[go: up one dir, main page]

JP2009003337A - Method of splicing optical fibre - Google Patents

Method of splicing optical fibre Download PDF

Info

Publication number
JP2009003337A
JP2009003337A JP2007166166A JP2007166166A JP2009003337A JP 2009003337 A JP2009003337 A JP 2009003337A JP 2007166166 A JP2007166166 A JP 2007166166A JP 2007166166 A JP2007166166 A JP 2007166166A JP 2009003337 A JP2009003337 A JP 2009003337A
Authority
JP
Japan
Prior art keywords
curing
optical fiber
optical
resin
photocurable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007166166A
Other languages
Japanese (ja)
Inventor
Masaki Wake
正樹 和氣
Kazuyuki Shiraki
和之 白木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007166166A priority Critical patent/JP2009003337A/en
Publication of JP2009003337A publication Critical patent/JP2009003337A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problem: a usable raw material is restricted due to compatibility with resins in a hybrid resin produced by mixing a photocurable resin for forming a core part with a photocurable resin for forming a clad part, thereby causing cloudiness with passage of time. <P>SOLUTION: A method of splicing optical fibers includes: arranging the optical fibers 1, 2 to be spliced so as to substantially face a gap; filling a part between one-ends of optical fibers 1, 2 with the photo-curable resin 11 for forming a core part; curing the photo-curable resin 11 by making light of curing start wavelength thereof through the optical fiber 2 from a light source 5 for curing the core part on the photo-curable resin 11 to form the core part 12; adding an additive having refractive index lowering action in a non-curing part of the photo-curing resin 11; and curing the non-curing part by being irradiated with the light of the curing start wavelength of the photo-curable resin after adding the additive on the circumference of the formed core part 12 from a light source 8 for curing the clad part to form the clad part 13. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光ファイバ通信ネットワークを構築する際に有用な、光ファイバ同士もしくは光ファイバと光部品との接続方法に関するものである。   The present invention relates to a connection method between optical fibers or between optical fibers and optical components, which is useful when constructing an optical fiber communication network.

近年、多数のユーザに繋がるアクセス系通信ネットワークへの光ファイバ網の導入展開(FTTH:Fiber To The Home)とともに、Ethernet(登録商標)に代表される光LAN技術の進展に伴い、ユーザ自身が構築するユーザ系通信ネットワークへの光ファイバ網の導入も大きな広がりを見せている。これらの領域では、1.3ミクロン帯零分散シングルモード光ファイバ(SMF)、マルチモード光ファイバ(MMF)、プラスチック光ファイバ(POF)等の光ファイバが用いられるが、これらの光ファイバの接続工事の需要が急激に増加している。また、安価な光伝送システムを構築するために、光ファイバと光源や光波長フィルタ等の光部品との接続技術の経済化も課題となっている。   In recent years, along with the development of optical LAN technology represented by Ethernet (registered trademark) along with the introduction and deployment of optical fiber networks (FTTH: Fiber To The Home) in access communication networks connected to many users, users themselves have built The introduction of optical fiber networks to user-related communication networks is also expanding greatly. In these areas, 1.3 micron band zero-dispersion single mode optical fiber (SMF), multimode optical fiber (MMF), plastic optical fiber (POF), and other optical fibers are used. The demand for is increasing rapidly. In addition, in order to construct an inexpensive optical transmission system, it is also an issue to economically connect technologies between optical fibers and optical components such as light sources and optical wavelength filters.

従来、光ファイバ同士の接続には、各種の光コネクタやメカニカルスプライス技術が用いられ、また、光ファイバと光部品との接続には、レンズ系による調心を用いた接続技術が用いられてきた。しかし、上記の背景を反映して、より簡易で調心を不要化できる経済的な光接続技術の侯補として、自己形成光導波路技術に注目が集まってきている。   Conventionally, various optical connectors and mechanical splicing techniques have been used to connect optical fibers, and connection techniques using alignment by lens systems have been used to connect optical fibers and optical components. . However, reflecting the above background, self-forming optical waveguide technology has been attracting attention as a supplement to an economical optical connection technology that can be simplified and eliminates the need for alignment.

自己形成光導波路接続とは、接続しようとする光ファイバの一端同士の間、もしくは接続しようとする光ファイバの一端と光部品との間に、硬化後の屈折率が異なるコア部形成用の第1の硬化性樹脂およびクラッド部形成用の第2の硬化性樹脂によるコア部およびクラッド部を形成して簡易な光接続を可能とするものである。   Self-forming optical waveguide connection is a process for forming a core part having a different refractive index after curing between one end of optical fibers to be connected or between one end of an optical fiber to be connected and an optical component. The core portion and the clad portion are formed by the first curable resin and the second curable resin for forming the clad portion, thereby enabling simple optical connection.

図1は自己形成光導波路接続技術を適用して光ファイバ同士を接続する場合の例を示すもので、まず、同図(a)に示すように、所定の間隙を隔てて対向させた光ファイバ1,2の一端同士の間に、コア部形成用の第1の光硬化性樹脂およびクラッド部形成用の第2の光硬化性樹脂の混合溶液(ハイブリッド樹脂)3もしくはコア部形成用の第1の光硬化性樹脂(の溶液)4を充填し、少なくとも一方の光ファイバの他端、ここでは光ファイバ2の他端にコア部硬化用光源5からの第1の光硬化性樹脂の硬化開始波長の光を入射する。前記光は光ファイバ2を伝搬し、その一端から前記ハイブリッド樹脂3又は樹脂4中に出射されるが、第1の光硬化性樹脂は光に照射された部分が硬化するとともにその屈折率が上昇するため、この硬化部分が光の閉じ込め機能を有する導波路(構造)を構成する。この導波路は光の照射中に連続的に形成され、長手方向に成長するため、同図(b)に示すように、光ファイバ1,2のコア同士を接続する導波路(コア部)6となる。次に、コア部6の形成を確認した後、ハイブリッド樹脂3を用いた場合はそのまま、また、樹脂4を用いた場合は光ファイバ1,2の一端同士の間から当該樹脂4を除去するとともにクラッド部形成用の第2の光硬化性樹脂(の溶液)7を充填した後、同図(c)に示すように、前記形成されたコア部6の周囲にクラッド部硬化用光源8からの第2の光硬化性樹脂の硬化開始波長の光を照射することで第2の光硬化性樹脂を硬化させ、クラッド部9を形成する。   FIG. 1 shows an example of connecting optical fibers by applying a self-forming optical waveguide connection technique. First, as shown in FIG. 1 (a), optical fibers opposed to each other with a predetermined gap therebetween. A mixed solution (hybrid resin) 3 of the first photocurable resin for forming the core part and the second photocurable resin for forming the clad part, or the first part for forming the core part 1 photo-curing resin (solution) 4 is filled, and the other end of at least one of the optical fibers, here the other end of the optical fiber 2, is cured of the first photo-curing resin from the core portion curing light source 5. A light having a start wavelength is incident. The light propagates through the optical fiber 2 and is emitted from one end thereof into the hybrid resin 3 or resin 4. The first photo-curing resin cures the portion irradiated with the light and increases its refractive index. Therefore, this hardened portion constitutes a waveguide (structure) having a light confinement function. Since this waveguide is continuously formed during light irradiation and grows in the longitudinal direction, a waveguide (core portion) 6 for connecting the cores of the optical fibers 1 and 2 as shown in FIG. It becomes. Next, after confirming the formation of the core portion 6, the hybrid resin 3 is used as it is, and when the resin 4 is used, the resin 4 is removed from between one ends of the optical fibers 1 and 2. After filling the second photo-curing resin (solution) 7 for forming the clad portion, as shown in FIG. 2C, the clad portion curing light source 8 is provided around the formed core portion 6. The clad portion 9 is formed by curing the second photocurable resin by irradiating light having a curing start wavelength of the second photocurable resin.

また、図2は自己形成光導波路接続技術を適用して光ファイバと光部品とを接続する場合の例を示すもので、まず、同図(a)に示すように、所定の間隙を隔てて対向させた光ファイバ2の一端と光部品10との間に、コア部形成用の第1の光硬化性樹脂およびクラッド部形成用の第2の光硬化性樹脂の混合溶液(ハイブリッド樹脂)3もしくはコア部形成用の第1の光硬化性樹脂(の溶液)4を充填し、光ファイバ2の他端にコア部硬化用光源5からの第1の光硬化性樹脂の硬化開始波長の光を入射する。前記光は光ファイバ2を伝搬し、その一端から前記ハイブリッド樹脂3又は樹脂4中に出射されるが、第1の光硬化性樹脂は光に照射された部分が硬化するとともにその屈折率が上昇するため、この硬化部分が光の閉じ込め機能を有する導波路(構造)を構成する。この導波路は光の照射中に連続的に形成され、長手方向に成長するため、同図(b)に示すように、光ファイバ2および光部品10のコア同士を接続する導波路(コア部)6となる。次に、コア部6の形成を確認した後、ハイブリッド樹脂3を用いた場合はそのまま、また、樹脂4を用いた場合は光ファイバ2の一端と光部品10との間から当該樹脂4を除去するとともにクラッド部形成用の第2の光硬化性樹脂(の溶液)7を充填した後、同図(c)に示すように、前記形成されたコア部6の周囲にクラッド部硬化用光源8からの第2の光硬化性樹脂の硬化開始波長の光を照射することで第2の光硬化性樹脂を硬化させ、クラッド部9を形成する。   FIG. 2 shows an example in which an optical fiber and an optical component are connected by applying a self-forming optical waveguide connection technique. First, as shown in FIG. A mixed solution (hybrid resin) 3 of the first photocurable resin for forming the core part and the second photocurable resin for forming the clad part between one end of the optical fiber 2 and the optical component 10 opposed to each other. Or the 1st photocurable resin (solution) 4 for core part formation is filled, and the light of the hardening start wavelength of the 1st photocurable resin from the light source 5 for core part hardening to the other end of the optical fiber 2 Is incident. The light propagates through the optical fiber 2 and is emitted from one end thereof into the hybrid resin 3 or resin 4. The first photo-curing resin cures the portion irradiated with the light and increases its refractive index. Therefore, this hardened portion constitutes a waveguide (structure) having a light confinement function. Since this waveguide is continuously formed during light irradiation and grows in the longitudinal direction, the waveguide (core portion) that connects the optical fiber 2 and the core of the optical component 10 as shown in FIG. ) 6. Next, after confirming the formation of the core portion 6, the resin 4 is removed as it is when the hybrid resin 3 is used, and when the resin 4 is used, the resin 4 is removed from between one end of the optical fiber 2 and the optical component 10. At the same time, after filling the second photo-curable resin (solution) 7 for forming the clad part, as shown in FIG. The second photo-curing resin is cured by irradiating light having a curing start wavelength of the second photo-curing resin from, thereby forming the clad portion 9.

前述した接続に用いられる光硬化性樹脂は、硬化時に架橋することによって導波路となるオリゴマー等の主材、入射光によって主材が硬化を開始するためのラジカルの発生やイオンを放出する光重合開始剤、粘度調整のためのモノマーやその他の添加剤等から構成されている。特に、ラジカルにより硬化する光硬化性樹脂はラジカル硬化性樹脂、陽イオンにより硬化する樹脂はカチオン硬化性樹脂、陰イオンにより硬化する樹脂はアニオン硬化性樹脂と呼称される。
特許第3444352号公報
The photo-curing resin used for the connection described above is a main material such as an oligomer that becomes a waveguide by cross-linking at the time of curing, photopolymerization that generates radicals and ions to start curing by the incident light. It is comprised from the initiator, the monomer for viscosity adjustment, other additives, etc. In particular, a photocurable resin that is cured by radicals is called a radical curable resin, a resin that is cured by cations is called a cationic curable resin, and a resin that is cured by anions is called an anion curable resin.
Japanese Patent No. 3444352

従来、自己形成光導波路技術において用いる樹脂は、コア部形成用およびクラッド部形成用の光硬化性樹脂を混合させ、一液化(ハイブリッド化)させて用いていた(特許文献1参照)。しかし、一液化するためには樹脂同士の相溶性が良好である必要があり、樹脂原料の選定時点で使用可能な原料が限られるという問題があった。また、相溶性が良好な樹脂同士であっても、一液化の後、経時に伴って白濁化を起こす可能性が非常に高いという問題があった。   Conventionally, a resin used in the self-forming optical waveguide technology has been used by mixing a photocurable resin for forming a core part and a clad part into one liquid (hybridization) (see Patent Document 1). However, in order to make a single solution, it is necessary that the compatibility between the resins is good, and there is a problem that the raw materials that can be used at the time of selection of the resin raw materials are limited. Moreover, even if it was resin with favorable compatibility, there existed a problem that possibility that white turbidity would be caused with the passage of time after one liquid was made.

本発明では、前述した問題を解決するために、光ファイバ同士もしくは光ファイバと光部品との簡易な接続を自己形成光導波路技術によって行う際に、接続を行う間隙にコア部形成用の光硬化性樹脂を充填し、当該樹脂の硬化開始波長の光を入射してコア部を形成した後、未硬化樹脂に屈折率低下作用を有する添加剤を添加し、この未硬化樹脂を硬化させてクラッド部を形成することを特徴とする。ここで、屈折率低下作用を有する添加剤としては、液体状の物質でも、微粒子等の固体状の成分でも良い。   In the present invention, in order to solve the above-described problems, when a simple connection between optical fibers or between an optical fiber and an optical component is performed by a self-forming optical waveguide technology, a light curing for forming a core portion is performed in a gap for connection. After the resin is filled and the core portion is formed by incidence of light having a curing start wavelength of the resin, an additive having a refractive index lowering effect is added to the uncured resin, and the uncured resin is cured to be clad. Forming a portion. Here, the additive having a refractive index lowering action may be a liquid substance or a solid component such as fine particles.

本発明によれば、光ファイバ同士もしくは光ファイバと光部品との自己形成光導波路技術による接続を経済化、効率化し、前述した従来の自己形成光導波路技術による接続における課題を大幅に緩和することが可能となる。   According to the present invention, the connection between optical fibers or between optical fibers and optical components by the self-forming optical waveguide technology is made economical and efficient, and the problems in the connection by the conventional self-forming optical waveguide technology described above are greatly reduced. Is possible.

具体的には、ハイブリッド樹脂を用いる場合における樹脂同士の相溶性の問題について、コア部形成用の光硬化性樹脂と屈折率を低下させる添加剤との相溶性を良好にすれば良く、樹脂同士の相溶性に比べてはるかに容易で材料選択肢の幅も広い。また、一液化後の経時の問題については、導波路作成時に混合するために、経時に伴う白濁等の問題も無い。   Specifically, regarding the problem of compatibility between resins in the case of using a hybrid resin, the compatibility between the photocurable resin for forming the core part and the additive for reducing the refractive index may be improved. Compared with compatibility, it is much easier and the choice of materials is wider. In addition, with respect to the problem of aging after liquefaction, since mixing is performed at the time of creating the waveguide, there is no problem such as white turbidity accompanying aging.

<第1の実施の形態>
図3は本発明の光ファイバの接続方法の第1の実施の形態、ここでは光ファイバ同士を接続する場合の例を示すもので、図中、1,2は光ファイバ、5はコア部硬化用光源、8はクラッド部硬化用光源、11はコア部形成用の光硬化性樹脂(の溶液)である。
<First Embodiment>
FIG. 3 shows a first embodiment of a method for connecting optical fibers according to the present invention, in this case, an example in which optical fibers are connected to each other. 8 is a light source for curing the clad part, and 11 is a photocurable resin (solution) for forming the core part.

光ファイバ1,2としては、POF,MMF,SMF等が挙げられるが、これに限定されず、1.55μm帯分散シフトファイバ(DSF)、分散補償光ファイバ(DCF)、フォトニック結晶光ファイバ(PCF)、空孔アシスト型光ファイバ(HAF)等についても適用することができる。   Examples of the optical fibers 1 and 2 include POF, MMF, and SMF. However, the optical fibers 1 and 2 are not limited thereto, and are 1.55 μm band dispersion shifted fiber (DSF), dispersion compensating optical fiber (DCF), and photonic crystal optical fiber ( (PCF), hole-assisted optical fiber (HAF), and the like can also be applied.

最初に、硬化後の屈折率および硬化開始波長(反応波長)をそれぞれ調整したコア部形成用の光硬化性樹脂11を用意し、屈折率低下作用を有する添加剤、正確には前記樹脂11の未硬化部分に添加した際に屈折率低下作用を発揮する添加剤を、任意の比屈折率差を実現するための適量用意する。   First, a photocurable resin 11 for forming a core part, in which the refractive index after curing and the curing start wavelength (reaction wavelength) are respectively adjusted, is prepared, and an additive having a refractive index lowering action, more precisely, the resin 11 An appropriate amount of an additive that exhibits a refractive index lowering action when added to an uncured portion is prepared for realizing an arbitrary relative refractive index difference.

ここで述べる硬化後の屈折率の調整とは、硬化前(の液体状態で)の屈折率は任意の値で良いが、硬化後(の導波路コア部)の屈折率が、接続しようとする光ファイバ1,2のコアと同程度になるように調整することを指す。また、硬化開始波長の調整とは、コア部硬化用光源5からの光によって光硬化性樹脂11が硬化反応を開始し、クラッド部硬化用光源8からの光によって前記添加剤添加後の光硬化性樹脂11が硬化反応を開始するように、樹脂、添加剤および各光源の波長を選択することを指す。   The adjustment of the refractive index after curing described here may be an arbitrary value for the refractive index before curing (in the liquid state), but the refractive index after curing (in the waveguide core portion) is to be connected. It means adjusting so as to be the same as the cores of the optical fibers 1 and 2. Further, the adjustment of the curing start wavelength means that the photocurable resin 11 starts a curing reaction by the light from the core portion curing light source 5 and the photocuring after the addition of the additive by the light from the cladding portion curing light source 8. It refers to selecting the wavelength of the resin, the additive, and each light source so that the functional resin 11 starts a curing reaction.

また、屈折率低下作用を有する添加剤とは、樹脂の主材に対して他のオリゴマー等を加えることで未硬化部分の樹脂全体の屈折率を下げる作用や、光硬化性樹脂中の重合開始剤に影響を及ぼし、重合度を下げることで硬化時の架橋密度を低下させる作用を有する液体または微粒子等の固体を指す。いずれの場合も、コア部形成用の光硬化性樹脂と良好な相溶性を備えることが望ましい。   Additives that have a refractive index lowering effect include the action of lowering the refractive index of the entire resin in the uncured part by adding other oligomers to the resin main material, and the initiation of polymerization in a photocurable resin. It refers to solids such as liquids or fine particles that affect the agent and have the effect of reducing the crosslinking density during curing by lowering the degree of polymerization. In any case, it is desirable to have good compatibility with the photocurable resin for forming the core part.

このような作用を及ぼす添加剤の例としては、フッ素化合物やシラノール化合物等が挙げられる。これらを硬化後のコア部とクラッド部との比屈折率差を所望の値にするために適量添加した後に光硬化を行い、クラッド部を形成することで、例えば単一モード光ファイバの接続に適した0.3〜0.4%程度の比屈折率差を十分に得ることが可能である。   Examples of additives that exert such an action include fluorine compounds and silanol compounds. By adding an appropriate amount of these to make the difference in relative refractive index between the core and clad after curing to a desired value, photocuring is performed to form a clad, for example, for connection of a single mode optical fiber. It is possible to sufficiently obtain a suitable relative refractive index difference of about 0.3 to 0.4%.

以下、本実施の形態における光ファイバ同士の接続工程を説明する。   Hereinafter, the connection process between the optical fibers in the present embodiment will be described.

まず、図3(a)に示すように、各光ファイバ1,2を、それぞれの接続すべき一端が所定の間隙を隔てて略対向するように配置するとともに、光ファイバ1,2の少なくとも一方、ここでは光ファイバ2の他端にコア部硬化用光源5を接続する。   First, as shown in FIG. 3A, the optical fibers 1 and 2 are arranged so that one ends to be connected to each other are substantially opposed to each other with a predetermined gap therebetween, and at least one of the optical fibers 1 and 2 is arranged. Here, the core portion curing light source 5 is connected to the other end of the optical fiber 2.

この時の各光ファイバの詳細な配置としては、光源5を光ファイバの一方のみに接続するか、両方に接続するかによって2通りの配置が考えられる。   As the detailed arrangement of each optical fiber at this time, two arrangements can be considered depending on whether the light source 5 is connected to only one of the optical fibers or both.

即ち、光ファイバの一方のみに光源5を接続する場合は、間隙を隔ててそれぞれの中心軸が一致するように配置する必要がある(第1の配置)。また、光ファイバの両方に光源5を接続する場合は、中心軸を必ずしも一致させて配置せず、自己形成導波路技術における「光はんだ効果」によって、ある程度の軸ずれがあった場合においても低損失で接続が可能になるという作用を用いる(第2の配置)。しかし、より低損失で接続するためには、各光ファイバの両方に光源を接続した場合でも中心軸を一致させて接続を行うことが望ましい。   That is, when the light source 5 is connected to only one of the optical fibers, it is necessary to dispose the central axes so as to coincide with each other with a gap (first arrangement). In addition, when the light source 5 is connected to both optical fibers, the central axes are not necessarily aligned, and even when there is a certain degree of axial displacement due to the “photo soldering effect” in the self-forming waveguide technology. The effect of enabling connection with loss is used (second arrangement). However, in order to connect with lower loss, it is desirable to connect with the central axes aligned even when a light source is connected to both optical fibers.

なお、各光ファイバ1,2は図示しない保持手段、例えばV溝を有する支持台とこの台にファイバを固定する押さえ板からなる保持手段により保持され、前述した配置関係は接続作業の終了時まで維持されるものとする。また、前述した各光ファイバ間の中心軸の関係は、接続すべき一端付近において保たれていれば良く、各光ファイバの全長の全てにおいてそのような関係にあることを必要とするものでないことは言うまでもない(この点は本発明の全ての実施の形態において共通する。)。   Each optical fiber 1 and 2 is held by a holding means (not shown), for example, a holding base comprising a support base having a V-groove and a pressing plate for fixing the fiber to this base, and the above-described arrangement relationship is maintained until the end of the connection work. Shall be maintained. Moreover, the relationship of the central axis between each optical fiber mentioned above should just be maintained in the vicinity of one end which should be connected, and it does not need to be in such a relationship in the whole length of each optical fiber. Needless to say, this point is common to all embodiments of the present invention.

次に、光ファイバ1,2の一端同士の端面間に前記光硬化性樹脂11を充填し、光ファイバ2の他端に接続した光源5を動作させ、該他端から前記光硬化性樹脂11の硬化開始波長に対応する波長の光を入射する。すると、光ファイバ2の一端から前記波長の光が光硬化性樹脂11中に出射されるが、光硬化性樹脂11は光に照射された部分が硬化するとともにその屈折率が上昇するため、この硬化部分が光の閉じ込め機能を有する導波路(構造)を構成する。この導波路は光の照射中に連続的に形成され、長手方向に成長するため、図3(b)に示すように、光ファイバ1,2のコア同士を接続する導波路(コア部)12となる。   Next, the photocurable resin 11 is filled between end faces of the optical fibers 1 and 2, the light source 5 connected to the other end of the optical fiber 2 is operated, and the photocurable resin 11 is connected from the other end. A light having a wavelength corresponding to the curing start wavelength is incident. Then, the light of the wavelength is emitted from one end of the optical fiber 2 into the photo-curable resin 11, but the photo-curable resin 11 is hardened at the portion irradiated with the light and its refractive index is increased. The hardened portion constitutes a waveguide (structure) having a light confinement function. Since this waveguide is continuously formed during light irradiation and grows in the longitudinal direction, as shown in FIG. 3B, a waveguide (core portion) 12 that connects the cores of the optical fibers 1 and 2 is connected. It becomes.

なお、各光ファイバ1,2の端面間に光硬化性樹脂11を充填する具体的な方法としては、例えば、前述した保持手段を構成する支持台の各光ファイバ1,2の一端同士が対向する位置に液溜め用の陥没部を設けておき、該陥没部に光硬化性樹脂11を滴下すれば良い。   In addition, as a specific method of filling the photocurable resin 11 between the end faces of the optical fibers 1 and 2, for example, the ends of the optical fibers 1 and 2 of the support base constituting the holding unit described above are opposed to each other. It is only necessary to provide a depressed portion for storing the liquid at a position where the photocurable resin 11 is dropped.

次に、光ファイバ1,2の端面間にコア部12が確実に形成されていることを確認した後、光硬化性樹脂11の未硬化部分に屈折率低下作用を有する添加剤を添加する。この時の添加量および相溶完了までの時間は、それぞれコア形成後の光硬化性樹脂11の未硬化部分の量に依存する。   Next, after confirming that the core portion 12 is reliably formed between the end faces of the optical fibers 1 and 2, an additive having a refractive index lowering effect is added to the uncured portion of the photocurable resin 11. The amount of addition and the time until the completion of the compatibility depend on the amount of the uncured portion of the photocurable resin 11 after the core is formed.

その後、図3(c)に示すように、前記形成されたコア部12の周囲にクラッド部硬化用光源8からの添加剤添加後の光硬化性樹脂の硬化開始波長に対応する波長の光を照射することで、屈折率低下作用を有する添加剤添加後の光硬化性樹脂(の溶液)11’を硬化させ、クラッド部13を形成する。   Thereafter, as shown in FIG. 3C, light having a wavelength corresponding to the curing start wavelength of the photocurable resin after addition of the additive from the cladding portion curing light source 8 is formed around the formed core portion 12. By irradiating, the photocurable resin (solution) 11 ′ after addition of the additive having a refractive index lowering action is cured, and the clad portion 13 is formed.

<第2の実施の形態>
図4は本発明の光ファイバの接続方法の第2の実施の形態、ここでは光ファイバと光部品とを接続する場合の例を示すもので、図中、2は光ファイバ、5はコア部硬化用光源、8はクラッド部硬化用光源、10は光部品、11はコア部形成用の光硬化性樹脂(の溶液)である。
<Second Embodiment>
FIG. 4 shows a second embodiment of an optical fiber connection method according to the present invention, in this case, an example in which an optical fiber and an optical component are connected. In the figure, 2 is an optical fiber, and 5 is a core portion. A light source for curing, 8 is a light source for curing the clad part, 10 is an optical component, and 11 is a photocurable resin (solution) for forming the core part.

光部品10としては、半導体レーザ等の発光素子や各種の受光素子が挙げられるが、これに限定されず、石英系プレーナ光波回路(PLC)等の光回路素子についても適用することができる。   Examples of the optical component 10 include a light emitting element such as a semiconductor laser and various light receiving elements. However, the optical component 10 is not limited to this, and can also be applied to an optical circuit element such as a quartz-based planar lightwave circuit (PLC).

最初に、硬化後の屈折率および硬化開始波長(反応波長)をそれぞれ調整したコア部形成用の光硬化性樹脂11を用意し、屈折率低下作用を有する添加剤、正確には前記樹脂11の未硬化部分に添加した際に屈折率低下作用を発揮する添加剤を、任意の比屈折率差を実現するための適量用意する。   First, a photocurable resin 11 for forming a core part, in which the refractive index after curing and the curing start wavelength (reaction wavelength) are respectively adjusted, is prepared, and an additive having a refractive index lowering action, more precisely, the resin 11 An appropriate amount of an additive that exhibits a refractive index lowering action when added to an uncured portion is prepared for realizing an arbitrary relative refractive index difference.

ここで述べる硬化後の屈折率の調整とは、硬化前(の液体状態で)の屈折率は任意の値で良いが、硬化後(の導波路コア部)の屈折率が、接続しようとする光ファイバ2および光部品10のコアと同程度になるように調整することを指す。また、硬化開始波長の調整とは、コア部硬化用光源5からの光によって光硬化性樹脂11が硬化反応を開始し、クラッド部硬化用光源8からの光によって前記添加剤添加後の光硬化性樹脂11が硬化反応を開始するように、樹脂、添加剤および各光源の波長を選択することを指す。   The adjustment of the refractive index after curing described here may be an arbitrary value for the refractive index before curing (in the liquid state), but the refractive index after curing (in the waveguide core portion) is to be connected. It means that the optical fiber 2 and the optical component 10 are adjusted to have the same level as the core. Further, the adjustment of the curing start wavelength means that the photocurable resin 11 starts a curing reaction by the light from the core portion curing light source 5 and the photocuring after the addition of the additive by the light from the cladding portion curing light source 8. It refers to selecting the wavelength of the resin, the additive, and each light source so that the functional resin 11 starts a curing reaction.

また、屈折率低下作用を有する添加剤とは、樹脂の主材に対して他のオリゴマー等を加えることで未硬化部分の樹脂全体の屈折率を下げる作用や、光硬化性樹脂中の重合開始剤に影響を及ぼし、重合度を下げることで硬化時の架橋密度を低下させる作用を有する液体または微粒子等の固体を指す。いずれの場合も、コア部形成用の光硬化性樹脂と良好な相溶性を備えることが望ましい。   Additives that have a refractive index lowering effect include the action of lowering the refractive index of the entire resin in the uncured part by adding other oligomers to the resin main material, and the initiation of polymerization in a photocurable resin. It refers to solids such as liquids or fine particles that affect the agent and have the effect of reducing the crosslinking density during curing by lowering the degree of polymerization. In any case, it is desirable to have good compatibility with the photocurable resin for forming the core part.

このような作用を及ぼす添加剤の例としては、フッ素化合物やシラノール化合物等が挙げられる。これらを硬化後のコア部とクラッド部との比屈折率差を所望の値にするために適量添加した後に光硬化を行い、クラッド部を形成することで、例えば単一モード光ファイバの接続に適した0.3〜0.4%程度の比屈折率差を十分に得ることが可能である。   Examples of additives that exert such an action include fluorine compounds and silanol compounds. By adding an appropriate amount of these to make the difference in relative refractive index between the core and clad after curing to a desired value, photocuring is performed to form a clad, for example, for connection of a single mode optical fiber. It is possible to sufficiently obtain a suitable relative refractive index difference of about 0.3 to 0.4%.

以下、本実施の形態における光ファイバと光部品との接続工程を説明する。   Hereinafter, a connection process between the optical fiber and the optical component in the present embodiment will be described.

まず、図4(a)に示すように、光ファイバ2および光部品10を、光ファイバ2の一端と光部品10の接続すべき一端とが間隙を隔てて略対向するように配置するとともに、光ファイバ2および光部品10の少なくとも一方、ここでは光ファイバ2の他端に光源5を接続する。なお、光部品10の他端に光源5を接続できるのは、当該光部品10がPLCのような光回路素子であって、光源5からの光が一端と他端との間を透過可能な場合のみに限られる。   First, as shown in FIG. 4A, the optical fiber 2 and the optical component 10 are arranged so that one end of the optical fiber 2 and one end to be connected to the optical component 10 are substantially opposed to each other with a gap therebetween. The light source 5 is connected to at least one of the optical fiber 2 and the optical component 10, here the other end of the optical fiber 2. The light source 5 can be connected to the other end of the optical component 10 because the optical component 10 is an optical circuit element such as a PLC, and light from the light source 5 can be transmitted between one end and the other end. Limited to cases only.

この時の光ファイバおよび光部品の詳細な配置としては、光源5を光ファイバのみに接続するか、光ファイバおよび光部品の両方に接続するかによって2通りの配置が考えられる。   As the detailed arrangement of the optical fiber and the optical component at this time, there are two possible arrangements depending on whether the light source 5 is connected only to the optical fiber or to both the optical fiber and the optical component.

即ち、光ファイバのみに光源5を接続する場合は、間隙を隔ててその中心軸が一致するように配置する必要がある(第1の配置)。また、光ファイバおよび光部品の両方に光源5を接続する場合は、中心軸を必ずしも一致させて配置せず、自己形成導波路技術における「光はんだ効果」によって、ある程度の軸ずれがあった場合においても低損失で接続が可能になるという作用を用いる(第2の配置)。しかし、より低損失で接続するためには、光ファイバおよび光部品の両方に光源を接続した場合でも中心軸を一致させて接続を行うことが望ましい。   That is, when the light source 5 is connected only to the optical fiber, it is necessary to arrange it so that the central axes thereof coincide with each other with a gap (first arrangement). In addition, when the light source 5 is connected to both the optical fiber and the optical component, the center axis is not necessarily aligned, and there is a certain degree of misalignment due to the “photo soldering effect” in the self-forming waveguide technology. In the second embodiment, an effect that connection can be made with low loss is used (second arrangement). However, in order to connect with lower loss, it is desirable to make the connection with the center axis coincident even when the light source is connected to both the optical fiber and the optical component.

なお、光ファイバ2および光部品10は図示しない保持手段、例えばV溝および光部品に適合した溝を有する支持台とこの台にファイバおよび光部品を固定する押さえ板からなる保持手段により保持され、前述した配置関係は接続作業の終了時まで維持されるものとする。また、前述した光ファイバおよび光部品間の中心軸の関係は、接続すべき一端付近において保たれていれば良く、光ファイバの全長の全てにおいてそのような関係にあることを必要とするものでないことは言うまでもない(この点は本発明の全ての実施の形態において共通する。)。   The optical fiber 2 and the optical component 10 are held by a holding means (not shown), for example, a holding base including a support base having a V-groove and a groove suitable for the optical part, and a pressing plate for fixing the fiber and the optical part to the base. It is assumed that the above-described arrangement relationship is maintained until the end of the connection work. In addition, the relationship of the central axis between the optical fiber and the optical component described above only needs to be maintained in the vicinity of one end to be connected, and does not require such a relationship in the entire length of the optical fiber. Needless to say, this point is common to all embodiments of the present invention.

次に、光ファイバ2と光部品10との端面間に前記光硬化性樹脂11を充填し、光ファイバ2の他端に接続した光源5を動作させ、該他端から前記光硬化性樹脂11の硬化開始波長に対応する波長の光を入射する。すると、光ファイバ2の一端から前記波長の光が光硬化性樹脂11中に出射されるが、光硬化性樹脂11は光に照射された部分が硬化するとともにその屈折率が上昇するため、この硬化部分が光の閉じ込め機能を有する導波路(構造)を構成する。この導波路は光の照射中に連続的に形成され、長手方向に成長するため、図4(b)に示すように、光ファイバ2および光部品10のコア同士を接続する導波路(コア部)12となる。   Next, the photocurable resin 11 is filled between the end faces of the optical fiber 2 and the optical component 10, the light source 5 connected to the other end of the optical fiber 2 is operated, and the photocurable resin 11 is connected from the other end. A light having a wavelength corresponding to the curing start wavelength is incident. Then, the light of the wavelength is emitted from one end of the optical fiber 2 into the photo-curable resin 11, but the photo-curable resin 11 is hardened at the portion irradiated with the light and its refractive index is increased. The hardened portion constitutes a waveguide (structure) having a light confinement function. Since this waveguide is continuously formed during light irradiation and grows in the longitudinal direction, as shown in FIG. 4B, the waveguide (core portion) connecting the cores of the optical fiber 2 and the optical component 10 to each other. ) 12.

なお、光ファイバ2と光部品10との端面間に光硬化性樹脂11を充填する具体的な方法としては、例えば、前述した保持手段を構成する支持台の光ファイバ2および光部品10の一端同士が対向する位置に液溜め用の陥没部を設けておき、該陥没部に光硬化性樹脂11を滴下すれば良い。   In addition, as a specific method of filling the photocurable resin 11 between the end faces of the optical fiber 2 and the optical component 10, for example, the optical fiber 2 of the support base that constitutes the holding means described above and one end of the optical component 10 are used. What is necessary is just to provide the depression part for a liquid reservoir in the position which mutually opposes, and the photocurable resin 11 should just be dripped at this depression part.

次に、光ファイバ2と光部品10との端面間にコア部12が確実に接続されていることを確認した後、光硬化性樹脂11の未硬化部分に屈折率低下作用を有する添加剤を添加する。この時の添加量および相溶完了までの時間は、それぞれコア形成後の光硬化性樹脂11の未硬化部分の量に依存する。   Next, after confirming that the core portion 12 is securely connected between the end faces of the optical fiber 2 and the optical component 10, an additive having a refractive index lowering effect is added to the uncured portion of the photocurable resin 11. Added. The amount of addition and the time until the completion of the compatibility depend on the amount of the uncured portion of the photocurable resin 11 after the core is formed.

その後、図4(c)に示すように、前記形成されたコア部12の周囲にクラッド部硬化用光源8からの添加剤添加後の光硬化性樹脂の硬化開始波長に対応する波長の光を照射することで、屈折率低下作用を有する添加剤添加後の光硬化性樹脂(の溶液)11’を硬化させ、クラッド部13を形成する。   Thereafter, as shown in FIG. 4C, light having a wavelength corresponding to the curing start wavelength of the photocurable resin after addition of the additive from the cladding portion curing light source 8 is formed around the formed core portion 12. By irradiating, the photocurable resin (solution) 11 ′ after addition of the additive having a refractive index lowering action is cured, and the clad portion 13 is formed.

自己形成光導波路技術による光ファイバ同士の接続例を示す工程図Process diagram showing an example of connecting optical fibers using self-forming optical waveguide technology 自己形成光導波路技術による光ファイバと光部品との接続例を示す工程図Process diagram showing an example of connection between optical fiber and optical component by self-forming optical waveguide technology 本発明の光ファイバの接続方法の第1の実施の形態を示す工程図Process drawing which shows 1st Embodiment of the optical fiber connection method of this invention 本発明の光ファイバの接続方法の第2の実施の形態を示す工程図Process drawing which shows 2nd Embodiment of the connection method of the optical fiber of this invention

符号の説明Explanation of symbols

1,2:光ファイバ、3:第1および第2の光硬化性樹脂の混合溶液(ハイブリッド樹脂)、4:第1の光硬化性樹脂(の溶液)、5:コア部硬化用光源、6,12:導波路(コア部)、7:第2の光硬化性樹脂(の溶液)、8:クラッド部硬化用光源、9,13:クラッド部、10:光部品、11:コア部形成用の光硬化性樹脂(の溶液)、11’:屈折率低下作用を有する添加剤添加後の光硬化性樹脂(の溶液)。   1, 2: optical fiber, 3: mixed solution of first and second photocurable resins (hybrid resin), 4: first photocurable resin (solution), 5: light source for curing core part, 6 , 12: Waveguide (core portion), 7: Second photocurable resin (solution), 8: Light source for curing the clad portion, 9, 13: Cladding portion, 10: Optical component, 11: For forming the core portion Photocurable resin (solution), 11 ′: Photocurable resin (solution) after addition of an additive having a refractive index lowering effect.

Claims (2)

光ファイバ同士もしくは光ファイバと光部品とを接続する方法であって、
光ファイバ同士のそれぞれの一端もしくは光ファイバの一端と光部品とを間隙を隔てて略対向するように配置し、
前記各光ファイバの一端同士の間もしくは光ファイバの一端と光部品との間に光硬化性樹脂を充填し、
前記光硬化性樹脂の硬化開始波長に対応する波長の光を少なくとも一方の光ファイバから該光硬化性樹脂中に入射して光硬化性樹脂を硬化させ、前記各光ファイバの一端同士の間もしくは光ファイバの一端と光部品との間にコア部を形成し、
前記光硬化性樹脂の未硬化部分に屈折率低下作用を有する添加剤を添加し、
前記形成されたコア部の周囲に添加剤添加後の光硬化性樹脂の硬化開始波長に対応する波長の光を照射して光硬化性樹脂を硬化させ、クラッド部を形成する
ことを特徴とする光ファイバの接続方法。
A method of connecting optical fibers or optical fibers and optical components,
Arrange one end of each optical fiber or one end of the optical fiber and the optical component so as to face each other with a gap,
Between one end of each optical fiber or between one end of an optical fiber and an optical component, a photocurable resin is filled,
Light having a wavelength corresponding to the curing start wavelength of the photocurable resin is incident on the photocurable resin from at least one optical fiber to cure the photocurable resin, or between one end of each optical fiber or A core is formed between one end of the optical fiber and the optical component,
Add an additive having a refractive index lowering action to the uncured portion of the photocurable resin,
The clad part is formed by irradiating the periphery of the formed core part with light having a wavelength corresponding to the curing start wavelength of the photocurable resin after addition of the additive to cure the photocurable resin. Optical fiber connection method.
請求項1に記載の光ファイバの接続方法において、
光硬化性樹脂の未硬化部分に添加する屈折率低下作用を有する添加剤の量を調整することにより、硬化後のコア部とクラッド部との比屈折率差を所望の値に設定する
ことを特徴とする光ファイバの接続方法。
The optical fiber connection method according to claim 1,
By adjusting the amount of the additive having a refractive index lowering effect added to the uncured portion of the photocurable resin, the relative refractive index difference between the core portion and the clad portion after curing is set to a desired value. A characteristic optical fiber connection method.
JP2007166166A 2007-06-25 2007-06-25 Method of splicing optical fibre Pending JP2009003337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007166166A JP2009003337A (en) 2007-06-25 2007-06-25 Method of splicing optical fibre

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007166166A JP2009003337A (en) 2007-06-25 2007-06-25 Method of splicing optical fibre

Publications (1)

Publication Number Publication Date
JP2009003337A true JP2009003337A (en) 2009-01-08

Family

ID=40319750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007166166A Pending JP2009003337A (en) 2007-06-25 2007-06-25 Method of splicing optical fibre

Country Status (1)

Country Link
JP (1) JP2009003337A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9541885B2 (en) 2010-08-11 2017-01-10 Brother Kogyo Kabushiki Kaisha Image forming apparatus having a controller to control the current flowing between a cleaning member and a collecting member
JP2017507357A (en) * 2014-02-21 2017-03-16 ダウ コーニング コーポレーションDow Corning Corporation Manufacturing method of optical connector and optical device including optical connector manufactured by the method
JP2019504347A (en) * 2015-12-17 2019-02-14 ユニベルシテ ドゥ オート アルザスUniversite De Haute Alsace Method and associated kit for making a self-aligned optical guide between a light source and an optical fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327049A (en) * 2001-04-27 2002-11-15 Jsr Corp Fluorine-containing copolymer, method for producing the same, and optical resin
JP2003014972A (en) * 2001-06-29 2003-01-15 Ibiden Co Ltd Method for forming optical waveguide
JP2003177259A (en) * 2001-12-11 2003-06-27 Toyota Central Res & Dev Lab Inc Self-forming optical waveguide material composition
WO2006009173A1 (en) * 2004-07-20 2006-01-26 Omron Corporation Polymer optical waveguide and process for production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327049A (en) * 2001-04-27 2002-11-15 Jsr Corp Fluorine-containing copolymer, method for producing the same, and optical resin
JP2003014972A (en) * 2001-06-29 2003-01-15 Ibiden Co Ltd Method for forming optical waveguide
JP2003177259A (en) * 2001-12-11 2003-06-27 Toyota Central Res & Dev Lab Inc Self-forming optical waveguide material composition
WO2006009173A1 (en) * 2004-07-20 2006-01-26 Omron Corporation Polymer optical waveguide and process for production thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9541885B2 (en) 2010-08-11 2017-01-10 Brother Kogyo Kabushiki Kaisha Image forming apparatus having a controller to control the current flowing between a cleaning member and a collecting member
JP2017507357A (en) * 2014-02-21 2017-03-16 ダウ コーニング コーポレーションDow Corning Corporation Manufacturing method of optical connector and optical device including optical connector manufactured by the method
US10551566B2 (en) 2014-02-21 2020-02-04 Dow Silicones Corporation Method of preparing an optical connector and optical devices comprising the optical connector prepared thereby
JP2019504347A (en) * 2015-12-17 2019-02-14 ユニベルシテ ドゥ オート アルザスUniversite De Haute Alsace Method and associated kit for making a self-aligned optical guide between a light source and an optical fiber

Similar Documents

Publication Publication Date Title
Bertoncini et al. 3D printed waveguides based on photonic crystal fiber designs for complex fiber-end photonic devices
Nauriyal et al. Fiber-to-chip fusion splicing for low-loss photonic packaging
Yamashita et al. Waveguide shape control and loss properties of light-induced self-written (LISW) optical waveguides
CN110515159B (en) LP based on fiber end face microstructure01-LPmnAll-fiber mode converter and preparation method thereof
US20160077288A1 (en) Self-writable waveguide for fiber connectors and related methods
JP2009003338A (en) Method of splicing optical fibre
US20210088728A1 (en) 3d printed fiber optic connector end face and method of manufacture
US6744951B2 (en) Waveguides and method of making them
Missinne et al. Curing kinetics of step-index and graded-index single mode polymer self-written waveguides
JP4642739B2 (en) Optical component connection method
Johnson et al. Multiplexed FBG sensor recorded in multimode microstructured polymer optical fibre
JP2009003337A (en) Method of splicing optical fibre
Kobayashi et al. Mosquito method based polymer tapered waveguide as a spot size converter
JP3571482B2 (en) Method for forming polymer optical waveguide pattern for aperture conversion
Baghdasaryan et al. Ultracompact 3D splitter for single‐core to multi‐core optical fiber connections fabricated through direct laser writing in polymer
US6599957B2 (en) Photosensitive material suitable for making waveguides and method of making waveguides utilizing this photosensitive optical material
JP2007206309A (en) Method for splicing optical fiber
CN100412582C (en) A connection method between a photonic crystal fiber and an optical waveguide
Kawasaki et al. All‐Solid Near‐Infrared Light‐Induced Self‐Written Optical Waveguides and Optical Self‐Coupling
Prajzler et al. Large core optical elastomer splitter fabricated by using 3D printing pattern
JP2008046178A (en) Holder for connecting optical fiber and connecting method using the same
JP2009031559A (en) Method of splicing optical fibers
JP2007322628A (en) Method for splicing optical fiber
JP2007121503A (en) Method for splicing optical fibers
JP4591964B2 (en) Optical fiber connection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090730

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

A131 Notification of reasons for refusal

Effective date: 20101227

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20110222

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20110331

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110608

RD04 Notification of resignation of power of attorney

Effective date: 20110613

Free format text: JAPANESE INTERMEDIATE CODE: A7424

RD02 Notification of acceptance of power of attorney

Effective date: 20110614

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A521 Written amendment

Effective date: 20110615

Free format text: JAPANESE INTERMEDIATE CODE: A821

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110616