[go: up one dir, main page]

JP2009001858A - Aluminum alloy sheet for can body having excellent circulation pinhole resistance - Google Patents

Aluminum alloy sheet for can body having excellent circulation pinhole resistance Download PDF

Info

Publication number
JP2009001858A
JP2009001858A JP2007163702A JP2007163702A JP2009001858A JP 2009001858 A JP2009001858 A JP 2009001858A JP 2007163702 A JP2007163702 A JP 2007163702A JP 2007163702 A JP2007163702 A JP 2007163702A JP 2009001858 A JP2009001858 A JP 2009001858A
Authority
JP
Japan
Prior art keywords
aluminum alloy
less
alloy plate
strength
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007163702A
Other languages
Japanese (ja)
Inventor
Hideaki Fukumasu
秀彰 福増
Hiroshi Saito
洋 齊藤
Akinao Takeda
明直 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2007163702A priority Critical patent/JP2009001858A/en
Publication of JP2009001858A publication Critical patent/JP2009001858A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy sheet for a can body having excellent circulation pinhole resistance in which the generation of pinholes can be prevented without increasing production cost. <P>SOLUTION: The aluminum alloy sheet for the can body having excellent circulation pinhole resistance has a composition comprising, by mass, 0.15 to 0.5% Si, 0.3 to 0.6% Fe, 0.15 to 0.5% Cu, 0.7 to 1.2% Mn and 0.8 to 2.0% Mg, and the balance Al with inevitable impurities, the aluminum alloy sheet is characterized in that the thickness is 0.250 to <0.275 mm, the stock proof stress after baking is ≥265 MPa, the number of intermetallic compounds with an equivalent circle diameter is ≥10 μm of ≤3 pieces/mm<SP>2</SP>, the tensile strength of the barrel part in a can body after can making by DI working and coating/baking is >330 to 380 MPa, and the elongation of the barrel part is ≥4%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板に関する。   The present invention relates to an aluminum alloy plate for a can body that is excellent in resistance to distribution pinholes.

一般に缶ボディとしては、その開口端部に缶蓋が巻締められる缶や、開口端部にキャップが螺着されるボトル缶等があり、飲料等の内容物が充填、密封され、市場において流通している。このような缶ボディは、従来、JIS3004(AA3004)またはJIS3104(AA3104)等のAl合金からなる板材に絞り加工およびしごき加工を施すことによって行われるDI(Drawing & Ironing)加工で形成されている。このようなしごき加工は、通常3回に分けて行われることにより、缶ボディが製缶される。そして、このような缶ボディの胴部は、最薄部における肉厚が約0.106mmとされて形成される。   In general, the can body includes a can with a can lid wound around its open end and a bottle can with a cap screwed into its open end, filled with beverages and other contents, and distributed in the market. is doing. Such a can body is conventionally formed by DI (Drawing & Ironing) processing performed by drawing and ironing a plate material made of an Al alloy such as JIS3004 (AA3004) or JIS3104 (AA3104). Such a ironing process is usually performed in three times to produce a can body. And the trunk | drum of such a can body is formed with the thickness in the thinnest part being about 0.106 mm.

従来、上述のような缶ボディの流通過程において、例えば、缶ボディの胴部に先鋭体が接触又は衝突したり、あるいは隣接した缶ボディの胴部同士が衝突したり、缶と缶の間に異物が挟まった状態で擦れること等により、流通ピンホールと呼ばれる微小な孔等の破断
が発生し、その内容物が漏洩する等の問題があった。
このような流通ピンホールが生じる問題を解決するための有効な手段として、胴部の肉厚を大きくすることが考えられるが、この場合には缶ボディ材の量が増大するので、製造コストが増大するという問題があった。
Conventionally, in the distribution process of the can body as described above, for example, the sharp body contacts or collides with the body portion of the can body, the body portions of adjacent can bodies collide, or between the cans and the cans. Due to rubbing in a state where foreign matter is sandwiched, there is a problem that breakage of a minute hole or the like called a distribution pinhole occurs and the contents leak.
As an effective means for solving the problem of such a distribution pinhole, it is conceivable to increase the thickness of the trunk, but in this case, the amount of can body material increases, so that the manufacturing cost is increased. There was a problem of increasing.

このような問題を解決するため、例えば、質量%で、Mn:0.8〜1.5%及びMg:0.8〜1.3%を含有したアルミニウム合金材からなり、破断伸びが6〜10%とされた缶ボディが提案されている(例えば、特許文献1)。
特開平8−199273号公報
In order to solve such a problem, for example, it is made of an aluminum alloy material containing, by mass%, Mn: 0.8 to 1.5% and Mg: 0.8 to 1.3%, and the elongation at break is 6 to A can body of 10% has been proposed (for example, Patent Document 1).
JP-A-8-199273

特許文献1に記載の缶ボディによれば、缶ボディ材の成分組成を上述としたうえで、製缶後の破断伸びを6〜10%として構成することにより、素材の板厚を薄くした場合であっても、胴部の突き刺し強度が向上するとされている。
しかしながら、特許文献1に記載の缶ボディ材の構成では、素材の板厚を薄くした場合には缶ボディの底部も薄くなるため、底部の耐圧強度が低下する虞がある。このため、素材自体の強度を高くする必要があるが、素材の強度を高くすると、しごき加工による成形時に胴部の破断(胴切れ)が生じ易くなるという問題がある。
According to the can body described in Patent Document 1, the component composition of the can body material is as described above, and the elongation at break after canning is configured as 6 to 10%, thereby reducing the thickness of the material. Even so, it is said that the piercing strength of the trunk portion is improved.
However, in the configuration of the can body material described in Patent Document 1, when the thickness of the material is reduced, the bottom portion of the can body is also thinned, so that the pressure resistance strength of the bottom portion may be reduced. For this reason, it is necessary to increase the strength of the raw material itself. However, if the strength of the raw material is increased, there is a problem in that the body portion is likely to be broken (cut out) during molding by ironing.

上述のような、缶ボディの胴切れを防止するためには、1回のしごき加工でのしごき率を低くするために、しごき加工の回数を増やすことが有効であるが、上述したように、従来から用いられているDI加工方法においては、しごきが通常3回で行われており、しごき回数を増やす場合には従来の工程設備を使用することができないという問題があった。   In order to prevent the can body from being cut as described above, it is effective to increase the number of ironing processes in order to reduce the ironing rate in one ironing process. In the conventional DI processing method, ironing is normally performed three times, and there is a problem that conventional process equipment cannot be used when the number of ironing is increased.

本発明は上記課題に鑑みてなされたものであり、製造コストを増大させることなくピンホールの発生を防ぐことができる、耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an aluminum alloy plate for a can body that can prevent the generation of pinholes without increasing the manufacturing cost and has excellent circulation pinhole resistance. And

本発明者等は、缶ボディの耐流通ピンホール性を向上させるために鋭意検討した結果、まず、素材の成分組成を所定範囲に限定し、また、素材の板厚を薄く形成し、且つ、製缶された缶ボディ胴部の板厚を厚く形成するとともに、素材強度を高め、DI加工及び塗装焼付けによる製缶後の金属間化合物のサイズ及び分布個数を制御することにより、缶ボディ胴部の強度を均一に向上させることができ、ピンホールが生じ難くなることを見出し、本発明を完成した。   As a result of intensive studies to improve the flow resistance pinhole resistance of the can body, the present inventors first limited the component composition of the material to a predetermined range, and formed a thin plate thickness of the material, and The body of the can body can be made thicker by increasing the thickness of the can body body, increasing the strength of the material, and controlling the size and distribution of intermetallic compounds after canning by DI processing and paint baking. As a result, the present invention was completed.

すなわち、本発明は以下に関する。   That is, the present invention relates to the following.

(1)請求項1に記載の発明
胴部の厚さが0.110mm超0.125mm以下であり、製造時の総絞り比が2.0〜2.7であり、且つ総しごき率が50%以上60%未満の缶ボディの製造に用いる缶ボディ用アルミニウム合金板であって、質量%で、Si:0.15〜0.5%、Fe:0.3〜0.6%、Cu:0.15〜0.5%、Mn:0.7〜1.2%、Mg:0.8〜2.0%を含有し、残部が不可避不純物を含むAlからなり、板厚が0.250mm以上0.275mm未満であり、ベーキング後の素材耐力が265MPa以上であり、円相当径が10μm以上の金属間化合物の数が3個/mm以下とされており、DI加工及び塗装焼付けによる製缶後の缶ボディの胴部の引張強さが330MPa超380MPa以下であり、前記胴部の伸びが4%以上であることを特徴とする、耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板。
(2)請求項2に記載の発明
さらに、質量%でZn:0.05〜0.30%、Ti:0.05〜0.15%の内の1種又は2種を含有することを特徴とする請求項1に記載の耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板。
(1) Invention of Claim 1 The thickness of a trunk | drum is 0.125 mm or more and 0.125 mm or less, the total drawing ratio at the time of manufacture is 2.0-2.7, and the total ironing rate is 50. % And less than 60% of the can body aluminum alloy plate for mass%, Si: 0.15-0.5%, Fe: 0.3-0.6%, Cu: 0.15-0.5%, Mn: 0.7-1.2%, Mg: 0.8-2.0%, the balance is made of Al containing inevitable impurities, and the plate thickness is 0.250 mm It is less than 0.275 mm, the material yield strength after baking is 265 MPa or more, the number of intermetallic compounds having an equivalent circle diameter of 10 μm or more is 3 / mm 2 or less, and is manufactured by DI processing and paint baking. The tensile strength of the body of the can body after the can is more than 330 MPa and 380 MPa or less An aluminum alloy plate for a can body having excellent circulation pinhole resistance, characterized in that the body portion has an elongation of 4% or more.
(2) Invention of Claim 2 Furthermore, it contains 1 type or 2 types in Zn: 0.05-0.30% and Ti: 0.05-0.15% by the mass%, It is characterized by the above-mentioned. The aluminum alloy plate for can bodies having excellent flow-resistant pinhole properties according to claim 1.

本発明の耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板によれば、上記成分組成を有し、また、DI加工及び塗装焼付けによる製缶後の缶ボディの胴部の引張強さが330MPa超380MPa以下、前記胴部の伸びが4%以上とされた構成とすることにより、缶ボディ胴部の強度を均一に向上させることができ、ピンホールが生じ難くなる。
従って、本発明の缶ボディ用アルミニウム合金板を用いることにより、製造コストを増大させることなく、耐流通ピンホール性に優れた缶ボディを得ることができる。
According to the aluminum alloy plate for a can body excellent in flow-through pinhole resistance according to the present invention, it has the above-mentioned composition, and the tensile strength of the body portion of the can body after DI processing and paint baking can be 330 MPa. By adopting a configuration in which the elongation of the body portion is set to be over 380 MPa or less and 4% or more, the strength of the can body body portion can be improved uniformly, and pinholes are hardly generated.
Therefore, by using the aluminum alloy plate for a can body of the present invention, a can body excellent in circulation pinhole resistance can be obtained without increasing the production cost.

以下、本発明に係る耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板(以下、缶ボディ用アルミニウム合金板と略称することがある)の一実施形態について、図1を適宜参照しながら説明する。   Hereinafter, an embodiment of an aluminum alloy plate for a can body (hereinafter, may be abbreviated as an aluminum alloy plate for a can body) having excellent flow-resistant pinhole properties according to the present invention will be described with reference to FIG. 1 as appropriate. .

本発明の缶ボディ用アルミニウム合金板は、質量%で、Si:0.15〜0.5%、Fe:0.3〜0.6%、Cu:0.15〜0.5%、Mn:0.7〜1.2%、Mg:0.8〜2.0%を含有し、残部が不可避不純物を含むAlからなり、板厚が0.250mm以上0.275mm未満であり、ベーキング後の素材耐力が265MPa以上であり、円相当径が10μm以上の金属間化合物の数が3個/mm以下とされており、DI加工及び塗装焼付けによる製缶後の缶ボディの胴部の引張強さが330MPa超380MPa以下であり、前記胴部の伸びが4%以上とされ、概略構成されている。 The aluminum alloy plate for a can body of the present invention is in mass%, Si: 0.15 to 0.5%, Fe: 0.3 to 0.6%, Cu: 0.15 to 0.5%, Mn: 0.7 to 1.2%, Mg: 0.8 to 2.0%, the balance is made of Al containing inevitable impurities, the plate thickness is 0.250 mm or more and less than 0.275 mm, after baking The yield strength of the material is 265 MPa or more, the number of intermetallic compounds with an equivalent circle diameter of 10 μm or more is 3 / mm 2 or less, and the tensile strength of the body of the can body after canning by DI processing and paint baking The thickness is more than 330 MPa and not more than 380 MPa, and the elongation of the body portion is 4% or more.

本実施形態の缶ボディ用アルミニウム合金板は、胴部の厚さが0.110mm超0.125mm以下であり、製造時の総絞り比が2.0〜2.7であり、且つ総しごき率が50%以上60%未満の缶ボディの製造に用いるのに適する。
また、本発明の缶ボディ用アルミニウム合金板は、アルミニウム鋳塊に対して560℃〜融点未満の温度範囲で均質化処理を施した後、熱間圧延を行うか、あるいは、更に冷間圧延、および/または、中間焼鈍を施すことによって所定板厚に形成された後、最終圧下率45%〜85%の冷間仕上げ圧延を施すことにより、素材としての最終板厚(0.250mm以上0.275mm未満)に形成される。
The aluminum alloy plate for a can body of the present embodiment has a body thickness of more than 0.110 mm and not more than 0.125 mm, a total drawing ratio at the time of manufacture of 2.0 to 2.7, and a total ironing rate Is suitable for use in the production of can bodies having a ratio of 50% to less than 60%.
In addition, the aluminum alloy plate for a can body of the present invention is subjected to homogenization treatment in a temperature range of 560 ° C. to less than the melting point for the aluminum ingot, and then hot-rolled, or further cold-rolled, And / or after having formed into predetermined sheet thickness by performing intermediate annealing, the final sheet thickness (0.250 mm or more and 0.2. Less than 275 mm).

本発明に係る缶ボディ用アルミニウム合金板は、製缶後の缶ボディにおいて、円相当径が10μm以上の金属間化合物の数が3個/mm以下となるように制御することにより、缶ボディ胴部の強度が均一に向上するので、ピンホールが生じ難くなるというものである。 The aluminum alloy plate for a can body according to the present invention can be obtained by controlling the number of intermetallic compounds having an equivalent circle diameter of 10 μm or more to 3 pieces / mm 2 or less in the can body after canning. Since the strength of the body portion is improved uniformly, pinholes are less likely to occur.

[成分組成]
以下、本発明の缶ボディ用アルミニウム合金板において限定する成分組成について説明する。
なお、以下に記載する各元素の含有量は、特に規定しない限り質量%であり、また、特に規定しない限り上限と下限を含むものとする。従って、例えば0.15〜0.5%は、0.15%以上、0.5%以下を意味する。
[Ingredient composition]
Hereinafter, the component composition limited in the aluminum alloy plate for can bodies of this invention is demonstrated.
In addition, content of each element described below is mass% unless otherwise specified, and includes an upper limit and a lower limit unless otherwise specified. Therefore, for example, 0.15 to 0.5% means 0.15% or more and 0.5% or less.

「Si」0.15〜0.5%
Siは、本発明の缶ボディ用アルミニウム合金板において、同時に含有されるMg等とともに化合物を形成し、固溶硬化、析出硬化及び分散硬化作用で強度を向上させる他、Al−Mn−Fe系金属間化合物を形成して、しごき成型時にダイスに対する焼き付きを防止する効果を有する。
Siの含有量が0.15%未満だと、十分な強度が得られず、また、金属間化合物の寸法が大きくなる。また、所望の潤滑性能を発揮できず、ダイス(金型)への焼き付きを防止するのに不充分となる。
Siの含有量が0.5%を越えると、強度が高くなりすぎ、缶ボディとして製缶した際に胴切れが生じ易くなり、加工性が劣化する。
また、Mg、Cu、Alとの金属間化合物が溶体化できなくなり、靭性が低下し、ピンホールが生じやすくなる。
従って、Siの含有量は、0.15〜0.5%の範囲内とすることが好ましい。
"Si" 0.15-0.5%
In the aluminum alloy plate for can bodies of the present invention, Si forms a compound together with Mg or the like contained at the same time, and improves the strength by solid solution hardening, precipitation hardening and dispersion hardening, and Al-Mn-Fe based metal An intermetallic compound is formed, and has the effect of preventing seizure on the die during ironing molding.
If the Si content is less than 0.15%, sufficient strength cannot be obtained, and the size of the intermetallic compound increases. Further, the desired lubrication performance cannot be exhibited, which is insufficient to prevent seizure on the die (die).
If the Si content exceeds 0.5%, the strength becomes too high, and when a can body is produced as a can body, it becomes easy to be cut out of the cylinder and the workability deteriorates.
Moreover, the intermetallic compound with Mg, Cu, and Al cannot be solutionized, the toughness is lowered, and pinholes are easily generated.
Therefore, the Si content is preferably in the range of 0.15 to 0.5%.

「Fe」0.3〜0.6%
Feは、本発明の缶ボディ用アルミニウム合金板において、Al−Mn−Fe系金属間化合物の析出量を増加させ、結晶の微細化と、しごき成形加工時にダイスに対して焼き付きが生じるのを防止する効果を有する。
Feの含有量が0.3%未満だと、Al−Mn−Fe系金属間化合物の析出量が少なくなりすぎ、しごき金型への焼き付きが生じやすくなる。
Feの含有量が0.6%を超えると、Al−Mn−Fe系金属間化合物の量が多くなりすぎ、靭性低下によって加工性が劣化し、ピンホールが生じやすくなる。
従って、Feの含有量は、0.3〜0.6%の範囲内とすることが好ましい。
"Fe" 0.3-0.6%
Fe increases the precipitation amount of Al-Mn-Fe intermetallic compounds in the aluminum alloy sheet for can bodies of the present invention, and prevents the formation of fine crystals and seizure to the die during ironing processing. Has the effect of
If the Fe content is less than 0.3%, the precipitation amount of the Al—Mn—Fe intermetallic compound becomes too small, and seizure to the ironing die tends to occur.
If the Fe content exceeds 0.6%, the amount of Al—Mn—Fe intermetallic compound becomes too large, and the workability deteriorates due to a decrease in toughness, and pinholes are likely to occur.
Therefore, the Fe content is preferably in the range of 0.3 to 0.6%.

「Cu」0.15〜0.5%
Cuは、本発明の缶ボディ用アルミニウム合金板において、Mg等と金属間化合物を形成し、固溶硬化、析出硬化及び分散硬化作用で強度を高める効果を有する。
Cuの含有量が0.15%未満だと、充分な強度向上効果が得られない。
Cuの含有量が0.5%を越えると、強度が高くなりすぎ、缶ボディとして製缶した際に胴切れが生じ易くなる。また、Mg、Si、Alとの金属間化合物が溶体化できなくなり、靭性低下によって加工性が劣化し、ピンホールが生じやすくなる。
従って、Cuの含有量は、0.15〜0.5%の範囲内とすることが好ましい。
"Cu" 0.15-0.5%
Cu forms an intermetallic compound with Mg or the like in the aluminum alloy plate for a can body of the present invention, and has an effect of increasing strength by solid solution hardening, precipitation hardening, and dispersion hardening.
If the Cu content is less than 0.15%, a sufficient strength improvement effect cannot be obtained.
If the Cu content exceeds 0.5%, the strength becomes too high, and when the can body is produced as a can body, it becomes easy for the barrel to be cut. In addition, the intermetallic compound with Mg, Si, and Al cannot be in solution, and the workability deteriorates due to a decrease in toughness, and pinholes are likely to occur.
Therefore, the Cu content is preferably in the range of 0.15 to 0.5%.

「Mn」0.7〜1.2%
Mnは、本発明の缶ボディ用アルミニウム合金板において、Al−Mn−Fe系金属間化合物を形成し、晶出相及び分散相となって分散硬化作用を発揮するとともに、しごき成形加工時にダイスに対して焼き付きが生じるのを防止する効果を有する。
Mnの含有量が0.7%未満だと、Al−Mn−Fe系金属間化合物の量が少なくなりすぎて充分な硬化特性が得られず、しごき金型への焼き付きが生じやすくなる。
Mnの含有量が1.2%を越えると、Al−Mn−Fe系金属間化合物の量が多くなりすぎ、靭性低下によって加工性が劣化し、ピンホールが生じやすくなる。
従って、Mnの含有量は、0.7〜1.2%の範囲内とすることが好ましく、1.0%以下とすることがより好ましい。
"Mn" 0.7-1.2%
In the aluminum alloy plate for can bodies of the present invention, Mn forms an Al-Mn-Fe intermetallic compound, becomes a crystallization phase and a dispersed phase, exhibits a dispersion hardening action, and is used as a die during the ironing process. On the other hand, it has the effect of preventing seizure.
If the Mn content is less than 0.7%, the amount of Al—Mn—Fe intermetallic compound becomes too small to obtain sufficient curing characteristics, and seizure to the ironing mold tends to occur.
When the content of Mn exceeds 1.2%, the amount of Al—Mn—Fe intermetallic compound is excessively increased, workability is deteriorated due to a decrease in toughness, and pinholes are easily generated.
Therefore, the Mn content is preferably in the range of 0.7 to 1.2%, more preferably 1.0% or less.

「Mg」0.8〜2.0%(好ましくは、1.5%未満)
Mgは、本発明の缶ボディ用アルミニウム合金板において、固溶体強化作用を有し、圧延加工時に加工硬化性を高めるとともに、SiやCuと共存することで分散硬化と析出硬化作用を発揮し、強度を向上させる。
Mgの含有量が0.8%未満だと、上述した充分な効果が得られない。
Mgの含有量が2.0%を超えると、強度が高くなりすぎて加工性、特にカール加工性が劣化し、缶ボディとして製缶した際に胴切れが生じ易くなる。
従って、Mgの含有量は、0.8〜2.0%の範囲内とすることがより好ましく、1.5%未満とすることがより好ましい。
"Mg" 0.8-2.0% (preferably less than 1.5%)
In the aluminum alloy plate for can bodies of the present invention, Mg has a solid solution strengthening action, enhances work hardening at the time of rolling, and exhibits dispersion hardening and precipitation hardening action by coexisting with Si and Cu. To improve.
If the Mg content is less than 0.8%, the above-described sufficient effect cannot be obtained.
If the Mg content exceeds 2.0%, the strength becomes too high, and the workability, particularly curl workability, is deteriorated, and when the can body is produced as a can body, it becomes easy to cause a barrel break.
Therefore, the Mg content is more preferably in the range of 0.8 to 2.0%, and more preferably less than 1.5%.

「Zn及びTi」Zn:0.05〜0.30%、Ti0.05〜0.15%
本発明の缶ボディ用アルミニウム合金板は、さらに必要に応じて、質量%でZn:0.05〜0.30%、Ti:0.05〜0.15%の内の1種又は2種を含有する成分組成とすることができる。
Znは、析出するMg、Si、Cuの金属間化合物を微細化する作用を有する。
Znの含有量が0.05%未満だと、上述した充分な効果が得られない。
Znの含有量が0.30%を越えると、加工性と耐食性が劣化する。
従って、Znの含有量は、0.05〜0.30%の範囲内とすることが好ましい。
“Zn and Ti” Zn: 0.05 to 0.30%, Ti 0.05 to 0.15%
The aluminum alloy plate for a can body according to the present invention may further include one or two of Zn: 0.05 to 0.30% and Ti: 0.05 to 0.15% by mass as necessary. It can be set as the component composition to contain.
Zn has the effect | action which refines | miniaturizes the intermetallic compound of Mg, Si, and Cu to precipitate.
If the Zn content is less than 0.05%, the above-described sufficient effect cannot be obtained.
If the Zn content exceeds 0.30%, workability and corrosion resistance deteriorate.
Therefore, the Zn content is preferably in the range of 0.05 to 0.30%.

Tiは、本発明の缶ボディ用アルミニウム合金板において、結晶粒を微細化し、加工性を改善する効果を有する。
Tiの含有量が0.05%未満だと、上述した充分な効果が得られない。
Tiの含有量が0.15%を越えると、粗大な化合物が生じて加工性が劣化する。
従って、Tiの含有量は、0.05〜0.15%の範囲内とすることが好ましい。
Ti has the effect of refining crystal grains and improving workability in the aluminum alloy plate for can bodies of the present invention.
When the Ti content is less than 0.05%, the above-described sufficient effect cannot be obtained.
If the Ti content exceeds 0.15%, a coarse compound is produced and the workability is deteriorated.
Therefore, the Ti content is preferably in the range of 0.05 to 0.15%.

[缶ボディ用アルミニウム合金板の板厚]
本発明の缶ボディ用アルミニウム合金板の板厚は、0.250mm以上0.275mm未満の範囲であることが好ましい。
板厚が0.250mm未満だと、製缶して缶ボディとした際の十分な耐圧強度が得られなくなる。
また、板厚が0.275mm以上だと、缶ボディの底部の重量が重くなり、製造コストが上昇して経済的でない。
[Thickness of aluminum alloy sheet for can body]
It is preferable that the plate | board thickness of the aluminum alloy plate for can bodies of this invention is the range of 0.250 mm or more and less than 0.275 mm.
When the plate thickness is less than 0.250 mm, sufficient pressure resistance strength cannot be obtained when the can is made into a can body.
On the other hand, if the plate thickness is 0.275 mm or more, the weight of the bottom of the can body becomes heavy, and the manufacturing cost increases, which is not economical.

[ベーキング後の素材耐力(265MPa以上)]
DI加工後の缶ボディは、洗浄、化成処理後の乾燥時、外面印刷または内面塗装後の焼付け処理によって180〜230℃の温度に加熱される。この加熱により、一般に、缶底部や胴部の強度が変化する。この、加熱後の強度は、DI成形時の歪量によって異なる。底部はDI成形時の歪みが小さいため、その加熱後の強度はDI加工前の素材であるアルミニウム合金板を加熱した後の強度とほぼ等しくなる。このため、底部の強度の目安として、素材であるアルミニウム合金板をベーキング(加熱)した後の強度を用いることができる。本発明では、このための加熱条件を、210℃×10分としている。
本発明の缶ボディ用アルミニウム合金板の、ベーキング後の素材耐力は、上記条件でベーキングを行った後の耐力で、265MPa以上であることが好ましい。
上述の条件でベーキングした後の素材耐力が265MPa未満だと、DI加工及び塗装焼付けによる製缶後の缶ボディの十分な耐圧強度が得られなくなる。
[Material strength after baking (265 MPa or more)]
The can body after DI processing is heated to a temperature of 180 to 230 ° C. by drying after cleaning and chemical conversion treatment, or by baking treatment after external printing or internal coating. This heating generally changes the strength of the can bottom and the trunk. The strength after heating differs depending on the amount of strain during DI molding. Since the distortion at the bottom is small during DI molding, the strength after heating is almost equal to the strength after heating the aluminum alloy plate, which is a material before DI processing. For this reason, the intensity | strength after baking (heating) the aluminum alloy plate which is a raw material can be used as a standard of the intensity | strength of a bottom part. In the present invention, the heating condition for this is 210 ° C. × 10 minutes.
The material yield strength after baking of the aluminum alloy plate for can bodies of the present invention is preferably 265 MPa or more as the yield strength after baking under the above conditions.
If the material yield strength after baking under the above-mentioned conditions is less than 265 MPa, sufficient pressure strength of the can body after canning by DI processing and paint baking cannot be obtained.

[総しごき率及び総絞り比について]
本発明の缶ボディ用アルミニウム合金板は、胴部の厚さ(最薄部厚さ)が0.110mm超0.125mm以下の缶ボディの製造に用いられる。また、本発明の缶ボディ用アルミニウム合金板は、DI加工時の総しごき率が50%以上60%未満の缶ボディの製造に用いる。ここで、総しごき率は、次式(4)で表される。
総しごき率(%) = (元の板厚T1−最終缶ボディ胴部最薄部厚さT2)/元の板厚T1 × 100 ・・・(4)
上記(4)式において、最終缶ボディ胴部最薄部厚さT2は、塗膜無しの厚さである。
本発明の缶ボディ用アルミニウム合金板は、素材板厚が0.250mm以上0.275mm未満であり、最小のしごき率は、元板厚が0.250mmで胴部厚さが0.125mmである場合の50%となる。
[About the total ironing ratio and the total drawing ratio]
The aluminum alloy plate for a can body according to the present invention is used for manufacturing a can body having a body thickness (thickest thickness) of more than 0.110 mm and not more than 0.125 mm. Moreover, the aluminum alloy plate for can bodies of the present invention is used for producing a can body having a total ironing rate during DI processing of 50% or more and less than 60%. Here, the total ironing rate is expressed by the following equation (4).
Total ironing rate (%) = (original plate thickness T1—final can body body thinnest portion thickness T2) / original plate thickness T1 × 100 (4)
In the above formula (4), the final can body trunk thinnest part thickness T2 is a thickness without a coating film.
The aluminum alloy plate for a can body of the present invention has a material plate thickness of 0.250 mm or more and less than 0.275 mm, and the minimum ironing rate is 0.250 mm for the original plate thickness and 0.125 mm for the body thickness. 50% of the case.

ここで、総しごき率を60%以上とした場合、本発明の缶ボディ用アルミニウム合金板は素材強度が高いため、しごき成形時に胴切れが発生しやすく生産性が低下する。一方、総しごき率が50%より低い場合とは、素材板厚が0.250mmよりも小さい場合か、あるいは、胴部板厚が0.125mmよりも大きい場合である。
素材板厚が0.250mmより小さい場合、充分な耐圧強度が得られない。また、胴部板厚が0.125mmより大きい場合、耐ピンホール性は向上するものの、実用的な見地からは過剰強度となり、必要な素材の量が増えるため、経済的でない。従って、総しごき率は50%以上であることが必要である。
Here, when the total ironing ratio is set to 60% or more, the aluminum alloy plate for can bodies of the present invention has high material strength, so that a cylinder breakage is likely to occur during ironing forming, and productivity is lowered. On the other hand, the case where the total ironing rate is lower than 50% is the case where the material plate thickness is smaller than 0.250 mm, or the case where the body portion plate thickness is larger than 0.125 mm.
When the material plate thickness is smaller than 0.250 mm, sufficient pressure resistance cannot be obtained. Further, when the body plate thickness is larger than 0.125 mm, the pinhole resistance is improved, but from the practical viewpoint, it becomes excessive strength and the amount of necessary material increases, which is not economical. Therefore, the total ironing rate needs to be 50% or more.

また、本発明の缶ボディ用アルミニウム合金板は、DI加工時の総絞り比が2.0〜2.7である缶ボディの製造に用いられる。
総絞り比が2.7より大きいと、2回の絞り工程で絞った場合に、絞り成形時に材料の破断が生じ易くなる。一方、上記素材板厚T1、最終缶ボディ胴部最薄部厚さT2、及び総しごき率の制約下で実用的な容量の缶ボディを得るためには、総絞り比を2.0以上とする必要がある。例えば、一般的に用いられている缶胴径66mmで容量が350ccの缶ボディを成形する場合には、総絞り比を2.2〜2.4とすることが好ましい。また、缶胴径約66mmで容量が約500ccの缶ボディを成形する場合には、総絞り比を2.45〜2.65とすることが好ましい。
Moreover, the aluminum alloy plate for can bodies of the present invention is used for manufacturing a can body having a total drawing ratio of 2.0 to 2.7 during DI processing.
If the total drawing ratio is greater than 2.7, the material is likely to break during drawing when drawn in two drawing steps. On the other hand, in order to obtain a can body having a practical capacity under the constraints of the material plate thickness T1, the final can body body thinnest part thickness T2, and the total ironing rate, the total drawing ratio is set to 2.0 or more. There is a need to. For example, when a can body having a can body diameter of 66 mm and a capacity of 350 cc, which is generally used, is formed, the total drawing ratio is preferably set to 2.2 to 2.4. Further, when a can body having a can body diameter of about 66 mm and a capacity of about 500 cc is molded, the total drawing ratio is preferably set to 2.45 to 2.65.

ここで、総絞り比Aとは、カップ絞り比B(図1(a)〜(b)の工程)と、再絞り比C(図1(b)〜(c)の工程)を掛け合わせた値であり、次式(1)〜(3)で表される。
カップ絞り比B = ブランク径D1/カップ径D2 ・・・(1)
再絞り比C = カップ径D2/胴部径D3 ・・・(2)
総絞り比A = カップ絞り比B×再絞り比C = ブランク径D1/胴部径D3 ・・・(3)
Here, the total drawing ratio A is obtained by multiplying the cup drawing ratio B (steps of FIGS. 1A to 1B) and the redrawing ratio C (steps of FIGS. 1B to 1C). It is a value and is represented by the following formulas (1) to (3).
Cup drawing ratio B = Blank diameter D1 / Cup diameter D2 (1)
Redrawing ratio C = Cup diameter D2 / body diameter D3 (2)
Total drawing ratio A = Cup drawing ratio B × Redrawing ratio C = blank diameter D1 / body part diameter D3 (3)

[DI加工及び塗装焼付けによる製缶後の缶ボディ胴部の引張強さ]
本発明の缶ボディ用アルミニウム合金板をDI加工及び塗装焼付けして得られる缶ボディの胴部の引張強さは、330MPa超380MPa以下であることが好ましい。
DI加工及び塗装焼付けによる製缶後の缶ボディ胴部の引張強さが330MPa以下だと、充分な耐流通ピンホール性が得られず、また、380MPaを超えると、胴切れが生じ易くなるとともに生産性が低下する。
また、DI加工及び塗装焼付けによる製缶後の缶ボディ胴部の引張強さは、より好ましくは340MPa超である。
[Tensile strength of can body body after canning by DI processing and paint baking]
It is preferable that the tensile strength of the body part of the can body obtained by DI processing and paint baking of the aluminum alloy plate for can bodies of the present invention is more than 330 MPa and not more than 380 MPa.
If the tensile strength of the body of the can body after making cans by DI processing and paint baking is 330 MPa or less, sufficient distribution-resistant pinhole properties cannot be obtained, and if it exceeds 380 MPa, it becomes easy to cause a cylinder breakage. Productivity decreases.
Further, the tensile strength of the can body trunk after canning by DI processing and paint baking is more preferably over 340 MPa.

[DI加工及び塗装焼付けによる製缶後の缶胴部の伸び]
本発明の缶ボディ用アルミニウム合金板をDI加工及び塗装焼付けして得られる缶ボディの胴部の伸びは4%以上であることが好ましく、5%以上であることが最も好ましい。
DI成形直後の胴部は、伸びが低く、また脆いためにピンホールを生じやすい。成形された缶ボディは、洗浄及び化成処理して乾燥し、外面塗装印刷及び内面塗装を行った後の焼付けで加熱されることにより、強度は低下するが、延性を回復する。
上述のような加熱の条件を制御することによって、胴部の伸びを上記下限値以上とすることが必要となるが、例えば10分間、一定温度で加熱する場合、180℃の温度では充分でなく、190℃以上の温度で加熱する必要がある。
[Elongation of can body after can making by DI processing and paint baking]
The elongation of the body portion of the can body obtained by DI processing and paint baking of the aluminum alloy plate for can bodies of the present invention is preferably 4% or more, and most preferably 5% or more.
The body portion immediately after DI molding has low elongation and is fragile, so pinholes are likely to occur. The molded can body is dried by washing and chemical conversion treatment, and is heated by baking after the outer surface coating printing and inner surface coating, whereby the ductility is restored although the strength is lowered.
By controlling the heating conditions as described above, it is necessary to make the elongation of the body portion equal to or more than the lower limit. However, for example, when heating at a constant temperature for 10 minutes, a temperature of 180 ° C. is not sufficient. It is necessary to heat at a temperature of 190 ° C. or higher.

[金属間化合物の数]
本発明の缶ボディ用アルミニウム合金板は、円相当径が10μm以上の金属間化合物の数が3個/mm以下とされていることが好ましい。
円相当径が10μm以上の金属間化合物の数を3個/mm以下とする方法としては、種々の方法があるが、成分組成を上記範囲に規定し、且つアルミニウム鋳塊製造時の凝固冷却速度を0.05℃/秒以上とする方法が、設備等の面で最も容易に行うことが可能な方法である。さらに好ましくは、前記凝固冷却速度を0.5℃/秒以上とすれば、円相当径が10μm以上の金属間化合物の数を0個/mmとすることができ、耐流通ピンホール性をより高めることができる。
[Number of intermetallic compounds]
In the aluminum alloy plate for can bodies of the present invention, the number of intermetallic compounds having an equivalent circle diameter of 10 μm or more is preferably 3 / mm 2 or less.
There are various methods for reducing the number of intermetallic compounds having an equivalent circle diameter of 10 μm or more to 3 pieces / mm 2 or less. However, the component composition is defined within the above range, and solidification cooling is performed during the production of an aluminum ingot. A method in which the speed is set to 0.05 ° C./second or more is a method that can be most easily performed in terms of equipment and the like. More preferably, if the solidification cooling rate is 0.5 ° C./second or more, the number of intermetallic compounds having an equivalent circle diameter of 10 μm or more can be reduced to 0 / mm 2, and flow resistance pinhole resistance can be improved. Can be increased.

ここで、アルミニウム鋳塊製造時の凝固冷却速度は、アルミニウム鋳塊の初晶デンドライト組織の枝の間隔であるデンドライトアームスペーシング(DAS)を2次枝法により測定し、以下に示す関係式(5)を用いて求めることができる。
ds=44.7×Cα ―0.32 ・・・(5)
上記関係式(5)において、dsは2次枝法により測定したデンドライトアームスペーシング(μm)であり、Cαは凝固冷却速度(℃/秒)である。
Here, the solidification cooling rate at the time of producing the aluminum ingot was measured by dendrite arm spacing (DAS), which is the interval between the branches of the primary dendrite structure of the aluminum ingot, by the secondary branch method. ).
ds = 44.7 × C α −0.32 (5)
In the above relational expression (5), ds is a dendrite arm spacing (μm) measured by the secondary branch method, and C α is a solidification cooling rate (° C./second).

なお、円相当径が10μm以上の金属間化合物の数を3個/mm以下とする方法の内、上述以外の方法としては、Fe、Mnの含有量を低くする方法もある。しかしながら、このような方法を用いた場合には、円相当径が10μm未満の金属間化合物の数も低下してしまう。円相当径が5μm以上10μm未満の金属間化合物は、しごき成形加工時にダイスに対して焼き付きが生じるのを防止するために有用であるが、Fe、Mnの含有量を低くした場合には、この範囲の金属間化合物の数が低下するため、しごき金型への焼き付きが生じやすくなる。本発明者等は鋭意研究を行い、成分組成を上述のように規定し、且つアルミニウム鋳塊製造時の凝固冷却速度を上述の範囲とする方法により、しごき成形加工時にダイスに対して焼き付きが生じるのを防止するために有用な、円相当径5μm以上10μm未満の金属間化合物の数を低下させ過ぎることなく、円相当径が10μm以上の金属間化合物の数を3個/mm以下とすることができることを見出した。 In addition, among the methods of setting the number of intermetallic compounds having an equivalent circle diameter of 10 μm or more to 3 / mm 2 or less, there is a method of reducing the content of Fe and Mn as a method other than the above. However, when such a method is used, the number of intermetallic compounds having an equivalent circle diameter of less than 10 μm also decreases. An intermetallic compound having an equivalent circle diameter of 5 μm or more and less than 10 μm is useful for preventing seizure from occurring on the die during ironing, but when the Fe and Mn contents are low, Since the number of intermetallic compounds in the range decreases, seizure to the ironing mold is likely to occur. The present inventors have intensively studied, prescribed the component composition as described above, and seized the die during the ironing process by the method of setting the solidification cooling rate during the production of the aluminum ingot to the above range. The number of intermetallic compounds having an equivalent circle diameter of 10 μm or more is set to 3 pieces / mm 2 or less without excessively reducing the number of intermetallic compounds having an equivalent circle diameter of 5 μm or more and less than 10 μm, which is useful for preventing I found that I can do it.

本発明では、円相当径が10μm以上の金属間化合物の数が3個/mm以下となるように制御することにより、缶ボディ胴部の強度が均一に向上するので、ピンホールが生じ難くなる。
円相当径が10μm以上の金属間化合物の数が3個/mmを超える場合、板厚が厚い場合には影響は小さいものの、DI加工によって胴部が薄肉とされた缶ボディに成形した場合、塗装焼付によって製缶した後の缶ボディ胴部の強度が低下し、ピンホールが生じ易くなる。
In the present invention, by controlling the number of intermetallic compounds having an equivalent circle diameter of 10 μm or more to be 3 pieces / mm 2 or less, the strength of the can body body portion is improved uniformly, so that pinholes are hardly generated. Become.
When the number of intermetallic compounds with an equivalent circle diameter of 10 μm or more exceeds 3 pieces / mm 2 , the effect is small when the plate thickness is thick, but when the body is molded into a can body with a thin barrel by DI processing The strength of the body portion of the can after the can is made by paint baking is lowered, and pinholes are easily generated.

本発明者等は、DI加工及び塗装焼付けによって製缶後の缶ボディ胴部の突き刺し強度を向上させるために鋭意研究したところ、円相当径が10μm以上の金属間化合物の数と、耐流通ピンホール性との間に相関関係があることを見出した。すなわち、円相当径が10μm以上の金属間化合物の数が増加すると、耐流通ピンホール性能が低下する。流通ピンホールの代表的な発生形態である、缶ボディの胴部に先鋭体が接触又は衝突し微小な孔等の破断が発生する過程では、缶ボディ胴部と先鋭体とが接触又は衝突する部位に応力集中が生じる。その際、缶ボディ胴部と先鋭体との接触面に金属間化合物が存在すると、アルミニウム母相が塑性変形を開始する応力では金属間化合物は塑性変形しないことから変形の不連続が生じ、金属間化合物の周辺に高い応力集中が生じる。本発明者等が実験したところ、前記接触面に存在する金属間化合物の円相当径が10μm以上である場合には、変形の不連続の影響が大きくなるため応力集中が極めて高くなり、当該部位から容易に亀裂が発生することが明らかとなった。また、円相当径が10μm以上の金属間化合物であっても、その形状や発生応力との方向関係によっては応力集中への影響が大きくない場合もあり、この破壊現象が極めて確率的現象であることも明らかとなった。本発明者等は、円相当径が10μm以上の金属間化合物の個数と耐流通ピンホール性能との関係を統計的に調査した結果、円相当径が10μm以上の金属間化合物の数が3個/mm以下であれば、耐流通ピンホール性を極めて有効に向上させることができることを知見するに至った。
本発明に係る缶ボディ用アルミニウム合金板は、上記構成により、缶ボディ胴部の強度が均一に向上するので、ピンホールが生じ難くなるという優れた効果を備えるものである。
The present inventors conducted diligent research to improve the piercing strength of the can body body after canning by DI processing and paint baking, and found that the number of intermetallic compounds having an equivalent circle diameter of 10 μm or more and the flow-resistant pin It has been found that there is a correlation with the Hall property. That is, when the number of intermetallic compounds having an equivalent circle diameter of 10 μm or more increases, the flow resistant pinhole performance decreases. In a process where a sharp body comes into contact with or collides with the body of the can body, which is a typical form of distribution pinholes, and breaks such as minute holes occur, the can body body and the sharp body contact or collide with each other. Stress concentration occurs at the site. At that time, if an intermetallic compound exists on the contact surface between the can body body and the sharpened body, the intermetallic compound does not plastically deform at the stress at which the aluminum matrix phase starts plastic deformation, so that discontinuity of deformation occurs, and the metal High stress concentration occurs around the intermetallic compound. As a result of experiments conducted by the present inventors, when the equivalent circle diameter of the intermetallic compound existing on the contact surface is 10 μm or more, the stress concentration becomes extremely high because the influence of the discontinuity of deformation becomes large, and the part concerned From this, it became clear that cracks were easily generated. In addition, even an intermetallic compound having an equivalent circle diameter of 10 μm or more may not have a significant effect on stress concentration depending on the shape and direction of the generated stress, and this fracture phenomenon is a very stochastic phenomenon. It became clear. As a result of statistically investigating the relationship between the number of intermetallic compounds having an equivalent circle diameter of 10 μm or more and anti-circulation pinhole performance, the present inventors have found that the number of intermetallic compounds having an equivalent circle diameter of 10 μm or more is three. / Mm 2 or less, it has been found that the distribution pinhole resistance can be improved extremely effectively.
The aluminum alloy plate for a can body according to the present invention has an excellent effect that pinholes hardly occur because the strength of the can body body portion is uniformly improved by the above-described configuration.

[DI加工による製缶工程]
以下、図1を用いて、缶ボディ用アルミニウム合金板にDI加工を施して製缶し、缶ボディ10を得る工程の一例を説明する。
[Can manufacturing process by DI processing]
Hereinafter, an example of a process for obtaining a can body 10 by performing DI processing on an aluminum alloy plate for a can body to produce a can body 10 will be described with reference to FIG.

まず、図1(a)に示すように、缶ボディ用アルミニウム合金板に打ち抜き加工を施し、直径が149mmの円板状の板材を得る。
ついで、この円板状の板材に絞り加工を施し、図1(b)に示すような、軸線方向における高さが42mm、外径が88.2mmとされたカップ状缶体を形成する。ここで、円板状の板材は、厚さが0.250mm以上0.275mm未満とされている。
First, as shown in FIG. 1 (a), a can body aluminum alloy plate is punched to obtain a disk-shaped plate member having a diameter of 149 mm.
Next, the disk-shaped plate member is drawn to form a cup-shaped can body having a height in the axial direction of 42 mm and an outer diameter of 88.2 mm as shown in FIG. Here, the disc-shaped plate material has a thickness of 0.250 mm or more and less than 0.275 mm.

次いで、図1(b)に示すカップ状缶体に再絞り加工を施し、図1(c)に示すような外形66mmのカップ状缶体とする。ここで、D1とD3との比は、2.0〜2.7とされており、図示例では149/66=2.26である。
次いで、総しごき率が50%以上60%未満となるように、しごき加工を施し、図1(d)に示すような有底筒状缶体を形成する。この有底筒状体の開口端部は、その缶軸方向に波打つような凹凸形状とされる。
Next, the cup-shaped can body shown in FIG. 1B is redrawn to obtain a cup-shaped can body having an outer diameter of 66 mm as shown in FIG. Here, the ratio between D1 and D3 is set to 2.0 to 2.7, and in the illustrated example, 149/66 = 2.26.
Next, ironing is performed so that the total ironing rate is 50% or more and less than 60%, thereby forming a bottomed cylindrical can body as shown in FIG. The opening end portion of the bottomed cylindrical body has an uneven shape that undulates in the direction of the can axis.

次いで、図1(d)に示す有底筒状体の開口端部を切断して、缶軸方向における大きさ、つまり高さをその全周に亙って約123.5mmと同等にし、外径が65mm以上67mm以下とされた胴部11と底部12とを有する横断面円形の缶ボディ10を形成する。本例では、底部12が、胴部11の缶軸方向における内側に向けて凹む図示略のドーム部を備えるとともに、このドーム部の外周縁部が、胴部11の缶軸方向における外側に向けて突出する図示略の環状凸部とされている。この環状凸部の缶軸方向における頂部が、缶ボディ10が正立姿勢となるように該缶ボディ10を接地面上に配置したときに、接地面に接する接地部とされる。   Next, the open end of the bottomed cylindrical body shown in FIG. 1 (d) is cut so that the size in the can axis direction, that is, the height is equal to about 123.5 mm over the entire circumference. A can body 10 having a circular cross section having a body 11 and a bottom 12 having a diameter of 65 mm or more and 67 mm or less is formed. In this example, the bottom portion 12 includes a dome portion (not shown) that is recessed toward the inside of the trunk portion 11 in the can axis direction, and the outer peripheral edge portion of the dome portion faces the outside of the trunk portion 11 in the can axis direction. It is an annular projection (not shown) that protrudes. The top portion of the annular convex portion in the can axis direction serves as a grounding portion in contact with the grounding surface when the can body 10 is disposed on the grounding surface so that the can body 10 is in an upright posture.

以上説明したように、本発明に係る耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板によれば、上記成分組成を有し、円相当径が10μm以上の金属間化合物の数が3個/mm以下であり、また、DI加工及び塗装焼付けによる製缶後の缶ボディの胴部の引張強さが330MPa超380MPa以下、前記胴部の伸びが4%以上とされた構成とすることにより、缶ボディ胴部の強度を均一に向上させることができ、ピンホールが生じ難くなる。 As described above, according to the aluminum alloy sheet for can bodies having excellent flow-resistant pinhole properties according to the present invention, the number of intermetallic compounds having the above component composition and having an equivalent circle diameter of 10 μm or more is 3 / and mm 2 or less, also, by the tensile strength of the barrel portion of the can body after forming a can by DI processing and baking is less 330MPa ultra 380 MPa, a structure in which elongation of the body portion is 4% or more The strength of the can body body can be improved uniformly, and pinholes are less likely to occur.

また、素材強度を高くすることにより、DI加工及び塗装焼付けによる製缶後の缶ボディ胴部の強度を、引張強さで330MPa超380MPa以下(好ましくは340MPa超)と高くできるので、前記胴部の突き刺し強度が向上し、胴部にピンホールが生じるのを抑制することができる。
また、素材板厚を薄くすることにより、缶ボディの重量を従来と同等に抑制することができる。
従って、本発明の缶ボディ用アルミニウム合金板を用いることにより、製造コストを増大させることなく、耐流通ピンホール性に優れた缶ボディを得ることができる。
Moreover, by increasing the material strength, the strength of the can body barrel after canning by DI processing and paint baking can be increased to a tensile strength of more than 330 MPa and less than 380 MPa (preferably more than 340 MPa). This improves the piercing strength and prevents the pinhole from occurring in the body portion.
Further, by reducing the thickness of the material plate, the weight of the can body can be suppressed to the same level as in the past.
Therefore, by using the aluminum alloy plate for a can body of the present invention, a can body excellent in circulation pinhole resistance can be obtained without increasing the production cost.

以下、実施例を示して、本発明の耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板を更に詳しく説明するが、本発明はこの実施例に限定されるものでは無い。
本実施例では、下記表1に示す成分組成及び製造条件にて、以下の工程で各試験例の缶ボディ用アルミニウム合金板を作製し、後述の各項目について評価を行った。
Hereinafter, although an Example is shown and the aluminum alloy plate for can bodies excellent in the distribution | circulation resistance pinhole property of this invention is demonstrated in more detail, this invention is not limited to this Example.
In the present Example, the aluminum alloy plate for can bodies of each test example was produced in the following steps under the component composition and production conditions shown in Table 1 below, and each item described below was evaluated.

[缶ボディ用アルミニウム合金板作製工程]
下記表1に示す成分を含有するアルミニウム合金を溶解し、この溶湯を常法により脱ガス、介在物除去を行い、半連続鋳造によってスラブに鋳造した。この際、鋳造速度、冷却水量を適宜調節し、得られたスラブ内の凝固冷却速度がほぼ一定とされた部位を切り出すことにより、凝固冷却速度が下記表1に示すような数値とされた各サンプルを得た。
次いで、スラブに対し、下記表1に示す温度で均熱化処理を施した後、熱間圧延を施した。そして、下記表1に示す条件で必要に応じて冷間圧延及び中間焼鈍を行った後、最終冷間圧延を施して、板厚を0.270mmとした各試験例の缶ボディ用アルミニウム合金板を得た。
[Production process of aluminum alloy plate for can body]
An aluminum alloy containing the components shown in Table 1 below was melted, this molten metal was degassed and inclusions removed by conventional methods, and cast into a slab by semi-continuous casting. At this time, the casting speed and the amount of cooling water were appropriately adjusted, and the solidification cooling rate in the obtained slab was cut out to be a substantially constant value, whereby the solidification cooling rate was set to a numerical value as shown in Table 1 below. A sample was obtained.
Next, the slab was subjected to a soaking treatment at a temperature shown in Table 1 below, and then subjected to hot rolling. And after performing cold rolling and intermediate annealing as needed under the conditions shown in Table 1 below, the final cold rolling was performed to obtain a plate thickness of 0.270 mm. Got.

[缶ボディ用アルミニウム合金板(製缶前)の評価項目]
上記作製工程で得られた缶ボディ用アルミニウム合金板の各サンプルについて、EPMA(Electron Probe MicroAnalyser)を用いてSEM画像および組成像を画像解析し、Mnを含有する金属間化合物を測定することにより、円相当径が10μm以上の金属間化合物の数を調べた。その際、合金板の圧延方向に平行な断面に対し、鏡面研磨後に、板厚中央から±100μm以内の領域を対象として観察および解析を行った。
また、缶ボディ用アルミニウム合金板の各サンプルについて、210℃で10分加熱後(ベーキング後)の0.2%耐力YSを測定した。
[Evaluation items of aluminum alloy plate for can body (before can making)]
For each sample of the aluminum alloy plate for can body obtained in the above production process, by analyzing the SEM image and composition image using EPMA (Electron Probe MicroAnalyzer), and measuring the intermetallic compound containing Mn, The number of intermetallic compounds having an equivalent circle diameter of 10 μm or more was examined. At that time, the cross section parallel to the rolling direction of the alloy plate was observed and analyzed for a region within ± 100 μm from the plate thickness center after mirror polishing.
Moreover, about each sample of the aluminum alloy plate for can bodies, 0.2% yield strength YS after heating at 210 degreeC for 10 minutes (after baking) was measured.

[缶ボディの製缶]
上記工程で得られた缶ボディ用アルミニウム合金板の各サンプルを打ち抜き、直径が141mm、または149mmとされた円板状の板材(図1(a)参照)を得た。そして、下記表2に示す製造条件で、円板状の板材にDI加工を施し、胴部の最薄部肉厚T2が下記表2に示す肉厚になるまで絞り加工及びしごき加工を行い、各試験例の缶ボディ(350cc缶)を得た。なお、この際の総絞り比及び総しごき率を、前式(1)〜(4)式によって求め、下記表2に示した。また、この際、缶ボディ用アルミニウム合金板のオペレータ側位置OPS及びその反対側位置DRSにおける幅方向の3箇所、計6箇所の位置において、それぞれ板材を打ち抜き、DI加工によって缶ボディを得た。
[Can body manufacturing]
Each sample of the aluminum alloy plate for can bodies obtained in the above process was punched out to obtain a disk-shaped plate material (see FIG. 1A) having a diameter of 141 mm or 149 mm. Then, under the manufacturing conditions shown in Table 2 below, DI processing is performed on the disk-shaped plate material, and drawing and ironing are performed until the thinnest part thickness T2 of the body part becomes the thickness shown in Table 2 below. The can body (350 cc can) of each test example was obtained. In addition, the total drawing ratio and the total ironing ratio at this time were determined by the previous formulas (1) to (4) and are shown in Table 2 below. At this time, the plate material was punched out at a total of six locations in the width direction at the operator side position OPS and the opposite side position DRS of the aluminum alloy plate for the can body, and a can body was obtained by DI processing.

上述のようにしてDI加工した各試験例の缶ボディに対し、以下に説明する方法で外面塗装及び外面印刷、並びに内面塗装を行なった。
まず、塗料としてエポキシ系塗料及びアクリル系塗料を使用し、文字情報等の印刷部分も含め、缶ボディの外面に50mg/dmの膜厚で塗布した。そして、この缶ボディをオーブンに入れ、180℃の温度で30秒間、加熱乾燥した。
また、上述のようにして外面塗装を施した缶ボディの内面に、スプレーを使用してエポキシ塗料を40mg/dmの膜厚で塗布した。そして、この缶ボディをオーブンに入れ、200℃の温度で60秒間、加熱乾燥した。
The outer surface coating, outer surface printing, and inner surface coating were performed on the can body of each test example DI processed as described above by the method described below.
First, an epoxy paint and an acrylic paint were used as paints, and applied to the outer surface of the can body at a film thickness of 50 mg / dm 2 including printed portions such as character information. And this can body was put into oven and heat-dried at the temperature of 180 degreeC for 30 second.
Moreover, the epoxy paint was apply | coated by the film thickness of 40 mg / dm < 2 > using the spray to the inner surface of the can body which gave the outer surface coating as mentioned above. And this can body was put into oven and heat-dried at the temperature of 200 degreeC for 60 second.

[缶ボディ(製缶後)の評価項目]
上記工程で得られた缶ボディ用アルミニウム合金板の各サンプルを加工してなる缶ボディについて、缶ボディの胴部における引張強さTS、伸び率、及び突き刺し強度を測定した。
引張強さTS及び伸び率は、上記缶ボディから引張試験片を採取し、全長75mm、平行部長36mm、平行部幅10mm、つかみ部幅15mm、肩半径15mmの寸法形状に加工した試験片を用いて評価した。この際、缶の接地部から缶軸方向上方に60mm離れた部分が引張試験片の中心となり、引張方向が缶軸方向となるようにした。そして、外面及び内面の塗装を、硝酸を用いて脱膜処理した後、引張試験を行うことにより、引張強さTS及び伸び率を測定した。
また、突き刺し強度は、室温(20℃)雰囲気中において、缶ボディに0.196MPaの内圧をかけた状態とし、缶ボディ胴部のうち、接地部から缶軸方向上方に60mm離れた部分を、曲率半径2.25mmとされた押圧子によって径方向内方に向けて押圧し、穴があいた時の押圧力で評価した。この際、押圧子の胴部の径方向内方へ向けた移動速度を25mm/minとした。
[Evaluation items for can body (after can making)]
About the can body formed by processing each sample of the aluminum alloy plate for can body obtained in the above process, the tensile strength TS, the elongation rate, and the piercing strength in the body portion of the can body were measured.
Tensile strength TS and elongation rate were obtained by taking a tensile test piece from the above can body and processing it into a dimensional shape having a total length of 75 mm, a parallel part length of 36 mm, a parallel part width of 10 mm, a grip part width of 15 mm, and a shoulder radius of 15 mm. And evaluated. At this time, the portion 60 mm away from the can's ground contact portion in the upper direction of the can axis was the center of the tensile test piece, and the tensile direction was the can axis direction. Then, after the coating of the outer surface and the inner surface was removed using nitric acid, a tensile test was performed to measure the tensile strength TS and the elongation.
Further, the piercing strength is a state in which an internal pressure of 0.196 MPa is applied to the can body in a room temperature (20 ° C.) atmosphere, and a portion of the can body trunk that is 60 mm away from the grounding portion upward in the can axis direction, The pressure was applied inward in the radial direction with a pressing element having a curvature radius of 2.25 mm, and the evaluation was performed by the pressing force when a hole was formed. At this time, the moving speed of the body of the presser toward the inside in the radial direction was set to 25 mm / min.

上記缶ボディ用アルミニウム合金板の各サンプルの組成成分並びに製造条件の一覧を表1に示すとともに、缶ボディの各サンプルの製造条件並びに製缶後の評価試験結果の一覧を表2に示す。   Table 1 shows a list of composition components and manufacturing conditions for each sample of the aluminum alloy plate for can bodies, and Table 2 shows a list of manufacturing conditions for each sample of the can body and evaluation test results after canning.

なお、表1の中間焼鈍の欄に示すIA−CALとは、合金板作製工程において、冷間圧延と冷間圧延との間で連続中間焼鈍を行なったことを示し、また、HOT−CALとは、合金板作製工程において、熱間圧延と冷間圧延との間で連続焼鈍を行なったことを示している。   In addition, IA-CAL shown in the column of intermediate annealing in Table 1 indicates that continuous intermediate annealing was performed between cold rolling and cold rolling in the alloy plate manufacturing process, and HOT-CAL Shows that continuous annealing was performed between hot rolling and cold rolling in the alloy plate manufacturing process.

Figure 2009001858
Figure 2009001858

Figure 2009001858
Figure 2009001858

上記結果により、本発明で規定された各種特性を有する缶ボディ用アルミニウム合金板が、高い機械的特性を有し、耐流通ピンホール性に優れていることが明らかとなった。   From the above results, it became clear that the aluminum alloy sheet for can bodies having various characteristics defined in the present invention has high mechanical characteristics and excellent circulation pinhole resistance.

本発明に係る耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板を説明するための模式図であり、DI加工して製缶する際の工程を説明する概略図である。It is a schematic diagram for demonstrating the aluminum alloy plate for can bodies which is excellent in the distribution | circulation resistance pinhole property which concerns on this invention, and is the schematic explaining the process at the time of DI processing and can-making.

符号の説明Explanation of symbols

10…缶ボディ、11…胴部、12…底部 10 ... can body, 11 ... body, 12 ... bottom

Claims (2)

胴部の厚さが0.110mm超0.125mm以下であり、製造時の総絞り比が2.0〜2.7であり、且つ総しごき率が50%以上60%未満の缶ボディの製造に用いる缶ボディ用アルミニウム合金板であって、
質量%で、Si:0.15〜0.5%、Fe:0.3〜0.6%、Cu:0.15〜0.5%、Mn:0.7〜1.2%、Mg:0.8〜2.0%を含有し、残部が不可避不純物を含むAlからなり、
板厚が0.250mm以上0.275mm未満であり、ベーキング後の素材耐力が265MPa以上であり、円相当径が10μm以上の金属間化合物の数が3個/mm以下とされており、DI加工及び塗装焼付けによる製缶後の缶ボディの胴部の引張強さが330MPa超380MPa以下であり、前記胴部の伸びが4%以上であることを特徴とする、耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板。
Manufacture of a can body having a body thickness of more than 0.110 mm and not more than 0.125 mm, a total drawing ratio of 2.0 to 2.7, and a total ironing ratio of 50% or more and less than 60% An aluminum alloy plate for a can body used for,
In mass%, Si: 0.15-0.5%, Fe: 0.3-0.6%, Cu: 0.15-0.5%, Mn: 0.7-1.2%, Mg: Containing 0.8 to 2.0%, the balance is made of Al containing inevitable impurities,
The plate thickness is 0.250 mm or more and less than 0.275 mm, the material yield strength after baking is 265 MPa or more, and the number of intermetallic compounds having an equivalent circle diameter of 10 μm or more is 3 / mm 2 or less. Excellent tensile pinhole resistance, characterized in that the tensile strength of the body part of the can body after can making by processing and paint baking is more than 330 MPa and 380 MPa or less, and the elongation of the body part is 4% or more. Aluminum alloy plate for can body.
さらに、質量%でZn:0.05〜0.30%、Ti:0.05〜0.15%の内の1種又は2種を含有することを特徴とする請求項1に記載の耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板。   Furthermore, 1% or 2 types in Zn: 0.05-0.30% and Ti: 0.05-0.15% are contained in the mass%, The flow resistance of Claim 1 characterized by the above-mentioned. Aluminum alloy plate for can bodies with excellent pinhole properties.
JP2007163702A 2007-06-21 2007-06-21 Aluminum alloy sheet for can body having excellent circulation pinhole resistance Pending JP2009001858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007163702A JP2009001858A (en) 2007-06-21 2007-06-21 Aluminum alloy sheet for can body having excellent circulation pinhole resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007163702A JP2009001858A (en) 2007-06-21 2007-06-21 Aluminum alloy sheet for can body having excellent circulation pinhole resistance

Publications (1)

Publication Number Publication Date
JP2009001858A true JP2009001858A (en) 2009-01-08

Family

ID=40318562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007163702A Pending JP2009001858A (en) 2007-06-21 2007-06-21 Aluminum alloy sheet for can body having excellent circulation pinhole resistance

Country Status (1)

Country Link
JP (1) JP2009001858A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016005967A (en) * 2014-05-30 2016-01-14 ユニバーサル製缶株式会社 Beverage can

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196346A (en) * 1987-10-08 1989-04-14 Sky Alum Co Ltd Aluminum alloy stretched material, ingot for manufacturing said stretched material and manufacture of thereof
JPH10265885A (en) * 1997-03-28 1998-10-06 Kobe Steel Ltd Aluminum alloy sheet minimal in dispersion of flange width, and its production
JP2004068061A (en) * 2002-08-05 2004-03-04 Sumitomo Light Metal Ind Ltd Aluminum alloy plate for can body with excellent stab resistance
JP2006077283A (en) * 2004-09-08 2006-03-23 Kobe Steel Ltd Aluminum alloy plate for resin-coated packaging container and method for producing the same
JP2006097076A (en) * 2004-09-29 2006-04-13 Kobe Steel Ltd Aluminum-alloy sheet for bottle can, and its manufacturing method
WO2007015560A1 (en) * 2005-08-04 2007-02-08 Universal Can Corporation Aluminum alloy sheet for can body, di can, and method for manufacture of the di can
JP2007061905A (en) * 2005-08-04 2007-03-15 Universal Seikan Kk Manufacturing method of di can
JP2007197815A (en) * 2005-12-28 2007-08-09 Mitsubishi Alum Co Ltd Aluminum alloy plate for can bodies with excellent distribution pinhole resistance
JP2007197816A (en) * 2005-12-28 2007-08-09 Mitsubishi Alum Co Ltd Aluminum alloy plate for can bodies with excellent distribution pinhole resistance
JP2008057030A (en) * 2005-09-09 2008-03-13 Universal Seikan Kk Di can

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196346A (en) * 1987-10-08 1989-04-14 Sky Alum Co Ltd Aluminum alloy stretched material, ingot for manufacturing said stretched material and manufacture of thereof
JPH10265885A (en) * 1997-03-28 1998-10-06 Kobe Steel Ltd Aluminum alloy sheet minimal in dispersion of flange width, and its production
JP2004068061A (en) * 2002-08-05 2004-03-04 Sumitomo Light Metal Ind Ltd Aluminum alloy plate for can body with excellent stab resistance
JP2006077283A (en) * 2004-09-08 2006-03-23 Kobe Steel Ltd Aluminum alloy plate for resin-coated packaging container and method for producing the same
JP2006097076A (en) * 2004-09-29 2006-04-13 Kobe Steel Ltd Aluminum-alloy sheet for bottle can, and its manufacturing method
WO2007015560A1 (en) * 2005-08-04 2007-02-08 Universal Can Corporation Aluminum alloy sheet for can body, di can, and method for manufacture of the di can
JP2007061905A (en) * 2005-08-04 2007-03-15 Universal Seikan Kk Manufacturing method of di can
JP2008057030A (en) * 2005-09-09 2008-03-13 Universal Seikan Kk Di can
JP2007197815A (en) * 2005-12-28 2007-08-09 Mitsubishi Alum Co Ltd Aluminum alloy plate for can bodies with excellent distribution pinhole resistance
JP2007197816A (en) * 2005-12-28 2007-08-09 Mitsubishi Alum Co Ltd Aluminum alloy plate for can bodies with excellent distribution pinhole resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016005967A (en) * 2014-05-30 2016-01-14 ユニバーサル製缶株式会社 Beverage can

Similar Documents

Publication Publication Date Title
US9574258B2 (en) Aluminum-alloy sheet and method for producing the same
WO2013118611A1 (en) Aluminum alloy sheet for di can body
JP2006265700A (en) Aluminum alloy sheet for bottle-shaped can superior in high-temperature property
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
JP2012188704A (en) Aluminum-alloy sheet for resin coated can body, and method for producing the same
JP5247995B2 (en) Aluminum alloy plate for can body excellent in circulation pinhole resistance and method for producing can body excellent in distribution pinhole resistance
JP2008057030A (en) Di can
JP5247994B2 (en) Aluminum alloy plate for can body excellent in circulation pinhole resistance and method for producing can body excellent in distribution pinhole resistance
JP2009270192A (en) Aluminum alloy sheet for can barrel, and method for producing the same
JP5247996B2 (en) Aluminum alloy plate for can body excellent in circulation pinhole resistance and method for producing can body excellent in distribution pinhole resistance
JP2025098290A (en) Aluminum alloy coated plate for can lids
WO2007015560A1 (en) Aluminum alloy sheet for can body, di can, and method for manufacture of the di can
WO2016002226A1 (en) Aluminum alloy plate for beverage can body and method for manufacturing same
JP2016141886A (en) Aluminum alloy sheet for can top
JP4334979B2 (en) Aluminum alloy plate for wide-mouth bottle can cap
JP7202257B2 (en) Aluminum alloy plate for can body
JP6372984B2 (en) Manufacturing method of aluminum alloy plate for can body with excellent distribution hole resistance
JP3605662B2 (en) Aluminum foil for containers
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JP2009001858A (en) Aluminum alloy sheet for can body having excellent circulation pinhole resistance
JP2003293105A (en) Method for producing aluminum alloy sheet for bottle type drink can
JP2016079501A (en) Aluminum alloy sheet for can-top
JP3867569B2 (en) Aluminum foil for containers and manufacturing method thereof
JP5456398B2 (en) Aluminum alloy plate for can body having excellent circulation pinhole resistance and method for producing the same
JP4019084B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100525

A977 Report on retrieval

Effective date: 20120423

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120911