm以下とすることにより、RFIDへの用途の展望が開けるが、内部抵抗は500Ωcm以下とするのが、より大きな電流を充放電できるので、用途拡大のため好ましい。 This all-solid-state thin film battery does not have an interface enriched with oxygen as described above at the interface between the positive and negative electrode layers sandwiching the solid electrolyte layer, so that the internal resistance can be reduced and it can be 5 kΩcm 2 or less. . By reducing the internal resistance in this manner, a current of several mA / cm 2 level can be flowed by charging / discharging, thereby opening up applications for RFID (Radio Frequency Identification) such as an IC tag. When the internal resistance exceeds 5 kΩcm 2 , there are few applicable electronic devices including RFID. By setting it to 5 kΩcm 2 or less, the prospect of use for RFID is opened, but it is preferable to set the internal resistance to 500 Ωcm 2 or less because larger current can be charged and discharged, so that the application can be expanded.

本発明の全固体薄膜電池、その製造方法およびその製造装置によれば、電池の内部抵抗を低減することができる。   According to the all-solid-state thin film battery, the manufacturing method and the manufacturing apparatus of the present invention, the internal resistance of the battery can be reduced.

(実施の形態1)
図1は、本発明の実施の形態1における全固体薄膜電池の製造装置およびその電池の製造方法を説明するための図である。本装置は、全固体薄膜電池の本体部を形成する3種類の層(正極層、固体電解質層、負極層)を連続して蒸着することができる装置である。図1において、本連続蒸着装置は上記3種類の層を形成するために、少なくとも3つのチャンバ13,15,17を備えており、すべてのチャンバが各種真空ポンプにより排気することができる。コンベア9により、中間品が各チャンバ間を移動できるように構成されている。各チャンバ間は、隔離手段であるゲートバルブ12,14,16,18により、隣のチャンバの雰囲気と分離することができる。
(Embodiment 1)
FIG. 1 is a diagram for explaining an all-solid-state thin-film battery manufacturing apparatus and a battery manufacturing method according to Embodiment 1 of the present invention. This apparatus is an apparatus capable of continuously depositing three types of layers (a positive electrode layer, a solid electrolyte layer, and a negative electrode layer) that form the main body of the all-solid-state thin film battery. In FIG. 1, the continuous vapor deposition apparatus includes at least three chambers 13, 15, and 17 for forming the above three types of layers, and all the chambers can be evacuated by various vacuum pumps. The intermediate product can be moved between the chambers by the conveyor 9. The chambers can be separated from the atmosphere of the adjacent chambers by the gate valves 12, 14, 16, and 18 serving as isolation means.

正極層を基材に形成するためのチャンバ13の前には、基材の表面酸化層を除去するための酸化層除去チャンバ11が配置されて、入口ゲートバルブ22を経由して、本装置に搬入される基材の表面を清浄にする。基材または中間品は、耐熱性のトレー31に固定されている。以後の説明では、トレーと中間品とを区別せずに中間品31またはトレー31などと記す。ただし、中間品が最終段階の電池本体部(基材に両電極層と固体電解質層が形成されたもの)に至った段階では、中間品10または電池本体部10と記す。   In front of the chamber 13 for forming the positive electrode layer on the base material, an oxide layer removal chamber 11 for removing the surface oxide layer of the base material is disposed, and the apparatus is connected to the apparatus via the inlet gate valve 22. The surface of the substrate to be carried in is cleaned. The base material or the intermediate product is fixed to the heat-resistant tray 31. In the following description, the intermediate product 31 or the tray 31 is described without distinguishing between the tray and the intermediate product. However, when the intermediate product reaches the final stage battery main body portion (both electrode layers and solid electrolyte layer formed on the base material), the intermediate product 10 or the battery main body portion 10 is described.

最後の層(本実施の形態では負極層)を形成するチャンバ17には、封止チャンバ19が接続されており、上記の3種類の層を形成後に、その積層体である電池本体は、封止チャンバ19に搬入される。封止チャンバ19は、不活性ガスであるArガス雰囲気とされ、出口ゲートバルブ24を通って上記の電池本体を外に搬出できるように構成され、中で、電池本体をアルミニウムラミネートで封止できるようにグローブボックス構造とされている。封止チャンバ19には上述のArガスが導入され、循環精製できる機構が設けられている。   A sealing chamber 19 is connected to the chamber 17 that forms the last layer (in this embodiment, the negative electrode layer). After the above three types of layers are formed, the battery body that is the laminate is sealed. It is carried into the stop chamber 19. The sealing chamber 19 has an atmosphere of an Ar gas that is an inert gas, and is configured to be able to carry out the battery main body through the outlet gate valve 24. Inside the battery main body, the battery main body can be sealed with an aluminum laminate. The glove box structure. The sealing chamber 19 is provided with a mechanism capable of circulating and purifying the Ar gas described above.

アルミニウムラミネートなどの封止部材によって封止された状態の電池本体部である中間品10を図2に示す。中間品10は、集電材を兼ねた基材1の上に正極層2が位置し、その正極層2の上に固体電解質層3が位置し、その上に負極層4が形成されている。正負極層2,4は、固体電解質層3を挟んで位置すればよく、どちらが基材1に近くてもよい。図1の連続蒸着装置を用いて製造された電池本体部10は、酸素富化層が界面になく、また内部抵抗は5kΩcm以下である。内部抵抗は、1kΩcm以下であるほうが望ましく、さらに500Ωcm以下とするのがよい。 FIG. 2 shows an intermediate product 10 that is a battery main body portion that is sealed with a sealing member such as an aluminum laminate. In the intermediate product 10, the positive electrode layer 2 is positioned on the base material 1 that also serves as a current collector, the solid electrolyte layer 3 is positioned on the positive electrode layer 2, and the negative electrode layer 4 is formed thereon. The positive and negative electrode layers 2 and 4 may be positioned with the solid electrolyte layer 3 interposed therebetween, and either may be close to the substrate 1. The battery main body 10 manufactured using the continuous vapor deposition apparatus of FIG. 1 has no oxygen-enriched layer at the interface, and the internal resistance is 5 kΩcm 2 or less. The internal resistance is desirably should be 1 k? Cm 2 or less, it is preferable to further 500Omucm 2 below.

次に、図3および図1に基づいて、製造方法について説明する。製造工程は、図3に示すように、表面酸化層除去工程→正極層形成工程→固体電解質形成工程→負極層形成工程→封止工程の順に進行する。表面酸化層除去工程〜負極層形成工程に至る工程では、排気しながら気相プロセスの処理が行われ、その間の非処理時間に、真空引き雰囲気、望ましくは圧力3×10−3Pa以下の雰囲気に保持される点に大きな特徴を有する。すなわち、(気相プロセス処理)→真空引き雰囲気(望ましくは圧力3×10−3Pa以下)で非処理時間を経過→(気相プロセス処理)→・・・のように進行させる。このため、中間品は外気に曝されることがなく清浄な界面を確保することができ、内部抵抗を大きく下げることができる。また、アルミニウムラミネートなどに封止した状態で、全固体薄膜電池の完成に至ることができるように、封止工程を、露点−45℃以下の不活性ガス雰囲気中で行う。次に、各工程を具体的に説明する。 Next, a manufacturing method is demonstrated based on FIG. 3 and FIG. As shown in FIG. 3, the manufacturing process proceeds in the order of the surface oxide layer removing process → the positive electrode layer forming process → the solid electrolyte forming process → the negative electrode layer forming process → the sealing process. In the process from the surface oxide layer removing step to the negative electrode layer forming step, the gas phase process is performed while evacuating, and during the non-treatment time, an evacuated atmosphere, preferably an atmosphere having a pressure of 3 × 10 −3 Pa or less. It has a great feature in that it is held in That is, the non-treatment time elapses in (vacuum process treatment) → evacuation atmosphere (desirably pressure 3 × 10 −3 Pa or less) → (vapor phase process treatment) →. For this reason, the intermediate product is not exposed to the outside air, can ensure a clean interface, and can greatly reduce the internal resistance. Further, the sealing step is performed in an inert gas atmosphere having a dew point of −45 ° C. or lower so that the all-solid-state thin film battery can be completed in a state of being sealed in aluminum laminate or the like. Next, each step will be specifically described.

(表面酸化層除去工程):集電材を兼ねた基材1であるアルミニウム合金を耐熱性のトレー31に固定する。トレー31には開口部が設けられており、蒸着により各層2,3,4がアルミニウム合金1上に形成できる構造となっている。これを真空装置中に搬入する。酸化層除去チャンバ11の入口にはガス圧により上下動する入口ゲートバルブ22が設けられており、酸化層除去チャンバ11へ搬入する際に入口ゲートバルブ22は上昇する。搬入した後、入口ゲートバルブ22は下降し、酸化層除去チャンバ11を密閉し、2×10−3Paまで真空排気することができる。その後、Arガスを30Paの圧力になるまで導入し、電圧を印加することによりプラズマ処理を施す。これにより基材1表面をアルゴンイオンボンバードメントし、表面酸化層を除去する。すなわち気相処理で基材の表面酸化層を除去する。上記のアルゴンガスボンバードメント処理を5分間行った後、再び真空排気して2×10−3Paの圧力にする。 (Surface oxide layer removing step): The aluminum alloy, which is the base material 1 serving also as a current collector, is fixed to the heat-resistant tray 31. The tray 31 is provided with an opening so that the layers 2, 3, and 4 can be formed on the aluminum alloy 1 by vapor deposition. This is carried into a vacuum apparatus. An inlet gate valve 22 that moves up and down by gas pressure is provided at the inlet of the oxide layer removal chamber 11, and the inlet gate valve 22 rises when the oxide layer removal chamber 11 is loaded. After carrying in, the inlet gate valve 22 descends, the oxide layer removal chamber 11 can be sealed, and vacuum exhausted to 2 × 10 −3 Pa. Thereafter, Ar gas is introduced until the pressure reaches 30 Pa, and a plasma treatment is performed by applying a voltage. As a result, the surface of the substrate 1 is bombarded with argon ions, and the surface oxide layer is removed. That is, the surface oxide layer of the substrate is removed by vapor phase treatment. After performing the above argon gas bombardment treatment for 5 minutes, the pressure is evacuated again to a pressure of 2 × 10 −3 Pa.

(正極層形成工程):排気完了後、次の正極層形成チャンバ13との間のゲートバルブ12が上昇し、コンベア9の駆動により正極層形成チャンバ13に搬入される。ここで、基材1はハロゲンランプにより、500℃に加熱され、酸素ガスが導入される。圧力を25Paに調整した後、エキシマレーザーをターゲットに照射してマンガン酸リチウム薄膜(正極層2)を形成する。マンガン酸リチウム層の形成後に、再び真空排気して2×10−3Paの圧力にする。 (Positive electrode layer forming step): After the exhaust is completed, the gate valve 12 to the next positive electrode layer forming chamber 13 is raised and carried into the positive electrode layer forming chamber 13 by driving the conveyor 9. Here, the base material 1 is heated to 500 ° C. by a halogen lamp, and oxygen gas is introduced. After adjusting the pressure to 25 Pa, the target is irradiated with an excimer laser to form a lithium manganate thin film (positive electrode layer 2). After the formation of the lithium manganate layer, the pressure is evacuated again to a pressure of 2 × 10 −3 Pa.

(固体電解質層形成工程):排気完了後、次の固体電解質形成チャンバ15との間のゲートバルブ14を上昇させ、中間品31は、コンベア9の駆動により、2×10−3Pa以下とされている固体電解質層形成チャンバ15に搬入される。基材1に冷却ジャケットを接触させることにより中間品31を150℃以下に冷却する。LiSを載せたカーボンボートおよびPを載せたカーボンボートに、電流を流すことによりLiSおよびPを蒸発させる。これら蒸発源の近くには水晶振動子が配置されており、周波数変化により蒸発レートをモニターし、電流をフィードバック制御することで、LiSとPとのモル濃度比(LiS/P)が3となるようにする。固体電解質層3を形成後、ハロゲンランプにて基材を250℃まで加熱することで固体電解質層のイオン伝導度を向上させるのがよい。100℃まで冷却後、次の負極層形成チャンバ17との間のゲートバルブ16を上昇させ、コンベア9の駆動により負極層形成チャンバ17に搬入する。 (Solid electrolyte layer forming step): After the exhaust is completed, the gate valve 14 between the next solid electrolyte forming chamber 15 is raised, and the intermediate product 31 is driven to 2 × 10 −3 Pa or less by driving the conveyor 9. The solid electrolyte layer forming chamber 15 is loaded. The intermediate product 31 is cooled to 150 ° C. or less by bringing the cooling jacket into contact with the substrate 1. The carbon boat carrying the carbon boat and P 2 S 5 carrying the Li 2 S, evaporate the Li 2 S and P 2 S 5 by passing a current. A crystal resonator is disposed in the vicinity of these evaporation sources. By monitoring the evaporation rate by changing the frequency and feedback controlling the current, the molar concentration ratio of Li 2 S and P 2 S 5 (Li 2 S / P 2 S 5 ) is set to 3. After forming the solid electrolyte layer 3, it is preferable to improve the ionic conductivity of the solid electrolyte layer by heating the substrate to 250 ° C. with a halogen lamp. After cooling to 100 ° C., the gate valve 16 between the next negative electrode layer forming chamber 17 is raised and carried into the negative electrode layer forming chamber 17 by driving the conveyor 9.

(負極層形成工程):負極層形成チャンバ17の圧力は2×10−3Pa以下に保っておくのがよい。Liをボートに載せて通電することで、上記の固体電解質層3上に負極層4であるLiを蒸着する。この際、中間品31の基材1は冷却ジャケットに接触させて基材温度を100℃以下に保っておくのがよい。蒸着完了後、Arガスを導入することにより大気圧レベルに圧力を高めて、次の封止チャンバ19へと、ゲートバルブ18を経由して搬入する。
(封止工程):負極層形成チャンバ17の次工程の封止チャンバ19は、グローブボックスとなっており、このグローブボックス内で正極側集電材1であるアルミニウム合金および負極が集電材を兼ねるリチウム4に、それぞれ正極端子および負極端子を接続し、アルミニウムラミネートで封止する。正負極端子については接合部以外は絶縁されており、封止後に短絡することはない。
(Negative electrode layer forming step): The pressure of the negative electrode layer forming chamber 17 is preferably kept at 2 × 10 −3 Pa or less. When Li is put on a boat and energized, Li as the negative electrode layer 4 is deposited on the solid electrolyte layer 3. At this time, the base material 1 of the intermediate product 31 is preferably brought into contact with the cooling jacket to keep the base material temperature at 100 ° C. or lower. After the completion of the deposition, Ar gas is introduced to increase the pressure to the atmospheric pressure level, and the gas is carried into the next sealing chamber 19 via the gate valve 18.
(Sealing process): The sealing chamber 19 that is the next process of the negative electrode layer forming chamber 17 is a glove box, and the aluminum alloy that is the positive electrode current collector 1 and the lithium in which the negative electrode also serves as the current collector in the glove box. 4 are respectively connected with a positive electrode terminal and a negative electrode terminal and sealed with aluminum laminate. The positive and negative terminals are insulated except for the joint, and are not short-circuited after sealing.

上記の製造工程にしたがって製造された全固体薄膜電池の本体部10は、正極層、固体電解質層および負極層を個別に成膜し、空気または不活性ガス雰囲気にさらす機会がある製造工程を経て製造された全固体薄膜電池に比べて、内部抵抗を大幅に減らすことができる。   The main body part 10 of the all-solid-state thin film battery manufactured according to the above manufacturing process undergoes a manufacturing process in which the positive electrode layer, the solid electrolyte layer, and the negative electrode layer are individually formed and exposed to air or an inert gas atmosphere. Compared with the manufactured all-solid-state thin film battery, the internal resistance can be greatly reduced.

本発明例の全固体薄膜電池と、比較例とについて内部抵抗を測定すると次のような値となる。
(本発明例):実施の形態1による製造方法による。
(比較例):上記の正極層形成工程、固体電解質形成工程および負極層形成工程の各工程の間の待機工程ごとに、チャンバから外気に取り出しながら、全固体薄膜電池を製造する。比較例における各工程の内容は、上記本発明例の内容と同じである。
内部抵抗の値は、比較例では1MΩcm以上となるのに対して、本発明例では500Ωcm以下とすることができる。
When the internal resistance is measured for the all-solid-state thin film battery of the present invention and the comparative example, the following values are obtained.
(Example of the present invention): According to the manufacturing method according to the first embodiment.
(Comparative example): An all-solid-state thin film battery is manufactured while taking out from the chamber to the outside air for each standby step between the positive electrode layer forming step, the solid electrolyte forming step, and the negative electrode layer forming step. The contents of each step in the comparative example are the same as the contents of the above-described example of the present invention.
The value of the internal resistance is 1 MΩcm 2 or more in the comparative example, whereas it can be 500 Ωcm 2 or less in the present invention example.

(実施の形態2)
図4は、本発明の実施の形態2における全固体薄膜電池の製造装置を示す図である。この装置は、実施の形態1における全固体薄膜電池の製造装置とは、原理的に同じである。相違点は、正極層形成チャンバと固体電解質形成チャンバとを共通にして、固体電解質形成チャンバ15において、正極層2も形成できるようにした点に特徴がある。正極層2と、固体電解質層3とは材料的に混合しても問題となりにくいため、チャンバの共通使用が可能となる。この結果、処理工程が短縮され、また製造装置の簡略化をはかることが可能となる。電池本体部10の内部抵抗を低くすることができる等の利点は、実施の形態1におけるものと同様である。
(Embodiment 2)
FIG. 4 is a diagram showing an apparatus for manufacturing an all-solid-state thin film battery according to Embodiment 2 of the present invention. This device is in principle the same as the all-solid-state thin film battery manufacturing device in the first embodiment. The difference is that the positive electrode layer forming chamber and the solid electrolyte forming chamber are shared, and the positive electrode layer 2 can also be formed in the solid electrolyte forming chamber 15. The positive electrode layer 2 and the solid electrolyte layer 3 are less likely to be a problem even if they are mixed as a material, so that the chamber can be used in common. As a result, the processing steps can be shortened, and the manufacturing apparatus can be simplified. Advantages such as being able to reduce the internal resistance of the battery body 10 are the same as those in the first embodiment.

上記において、本発明の実施の形態および実施例について説明を行ったが、上記に開示された本発明の実施の形態および実施例は、あくまで例示であって、本発明の範囲はこれら発明の実施の形態に限定されない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。   Although the embodiments and examples of the present invention have been described above, the embodiments and examples of the present invention disclosed above are merely examples, and the scope of the present invention is the implementation of these inventions. It is not limited to the form. The scope of the present invention is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.

本発明の全固体薄膜電池、その製造方法およびその製造装置によれば、内部抵抗を実用化の用途が見出すことができるレベルまで低くできるため、今後、RFIDなどの分野に寄与することが期待できる。   According to the all-solid-state thin film battery, the manufacturing method and the manufacturing apparatus of the present invention, the internal resistance can be lowered to a level where a practical application can be found, so that it can be expected to contribute to fields such as RFID in the future. .

本発明の実施の形態1における全固体薄膜電池の製造装置を示す図である。It is a figure which shows the manufacturing apparatus of the all-solid-state thin film battery in Embodiment 1 of this invention. 全固体薄膜電池の本体部を示す図である。It is a figure which shows the main-body part of an all-solid-state thin film battery. 本発明の実施の形態1における全固体薄膜電池の製造方法を示す図である。It is a figure which shows the manufacturing method of the all-solid-state thin film battery in Embodiment 1 of this invention. 本発明の実施の形態2における全固体薄膜電池の製造装置を示す図である。It is a figure which shows the manufacturing apparatus of the all-solid-state thin film battery in Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 基材(集電材)、2 正極層、3 固体電解質層、4 負極層、9 コンベア、10 全固体薄膜電池の本体部、11 酸化層除去チャンバ、13 正極層形成チャンバ、15 固体電解質層形成チャンバ、17 負極層形成チャンバ、19 封止チャンバ、12,14,16,18,22,24 ゲートバルブ、31 トレー(中間品)。   DESCRIPTION OF SYMBOLS 1 Base material (current collector), 2 Positive electrode layer, 3 Solid electrolyte layer, 4 Negative electrode layer, 9 Conveyor, 10 Main body part of all-solid-state thin film battery, 11 Oxidation layer removal chamber, 13 Positive electrode layer formation chamber, 15 Solid electrolyte layer formation Chamber, 17 Negative electrode layer forming chamber, 19 Sealing chamber, 12, 14, 16, 18, 22, 24 Gate valve, 31 Tray (intermediate product).

Claims (10)

基材上に、正負極層および固体電解質層を備える全固体薄膜電池の製造方法であって、
前記基材上に正負極層の一方を気相プロセスにより形成する工程、前記固体電解質層を気相プロセスにより形成する工程、および前記正負極層の他方を気相プロセスにより形成する工程を備え、
前記気相プロセスの間の各非処理時間中、前記全固体薄膜電池の中間品を、真空引きの雰囲気中に保持することを特徴とする、全固体薄膜電池の製造方法。
A method for producing an all-solid-state thin film battery comprising positive and negative electrode layers and a solid electrolyte layer on a substrate,
A step of forming one of the positive and negative electrode layers on the substrate by a gas phase process, a step of forming the solid electrolyte layer by a gas phase process, and a step of forming the other of the positive and negative electrode layers by a gas phase process,
A method for producing an all-solid-state thin film battery, characterized in that an intermediate product of the all-solid-state thin film battery is maintained in an evacuated atmosphere during each non-treatment time during the gas phase process.
前記非処理時間の雰囲気の形成の際、圧力3×10−3Pa以下に到達するように排気することを特徴とする、請求項1に記載の全固体薄膜電池の製造方法。 2. The method for producing an all-solid-state thin film battery according to claim 1, wherein when forming the atmosphere during the non-treatment time, the exhaust is performed so as to reach a pressure of 3 × 10 −3 Pa or less. 前記基材は、前記全固体薄膜電池の製造一単位ごとに分かれており、前記非処理時間に、前記中間品を次の気相プロセスのために移動することを特徴とする、請求項1または2に記載の全固体電池の製造方法。   The said base material is divided | segmented for every manufacturing unit of the said all-solid-state thin-film battery, The said intermediate product is moved for the next gaseous-phase process in the said non-processing time, The said or 1 characterized by the above-mentioned. 2. A method for producing an all-solid battery according to 2. 前記気相プロセスの後段に、前記基材、前記正負極層および前記固体電解質層の積層体を封止部材に封止する工程を備え、該封止工程では、前記中間品を露点−45℃以下の不活性雰囲気中に保持することを特徴とする、請求項1〜3のいずれかに記載の全固体薄膜電池の製造方法。   A step of sealing the laminate of the base material, the positive and negative electrode layers, and the solid electrolyte layer in a sealing member is provided after the vapor phase process, and in the sealing step, the intermediate product has a dew point of −45 ° C. It keeps in the following inert atmosphere, The manufacturing method of the all-solid-state thin film battery in any one of Claims 1-3 characterized by the above-mentioned. 前記基材の表面酸化層を気相プロセスで除去する工程を、前記正負極層の一方を気相プロセスで形成する工程の前に備え、前記表面酸化層を除去する気相プロセスと前記正負極層の一方を形成する気相プロセスとの間の非処理時間中、前記基材を真空引きの雰囲気中に保持することを特徴とする、請求項1〜4のいずれかに記載の全固体薄膜電池の製造方法。   The step of removing the surface oxide layer of the base material by a gas phase process is provided before the step of forming one of the positive and negative electrode layers by the gas phase process, and the gas phase process of removing the surface oxide layer and the positive and negative electrodes The all-solid-state thin film according to any one of claims 1 to 4, wherein the substrate is held in an evacuated atmosphere during a non-treatment time between a gas phase process for forming one of the layers. Battery manufacturing method. 基材上に正負極層および固体電解質層を備える全固体薄膜電池の製造装置であって、
少なくとも前記固体電解質層を形成するための、気相プロセス用の第1のチャンバと、
前記第1のチャンバに連続する少なくとも1つの気相プロセス用の第2のチャンバと、
第1のチャンバおよび第2のチャンバの各チャンバ間を隔離する隔離手段と、
前記第1のチャンバおよび第2のチャンバにわたって、前記全固体薄膜電池の中間品を搬送する搬送手段とを備えることを特徴とする、全固体薄膜電池の製造装置。
An apparatus for producing an all-solid-state thin film battery comprising positive and negative electrode layers and a solid electrolyte layer on a substrate,
A first chamber for a gas phase process for forming at least the solid electrolyte layer;
A second chamber for at least one gas phase process in succession to the first chamber;
Isolating means for isolating each chamber of the first chamber and the second chamber;
An apparatus for manufacturing an all-solid-state thin film battery, comprising: a transfer means for transferring an intermediate product of the all-solid-state thin film battery across the first chamber and the second chamber.
前記第2のチャンバとして、前記第1のチャンバを挟むように、前記正極層を形成するための正極層形成チャンバおよび前記負極層を形成するための負極層形成チャンバを備えることを特徴とする、請求項6に記載の全固体薄膜電池の製造装置。   The second chamber includes a positive electrode layer forming chamber for forming the positive electrode layer and a negative electrode layer forming chamber for forming the negative electrode layer so as to sandwich the first chamber. The manufacturing apparatus of the all-solid-state thin film battery of Claim 6. 前記第1のチャンバおよび第2のチャンバの少なくとも一方と隔離手段を介在させて接続し、前記基材、前記正負極層および前記固体電解質層の積層体を封止する封止チャンバをさらに備えることを特徴とする、請求項6または7に記載の全固体薄膜電池の製造装置。   A sealing chamber that is connected to at least one of the first chamber and the second chamber with an isolation means interposed therebetween and seals the laminate of the base material, the positive and negative electrode layers, and the solid electrolyte layer; The manufacturing apparatus of the all-solid-state thin film battery of Claim 6 or 7 characterized by these. 前記第1のチャンバまたは第2のチャンバと、隔離手段を介在させて接続し、前記基材の表面酸化層を気相プロセスで除去する表面酸化層除去チャンバを備えることを特徴とする、請求項6〜8に記載の全固体薄膜電池の製造装置。   A surface oxide layer removal chamber connected to the first chamber or the second chamber via an isolation means and removing a surface oxide layer of the substrate by a vapor phase process. The manufacturing apparatus of the all-solid-state thin film battery of 6-8. 正負集電材、正負極層および固体電解質層を備える全固体薄膜電池であって、
前記正極層、固体電解質層および負極層の各層間の界面において、両側の層の酸素濃度の高いほうの層における酸素濃度より酸素濃度が高くなく、
前記正負集電材を含む全固体薄膜電池の本体部の内部抵抗が5kΩcm以下であることを特徴とする、全固体薄膜電池。
An all-solid-state thin film battery comprising a positive and negative current collector, a positive and negative electrode layer, and a solid electrolyte layer,
At the interface between the positive electrode layer, the solid electrolyte layer and the negative electrode layer, the oxygen concentration is not higher than the oxygen concentration in the higher oxygen concentration layer on both sides,
The all-solid-state thin film battery, wherein the internal resistance of the main body of the all-solid-state thin film battery including the positive and negative current collectors is 5 kΩcm 2 or less.
JP2007172325A 2007-06-29 2007-06-29 All-solid-state thin film battery, manufacturing method thereof and manufacturing apparatus thereof Pending JP2009009897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007172325A JP2009009897A (en) 2007-06-29 2007-06-29 All-solid-state thin film battery, manufacturing method thereof and manufacturing apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007172325A JP2009009897A (en) 2007-06-29 2007-06-29 All-solid-state thin film battery, manufacturing method thereof and manufacturing apparatus thereof

Publications (1)

Publication Number Publication Date
JP2009009897A true JP2009009897A (en) 2009-01-15

Family

ID=40324763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007172325A Pending JP2009009897A (en) 2007-06-29 2007-06-29 All-solid-state thin film battery, manufacturing method thereof and manufacturing apparatus thereof

Country Status (1)

Country Link
JP (1) JP2009009897A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011037868A3 (en) * 2009-09-22 2011-07-21 Applied Materials, Inc. Methods of and factories for thin-film battery manufacturing
WO2012086512A1 (en) * 2010-12-24 2012-06-28 株式会社アルバック Thin film lithium secondary battery production device, and thin film lithium secondary battery production method
EP2481120A4 (en) * 2009-09-22 2012-09-26 Applied Materials Inc Thin-film battery methods for complexity reduction
JP2013016286A (en) * 2011-06-30 2013-01-24 Ulvac Japan Ltd Thin film lithium secondary battery formation device
WO2013031195A1 (en) 2011-08-29 2013-03-07 パナソニック株式会社 Thin battery electrode group, thin battery, and electronic device
KR20140039280A (en) * 2011-06-10 2014-04-01 어플라이드 머티어리얼스, 인코포레이티드 Methods of and hybrid factories for thin-film battery manufacturing
CN112216813A (en) * 2019-07-10 2021-01-12 现代自动车株式会社 Composite cathode of all-solid-state battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244960A (en) * 1985-08-22 1987-02-26 Mitsubishi Electric Corp Thin film secondary battery manufacturing equipment
JP2002100346A (en) * 2000-07-19 2002-04-05 Sumitomo Electric Ind Ltd Method for producing negative electrode for lithium secondary battery
JP2002313326A (en) * 2001-04-19 2002-10-25 Sanyo Electric Co Ltd Manufacturing method of lithium secondary battery
WO2006063308A2 (en) * 2004-12-08 2006-06-15 Symmorphix, Inc. DEPOSITION OF LICoO2
JP2007103129A (en) * 2005-10-03 2007-04-19 Geomatec Co Ltd Thin-film solid secondary battery and method for producing thin-film solid secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244960A (en) * 1985-08-22 1987-02-26 Mitsubishi Electric Corp Thin film secondary battery manufacturing equipment
JP2002100346A (en) * 2000-07-19 2002-04-05 Sumitomo Electric Ind Ltd Method for producing negative electrode for lithium secondary battery
JP2002313326A (en) * 2001-04-19 2002-10-25 Sanyo Electric Co Ltd Manufacturing method of lithium secondary battery
WO2006063308A2 (en) * 2004-12-08 2006-06-15 Symmorphix, Inc. DEPOSITION OF LICoO2
JP2007103129A (en) * 2005-10-03 2007-04-19 Geomatec Co Ltd Thin-film solid secondary battery and method for producing thin-film solid secondary battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8580332B2 (en) 2009-09-22 2013-11-12 Applied Materials, Inc. Thin-film battery methods for complexity reduction
KR101433336B1 (en) 2009-09-22 2014-08-22 어플라이드 머티어리얼스, 인코포레이티드 Methods of and factories for thin-film battery manufacturing
EP2481120A4 (en) * 2009-09-22 2012-09-26 Applied Materials Inc Thin-film battery methods for complexity reduction
US9350040B2 (en) 2009-09-22 2016-05-24 Applied Materials, Inc. Methods of and factories for thin-film battery manufacturing
JP2013505557A (en) * 2009-09-22 2013-02-14 アプライド マテリアルズ インコーポレイテッド Thin film battery manufacturing method and equipment therefor
JP2013505556A (en) * 2009-09-22 2013-02-14 アプライド マテリアルズ インコーポレイテッド Thin film battery method for complexity reduction
TWI506837B (en) * 2009-09-22 2015-11-01 Applied Materials Inc Methods of and equipments for thin-film battery manufacturing
US8464419B2 (en) 2009-09-22 2013-06-18 Applied Materials, Inc. Methods of and factories for thin-film battery manufacturing
JP2015187988A (en) * 2009-09-22 2015-10-29 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method for manufacturing thin film battery, and facility therefor
WO2011037868A3 (en) * 2009-09-22 2011-07-21 Applied Materials, Inc. Methods of and factories for thin-film battery manufacturing
TWI451612B (en) * 2009-09-22 2014-09-01 Applied Materials Inc Methods of and factories for thin-film battery manufacturing
JP5526240B2 (en) * 2010-12-24 2014-06-18 株式会社アルバック Thin film lithium secondary battery manufacturing apparatus and thin film lithium secondary battery manufacturing method
WO2012086512A1 (en) * 2010-12-24 2012-06-28 株式会社アルバック Thin film lithium secondary battery production device, and thin film lithium secondary battery production method
KR20140039280A (en) * 2011-06-10 2014-04-01 어플라이드 머티어리얼스, 인코포레이티드 Methods of and hybrid factories for thin-film battery manufacturing
KR101975238B1 (en) 2011-06-10 2019-05-07 어플라이드 머티어리얼스, 인코포레이티드 Methods of and hybrid factories for thin­film battery manufacturing
JP2013016286A (en) * 2011-06-30 2013-01-24 Ulvac Japan Ltd Thin film lithium secondary battery formation device
US9088050B2 (en) 2011-08-29 2015-07-21 Panasonic Intellectual Property Management Co., Ltd. Electrode group for thin batteries, thin battery, and electronic device
WO2013031195A1 (en) 2011-08-29 2013-03-07 パナソニック株式会社 Thin battery electrode group, thin battery, and electronic device
CN112216813A (en) * 2019-07-10 2021-01-12 现代自动车株式会社 Composite cathode of all-solid-state battery

Similar Documents

Publication Publication Date Title
EP2392040B1 (en) Barrier layer for thin film battery
JP4741840B2 (en) Thin film battery
JP4043296B2 (en) All solid battery
US7862927B2 (en) Thin film battery and manufacturing method
US9077000B2 (en) Thin film battery and localized heat treatment
JP2009009897A (en) All-solid-state thin film battery, manufacturing method thereof and manufacturing apparatus thereof
US9303315B2 (en) Method for high volume manufacture of electrochemical cells using physical vapor deposition
JP5466974B2 (en) Method and apparatus for drying metal foil laminate
US9356320B2 (en) Lithium battery having low leakage anode
TW201628249A (en) Electrochemical device stacks including interlayers for reducing interfacial resistance and over-potential
US10084207B2 (en) Substrate for solid-state battery
TWI470863B (en) Power storage device and method for manufacturing the same
JP2017503323A (en) Solid electrolyte and barrier on lithium metal and method
CN105556719A (en) Method for producing electrochemical cells of a solid-state battery
JP2009064667A (en) All-solid-state thin film battery, manufacturing method thereof and manufacturing apparatus thereof
JP5228415B2 (en) All-solid battery and method for producing all-solid battery
JP4876531B2 (en) Negative electrode for lithium secondary battery and method for producing lithium secondary battery
CN116711087A (en) Method for manufacturing anode structure, vacuum deposition system, anode structure and lithium battery layer stack
KR101200306B1 (en) Thin film battery having improved anode characteristics and method of manufacturing the same
JP2004183078A (en) Laminated thin film, method for producing the same, and all-solid lithium ion secondary battery using the same
JP5076305B2 (en) Method for producing negative electrode for lithium secondary battery and method for producing lithium secondary battery
JP2013008602A (en) Manufacturing apparatus and manufacturing method of negative electrode for lithium secondary battery
US20250029977A1 (en) Method of providing a laminate
JP2012054112A (en) Method of forming electrode active material layer for lithium secondary battery
CN117117296A (en) Method and apparatus for manufacturing solids separators for battery cells

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121109