[go: up one dir, main page]

JP2009004286A - Anode membrane electrode assembly for alkaline fuel cell and alkaline fuel cell using the same as anode - Google Patents

Anode membrane electrode assembly for alkaline fuel cell and alkaline fuel cell using the same as anode Download PDF

Info

Publication number
JP2009004286A
JP2009004286A JP2007165838A JP2007165838A JP2009004286A JP 2009004286 A JP2009004286 A JP 2009004286A JP 2007165838 A JP2007165838 A JP 2007165838A JP 2007165838 A JP2007165838 A JP 2007165838A JP 2009004286 A JP2009004286 A JP 2009004286A
Authority
JP
Japan
Prior art keywords
fuel cell
anode
alkaline fuel
membrane electrode
same operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007165838A
Other languages
Japanese (ja)
Inventor
Chikashi Inasumi
近 稲住
Susumu Hizuya
進 日数谷
Takuma Mori
匠磨 森
Harumichi Nakanishi
治通 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Kanadevia Corp
Original Assignee
Hitachi Zosen Corp
Toyota Motor Corp
Hitachi Shipbuilding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp, Toyota Motor Corp, Hitachi Shipbuilding and Engineering Co Ltd filed Critical Hitachi Zosen Corp
Priority to JP2007165838A priority Critical patent/JP2009004286A/en
Publication of JP2009004286A publication Critical patent/JP2009004286A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

【課題】アルカリ型燃料電池のアノード反応を促進させるために、触媒量の増加と、燃料およびOHイオンの拡散性向上という相反する課題を解決することができるアルカリ型燃料電他用膜電極接合体を提供する。
【解決手段】本発明によるアルカリ型燃料電他用膜電極接合体は、多孔体上に金属あるいは金属化合物を担持させてなる触媒担持体層と、金属メッシュからなり厚みが100〜1000μmである燃料拡散層とが交互に積層されてなるものである。


【選択図】 図1
To promote the anode reaction of an alkaline fuel cell, it is possible to solve the conflicting problems of increasing the amount of catalyst and improving the diffusibility of fuel and OH ions. Provide the body.
A membrane electrode assembly for an alkaline fuel cell and other according to the present invention comprises a catalyst carrier layer in which a metal or a metal compound is supported on a porous body, and a fuel having a thickness of 100 to 1000 μm comprising a metal mesh. Diffusion layers are alternately stacked.


[Selection] Figure 1

Description

本発明は、アルカリ型燃料電池用アノード膜電極接合体およびそれをアノードとして用いたアルカリ型燃料電池に関する。   The present invention relates to an anode membrane electrode assembly for an alkaline fuel cell and an alkaline fuel cell using the same as an anode.

現在、燃料電池として、アルカリ型、リン酸型、溶融炭酸塩型、固体電解質型、固体高分子型等の多様な方式のものが知られている。   Currently, various types of fuel cells such as an alkaline type, a phosphoric acid type, a molten carbonate type, a solid electrolyte type, and a solid polymer type are known.

特許文献1には、苛性アルカリ水溶液を電解液とし、アノードに燃料水素ガスを、カソードに酸素ガスを供給するアルカリ型燃料電池の一般的な構造が開示されている。   Patent Document 1 discloses a general structure of an alkaline fuel cell in which a caustic aqueous solution is used as an electrolyte, fuel hydrogen gas is supplied to the anode, and oxygen gas is supplied to the cathode.

特許文献2には、アノードにメタノールを供給する直接メタノール燃料電池に使用される電極拡散層が開示されている。この電極拡散層は、液状のメタノールの通路となる親水性多孔質凝集体と、アノード反応により生成した二酸化炭素を排出する疎水性多孔質凝集体とを含んでいる。   Patent Document 2 discloses an electrode diffusion layer used in a direct methanol fuel cell that supplies methanol to an anode. The electrode diffusion layer includes a hydrophilic porous aggregate serving as a passage for liquid methanol and a hydrophobic porous aggregate that discharges carbon dioxide generated by the anode reaction.

特許文献3および4には、一対のガス拡散電極を電解質の両面に接合されて有する燃料電池が開示されている。このガス拡散電極は、電解質側の触媒層と、その反対側の金属メッシュ等からなる拡散層とを備えている。   Patent Documents 3 and 4 disclose a fuel cell having a pair of gas diffusion electrodes joined to both surfaces of an electrolyte. This gas diffusion electrode includes a catalyst layer on the electrolyte side and a diffusion layer made of a metal mesh or the like on the opposite side.

従来型のアルカリ型燃料電池の膜電極の構造を図2に示す。   The structure of a membrane electrode of a conventional alkaline fuel cell is shown in FIG.

このような構造の膜電極接合体では、燃料として例えばNaHPOを用いると、アノードおよびカソードにおいて下記に示す反応が起こり、OHイオンがイオン伝導体となる:
アノード:HPO 2−+3OH→PO 3−+2HO+2e
カソード:O+2HO+4e→4OH
ここでアノード反応に着目すると、多孔質担体に触媒金属が担持されてなるアノードでは、触媒への燃料(NaHPO)のHPO 2−の移動およびイオン伝導体であるOHの移動の両方がアノード反応の律速となっていた。すなわち、アノード反応は、アノードの多孔質担体中を拡散する燃料およびOHイオンの両方の速度によって決まる。他方、アノードの多孔質担体に担持される触媒量を多くすることによってもアノード反応は促進される。
In the membrane electrode assembly having such a structure, when, for example, NaH 2 PO 3 is used as a fuel, the following reactions occur at the anode and the cathode, and OH ions become ion conductors:
Anode: HPO 3 2− + 3OH → PO 4 3− + 2H 2 O + 2e
Cathode: O 2 + 2H 2 O + 4e → 4OH
Here, paying attention to the anode reaction, in the anode in which the catalytic metal is supported on the porous carrier, the movement of the HPO 3 2− of the fuel (NaH 2 PO 3 ) to the catalyst and the movement of OH which is the ionic conductor. Both were rate limiting for the anodic reaction. That is, the anode reaction, fuel and OH diffusion anode in the porous carrier - determined by the speed of both ions. On the other hand, the anode reaction is also promoted by increasing the amount of the catalyst supported on the porous support of the anode.

ところが、アノードの単位体積当たりの触媒担持量が多すぎると、燃料およびOHイオンの移動が阻害されるようになるため、アノード反応が促進されない。そのため触媒を担持できる量には限界があった。 However, if the amount of catalyst supported per unit volume of the anode is too large, the movement of fuel and OH ions will be inhibited, and the anode reaction will not be promoted. Therefore, there is a limit to the amount that can support the catalyst.

また、アノードの単位体積当たりの触媒担持量を維持したまま、アノードの厚みを増加させることにより触媒担持量を増加させようとした場合には、燃料の拡散性が悪化するという問題があった。
特開2002−8706号公報 特開2005−108837号公報 特開2000−58072号公報 特表2005−515604号公報
Further, there is a problem that the diffusibility of the fuel deteriorates when an attempt is made to increase the catalyst loading amount by increasing the thickness of the anode while maintaining the catalyst loading amount per unit volume of the anode.
Japanese Patent Laid-Open No. 2002-8706 JP 2005-108837 A JP 2000-58072 A JP 2005-515604 A

本発明は、上記のような実状に鑑み、アルカリ型燃料電池のアノード反応を促進させるために、触媒量の増加と、燃料およびOHイオンの拡散性向上という相反する課題を解決することができるアルカリ型燃料電他用膜電極接合体を提供することを目的とする。 In view of the above circumstances, the present invention can solve the conflicting problems of increasing the amount of catalyst and improving the diffusibility of fuel and OH ions in order to promote the anode reaction of an alkaline fuel cell. An object of the present invention is to provide a membrane electrode assembly for an alkaline type fuel cell and the like.

本発明は、多孔体上に金属あるいは金属化合物を担持させてなる触媒担持体層と、金属メッシュからなり厚みが100〜1000μmである燃料拡散層とが交互に積層されてなるアルカリ型燃料電池用アノード膜電極接合体である。   The present invention relates to an alkaline fuel cell in which a catalyst support layer formed by supporting a metal or a metal compound on a porous body and a fuel diffusion layer made of a metal mesh and having a thickness of 100 to 1000 μm are alternately stacked. It is an anode membrane electrode assembly.

本発明において、前記多孔体は、好ましくは、カーボンクロス、カーボンペーパー、ニッケル繊維、ニッケル多孔体、ニッケルメッシュおよび銀メッシュからなる群から選択される。   In the present invention, the porous body is preferably selected from the group consisting of carbon cloth, carbon paper, nickel fiber, nickel porous body, nickel mesh, and silver mesh.

前記金属あるいは金属化合物は、好ましくは、白金、ロジウム、ルテニウム、金、鉄、コバルト、ニッケル、銅、錫および鉛からなる群から選択される金属あるいはその化合物である。該金属は、例えば白金、ロジウム、ルテニウム、金、鉄、コバルト、ニッケル、銅、錫および鉛からなる群から選択される金属の合金であってもよい。金属化合物は、例えば白金、ロジウム、ルテニウム、金、鉄、コバルト、ニッケル、銅、錫および鉛からなる群から選択される金属の複合化合物であってもよい。   The metal or metal compound is preferably a metal selected from the group consisting of platinum, rhodium, ruthenium, gold, iron, cobalt, nickel, copper, tin and lead or a compound thereof. The metal may be an alloy of a metal selected from the group consisting of platinum, rhodium, ruthenium, gold, iron, cobalt, nickel, copper, tin and lead, for example. The metal compound may be a composite compound of a metal selected from the group consisting of platinum, rhodium, ruthenium, gold, iron, cobalt, nickel, copper, tin and lead, for example.

前記触媒担持体層は好ましくは2層以上であり、より好ましくは2〜5層である。   The catalyst carrier layer is preferably two or more layers, more preferably 2 to 5 layers.

本発明によるアノード膜電極接合体を用いて構成したアルカリ型燃料電池は、高い最大出力を示すことができる。   The alkaline fuel cell configured using the anode membrane electrode assembly according to the present invention can exhibit a high maximum output.

本発明によれば、アノードを触媒担持体の層と燃料拡散層とを交互に積層する構成とすることにより、触媒量の増加と燃料、OHイオンの拡散性向上という相反する課題を同時に解決することができる。したがって、本発明によるアノード膜電極接合体を用いて構成したアルカリ型燃料電池は、高い最大出力を示すことができる。 According to the present invention, the anode is configured by alternately laminating the catalyst carrier layer and the fuel diffusion layer, thereby simultaneously solving the conflicting problems of increasing the amount of catalyst and improving the diffusibility of fuel and OH - ions. can do. Therefore, the alkaline fuel cell configured using the anode membrane electrode assembly according to the present invention can exhibit a high maximum output.

以下に、本発明の実施例およびこれとの比較のための比較例を幾つか示す。   Hereinafter, some examples of the present invention and comparative examples for comparison with the examples will be described.

実施例1
工程1
カーボンペーパー(東レ社製、型番:TGPH−120、厚み:0.35mm)を硝酸コバルトCo(NO・6HOを0.6g含む水溶液100mlに浸潰し、水素還元により、7mgCo/cmの触媒担持カーボンペーパーを調製した。これを36mm×36mmに切断し、複数枚の触媒担持体(アノード構成部材)を調製した。
Example 1
Process 1
Carbon paper (manufactured by Toray Industries, Inc., model number: TGPH-120, thickness: 0.35 mm) of cobalt nitrate Co (NO 3) Hitatsubushi a 2 · 6H 2 O in aqueous solution 100ml containing 0.6 g, by hydrogen reduction, 7mgCo / cm 2 catalyst-carrying carbon paper was prepared. This was cut into 36 mm × 36 mm to prepare a plurality of catalyst carriers (anode constituent members).

工程2
カーボンペーパー(東レ社製、型番:TGPH−120、厚み:0.35mm)に、銀粉末(粒径:2μm)と、ポリ−4−ビニルピリジンを四級化処理して調製したアニオン交換樹脂と、バインダ(ダイキン社製、POLYFLON(TM)PTFE、型番:D−2CE)とからなる組成物を塗布し、乾燥することにより、2mgAg/cmの銀担持カーボンペーパーを調製した。これを36mm×36mmに切断し、触媒担持体(カソード)を調製した。
Process 2
An anion exchange resin prepared by quaternizing carbon powder (manufactured by Toray Industries, model number: TGPH-120, thickness: 0.35 mm) with silver powder (particle size: 2 μm) and poly-4-vinylpyridine A 2 mg Ag / cm 2 silver-supporting carbon paper was prepared by applying a composition composed of a binder (manufactured by Daikin, POLYFLON (TM) PTFE, model number: D-2CE) and drying. This was cut into 36 mm × 36 mm to prepare a catalyst carrier (cathode).

工程3
70mm×70mmに切断したアニオン交換膜(トクヤマ社製:AHA)の片面の中央部に、図1に示すように、工程1で調製した触媒担持体、その上に36mm×36mmに切断したニッケルメッシュ(桂田グレイチング社製、線径:0.1mm、厚み:200μm)、さらにその上に触媒担持体というように、3層の触媒担持体と2層のニッケルメッシュを交互に積層し、アノードを作製した。アニオン交換膜の他方の面、すなわちアノードの反対側の面にてその中央に工程2で調製したカソードを設置した。こうして、アノード膜電極接合体を作製した。
Process 3
At the center of one side of an anion exchange membrane cut by 70 mm x 70 mm (Tokuyama: AHA), as shown in FIG. (Katsuta Greating Co., Ltd., wire diameter: 0.1 mm, thickness: 200 μm) Further, a catalyst carrier on which three layers of catalyst carriers and two layers of nickel mesh are alternately laminated, and an anode is formed. Produced. The cathode prepared in Step 2 was placed at the center of the other side of the anion exchange membrane, that is, the side opposite to the anode. Thus, an anode membrane electrode assembly was produced.

実施例2
工程1
実施例1の工程1と同じ操作を行った。
Example 2
Process 1
The same operation as in Step 1 of Example 1 was performed.

工程2
実施例1の工程2と同じ操作を行った。
Process 2
The same operation as in Step 2 of Example 1 was performed.

工程3
2層の触媒担持体と1層のニッケルメッシュを交互に積層し、アノードを作製した点以外、実施例1の工程3と同じ操作を行った。
Process 3
The same operation as in Step 3 of Example 1 was performed, except that two layers of catalyst support and one layer of nickel mesh were alternately laminated to produce an anode.

実施例3
工程1
実施例1の工程1と同じ操作を行った。
Example 3
Process 1
The same operation as in Step 1 of Example 1 was performed.

工程2
実施例1の工程2と同じ操作を行った。
Process 2
The same operation as in Step 2 of Example 1 was performed.

工程3
4層の触媒担持体と3層のニッケルメッシュを交互に積層し、アノードを作製した点以外、実施例1の工程3と同じ操作を行った。
Process 3
The same operation as in Step 3 of Example 1 was performed, except that a four-layer catalyst carrier and a three-layer nickel mesh were alternately laminated to produce an anode.

実施例4
工程1
硝酸コバルト水溶液の代わりにNi(NO・6HOを0.6g含む水溶液100mlを用い、水素還元により、7mgNi/cmの触媒担持カーボンペーパーを調製した。
Example 4
Process 1
A catalyst-supported carbon paper of 7 mg Ni / cm 2 was prepared by hydrogen reduction using 100 ml of an aqueous solution containing 0.6 g of Ni (NO 3 ) 2 .6H 2 O instead of the cobalt nitrate aqueous solution.

工程2
実施例1の工程2と同じ操作を行った。
Process 2
The same operation as in Step 2 of Example 1 was performed.

工程3
実施例1の工程3と同じ操作を行った。
Process 3
The same operation as in Step 3 of Example 1 was performed.

実施例5
工程1
硝酸コバルト水溶液の代わりに硝酸コバルトCo(NO・6HOを0.3gと硝酸ニッケルNi(NO・6HOを0.3g含む水溶液100mlを用い、水素還元により、7mgCo−Ni/cmの触媒担持カーボンペーパーを調製した。
Example 5
Process 1
Instead of the cobalt nitrate aqueous solution, 100 mg of an aqueous solution containing 0.3 g of cobalt nitrate Co (NO 3 ) 2 .6H 2 O and 0.3 g of nickel nitrate Ni (NO 3 ) 2 .6H 2 O was used. A catalyst-supporting carbon paper of -Ni / cm 2 was prepared.

工程2
実施例1の工程2と同じ操作を行った。
Process 2
The same operation as in Step 2 of Example 1 was performed.

工程3
実施例1の工程3と同じ操作を行った。
Process 3
The same operation as in Step 3 of Example 1 was performed.

実施例6
工程1
硝酸コバルト水溶液の代わりにHPtCl・6HOを0.32g含む水溶液100mlを用い、水素還元により、7mgPt/cmの触媒担持カーボンペーパーを調製した。
Example 6
Process 1
A catalyst-supporting carbon paper of 7 mg Pt / cm 2 was prepared by hydrogen reduction using 100 ml of an aqueous solution containing 0.32 g of H 2 PtCl 6 .6H 2 O instead of the cobalt nitrate aqueous solution.

工程2
実施例1の工程2と同じ操作を行った。
Process 2
The same operation as in Step 2 of Example 1 was performed.

工程3
実施例1の工程3と同じ操作を行った。
Process 3
The same operation as in Step 3 of Example 1 was performed.

実施例7
工程1
硝酸コバルト水溶液の代わりにHPtCl・6HOを0.16gとSnCl・2HOを0.12g含む水溶液100mlを用い、水素還元により、7mgPt−Sn/cmの触媒担持カーボンペーパーを調製した。
Example 7
Process 1
7 mg Pt—Sn / cm 2 of catalyst-supported carbon paper was obtained by hydrogen reduction using 100 ml of an aqueous solution containing 0.16 g of H 2 PtCl 6 .6H 2 O and 0.12 g of SnCl 2 .2H 2 O instead of cobalt nitrate aqueous solution. Was prepared.

工程2
実施例1の工程2と同じ操作を行った。
Process 2
The same operation as in Step 2 of Example 1 was performed.

工程3
実施例1の工程3と同じ操作を行った。
Process 3
The same operation as in Step 3 of Example 1 was performed.

実施例8
工程1
硝酸コバルト水溶液の代わりにPb(NOを0.2g含む水溶液100mlを用い、水素還元により、7mgPb/cmの触媒担持カーボンペーパーを調製した。
Example 8
Process 1
Using an aqueous solution 100ml containing Pb (NO 3) 2 0.2g instead of cobalt nitrate aqueous solution, the hydrogen reduction, to prepare a catalyst-carrying carbon paper 7mgPb / cm 2.

工程2
実施例1の工程2と同じ操作を行った。
Process 2
The same operation as in Step 2 of Example 1 was performed.

工程3
実施例1の工程3と同じ操作を行った。
Process 3
The same operation as in Step 3 of Example 1 was performed.

実施例9
工程1
カーボンペーパーの代わりにカーボンクロス(E−TEK社製、型番:B1、厚み:0.35mm)を用いた点以外、実施例1の工程1と同じ操作を行った。
Example 9
Process 1
The same operation as in Step 1 of Example 1 was performed except that carbon cloth (manufactured by E-TEK, model number: B1, thickness: 0.35 mm) was used instead of carbon paper.

工程2
実施例1の工程2と同じ操作を行った。
Process 2
The same operation as in Step 2 of Example 1 was performed.

工程3
実施例1の工程3と同じ操作を行った。
Process 3
The same operation as in Step 3 of Example 1 was performed.

実施例10
工程1
カーボンペーパーの代わりにニッケル繊維(日本精線社製、厚み:0.35mm)を用いた点以外、実施例1の工程1と同じ操作を行った。
Example 10
Process 1
The same operation as in Step 1 of Example 1 was performed except that nickel fiber (manufactured by Nippon Seisen Co., Ltd., thickness: 0.35 mm) was used instead of carbon paper.

工程2
実施例1の工程2と同じ操作を行った。
Process 2
The same operation as in Step 2 of Example 1 was performed.

工程3
実施例1の工程3と同じ操作を行った。
Process 3
The same operation as in Step 3 of Example 1 was performed.

実施例11
工程1
カーボンペーパーの代わりにニッケル多孔体(エース工業社製、型番:NF、厚み:0.35mm)を用いた点以外、実施例1の工程1と同じ操作を行った。
Example 11
Process 1
The same operation as in Step 1 of Example 1 was performed except that a nickel porous body (manufactured by Ace Industry Co., Ltd., model number: NF, thickness: 0.35 mm) was used instead of carbon paper.

工程2
実施例1の工程2と同じ操作を行った。
Process 2
The same operation as in Step 2 of Example 1 was performed.

工程3
実施例1の工程3と同じ操作を行った。
Process 3
The same operation as in Step 3 of Example 1 was performed.

実施例12
工程1
カーボンペーパーの代わりにニッケルメッシュ(桂田グレイチング社製、厚み:0.35mm)を用いた点以外、実施例1の工程1と同じ操作を行った。
Example 12
Process 1
The same operation as in Step 1 of Example 1 was performed except that nickel mesh (manufactured by Katsuta Grating Inc., thickness: 0.35 mm) was used instead of carbon paper.

工程2
実施例1の工程2と同じ操作を行った。
Process 2
The same operation as in Step 2 of Example 1 was performed.

工程3
実施例1の工程3と同じ操作を行った。
Process 3
The same operation as in Step 3 of Example 1 was performed.

実施例13
工程1
カーボンペーパーの代わりに銀メッシュ(桂田グレイチング社製、厚み:0.35mm)を用いた点以外、実施例1の工程1と同じ操作を行った。
Example 13
Process 1
The same operation as in Step 1 of Example 1 was performed except that a silver mesh (manufactured by Katsuta Grating Inc., thickness: 0.35 mm) was used instead of carbon paper.

工程2
実施例1の工程2と同じ操作を行った。
Process 2
The same operation as in Step 2 of Example 1 was performed.

工程3
実施例1の工程3と同じ操作を行った。
Process 3
The same operation as in Step 3 of Example 1 was performed.

実施例14
工程1
実施例1の工程1と同じ操作を行った。
Example 14
Process 1
The same operation as in Step 1 of Example 1 was performed.

工程2
実施例1の工程2と同じ操作を行った。
Process 2
The same operation as in Step 2 of Example 1 was performed.

工程3
ニッケルメッシュとして、線径:0.25mm、厚み:350μmのものを用いた点以外、実施例1の工程3と同じ操作を行った。
Process 3
The same operation as in step 3 of Example 1 was performed except that a nickel mesh having a wire diameter of 0.25 mm and a thickness of 350 μm was used.

実施例15
工程1
実施例1の工程1と同じ操作を行った。
Example 15
Process 1
The same operation as in Step 1 of Example 1 was performed.

工程2
実施例1の工程2と同じ操作を行った。
Process 2
The same operation as in Step 2 of Example 1 was performed.

工程3
ニッケルメッシュとして、線径:0.25mm、厚み:500μmのものを用いた点以外、実施例1の工程3と同じ操作を行った。
Process 3
The same operation as in step 3 of Example 1 was performed except that a nickel mesh having a wire diameter of 0.25 mm and a thickness of 500 μm was used.

実施例16
工程1
実施例1の工程1と同じ操作を行った。
Example 16
Process 1
The same operation as in Step 1 of Example 1 was performed.

工程2
実施例1の工程2と同じ操作を行った。
Process 2
The same operation as in Step 2 of Example 1 was performed.

工程3
ニッケルメッシュとして、線径:0.5mm、厚み:1000μmのものを用いた点以外、実施例1の工程3と同じ操作を行った。
Process 3
The same operation as in step 3 of Example 1 was performed except that a nickel mesh having a wire diameter of 0.5 mm and a thickness of 1000 μm was used.

実施例17
工程1
実施例1の工程1と同じ操作を行った。
Example 17
Process 1
The same operation as in Step 1 of Example 1 was performed.

工程2
実施例1の工程2と同じ操作を行った。
Process 2
The same operation as in Step 2 of Example 1 was performed.

工程3
ニッケルメッシュとして、線径:0.1mm、厚み:150μmのものを用いた点以外、実施例1の工程3と同じ操作を行った。
Process 3
The same operation as in step 3 of Example 1 was performed except that a nickel mesh having a wire diameter of 0.1 mm and a thickness of 150 μm was used.

実施例18
工程1
実施例1の工程1と同じ操作を行った。
Example 18
Process 1
The same operation as in Step 1 of Example 1 was performed.

工程2
実施例1の工程2と同じ操作を行った。
Process 2
The same operation as in Step 2 of Example 1 was performed.

工程3
ニッケルメッシュとして、線径:0.1mm、厚み:100μmのものを用いた点以外、実施例1の工程3と同じ操作を行った。
Process 3
The same operation as in Step 3 of Example 1 was performed except that a nickel mesh having a wire diameter of 0.1 mm and a thickness of 100 μm was used.

比較例1
工程1
実施例1の工程1と同じ操作を行った。
Comparative Example 1
Process 1
The same operation as in Step 1 of Example 1 was performed.

工程2
実施例1の工程2と同じ操作を行った。
Process 2
The same operation as in Step 2 of Example 1 was performed.

工程3
70mm×70mmに切断したアニオン交換膜(トクヤマ社製:AHA)の片面の中央部に、図2に示すように、工程1で調製した触媒担持体を設置し、アノードを作製した。アニオン交換膜の他方の面、すなわちアノードの反対側の面にてその中央に工程2で調製したカソードを設置した。こうして、アノード膜電極接合体を作製した。
Process 3
As shown in FIG. 2, the catalyst carrier prepared in Step 1 was installed at the center of one side of an anion exchange membrane (manufactured by Tokuyama: AHA) cut to 70 mm × 70 mm to produce an anode. The cathode prepared in Step 2 was placed at the center of the other side of the anion exchange membrane, that is, the side opposite to the anode. Thus, an anode membrane electrode assembly was produced.

比較例2
工程1
実施例1の工程1と同じ操作を行った。
Comparative Example 2
Process 1
The same operation as in Step 1 of Example 1 was performed.

工程2
実施例1の工程2と同じ操作を行った。
Process 2
The same operation as in Step 2 of Example 1 was performed.

工程3
ニッケルメッシュとして、線径:0.5mm、厚み:1300μmのものを用いた点以外、実施例1の工程3と同じ操作を行った。
Process 3
The same operation as in Step 3 of Example 1 was performed except that a nickel mesh having a wire diameter of 0.5 mm and a thickness of 1300 μm was used.


性能評価試験
実施例および比較例で得られたアノード膜電極接合体を用いて構成したアルカリ型燃料電池について、下記の条件で最大出力を測定した。その結果を表1に示す。

Performance Evaluation Test For the alkaline fuel cell configured using the anode membrane electrode assemblies obtained in Examples and Comparative Examples, the maximum output was measured under the following conditions. The results are shown in Table 1.

燃料:2NのNaHP0+1NのKOH
カソードガス:空気(130ml/min)
圧力:常圧
測定温度:50℃
湿度:100%

Figure 2009004286
Fuel: 2N NaH 2 P0 3 + 1N KOH
Cathode gas: Air (130ml / min)
Pressure: Normal pressure Measurement temperature: 50 ° C
Humidity: 100%
Figure 2009004286

表1中、CPはカーボンペーパー、CCはカーボンクロス、NFはニッケル繊維、NPニッケル多孔体、NMはニッケルメッシュ、SMは銀メッシュをそれぞれ意味する。   In Table 1, CP means carbon paper, CC means carbon cloth, NF means nickel fiber, NP nickel porous body, NM means nickel mesh, and SM means silver mesh.

表1から明らかなように、実施例のアノード膜電極接合体を用いたアルカリ型燃料電池は、比較例のアノード膜電極接合体を用いたものに比べ、格段に高い最大出力を得ることができた。   As is apparent from Table 1, the alkaline fuel cell using the anode membrane electrode assembly of the example can obtain a remarkably high maximum output as compared with the one using the anode membrane electrode assembly of the comparative example. It was.

図1は本発明によるアルカリ型燃料電池用アノード膜電極接合体を示す断面図である。FIG. 1 is a sectional view showing an anode membrane electrode assembly for an alkaline fuel cell according to the present invention. 図2は従来のアルカリ型燃料電池用アノード膜電極接合体を示す断面図である。FIG. 2 is a sectional view showing a conventional anode membrane electrode assembly for an alkaline fuel cell.

Claims (5)

多孔体上に金属あるいは金属化合物を担持させてなる触媒担持体層と、金属メッシュからなり厚みが100〜1000μmである燃料拡散層とが交互に積層されてなるアルカリ型燃料電池用アノード膜電極接合体。   An anode membrane electrode joint for an alkaline fuel cell in which a catalyst carrier layer made of metal or a metal compound supported on a porous body and a fuel diffusion layer made of a metal mesh and having a thickness of 100 to 1000 μm are alternately laminated. body. 前記多孔体が、カーボンクロス、カーボンペーパー、ニッケル繊維、ニッケル多孔体、ニッケルメッシュおよび銀メッシュからなる群から選択される請求項1に記載のアルカリ型燃料電池用アノード膜電極接合体。   The anode membrane electrode assembly for an alkaline fuel cell according to claim 1, wherein the porous body is selected from the group consisting of carbon cloth, carbon paper, nickel fiber, nickel porous body, nickel mesh, and silver mesh. 前記金属あるいは金属化合物が、白金、ロジウム、ルテニウム、金、鉄、コバルト、ニッケル、銅、錫および鉛からなる群から選択される金属あるいはその化合物である、請求項2または3に記載のアルカリ型燃料電池用アノード膜電極接合体。   The alkali type according to claim 2 or 3, wherein the metal or metal compound is a metal selected from the group consisting of platinum, rhodium, ruthenium, gold, iron, cobalt, nickel, copper, tin and lead or a compound thereof. An anode membrane electrode assembly for a fuel cell. 前記触媒担持体層が2層以上である、請求項1〜3のいずれか1つに記載のアルカリ型燃料電池用アノード膜電極接合体。   The anode membrane electrode assembly for alkaline fuel cells according to any one of claims 1 to 3, wherein the catalyst carrier layer is two or more layers. 請求項1〜4のいずれか1つに記載のアルカリ型燃料電池用アノード膜電極接合体をアノードとして用いたアルカリ型燃料電池。   An alkaline fuel cell using the anode membrane electrode assembly for an alkaline fuel cell according to claim 1 as an anode.
JP2007165838A 2007-06-25 2007-06-25 Anode membrane electrode assembly for alkaline fuel cell and alkaline fuel cell using the same as anode Pending JP2009004286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007165838A JP2009004286A (en) 2007-06-25 2007-06-25 Anode membrane electrode assembly for alkaline fuel cell and alkaline fuel cell using the same as anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007165838A JP2009004286A (en) 2007-06-25 2007-06-25 Anode membrane electrode assembly for alkaline fuel cell and alkaline fuel cell using the same as anode

Publications (1)

Publication Number Publication Date
JP2009004286A true JP2009004286A (en) 2009-01-08

Family

ID=40320432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007165838A Pending JP2009004286A (en) 2007-06-25 2007-06-25 Anode membrane electrode assembly for alkaline fuel cell and alkaline fuel cell using the same as anode

Country Status (1)

Country Link
JP (1) JP2009004286A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087742A (en) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd Cell for solid alkaline fuel battery
WO2012032999A1 (en) * 2010-09-08 2012-03-15 シャープ株式会社 Membrane electrode assembly and alkaline fuel cell
WO2012127999A1 (en) * 2011-03-22 2012-09-27 シャープ株式会社 Control device and fuel-cell system
JP2013507741A (en) * 2009-10-08 2013-03-04 フルイディック,インク. Electrochemical battery with flow management system
JP5562968B2 (en) * 2009-09-24 2014-07-30 株式会社東芝 Current collecting member, power generation device, and method of manufacturing current collecting member for power generation device
JP2014192098A (en) * 2013-03-28 2014-10-06 Hitachi Zosen Corp Anode electrode catalyst for alkaline fuel cell
CN113066995A (en) * 2021-03-23 2021-07-02 中国科学院化学研究所 PEM fuel cell, high-toughness porous carbon paper and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321315A (en) * 1995-05-25 1996-12-03 Mitsubishi Electric Corp Fuel cell
WO2007045763A1 (en) * 2005-10-19 2007-04-26 Commissariat A L'energie Atomique Electrode for alkali fuel cell and method for making a fuel cell including at least one step of making such an electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321315A (en) * 1995-05-25 1996-12-03 Mitsubishi Electric Corp Fuel cell
WO2007045763A1 (en) * 2005-10-19 2007-04-26 Commissariat A L'energie Atomique Electrode for alkali fuel cell and method for making a fuel cell including at least one step of making such an electrode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087742A (en) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd Cell for solid alkaline fuel battery
JP5562968B2 (en) * 2009-09-24 2014-07-30 株式会社東芝 Current collecting member, power generation device, and method of manufacturing current collecting member for power generation device
JP2013507741A (en) * 2009-10-08 2013-03-04 フルイディック,インク. Electrochemical battery with flow management system
WO2012032999A1 (en) * 2010-09-08 2012-03-15 シャープ株式会社 Membrane electrode assembly and alkaline fuel cell
WO2012127999A1 (en) * 2011-03-22 2012-09-27 シャープ株式会社 Control device and fuel-cell system
JP2012199082A (en) * 2011-03-22 2012-10-18 Sharp Corp Control device and fuel cell system
JP2014192098A (en) * 2013-03-28 2014-10-06 Hitachi Zosen Corp Anode electrode catalyst for alkaline fuel cell
CN113066995A (en) * 2021-03-23 2021-07-02 中国科学院化学研究所 PEM fuel cell, high-toughness porous carbon paper and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6387431B2 (en) Carbon supported catalyst
KR101350865B1 (en) Supported catalyst for fuel cell, method for preparing the same, electrode for fuel cell comprising the same, membrane electrode assembly comprising the electrode and fuel cell comprising the membrane electrode assembly
JP3621078B2 (en) Fuel electrode of solid polymer electrolyte fuel cell
JP5270098B2 (en) Improved electrode
CN103891023B (en) Porous current collector, method for manufacturing same, and fuel cell that uses porous current collector
US20060099482A1 (en) Fuel cell electrode
JP6047380B2 (en) Noble metal catalyst layer for fuel cell or electrolysis, membrane electrode assembly and fuel cell or electrolysis cell
JP2009004286A (en) Anode membrane electrode assembly for alkaline fuel cell and alkaline fuel cell using the same as anode
JP6328114B2 (en) Method for preparing a catalyst material
US9214694B2 (en) Assembly for reversible fuel cell
JP5528630B2 (en) Fuel cell with cathode electrode using iron redox couple
Zhang et al. Nanoporous PdCu alloys as highly active and methanol-tolerant oxygen reduction electrocatalysts
JP5044920B2 (en) Polymer electrolyte fuel cell
KR20140000681A (en) Anode-side catalyst composition for fuel cells, and membrane electrode assembly (mea) for solid polymer fuel cells which comprises same
JP5030583B2 (en) Electrochemical cell having catalyst for oxidizing carbon monoxide and power generation method using the same
JP4859124B2 (en) Membrane electrode unit, manufacturing method thereof, and direct methanol fuel cell
CN115110103A (en) Carbon dioxide electrolysis device
RU2230400C1 (en) Air-spirit fuel cell
JP4679815B2 (en) Direct fuel cell
JP2005197178A (en) Electrode for fuel cell
KR20140078402A (en) Membrane electrode assembly and fuel cell including the same
JP2008010386A (en) FUEL CELL SYSTEM AND FUEL CELL LAMINATE
JP2002134119A (en) Fuel cell and electrode for fuel cell
JP2005302554A (en) Polymer electrolyte fuel cell and its manufacturing method
JP2007213919A (en) Electrode catalyst for polymer electrolyte fuel cell, and polymer electrolyte fuel cell having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402