[go: up one dir, main page]

JP2008545819A - Integrated NGL recovery and liquefied natural gas production - Google Patents

Integrated NGL recovery and liquefied natural gas production Download PDF

Info

Publication number
JP2008545819A
JP2008545819A JP2008511816A JP2008511816A JP2008545819A JP 2008545819 A JP2008545819 A JP 2008545819A JP 2008511816 A JP2008511816 A JP 2008511816A JP 2008511816 A JP2008511816 A JP 2008511816A JP 2008545819 A JP2008545819 A JP 2008545819A
Authority
JP
Japan
Prior art keywords
stream
reflux
rich
ethane
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2008511816A
Other languages
Japanese (ja)
Inventor
エイドリアン ブロストウ,アダム
ジュリアン ロバーツ,マーク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Products and Chemicals Inc
Original Assignee
Air Products and Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Products and Chemicals Inc filed Critical Air Products and Chemicals Inc
Publication of JP2008545819A publication Critical patent/JP2008545819A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/0231Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the working-up of the hydrocarbon feed, e.g. reinjection of heavier hydrocarbons into the liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • F25J1/0239Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • F25J1/0239Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling
    • F25J1/0241Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling wherein the overhead cooling comprises providing reflux for a fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0258Construction and layout of liquefaction equipments, e.g. valves, machines vertical layout of the equipments within in the cold box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0242Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/30Processes or apparatus using separation by rectification using a side column in a single pressure column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/50Processes or apparatus using other separation and/or other processing means using absorption, i.e. with selective solvents or lean oil, heavier CnHm and including generally a regeneration step for the solvent or lean oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/64Propane or propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/60Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/66Closed external refrigeration cycle with multi component refrigerant [MCR], e.g. mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/40Vertical layout or arrangement of cold equipments within in the cold box, e.g. columns, condensers, heat exchangers etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

エタンおよびより高級の複数種の炭化水素との混合物(110)、特に天然ガスからの、スクラブ塔(114)を用いたメタンの分離であって、該混合物が、部分的に凝縮(122)されて還流を塔114に与えるメタンに富む塔頂物(116)と液体のメタンに乏しい塔底液(126)とに分離されるものは、塔底液の分画(128)からのエタンに富む流れ(130)に由来する追加の還流(136)を与えることによって改善する。好ましくは、分画(128)からの吸収剤液(140)もスクラブ塔内に導入される。部分的な凝縮の後に残留する蒸気画分(120)を液化(122)してLNG製品(124)を得ることができる。  Separation of methane from a mixture (110) of ethane and higher hydrocarbons, in particular natural gas, using a scrub column (114), the mixture being partially condensed (122) Is separated into a methane-rich top (116) that provides reflux to column 114 and a liquid methane-poor bottom liquid (126) that is rich in ethane from the bottom liquid fraction (128). Improved by providing additional reflux (136) from stream (130). Preferably, the absorbent liquid (140) from fraction (128) is also introduced into the scrub column. The vapor fraction (120) remaining after partial condensation can be liquefied (122) to obtain an LNG product (124).

Description

本発明は、エタンおよびより重い炭化水素類との混合物からのメタンの分離に関し、特に、他を排除するものではないが、天然ガス液体(NGL)を回収し、そして天然ガス(NG)から液化天然ガス(LNG)を製造する統合プロセスへの用途を有する。   The present invention relates to the separation of methane from mixtures with ethane and heavier hydrocarbons, in particular, but not exclusively, recovers natural gas liquid (NGL) and liquefies from natural gas (NG). Has application to an integrated process for producing natural gas (LNG).

天然ガスは、主にメタン、およびより重い炭化水素類を含む副成分を含む。液化天然ガスは殆どがメタンである。メタンよりも重い炭化水素類は、通常、天然ガス液体として凝縮および回収され、そして高価値の炭化水素製品を生産するために分画される。   Natural gas contains mainly secondary components including methane and heavier hydrocarbons. Most of liquefied natural gas is methane. Hydrocarbons heavier than methane are usually condensed and recovered as natural gas liquids and fractionated to produce high value hydrocarbon products.

典型的なNG液化装置は、原料ガスまたはパイプラインガスが供給されかつメタンに富む塔頂蒸気およびNGLを塔底液として製造するスクラブ塔を含む。メタンに富む塔頂蒸気の一部は部分的に凝縮されて塔に還流を供給し、残分は液化されてLNG製品を与える。塔底液は分画され、個々の炭化水素類および/または炭化水素分(画分)が高価値製品として得られる。   A typical NG liquefaction apparatus includes a scrub column that is fed with feed gas or pipeline gas and produces methane-rich top vapor and NGL as the bottom liquid. A portion of the methane-rich top vapor is partially condensed to provide reflux to the tower and the remainder is liquefied to give an LNG product. The bottom liquid is fractionated, and individual hydrocarbons and / or hydrocarbon fractions (fractions) are obtained as high value products.

液化の効率は、圧力の増大に伴って改善され、従って、NG液化圧力は、LNGプロセスの電力消費を最小化するために、メタンの臨界圧力より大幅に大きくすべきである。しかし、重い炭化水素類をスクラブ塔によって回収することは圧力の増大に伴ってより困難になり、その臨界圧力よりも高圧で混合物を分離することは不可能である。よって、満足な分離を実現するためには、該スクラブ塔をメタンの臨界圧力よりも大幅に低い圧力で操作しなければならない。一般的な解決策は、スクラブ塔供給物を膨張させ、次いで塔頂蒸気を圧縮することである。供給物の等エントロピー膨張で得られる結果は、少なくとも部分的に単数または複数の塔頂圧縮器を運転するために用いることができる。このような解決策は、US−A−4065278 (1977年12月27日公開)に示される。塔頂蒸気の圧縮が後に続くスクラブ塔供給物の膨張は、NGL分画から得られる重い複数種の成分を、吸収剤液としてスクラブ塔の塔頂または塔頂付近に再循環させることによって回避できる。例えば、Chen−Hwa Chiu(Oil and Gas Journal,Nov. 24,1997,56−63)は、C4NGL画分の全部または一部等の重いアルカンの再循環物をLNGプロセスのスクラブ塔に使用することにより、分離された混合物の臨界圧力、これによりスクラブ塔に対する操作圧力、を上げることができる旨報告する。例示的なプロセスでは、脱ブタン装置から回収されるC4NGL画分の一部または全部の再循環物がある。 The efficiency of liquefaction improves with increasing pressure, so the NG liquefaction pressure should be significantly greater than the critical pressure of methane in order to minimize the power consumption of the LNG process. However, recovering heavy hydrocarbons with a scrub column becomes more difficult with increasing pressure, and it is impossible to separate the mixture at higher than its critical pressure. Thus, to achieve satisfactory separation, the scrub column must be operated at a pressure significantly below the critical pressure of methane. A common solution is to expand the scrub column feed and then compress the top vapor. The results obtained from the isentropic expansion of the feed can be used to operate at least partially the overhead compressor or compressors. Such a solution is shown in US-A-4065278 (published December 27, 1977). Expansion of the scrub column feed followed by overhead vapor compression can be avoided by recirculating heavy components from the NGL fraction to or near the top of the scrub column as an absorbent liquid. . For example, Chen-Hwa Chiu (Oil and Gas Journal, Nov. 24, 1997, 56-63) uses heavy alkane recycles, such as all or part of the C 4 NGL fraction, in the scrub column of the LNG process. By doing so, it is reported that the critical pressure of the separated mixture and thereby the operating pressure on the scrub column can be increased. In an exemplary process, there is a recycle of some or all of the C 4 NGL fraction recovered from the debutanizer.

WO01101307/US−A−2003005722/US−B−6,742,358(2002年12月2日/2003年1月9日/2004年6月1日公開)は、スクラブ塔への塔頂還流が塔の中間位置から引き出した蒸気を凝縮することにより与えられるLNGプロセスを開示する。該文献はまた、部分的に凝縮された供給ガスの蒸気および液体の画分が別個に分画され、そして蒸気画分の分画による塔底液が液体画分の分画に対して中間または塔頂の還流を与えるプロセスを開示する。これらのプロセスの全てにおいて、スクラブ塔からの塔頂の蒸気は、液化前に圧縮される。   WO01101307 / US-A-2003005722 / US-B-6,742,358 (December 2, 2002 / January 9, 2003 / June 1, 2004) An LNG process is disclosed which is provided by condensing vapor drawn from the middle position of the column. The document also describes that the vapor and liquid fractions of the partially condensed feed gas are fractionated separately, and the bottom liquid from the vapor fraction fraction is intermediate or relative to the liquid fraction fraction. A process for providing overhead reflux is disclosed. In all of these processes, the top vapor from the scrub column is compressed before liquefaction.

DE−A−10205366(2003年8月21日公開)は、スクラブ塔からのエタンに富む塔頂の蒸気を冷却し、そして残りのより高級の炭化水素類の除去のための第2の塔に通過させるLNGプロセスを開示する。第2の塔の塔底液は、スクラブ塔に対して還流を与える。好ましくは、C4/C5NGL画分が、第2の塔に還流を与える。2つの塔の調整機能および吸着機能は単独の塔に合体させることができる。 DE-A-10205366 (published 21 August 2003) cools the ethane-rich steam from the scrub column and becomes the second column for removal of the remaining higher hydrocarbons. An LNG process to pass is disclosed. The second column bottoms provide reflux to the scrub column. Preferably, the C 4 / C 5 NGL fraction provides reflux to the second column. The adjustment and adsorption functions of the two towers can be combined into a single tower.

US−A−6662589/EP−A−1469266 (2003年12月16日/2004年10月20日公開)は、エタンよりも重い複数種の成分を含むNGL画分が、天然ガス供給部とメタンに富む還流の供給部との間の位置でスクラブ塔に吸収剤液として供給されるLNGプロセスを開示する。例示的な態様において、該還流はスクラブ塔からの塔頂蒸気の部分的な凝縮によって得られる。スクラブ塔塔頂はLNG製品を与えるための液化の前には圧縮されない。   US-A-6662589 / EP-A-1469266 (published on December 16, 2003 / October 20, 2004) discloses that an NGL fraction containing a plurality of components heavier than ethane is contained in a natural gas supply unit and methane. An LNG process is disclosed which is fed as an absorbent liquid to the scrub column at a location between the rich reflux feed. In an exemplary embodiment, the reflux is obtained by partial condensation of overhead vapor from a scrub column. The top of the scrub column is not compressed prior to liquefaction to give LNG product.

WO2004/010064(2004年1月29日公開)は、C4/C5NGL画分がスクラブ塔に直接または間接に供給されて追加の還流を与えるLNGプロセスを開示する。該画分は、塔頂の蒸気の部分的な凝縮によって与えられる還流の供給部においてまたは供給部の上方で塔に供給される。 WO 2004/010064 (published January 29, 2004) discloses an LNG process in which the C 4 / C 5 NGL fraction is fed directly or indirectly to the scrub column to provide additional reflux. The fraction is fed to the column at or above the reflux feed provided by partial condensation of the top vapor.

スクラブ塔内の混合物の臨界圧力は、塔をエタンに富む流れで還流させることによっても上昇させることができる。このことはまた、良好なC2−C3分離およびNGLからのプロパン(C3)の高回収を可能にする。 The critical pressure of the mixture in the scrub column can also be increased by refluxing the column with a stream rich in ethane. This also allows a high recovery of good C 2 -C 3 propane from separation and NGL (C 3).

WO−A−0188447/US−A−6,401,486(2001年11月22日・2002年6月11日公開)は、スクラブ塔に対する塔頂還流が、大部分であるメタン、および極めて少ないプロパンと共にエタンを含む蒸気の凝縮によって与えられるLNGプロセスを開示する。スクラブ塔の塔頂蒸気は、全体的に液化され、LNG製品を与え、かつスクラブ塔塔底は、NGL精製塔内で分画される。該塔頂還流を与えるために凝縮される蒸気は、
(i)NGL分画による塔頂蒸気、および、液化し、好ましくは亜冷却したスクラブ塔塔頂を大気圧付近まで勢い良く流すことにより得られる勢い良く流した任意の蒸気、
(ii)供給ガス部分の後流、
(iii)液化し、好ましくは亜冷却したスクラブ塔塔頂を大気圧付近まで勢い良く流すことにより得られる勢い良く流した蒸気、または
(iv)液化し、好ましくは亜冷却したスクラブ塔塔頂の一部、
に由来することができる。
WO-A-0188447 / US-A-6,401,486 (published on November 22, 2001 and June 11, 2002) shows that the top reflux for the scrub column is mostly methane, and very little Disclosed is an LNG process provided by condensation of steam containing ethane with propane. The scrub tower top vapor is totally liquefied to give the LNG product, and the scrub tower bottom is fractionated in the NGL purification tower. The vapor condensed to give the top reflux is
(I) overhead steam from NGL fraction, and any steam that has flowed vigorously obtained by vigorously flowing the liquefied and preferably subcooled scrub tower top to near atmospheric pressure,
(Ii) the wake of the feed gas part,
(Iii) Vigorously flowing steam obtained by vigorously flowing a liquefied and preferably subcooled scrub column top to near atmospheric pressure, or (iv) a liquefied and preferably subcooled scrub column top. part,
Can be derived from.

選択肢(i)、(iii)および(iv)では、供給ガス部分の後流を凝縮することによりスクラブ塔への追加の還流を与えることができるが、NGL分画および部分的に凝縮されたスクラブ塔塔頂の両者に由来する還流を与えることの示唆はない。これらのプロセスでは、液化前のスクラブ塔塔頂の圧縮は必要でない。   Options (i), (iii), and (iv) can provide additional reflux to the scrub column by condensing the wake of the feed gas portion, but NGL fraction and partially condensed scrub There is no suggestion of providing reflux from both tower tops. In these processes, it is not necessary to compress the top of the scrub column before liquefaction.

EP−A−0178207/US−A−4,690,702(1986年4月15日/1987年9月1日公開)、DE−A−3802553/US−A−4,952,305(1989年8月3日/1990年8月28日公開)、およびEP−A−0535752/US−A−5,291,736(1993年4月7日/1994年3月8日公開)は、スクラブ塔への還流がNGL分画からの塔頂蒸気の凝縮によって得られるメタンおよびエタンの混合物によって与えられるLNGプロセスをいずれも開示する。これらの特許のいずれも、塔頂生成物を部分的に凝縮することによって得られる還流を示していない。   EP-A-0178207 / US-A-4,690,702 (released on April 15, 1986 / September 1, 1987), DE-A-3802553 / US-A-4,952,305 (1989) August 3 / August 28, 1990), and EP-A-03575752 / US-A-5,291,736 (April 7, 1993 / March 8, 1994) Both LNG processes are disclosed wherein reflux to is provided by a mixture of methane and ethane obtained by condensation of overhead vapor from the NGL fraction. None of these patents show the reflux obtained by partial condensation of the overhead product.

NGLおよび天然ガスの製品の回収が、スクラブ塔塔頂を部分的に凝縮することにより得られる還流の利点を、エタンに富む還流および吸収剤液の効率的な様式による利点と組み合わせることによって改善できることが、熱量効率、設備の簡便さならびにプロパンおよびブタン等の高価値成分の回収の観点から見出された。   The recovery of NGL and natural gas products can be improved by combining the benefits of reflux obtained by partial condensation at the top of the scrub column with the benefits of an ethane-rich reflux and an efficient mode of absorbent liquid. However, it was found from the viewpoint of calorific efficiency, facility simplicity, and recovery of high-value components such as propane and butane.

本発明は、その最も広い側面において、エタンおよびより重い1種または複数種の炭化水素と混合されているメタンの供給物からメタンよりも重い複数種の成分を回収するための方法を提供し、該方法は、
供給物を第1の位置でスクラブ塔内に導入する工程、
該スクラブ塔から、メタンよりも重い複数種の成分に乏しい第1の塔頂蒸気流およびメタンよりも重い複数種の成分に富む塔底流を取り出す工程、
第1の塔頂蒸気流を冷却および部分的に凝縮して第1の二相流を形成する工程、
第1の二相流を分離して第2の塔頂蒸気流およびメタンに富む第1の還流を与える工程、
メタンに富む第1の還流を、第1の位置の上方のスクラブ塔内の第2の位置で導入する工程、
塔底流をエタンに富む流れとエタンよりも重い複数種の成分に富む1または2以上の流れとに分離する工程、および
第1の位置の上方の第2の位置および第3の位置から選択される位置で、エタンに富む流れに由来するエタンに富む第2の還流をスクラブ塔内に導入する工程
を含む。
The invention, in its broadest aspect, provides a method for recovering components heavier than methane from a feed of methane mixed with ethane and heavier one or more hydrocarbons; The method
Introducing the feed into the scrub column at a first location;
Removing from the scrub column a first overhead vapor stream that is poor in a plurality of components heavier than methane and a bottom stream that is rich in a plurality of components heavier than methane;
Cooling and partially condensing the first overhead vapor stream to form a first two-phase stream;
Separating the first two-phase stream to provide a second overhead vapor stream and a first reflux rich in methane;
Introducing a first reflux rich in methane at a second location in the scrub column above the first location;
Separating the bottom stream into a stream rich in ethane and one or more streams rich in a plurality of components heavier than ethane, and selected from a second position and a third position above the first position And introducing a second ethane-rich reflux derived from the ethane-rich stream into the scrub column at a location.

本発明の好ましい態様では、NGL分画から得られる好ましくは脱エタン装置塔頂のエタンに富む流れを、凝縮し、ポンピングし、スクラブ塔塔頂蒸気を部分的に凝縮することにより得られる還流と組み合わせ、そしてスクラブ塔、好ましくはスクラブ塔還流ドラムに再循環させる。これにより、混合物の臨界圧力を増大させることによりスクラブ塔をより高圧で操作することが可能になり、そしてエタン−プロパン分離も改善する。エタンに富む流れを、LNGプロセスの主熱交換器において可能な混合冷媒(MR)冷却を用いて完全に凝縮して利点を最大にすることが可能である。   In a preferred embodiment of the present invention, preferably the ethane-rich stream obtained from the NGL fraction is condensed and pumped, and the reflux obtained by partially condensing the scrub tower overhead vapor. Combine and recycle to a scrub column, preferably a scrub column reflux drum. This allows the scrub column to operate at higher pressures by increasing the critical pressure of the mixture and also improves ethane-propane separation. The ethane-rich stream can be fully condensed using mixed refrigerant (MR) cooling possible in the main heat exchanger of the LNG process to maximize the benefits.

重い再循環流、特にペンタンおよびイソペンタンを用いることもまた有利である。このような流れは、還流ドラムに対してまたは直接スクラブ塔に対してのいずれかで導入できる。重いおよび軽い再循環物は組み合わせることができ、そして別個に冷却するかまたは好ましくはスクラブ塔塔頂蒸気の凝縮により得られる還流と混合することができる。塔頂蒸気の凝縮により得られる還流は、典型的には、スクラブ塔への液体還流全体(重い再循環流のいずれも含む)の約80%を超える。好ましい実施において、冷却は主LNGプロセス熱交換器の暖温度バンドル(warm bundle)で行う。   It is also advantageous to use heavy recycle streams, in particular pentane and isopentane. Such a stream can be introduced either to the reflux drum or directly to the scrub column. Heavy and light recycles can be combined and cooled separately or preferably mixed with the reflux obtained by condensation of the scrub column overhead vapor. The reflux obtained by condensation of the top vapor typically exceeds about 80% of the total liquid reflux (including any heavy recycle stream) to the scrub column. In the preferred implementation, the cooling is performed in the warm bundle of the main LNG process heat exchanger.

上記のように、本発明は、その最も広い方法の側面において、エタンおよびより重い1種または複数種の炭化水素と混合されているメタンの供給物からメタンよりも重い複数種の成分を回収するための方法を提供し、
供給物を第1の位置でスクラブ塔内に導入する工程、
該スクラブ塔から、メタンよりも重い複数種の成分に乏しい第1の塔頂蒸気流およびメタンより重い複数種の成分に富む塔底流を取り出す工程、
該第1の塔頂蒸気流を冷却および部分的に凝縮して第1の二相流を形成する工程、
第1の二相流を分離して第2の塔頂蒸気流およびメタンに富む第1の還流を与える工程、
メタンに富む第1の還流を、第1の位置の上方の該スクラブ塔内の第2の位置で導入する工程、
塔底流をエタンに富む流れとエタンよりも重い複数種の成分に富む1または2以上の流れとに分離する工程、および
第1の位置の上方の第2の位置および第3の位置から選択される位置で、エタンに富む流れに由来するエタンに富む第2の還流をスクラブ塔内に導入する工程
を含む。
As noted above, the present invention, in its broadest process aspect, recovers multiple components heavier than methane from a feed of methane mixed with ethane and heavier one or more hydrocarbons. Provide a way for
Introducing the feed into the scrub column at a first location;
Removing from the scrub column a first overhead vapor stream that is heavier than a plurality of components heavier than methane and a bottom stream rich in a plurality of components heavier than methane;
Cooling and partially condensing the first overhead vapor stream to form a first two-phase stream;
Separating the first two-phase stream to provide a second overhead vapor stream and a first reflux rich in methane;
Introducing a first reflux rich in methane at a second location in the scrub column above the first location;
Separating the bottom stream into a stream rich in ethane and one or more streams rich in a plurality of components heavier than ethane, and selected from a second position and a third position above the first position And introducing a second ethane-rich reflux derived from the ethane-rich stream into the scrub column at a location.

対応する装置の側面において、本発明は、メタンよりも重い複数種の成分を、エタンおよびより重い1種または複数種の炭化水素と混合されているメタンの供給物から、前述の側面の方法によって回収するための装置を提供し、該装置は、
スクラブ塔、
供給物を第1の位置でスクラブ塔内に導入するための導管手段、
メタンよりも重い複数種の成分に乏しい第1の塔頂蒸気流およびメタンよりも重い複数種の成分に富む塔底流をスクラブ塔から取り出すための導管手段、
第1の塔頂蒸気流を冷却および部分的に凝縮して第1の二相流を形成するための熱交換器手段、
第1の二相流を分離して第2の塔頂蒸気流およびメタンに富む第1の還流を与えるための分離手段、
メタンに富む第1の還流を、第1の位置の上方のスクラブ塔内の第2の位置で導入するための導管手段、
塔底流をエタンに富む流れおよびエタンよりも重い複数種の成分に富む1または2以上の流れに分離するための分離手段、および
第1の位置の上方の第2の位置および第3の位置から選択される位置で、エタンに富む流れに由来するエタンに富む第2の還流をスクラブ塔内に導入するための導管手段
を含む。
In a corresponding apparatus aspect, the present invention provides a method according to the preceding aspect, wherein a plurality of components heavier than methane are obtained from a feed of methane mixed with ethane and heavier one or more hydrocarbons. Providing an apparatus for retrieval, the apparatus comprising:
Scrub tower,
Conduit means for introducing a feed into the scrub column at a first location;
Conduit means for removing from the scrub column a first overhead vapor stream that is heavier than methane and less of a plurality of components;
Heat exchanger means for cooling and partially condensing the first overhead vapor stream to form a first two-phase stream;
Separation means for separating the first two-phase stream to provide a second overhead vapor stream and a first reflux rich in methane;
Conduit means for introducing a first reflux rich in methane at a second location in the scrub column above the first location;
Separation means for separating the bottom stream into a stream rich in ethane and one or more streams rich in a plurality of components heavier than ethane, and from a second position and a third position above the first position It includes conduit means for introducing into the scrub column a second ethane-rich reflux derived from the ethane-rich stream at a selected location.

好ましい方法の側面において、本発明は、エタンおよびより重い1種または複数種の炭化水素と混合されているメタンの供給物から液化メタンを得るための方法を提供し、該方法は、
供給物を第1の位置でスクラブ塔内に導入する工程、
該スクラブ塔から、メタンよりも重い複数種の成分に乏しい第1の塔頂蒸気流およびメタンより重い複数種の成分に富む塔底流を取り出す工程、
該第1の塔頂蒸気流を冷却および部分的に凝縮して第1の二相流を形成する工程、
第1の二相流を分離して第2の塔頂蒸気流およびメタンに富む第1の還流を与える工程、
第2の塔頂蒸気流を液化する工程、
メタンに富む第1の還流を、第1の位置の上方の該スクラブ塔内の第2の位置で導入する工程、
塔底流をエタンに富む流れとエタンよりも重い複数種の成分に富む1または2以上の流れとに分離する工程、および
エタンに富む流れに由来するエタンに富む第2の還流を、第1の位置の上方の第2の位置および第3の位置から選択される位置でスクラブ塔内に導入する工程
を含む。
In a preferred process aspect, the present invention provides a process for obtaining liquefied methane from a feed of methane that is mixed with ethane and heavier hydrocarbon (s).
Introducing the feed into the scrub column at a first location;
Removing from the scrub column a first overhead vapor stream that is heavier than a plurality of components heavier than methane and a bottom stream rich in a plurality of components heavier than methane;
Cooling and partially condensing the first overhead vapor stream to form a first two-phase stream;
Separating the first two-phase stream to provide a second overhead vapor stream and a first reflux rich in methane;
Liquefying the second overhead vapor stream,
Introducing a first reflux rich in methane at a second location in the scrub column above the first location;
Separating the bottom stream into a stream rich in ethane and one or more streams rich in multiple components heavier than ethane, and a second reflux rich in ethane derived from the stream rich in ethane, Introducing into the scrub column at a position selected from a second position and a third position above the position.

好ましい装置の側面において、本発明は、液化メタンを、エタンおよびより重い1種または複数種の炭化水素と混合されているメタンの供給物から、上記の好ましい方法の側面に従った方法によって得るための装置を提供し、該装置は、
スクラブ塔、
供給物を第1の位置でスクラブ塔内に導入するための導管手段、
メタンよりも重い複数種の成分に乏しい第1の塔頂蒸気流およびメタンより重い複数種の成分に富む塔底流をスクラブ塔から取り出すための導管手段、
第1の塔頂蒸気流を冷却および部分的に凝縮して第1の二相流を形成するための熱交換器手段、
第1の二相流を分離して第2の塔頂蒸気流およびメタンに富む第1の還流を与えるための分離手段、
該第2の塔頂蒸気流を液化するための熱交換手段、
メタンに富む第1の還流を、第1の位置の上方のスクラブ塔内の第2の位置で導入するための導管手段、
塔底流をエタンに富む流れおよびエタンよりも重い複数種の成分に富む1または2以上の流れに分離するための分離手段、および
第1の位置の上方の第2の位置および第3の位置から選択される位置で、エタンに富む流れに由来するエタンに富む第2の還流をスクラブ塔内に導入するための導管手段
を含む。
In a preferred apparatus aspect, the present invention provides for obtaining liquefied methane from a feed of methane mixed with ethane and heavier hydrocarbon (s) by a process according to the preferred process aspect described above. A device comprising:
Scrub tower,
Conduit means for introducing a feed into the scrub column at a first location;
Conduit means for removing from the scrub column a first overhead vapor stream that is heavier than methane and less of a plurality of components;
Heat exchanger means for cooling and partially condensing the first overhead vapor stream to form a first two-phase stream;
Separation means for separating the first two-phase stream to provide a second overhead vapor stream and a first reflux rich in methane;
Heat exchange means for liquefying the second overhead vapor stream;
Conduit means for introducing a first reflux rich in methane at a second location in the scrub column above the first location;
Separation means for separating the bottom stream into a stream rich in ethane and one or more streams rich in a plurality of components heavier than ethane, and from a second position and a third position above the first position It includes conduit means for introducing into the scrub column a second ethane-rich reflux derived from the ethane-rich stream at a selected location.

以上で示したように、供給物が冷却された天然ガス供給物であり、第2の塔頂蒸気を液化して液化天然ガス製品を与えることが好ましい。   As indicated above, it is preferred that the feed is a cooled natural gas feed and the second overhead vapor is liquefied to provide a liquefied natural gas product.

エタンに富む第2の還流は、メタンに富む第1の還流とは別個にスクラブ塔に供給できるが、スクラブ塔内に導入する前にメタンに富む第1の還流と混合することが好ましい。   The second ethane-rich reflux can be fed to the scrub column separately from the methane-rich first reflux, but is preferably mixed with the methane-rich first reflux before introduction into the scrub column.

エタンに富む流れは、メタンに富む第1の還流と混合する前に部分的にまたは完全に凝縮できる。該混合は、好適には、還流ドラムの上流もしくは内部で、または、エタンに富む第2の還流が還流として供給される吸収塔の塔底に第1の二相流を供給することにより行う。   The ethane rich stream can be partially or fully condensed before mixing with the first reflux rich in methane. The mixing is preferably effected by feeding a first two-phase stream upstream or inside the reflux drum or to the bottom of an absorber tower where a second reflux rich in ethane is fed as reflux.

エタンに富む流れは、単独でまたは1または2以上の他のプロセス流と混合された後に、好ましくは、スクラブ塔への供給物の温度およびエタンに富む第2の還流としてスクラブ塔内に導入される前にポンピングされる凝縮流の温度よりも低温で凝縮される。該温度は、通常−32°F(−35.5℃)未満である。   The ethane rich stream is introduced into the scrub column, preferably alone or after mixing with one or more other process streams, as feed temperature to the scrub column and a second ethane rich reflux. It is condensed at a temperature lower than the temperature of the condensate stream being pumped. The temperature is usually less than -32 ° F (-35.5 ° C).

通常、エタンに富む流れ(130)は、脱エタン装置の塔頂の蒸気である。メタンはエタンに富む流れから取り出すことができ、これにより第2の還流は本質的にエタンからなる。好ましくは、第2の還流は約0.05%未満のプロパンを含む。   Usually, the ethane-rich stream (130) is the top vapor of the deethanizer. Methane can be removed from the ethane-rich stream so that the second reflux consists essentially of ethane. Preferably, the second reflux contains less than about 0.05% propane.

通常、メタンに富む第1の還流は還流全体(すなわち第1の位置の上方のスクラブ塔への液体供給物)の約80%以上を占めることができ、そして第2の還流は還流全体の約20%未満であることができる。   Typically, the first reflux rich in methane can account for about 80% or more of the total reflux (ie, the liquid feed to the scrub column above the first location), and the second reflux is about It can be less than 20%.

供給物中に含まれるプロパンおよび/またはブタンの、好ましくは90%超、特に96%超が、塔底流から製品として回収される。   Preferably more than 90%, in particular more than 96% of the propane and / or butane contained in the feed is recovered as product from the bottoms stream.

図6に示すように、第1の塔頂流を2段階で部分的に凝縮し、そして各々の凝縮物からの液体画分を還流としてスクラブ塔に供給することができる。   As shown in FIG. 6, the first overhead stream can be partially condensed in two stages and the liquid fraction from each condensate can be fed to the scrub column as reflux.

好ましい態様では、本発明の方法は、
供給物を第1の位置でスクラブ塔内に導入する工程、
該スクラブ塔から、メタンよりも重い複数種の成分に乏しい第1の塔頂蒸気流およびメタンよりも重い複数種の成分に富む塔底流を取り出す工程、
該第1の塔頂蒸気流を冷却および部分的に凝縮して第1の二相流を形成する工程、
第1の二相流を分離して第2の塔頂蒸気流およびメタンに富む第1の還流を与える工程、
メタンに富む第1の還流を、第1の位置の上方の該スクラブ塔内の第2の位置で導入する工程、
塔底流を、エタンに富む流れと、エタンよりも重い複数種の成分に富む吸収剤液流を含む、エタンよりも重い複数種の成分に富む2以上の流れと、に分離する工程、
第1の位置の上方の第2の位置および第3の位置から選択される位置で、エタンに富む流れに由来するエタンに富む第2の還流をスクラブ塔内に導入する工程、および
吸収剤液を、第1の位置の上方の第2の位置、第3の位置および第4の位置から選択される位置でスクラブ塔内に導入する工程
を含む。
In a preferred embodiment, the method of the invention comprises:
Introducing the feed into the scrub column at a first location;
Removing from the scrub column a first overhead vapor stream that is poor in a plurality of components heavier than methane and a bottom stream that is rich in a plurality of components heavier than methane;
Cooling and partially condensing the first overhead vapor stream to form a first two-phase stream;
Separating the first two-phase stream to provide a second overhead vapor stream and a first reflux rich in methane;
Introducing a first reflux rich in methane at a second location in the scrub column above the first location;
Separating the bottom stream into a stream rich in ethane and two or more streams rich in multiple components heavier than ethane, including an absorbent liquid stream rich in multiple components heavier than ethane;
Introducing a second ethane-rich reflux derived from the ethane-rich stream into the scrub column at a position selected from the second position and the third position above the first position; and an absorbent liquid In a scrub tower at a position selected from a second position, a third position and a fourth position above the first position.

関連する好ましい装置の態様では、本発明の装置は、
スクラブ塔、
供給物を第1の位置でスクラブ塔内に導入するための導管手段、
メタンよりも重い複数種の成分に乏しい第1の塔頂蒸気流およびメタンより重い複数種の成分に富む塔底流をスクラブ塔から取り出すための導管手段、
第1の塔頂蒸気流を冷却および部分的に凝縮して第1の二相流を形成するための熱交換器手段、
第1の二相流を分離して第2の塔頂蒸気流およびメタンに富む第1の還流を与えるための分離手段、
メタンに富む第1の還流を、第1の位置の上方のスクラブ塔内の第2の位置で導入するための導管手段、
塔底流をエタンに富む流れ、および、エタンよりも重い複数種の成分に富む、エタンよりも重い1種または複数種の成分に富む吸収剤液流を含む2以上の流れに分離するための分離手段、
第1の位置の上方の第2の位置および第3の位置から選択される位置で、エタンに富む流れに由来するエタンに富む第2の還流をスクラブ塔内に導入するための導管手段、および
吸収剤液を、第1の位置の上方の第2の位置、第3の位置および第4の位置から選択される位置でスクラブ塔内に導入するための導管手段
を含む。
In a related preferred device aspect, the device of the present invention comprises:
Scrub tower,
Conduit means for introducing a feed into the scrub column at a first location;
Conduit means for removing from the scrub column a first overhead vapor stream that is heavier than methane and less of a plurality of components;
Heat exchanger means for cooling and partially condensing the first overhead vapor stream to form a first two-phase stream;
Separation means for separating the first two-phase stream to provide a second overhead vapor stream and a first reflux rich in methane;
Conduit means for introducing a first reflux rich in methane at a second location in the scrub column above the first location;
Separation to separate the bottom stream into two or more streams comprising an ethane rich stream and an absorbent liquid stream rich in one or more components heavier than ethane, rich in multiple components heavier than ethane means,
Conduit means for introducing an ethane-rich second reflux derived from the ethane-rich stream into the scrub column at a position selected from the second position and the third position above the first position; and Conduit means for introducing the absorbent liquid into the scrub column at a position selected from a second position, a third position and a fourth position above the first position.

最も広い側面に関する上記の全ての特徴がこの好ましい態様に適用される。   All of the above features for the broadest aspect apply to this preferred embodiment.

吸収剤液は、1種または複数種のC4炭化水素を含むことができるが、好ましくは1種または複数種のC5+炭化水素を含む。 The absorbent liquid can contain one or more C 4 hydrocarbons, but preferably contains one or more C 5+ hydrocarbons.

吸収剤液は、エタンに富む第2の還流またはメタンに富む第1の還流のいずれかと別個にスクラブ塔に供給できる。しかし、スクラブ塔への導入前にメタンに富む第1の還流およびエタンに富む第2の還流(136)の少なくともいずれかを組み合わせることが好ましい。例えば、還流ドラムの上流または内部の第1の二相流およびエタンに富む第2の還流の少なくともいずれかと組み合わせることができ、または、吸収剤液および任意にエタンに富む第2の還流が還流として供給される吸収塔の塔底に第1の二相流を供給できる。吸収剤液を、第1の塔頂蒸気流と該流れの部分的な凝縮の前に組み合わせて第1の二相流を形成することができ、および/または、気体状のエタンに富む流れと該流れの凝縮の前に組み合わせて第2の還流を与えることができる。   The absorbent liquid can be fed to the scrub column separately from either the second reflux rich in ethane or the first reflux rich in methane. However, it is preferred to combine at least one of the first reflux rich in methane and the second reflux rich in ethane (136) prior to introduction into the scrub column. For example, it can be combined with a first two-phase flow upstream or inside the reflux drum and / or a second reflux rich in ethane, or an absorbent solution and optionally a second reflux rich in ethane as reflux. The first two-phase flow can be supplied to the bottom of the absorption tower to be supplied. The absorbent liquid can be combined with the first overhead vapor stream prior to partial condensation of the stream to form a first two-phase flow and / or a gaseous ethane rich stream and It can be combined prior to condensation of the stream to provide a second reflux.

組み合わされた吸収剤液および気体状のエタンに富む流れは相分離でき、そして、液体画分は第1の位置の上方でスクラブ塔に供給できる。液体画分と第1の塔頂流とを該塔頂流の部分的な凝縮の前に組み合わせて第1の二相流を与えることができる。蒸気画分を凝縮し、凝縮流を第1の位置の上方でスクラブ塔に供給して、液化前に第2の塔頂蒸気に加えるか、または第1の塔頂流と該塔頂流の部分的な凝縮の前に組み合わせて第1の二相流を与えることができる。凝縮された蒸気画分および液体画分の両者は、第1の塔頂流と該塔頂流の部分的な凝縮の前に組み合わせて第1の二相流を与えることができる。   The combined absorbent liquid and gaseous ethane-rich stream can be phase separated, and the liquid fraction can be fed to the scrub column above the first location. The liquid fraction and the first overhead stream can be combined prior to partial condensation of the overhead stream to provide a first two-phase flow. The vapor fraction is condensed and the condensed stream is fed to the scrub column above the first location and added to the second overhead vapor before liquefaction, or the first overhead stream and the overhead stream It can be combined prior to partial condensation to give a first two-phase flow. Both the condensed vapor and liquid fractions can be combined to give a first two-phase flow prior to partial condensation of the first overhead stream and the overhead stream.

通常、吸収剤液は、還流全体(すなわち第1の位置の上方でのスクラブ塔への液体供給物)の約10%未満を構成する。   Typically, the absorbent liquid comprises less than about 10% of the total reflux (ie, the liquid feed to the scrub column above the first location).

以下は、本発明の現在の好ましい態様の、単なる例示の、および添付の図面を参照した説明である。図面において、
図1は、本発明のある態様を示し、
図2は、図1の態様の変形を示し、ここで還流ドラム(118)は吸収塔(218)に置き換えられている、
図3は、図1の態様の他の変形を示し、ここでエタンに富む流れ(130)および「吸収剤液」流(140)が組み合わされて単一流(330)を形成している、
図4は、図3の態様の変形を示し、ここで組み合わされた第2の還流および吸収剤液流(330)は相分離(430)されている、
図5は、図4の態様の変形を示し、ここで分離された蒸気部分(436)は圧縮、冷却および凝縮されており、結果物の流れ(536)は液体部分(438)と組み合わされている、
図6は、図4の態様の他の変形を示し、ここでスクラブ塔(114)からの塔頂蒸気(116)は2段階(612,122)で凝縮されてスクラブ塔への分離還流(619,626)を与える。
The following is a description of the presently preferred embodiments of the invention, by way of example only and with reference to the accompanying drawings. In the drawing
FIG. 1 illustrates one embodiment of the present invention,
FIG. 2 shows a variation of the embodiment of FIG. 1, wherein the reflux drum (118) is replaced by an absorption tower (218).
FIG. 3 shows another variation of the embodiment of FIG. 1, wherein the ethane rich stream (130) and the “absorbent liquid” stream (140) are combined to form a single stream (330).
FIG. 4 shows a variation of the embodiment of FIG. 3, wherein the combined second reflux and absorbent liquid stream (330) is phase separated (430).
FIG. 5 shows a variation of the embodiment of FIG. 4, wherein the separated vapor portion (436) is compressed, cooled and condensed, and the resulting stream (536) is combined with the liquid portion (438). Yes,
FIG. 6 shows another variation of the embodiment of FIG. 4, wherein the top vapor (116) from the scrub column (114) is condensed in two stages (612, 122) and separated to the scrub column (619). , 626).

図1を参照し、主にメタンをC2-6の範囲内のより重い炭化水素類とともに含み、極めて微量の水、CO2およびH2S等の酸ガスならびに水銀等の他の混入物を伴う、前処理された加圧天然ガス供給物110が、熱交換器112内で、約−20°F(−29℃)から約−40°F(−40℃)の間に冷却され、スクラブ塔114に供給される。典型的には、供給物110は、約600から約900psia(4から6.25MPa)の間の圧力、および環境温度付近である。熱交換器112は、種々の圧力でのプロパンの減圧による多段冷却を表す。単一交換器内での混合冷媒の気化等の他の任意の冷却手段を使用できる。流れ110、または熱交換器112の下流の流れ110の蒸気部分を塔114内へ絞りまたは等エントロピー的に膨張させることができる。膨張から得られるエネルギーは、他の蒸気流、例えばプロセス流116,120,150,または156を少なくとも部分的に圧縮するために使用できる。 Referring to FIG. 1, mainly contains methane with heavier hydrocarbons in the C 2-6 range, with very small amounts of water, acid gases such as CO 2 and H 2 S, and other contaminants such as mercury. The pretreated pressurized natural gas feed 110 is cooled in the heat exchanger 112 between about −20 ° F. (−29 ° C.) to about −40 ° F. (−40 ° C.) and scrubbed. It is supplied to the tower 114. Typically, the feed 110 is at a pressure between about 600 to about 900 psia (4 to 6.25 MPa) and around ambient temperature. The heat exchanger 112 represents multi-stage cooling by propane depressurization at various pressures. Any other cooling means such as vaporization of the mixed refrigerant in a single exchanger can be used. Stream 110, or the vapor portion of stream 110 downstream of heat exchanger 112, can be throttled or isentropically expanded into column 114. The energy resulting from the expansion can be used to at least partially compress other vapor streams, such as process streams 116, 120, 150, or 156.

スクラブ塔114は、供給物を、より重い炭化水素類に富む塔底液126および127と、メタンに富む「第1」の塔頂蒸気流116とに分離する。塔底液の一方の部分127はリボイラー128内で気化されて塔114を沸騰させる。リボイラー128は、供給物流110の一部または任意の他の好適なプロセス流を使用して熱量を与えることができる。塔はまた、中間リボイラーを有しても良く、該中間リボイラーに対して供給物流部分も熱量を与えることができる。残りの塔底液126は、一般的に天然ガス液体(NGL)といわれ、NGL分画装置128に供給される。ここで、NGLは通常減圧され、そして、脱エタン装置、脱プロパン装置、および/または脱ブタン装置等の公知の分離装置を用いて分離されて、2以上の炭化水素画分が与えられる。塔底液126は、メタンおよびエタンを極めて微量のプロパンとともに含む流れ(エタンに富む流れ)と、主にC3、C4およびC5+の炭化水素類を含む画分(すなわち、n−ペンタン、イソペンタンおよびより重いもの)とに分離される。典型的には、エタンに富む流れ130は、脱エタン装置の塔頂で、約0.05%未満のプロパンを含む。 The scrub column 114 separates the feed into bottom liquids 126 and 127 rich in heavier hydrocarbons and a “first” overhead vapor stream 116 rich in methane. One portion 127 of the bottom liquid is vaporized in the reboiler 128 to boil the column 114. The reboiler 128 may provide heat using a portion of the feed stream 110 or any other suitable process stream. The column may also have an intermediate reboiler and the feed stream portion can also provide heat to the intermediate reboiler. The remaining column bottom liquid 126 is generally referred to as a natural gas liquid (NGL) and is supplied to the NGL fractionator 128. Here, NGL is usually depressurized and separated using a known separation device such as a deethanizer, a depropanizer, and / or a debutanizer to give two or more hydrocarbon fractions. The bottom liquid 126 is composed of a stream containing methane and ethane together with very small amounts of propane (ethane rich stream) and a fraction containing mainly C 3 , C 4 and C 5+ hydrocarbons (ie n-pentane). , Isopentane and heavier). Typically, the ethane-rich stream 130 contains less than about 0.05% propane at the top of the deethanizer.

エタンに富む第2の還流136の使用により、分画装置においてプロパン(96〜99%)およびブタン(ほぼ100%)の高回収が可能になる。   The use of a second reflux 136 rich in ethane allows high recovery of propane (96-99%) and butane (almost 100%) in the fractionator.

5+炭化水素の一部は、「吸収剤」液140として取り出され、スクラブ塔圧(すなわち、これをスクラブ塔114に導入するのに十分な圧力であって設備の圧力降下および静圧を含む)にポンプ142でポンピングされ、熱交換器144内でプロパンの気化と反対に冷却され、さらに主熱交換器122内で冷却され、そして、NGL分画により得られる第2の還流と組み合わされるかまたは影線に示されるように直接かのいずれかで、還流ドラム118内に導入される。熱交換器144は、ポンプ142の前または後に配置できる。 A portion of the C 5+ hydrocarbons is removed as “absorbent” liquid 140, and the scrub column pressure (ie, sufficient pressure to introduce it into the scrub column 114 to reduce the equipment pressure drop and static pressure). Pumped by pump 142, cooled opposite to propane vaporization in heat exchanger 144, further cooled in main heat exchanger 122, and combined with a second reflux obtained by NGL fractionation Or directly into the reflux drum 118, either as indicated by the shaded lines. The heat exchanger 144 can be placed before or after the pump 142.

導管内で平衡および幾らかの吸収を起こさせることができるため、還流ドラム118内への導入前に吸収剤液140と第2の還流136とを混合することは好ましく実施される。   Mixing the absorbent liquid 140 and the second reflux 136 prior to introduction into the reflux drum 118 is preferably performed because equilibrium and some absorption can occur in the conduit.

影線で示すように、吸収剤液140はスクラブ塔114の塔頂または塔頂近くに直接供給でき、または、好ましい実施では主熱交換器122上流の第1の塔頂蒸気流116と組み合わせることができる。   As indicated by the shaded lines, the absorbent liquid 140 can be fed directly to or near the top of the scrub column 114 or, in a preferred implementation, combined with the first overhead vapor stream 116 upstream of the main heat exchanger 122. Can do.

エタンに富む流れ130は冷却され、そして熱交換器132内でプロパンの気化と反対に部分的に凝縮され、主熱交換器122内で冷却されそして完全に凝縮され、スクラブ塔圧までポンプ134でポンピングされ、好ましくは吸収剤液140と組み合わされ、そして還流ドラム内に流れ136として導入される。ポンプ134上流のいずれの凝縮されていない蒸気も主熱交換器122の中央バンドル内で分離、凝縮でき、そして液化天然ガス製品124と組み合わせることができる。   The ethane-rich stream 130 is cooled and partially condensed in the heat exchanger 132 as opposed to propane vaporization, cooled and fully condensed in the main heat exchanger 122, and pumped to the scrub column pressure. Pumped, preferably combined with the absorbent liquid 140 and introduced as a stream 136 into the reflux drum. Any uncondensed steam upstream of the pump 134 can be separated and condensed in the central bundle of the main heat exchanger 122 and combined with the liquefied natural gas product 124.

吸収剤液140は、C3およびC4の炭化水素類等のNGL分画のより軽い生成物からも純粋にまたは共にブレンドされてのいずれかで得ることができる。これは、追加の蒸留塔で受け付けない場合があるC6およびより重い成分を有さずに殆どC5炭化水素類を含むことができる。流れ130は、追加の蒸留塔では受け付けないほぼ純粋なエタン、メタンであることができる。エタンまたはエタン−メタン混合物の一部は製品として回収できる。 The absorbent liquid 140 can be obtained either purely or blended together from lighter products of NGL fractions such as C 3 and C 4 hydrocarbons. This can include most C 5 hydrocarbons without a additional may not accept a distillation column C 6 and heavier components. Stream 130 can be nearly pure ethane, methane, which is not accepted by additional distillation columns. Part of the ethane or ethane-methane mixture can be recovered as a product.

第1の塔頂蒸気流116は、主熱交換器122の暖温度バンドル内で冷却および部分的に凝縮され、そして還流ドラム118に導入される。これは主熱交換器122内での冷却の前に凝縮できる(図示しない)。液体部分は「第1の」液体還流119としてスクラブ塔に戻る。メタンに富む「第2の」蒸気部分120は液化され、そして好ましくは主熱交換器の中央の低温度バンドル(cold bundle)内で亜冷却されてLNG製品124が得られる。   The first overhead vapor stream 116 is cooled and partially condensed in the warm temperature bundle of the main heat exchanger 122 and introduced into the reflux drum 118. This can be condensed before cooling in the main heat exchanger 122 (not shown). The liquid portion returns to the scrub column as the “first” liquid reflux 119. The “second” vapor portion 120 enriched in methane is liquefied and preferably subcooled in the middle low temperature bundle of the main heat exchanger to obtain the LNG product 124.

好ましい実施において、部分的に凝縮された第1の塔頂蒸気流116は、第2の還流136および/または吸収剤液140と還流ドラム118の内部または上流で組み合わされ、これにより幾らかの平衡が起こる。よって、第1の液体還流(部分的に凝縮された第1の塔頂蒸気の液体部分)は、第2の液体還流136および/または吸収剤液140と混合される。   In a preferred implementation, the partially condensed first overhead vapor stream 116 is combined within or upstream of the second reflux 136 and / or sorbent liquid 140 and the reflux drum 118, thereby providing some equilibrium. Happens. Thus, the first liquid reflux (the liquid portion of the first overhead vapor partially condensed) is mixed with the second liquid reflux 136 and / or the absorbent liquid 140.

典型的には、天然ガス供給組成物に依存し、第2の還流136は還流全体(いずれの吸収剤液も含んで)の約20%未満であり、かつ吸収剤液140は還流全体の約10%未満である。天然ガス供給物110が吸収剤液140に好適な成分を含まず、またはこれらを十分量で含まない場合、これらを追加の供給物として導入できる。   Typically, depending on the natural gas feed composition, the second reflux 136 is less than about 20% of the total reflux (including any absorbent liquid) and the absorbent liquid 140 is about the total reflux. Less than 10%. If the natural gas feed 110 does not contain suitable components in the absorbent liquid 140 or does not contain them in sufficient quantities, they can be introduced as additional feeds.

第2の蒸気流120は、主熱交換器122内への導入の前に凝縮(図示しない)でき、および/または、亜冷却の前に減圧できる。LNG製品124が高圧で貯蔵される(PNGL)場合、低温度バンドル内で亜冷却する必要がない。   The second vapor stream 120 can be condensed (not shown) prior to introduction into the main heat exchanger 122 and / or depressurized prior to subcooling. If the LNG product 124 is stored at high pressure (PNGL), there is no need to subcool in the low temperature bundle.

主熱交換器122は、再循環した混合冷媒(MR)流150を気化することによって冷却され、該混合冷媒(MR)流150は、プロパンを気化する複数の段階で圧縮、冷却され、そして液体152およびより軽い蒸気156(圧縮、冷却および相分離は示していない)に分離される。蒸気156は、絞り弁158を経て凝縮、冷却されおよび膨張する。液体152は絞り弁154を経て冷却され、膨張し、そして気化している凝縮蒸気156と組み合わされる。組み合わされたMR流は完全に気化され、そして流れ150として主熱交換器122を出る。絞り弁154および/または156は、油圧タービン等の等エントロピー濃厚流体エキスパンダーで置き換えることができる。純流体カスケードおよびUS−A−6308531に記載されるような等エントロピー蒸気膨張等の任意の他の冷却装置または装置の組み合わせを用いて主熱交換器122を冷却することができる。   The main heat exchanger 122 is cooled by vaporizing a recirculated mixed refrigerant (MR) stream 150 that is compressed, cooled, and liquid in multiple stages to vaporize propane. 152 and lighter steam 156 (compression, cooling and phase separation not shown). Steam 156 condenses, cools and expands through throttle valve 158. Liquid 152 is cooled, expanded, and combined with vaporized condensed vapor 156 via a throttle valve 154. The combined MR stream is fully vaporized and exits main heat exchanger 122 as stream 150. Throttle valves 154 and / or 156 can be replaced with isentropic rich fluid expanders such as hydraulic turbines. The main heat exchanger 122 can be cooled using any other cooling device or combination of devices such as a pure fluid cascade and isentropic vapor expansion as described in US-A-6308531.

図2は、図1の態様の変形であって、還流ドラム118を吸収塔218で置き換えたものを示す。吸収剤液140および/または第2の還流136、好ましくは両方が流れ136内に組み合わされたもの、が吸収塔218の塔頂に供給される。これらはまた、同位置または異なる位置で独立に、吸収塔218の塔頂に供給される2つの流れの少なくとも一方とともに塔に入ることができる。例えば、吸収剤液140は、塔の塔頂の下または塔の塔底の幾つかの段階に供給できる。第2の塔頂蒸気流120は、塔218の塔頂から取り出され、そして第1の還流119は塔底から取り出される。塔218内の複数の段階により、上昇蒸気からの重い成分の吸収が改善する。   FIG. 2 shows a variation of the embodiment of FIG. 1 with the reflux drum 118 replaced with an absorption tower 218. Absorbent liquid 140 and / or second reflux 136, preferably a combination of both in stream 136, are fed to the top of absorption tower 218. They can also enter the tower with at least one of the two streams fed to the top of the absorption tower 218 independently at the same or different positions. For example, the absorbent liquid 140 can be supplied to several stages below the top of the tower or at the bottom of the tower. The second top vapor stream 120 is withdrawn from the top of tower 218 and the first reflux 119 is withdrawn from the bottom. Multiple stages within column 218 improve the absorption of heavy components from the rising steam.

図3は、図1の態様の他の変形であって、エタンに富む流れ130および吸収剤液140が組み合わされて単一流330を形成するものを示す。流れ330は熱交換器332内でプロパンの気化と反対に冷却および部分的に凝縮され、さらに主熱交換器122内で冷却および完全に凝縮され、スクラブ塔圧までポンプ334でポンピングされ、そして還流ドラム内に導入される。より温かい温度で流れ130および140を混合し、およびこれらを共に凝縮することは、図1および2に示す配置よりも熱力学的により効果的である。この利点は、熱交換器332および122で起こる吸収としての吸収塔218の利点と類似する。この配置は、主熱交換器122内の通路も排除する。図1の配置とともに、流れ116および330を、主熱交換器122下流、および還流ドラム118の前で組み合わせることができる。   FIG. 3 shows another variation of the embodiment of FIG. 1, wherein the ethane rich stream 130 and the absorbent liquid 140 are combined to form a single stream 330. Stream 330 is cooled and partially condensed in heat exchanger 332 as opposed to propane vaporization, further cooled and fully condensed in main heat exchanger 122, pumped to pump 334 to scrub column pressure, and refluxed. Introduced into the drum. Mixing streams 130 and 140 at a warmer temperature and condensing them together is more thermodynamically more effective than the arrangement shown in FIGS. This advantage is similar to that of the absorption tower 218 as absorption occurring in the heat exchangers 332 and 122. This arrangement also eliminates the passage in the main heat exchanger 122. With the arrangement of FIG. 1, streams 116 and 330 can be combined downstream of main heat exchanger 122 and in front of reflux drum 118.

図4は、図3の態様の変形であって、組み合わされたエタンに富む流れおよび吸収剤液流330が相分離装置430に供給されるものを示す。液体部分438はスクラブ塔114の圧力までポンプ432でポンピングされ、そして主熱交換器122上流の第1の塔頂蒸気116と組み合わされる。次いで、主熱交換器122を出る組み合わされた流れ416は、還流ドラム118に供給される。より小さい蒸気部分436は、主熱交換器122内で凝縮され、ポンプ434でポンピングされて還流ドラム118に導入され、任意に流れ416と組み合わされるか、または、亜冷却前に液体が減圧され得る主熱交換器122の亜冷却部分(低温度バンドル)上流の液化天然ガスと組み合わされる。流れ130および116の両方、および主熱交換器122上流の吸収剤液140を組み合わせることにより、本方法の熱力学的な有効性がさらに増大する。   FIG. 4 shows a variation of the embodiment of FIG. 3 wherein a combined ethane rich stream and absorbent liquid stream 330 is fed to the phase separator 430. The liquid portion 438 is pumped with a pump 432 to the pressure of the scrub column 114 and combined with the first overhead vapor 116 upstream of the main heat exchanger 122. The combined stream 416 exiting the main heat exchanger 122 is then fed to the reflux drum 118. The smaller vapor portion 436 is condensed in the main heat exchanger 122, pumped by the pump 434 and introduced into the reflux drum 118, optionally combined with the stream 416, or the liquid may be depressurized before subcooling. Combined with liquefied natural gas upstream of the subcooled portion (low temperature bundle) of the main heat exchanger 122. Combining both streams 130 and 116 and the absorbent liquid 140 upstream of the main heat exchanger 122 further increases the thermodynamic effectiveness of the method.

選択肢として、流れ438は主熱交換器122内の分離回路内で還流ドラム118への導入前に冷却できる。流れ130が、分画装置におけるスクラブ塔114または追加の脱メタン装置において受け付けない可能性があるメタンを殆ど含まない場合には、流れ330は完全に凝縮でき、そして相分離装置430が必要なく、流れ436がなく、そしてポンプ434もなくすことができる。さらに、流れ438はスクラブ塔114、例えば塔の塔頂の下の第2段階に直接供給できる。   As an option, stream 438 can be cooled in a separation circuit within main heat exchanger 122 prior to introduction to reflux drum 118. If stream 130 contains little methane that may not be accepted in the scrub column 114 or additional demethanizer in the fractionator, stream 330 can be fully condensed and no phase separator 430 is required, There can be no flow 436 and no pump 434. Further, stream 438 can be fed directly to scrub column 114, eg, a second stage below the top of the column.

図5は、図4の態様の変形であって、分離された蒸気部分436がスクラブ塔114の圧力まで圧縮器530で圧縮され、熱交換器532内で冷却および凝縮され、得られた流れ536が液体部分438と組み合わされて流れ538が形成されるものを示す。熱交換器532は一連の熱交換器であって、第1のものは冷却水を用い、単一または複数の他のものはプロパン気化を用いたものであることができる。流れ438は、追加の熱交換器内での圧縮前に環境温度付近まで加温され、そして、該圧縮に続いて後冷却器内および同じ追加の熱交換器内でさらなる熱量効率のためにまた冷却されることができる。流れ536は濃厚超臨界流体であっても良い。   FIG. 5 is a variation of the embodiment of FIG. 4 in which the separated vapor portion 436 is compressed by the compressor 530 to the pressure of the scrub column 114 and cooled and condensed in the heat exchanger 532 resulting in the resulting stream 536. Are combined with the liquid portion 438 to form a flow 538. The heat exchanger 532 can be a series of heat exchangers, the first using cooling water and the other one or more using propane vaporization. Stream 438 is warmed to near ambient temperature prior to compression in the additional heat exchanger and is also followed by additional heat efficiency in the post-cooler and the same additional heat exchanger following the compression. Can be cooled. Stream 536 may be a rich supercritical fluid.

図6は、図4の態様の他の変形であって、第1の塔頂蒸気116が熱交換器612内で、例えば還流136および吸収剤液140の一方または両方とともに、しかし好ましくはプロパンを気化させることにより冷却されることで、部分的に凝縮されているものを示す。得られる第1の二相流は、相分離器618内で「第2の」塔頂蒸気流616とメタンに富む液体流619とに分離される。液体流619は還流としてスクラブ塔114に戻される。このとき主熱交換器122の下部の温度と一致する温度になっている流れ616は、流れ438と混合され、主熱交換器122内で冷却され、そして還流ドラム628に二相流626として供給される。還流ドラム628からの塔頂蒸気流620は主熱交換器122内で液化され、そして液化天然ガス製品124として回収される。任意に主熱交換器122内で再加熱される、還流ドラム628からの液体流629は、還流619と同位置または異なる位置でスクラブ塔114に戻される。   FIG. 6 is another variation of the embodiment of FIG. 4 in which the first overhead vapor 116 is replaced in the heat exchanger 612 with, for example, one or both of reflux 136 and absorbent liquid 140, but preferably propane. What is partially condensed by being cooled by vaporization is shown. The resulting first two-phase stream is separated in a phase separator 618 into a “second” overhead vapor stream 616 and a liquid stream 619 rich in methane. Liquid stream 619 is returned to scrub column 114 as reflux. At this time, stream 616, which is at a temperature consistent with the temperature at the bottom of main heat exchanger 122, is mixed with stream 438, cooled in main heat exchanger 122, and fed to reflux drum 628 as two-phase stream 626. Is done. The overhead vapor stream 620 from the reflux drum 628 is liquefied in the main heat exchanger 122 and recovered as a liquefied natural gas product 124. Liquid stream 629 from reflux drum 628, optionally reheated in main heat exchanger 122, is returned to scrub column 114 at the same or different position as reflux 619.

相分離器618および/または還流ドラム628は、塔底に二相供給物を有する吸収塔ならびに塔頂の冷却された流れ136および/または140により与えられる還流で置き換えることができる。   The phase separator 618 and / or reflux drum 628 can be replaced with an absorption tower having a two-phase feed at the bottom of the tower and reflux provided by the cooled streams 136 and / or 140 at the top of the tower.

示された任意の態様と関連して説明される個々の特徴またはこれらの特徴の組み合わせは、必要に応じて他に示された任意の態様に組み入れることができる。例えば、図6に関連して説明した主熱交換器122内の還流629の追加の再加熱は、図1から5のいずれにも適用できる。追加または代替として、図6の態様の第1の塔頂蒸気116に由来する液体画分619によるスクラブ塔114への還流の供給もまた、図1から5の態様のいずれにも適用できる。   Individual features or combinations of these features described in connection with any aspect shown may be incorporated into any other aspect shown as appropriate. For example, the additional reheating of the reflux 629 in the main heat exchanger 122 described in connection with FIG. 6 can be applied to any of FIGS. Additionally or alternatively, the supply of reflux to the scrub column 114 by the liquid fraction 619 derived from the first overhead vapor 116 of the embodiment of FIG. 6 is also applicable to any of the embodiments of FIGS.


図3の態様を用い、97,904lbmol/h(44,408.5kgmol/h)の前精製された950psia(6.5MPa)での天然ガス流110を、熱交換器112内で3段階のプロパン冷却により−32.3°F(−35.7℃)まで冷却し、スクラブ塔114に供給する。この供給流110は、0.6%の窒素、84.8%のメタン、7.3%のエタン、4.4%のプロパン、0.7%のイソブタン、1.5%のブタン、0.3%のイソペンタン、0.2%のペンタン、および0.2%のヘキサンを含む。該塔114は840psia(5.8MPa)で操作し、かつプロパン冷却および約130°F(55℃)の塔底リボイラー128の始めの2段階を通らない流れ110の40%によって加熱される中間リボイラーを有する。塔頂116は、主熱交換器122の暖温度バンドルで−62.3°F(−52.4℃)から−77.5°F(−60.8℃)に冷却され、そして約15%の液体を含む二相流として還流ドラム118内に導入される。スクラブ塔塔底流126は、脱エタン装置、脱プロパン装置および脱ブタン装置を含む一連の蒸留塔からなる分画装置128に送られる。供給流110中に存在するプロパンの96%が脱プロパン装置塔頂物として回収される。ブタンおよびイソブタンのほぼ全てが脱ブタン装置塔頂物として回収される。流速6,105lbmol/h(2,769kgmol/h)および圧力420psia(2.9MPa)で約39%のメタン、61%のエタン、および0.05%に過ぎないプロパンを含む脱エタン装置塔頂物は、脱ブタン装置塔底液の39%を構成し、残りがC5+製品として回収される流れ140と混合される。低プロパン濃度は高プロパン回収のために重要である。流れ140は、17psia(117kPa)および流速406lbmol/h(184kgmol/h)で液体であり、約51%のイソペンタン、36%のペンタン、12%のヘキサンおよび1%未満のより軽い成分を含む。これは、図3で図示しないポンプで、エタンに富む流れ130と混合する前に420psia(2.9MPa)までポンピングされる。組み合わされた流れ330は、熱交換器332内でプロパンにより−32.3°F(−35.7℃)まで冷却され、そして主熱交換器122の暖温度バンドルで−77.5°F(−60.8℃)までさらに冷却することで完全に凝縮される。凝縮流はポンプ334でスクラブ塔圧までポンピングされ、そして還流ドラム118に導入される。液体還流119は、−74.2°F(−59.0℃)でスクラブ塔114の塔頂に戻され、相分離器内でのポンピングおよび混合による熱効果がある。流れ120は、91.3%のメタン、7.8%のエタン、0.7%の窒素、0.2%のプロパン、および微量に過ぎないより重い炭化水素類を含み、−74.2°F(−59.0℃)であり、かつ流速83,571lbmol/h(37,907kgmol/h)を有する。これは、主熱交換器122の中間の低温度バンドルで−161.6°F(−107.6℃)まで冷却され、次いで液体流124として貯蔵圧力15.3psia(105.5kPa)まで下げられる。主熱交換器122は図1を参照して説明されるように、窒素、メタン、エタンおよびプロパンを含む混合冷媒により冷却される。
EXAMPLE Using the embodiment of FIG. 3, a 97,904 lbmol / h (44,408.5 kgmol / h) pre-purified natural gas stream 110 at 950 psia (6.5 MPa) is passed through a heat exchanger 112 in three stages. Cool to -32.3 ° F. (−35.7 ° C.) with propane cooling and feed to scrub column 114. This feed stream 110 consists of 0.6% nitrogen, 84.8% methane, 7.3% ethane, 4.4% propane, 0.7% isobutane, 1.5% butane,. Contains 3% isopentane, 0.2% pentane, and 0.2% hexane. The column 114 operates at 840 psia (5.8 MPa) and is an intermediate reboiler heated by propane cooling and 40% of the stream 110 that does not pass through the first two stages of the bottom reboiler 128 at about 130 ° F. (55 ° C.). Have The top 116 is cooled from −62.3 ° F. (−52.4 ° C.) to −77.5 ° F. (−60.8 ° C.) in the warm temperature bundle of the main heat exchanger 122 and is about 15% Is introduced into the reflux drum 118 as a two-phase flow containing a liquid. The scrub column bottom stream 126 is sent to a fractionator 128 comprising a series of distillation towers including a deethanizer, a depropanizer, and a debutanizer. 96% of the propane present in the feed stream 110 is recovered as depropanizer overhead. Almost all of butane and isobutane is recovered as the debutanizer overhead. Deethanizer overhead with about 39% methane, 61% ethane, and only 0.05% propane at a flow rate of 6,105 lbmol / h (2,769 kgmol / h) and pressure 420 psia (2.9 MPa) Constitutes 39% of the debutanizer bottoms and is mixed with stream 140 where the remainder is recovered as C 5+ product Low propane concentration is important for high propane recovery. Stream 140 is liquid at 17 psia (117 kPa) and a flow rate of 406 lbmol / h (184 kgmol / h) and contains about 51% isopentane, 36% pentane, 12% hexane and less than 1% lighter components. This is pumped to 420 psia (2.9 MPa) before mixing with ethane rich stream 130 with a pump not shown in FIG. Combined stream 330 is cooled to -32.3 ° F. (−35.7 ° C.) by propane in heat exchanger 332 and -77.5 ° F. (in the warm temperature bundle of main heat exchanger 122) By further cooling to −60.8 ° C., it is completely condensed. The condensed stream is pumped to the scrub column pressure with pump 334 and introduced into reflux drum 118. Liquid reflux 119 is returned to the top of scrub column 114 at −74.2 ° F. (−59.0 ° C.) and has the thermal effect of pumping and mixing in the phase separator. Stream 120 contains 91.3% methane, 7.8% ethane, 0.7% nitrogen, 0.2% propane, and only traces of heavier hydrocarbons, −74.2 ° F (−59.0 ° C.) and a flow rate of 83,571 lbmol / h (37,907 kgmol / h). This is cooled to −161.6 ° F. (−107.6 ° C.) in a low temperature bundle in the middle of the main heat exchanger 122 and then lowered to a storage pressure of 15.3 psia (105.5 kPa) as a liquid stream 124. . The main heat exchanger 122 is cooled by a mixed refrigerant containing nitrogen, methane, ethane and propane, as described with reference to FIG.

当然ながら、本発明は、好ましい態様に関する上述の詳細に限定されず、特許請求の範囲に規定される発明の範囲を逸脱することなく数々の変更および変形を行うことが可能である。   Of course, the present invention is not limited to the above-described details regarding the preferred embodiments, and numerous modifications and variations can be made without departing from the scope of the invention as defined in the appended claims.

図1は、本発明のある態様を示す。FIG. 1 illustrates one embodiment of the present invention. 図2は、図1の態様の変形を示し、ここで還流ドラム(118)は吸収塔(218)に置き換えられている。FIG. 2 shows a variation of the embodiment of FIG. 1, wherein the reflux drum (118) is replaced with an absorption tower (218). 図3は、図1の態様の他の変形を示し、ここでエタンに富む流れ(130)および「吸収剤液」流(140)が組み合わされて単一流(330)を形成している。FIG. 3 shows another variation of the embodiment of FIG. 1, wherein the ethane rich stream (130) and the “absorbent liquid” stream (140) are combined to form a single stream (330). 図4は、図3の態様の変形を示し、ここで組み合わされた第2の還流および吸収剤液流(330)は相分離(430)されている。FIG. 4 shows a variation of the embodiment of FIG. 3, wherein the combined second reflux and absorbent liquid stream (330) is phase separated (430). 図5は、図4の態様の変形を示し、ここで分離された蒸気部分(436)は圧縮、冷却および凝縮されており、結果物の流れ(536)は液体部分(438)と組み合わされている。FIG. 5 shows a variation of the embodiment of FIG. 4, wherein the separated vapor portion (436) is compressed, cooled and condensed, and the resulting stream (536) is combined with the liquid portion (438). Yes. 図6は、図4の態様の他の変形を示し、ここでスクラブ塔(114)からの塔頂蒸気(116)は2段階(612,122)に凝縮されてスクラブ塔への分離還流(619,626)を与える。FIG. 6 shows another variation of the embodiment of FIG. 4, wherein the top vapor (116) from the scrub column (114) is condensed in two stages (612, 122) and separated to the scrub column (619). , 626).

Claims (41)

メタンよりも重い成分を、エタンおよびより重い1種または複数種の炭化水素と混合されているメタンの供給物から回収する方法であって、
供給物を第1の位置でスクラブ塔内に導入する工程、
該スクラブ塔から、メタンよりも重い成分に乏しい第1の塔頂蒸気流およびメタンよりも重い成分に富む塔底流を取り出す工程、
該第1の塔頂蒸気流を冷却および部分的に凝縮して第1の二相流を形成する工程、
該第1の二相流を分離して第2の塔頂蒸気流およびメタンに富む第1の還流を与える工程、
メタンに富む第1の還流を、第1の位置の上方の該スクラブ塔内の第2の位置で導入する工程、および
該塔底流をエタンに富む流れとエタンよりも重い複数種の成分に富む1または2以上の流れとに分離する工程、
を含み、エタンに富む第2の還流が、エタンに富む流れに由来し、かつ、第1の位置の上方の第2の位置および第3の位置から選択される位置でスクラブ塔内に導入されることを特徴とする方法。
Recovering a heavier component than methane from a supply of methane mixed with ethane and one or more heavier hydrocarbons,
Introducing the feed into the scrub column at a first location;
Removing from the scrub column a first overhead vapor stream that is less heavier than methane and a bottom stream that is heavier than methane;
Cooling and partially condensing the first overhead vapor stream to form a first two-phase stream;
Separating the first two-phase stream to provide a second overhead vapor stream and a first reflux rich in methane;
Introducing a first methane-rich reflux at a second location in the scrub column above the first location, and enriching the bottom stream with an ethane-rich stream and a plurality of components heavier than ethane. Separating into one or more streams,
And a second reflux rich in ethane is introduced into the scrub column at a position derived from the ethane-rich stream and selected from the second position and the third position above the first position. A method characterized by that.
該供給物が冷却された天然ガスの供給物である、請求項1に記載の方法。   The method of claim 1, wherein the feed is a cooled natural gas feed. 該メタンに富む第1の還流が、還流全体(すなわち第1の位置の上方のスクラブ塔への液体供給物)の約80%以上を構成する、請求項1または2に記載の方法。   The method of claim 1 or 2, wherein the first reflux rich in methane comprises about 80% or more of the total reflux (i.e., liquid feed to the scrub column above the first location). 該第2の還流が、還流全体(すなわち、第1の位置の上方のスクラブ塔への液体供給物)の約20%未満である、前掲の請求項のいずれかに記載の方法。   The method of any preceding claim, wherein the second reflux is less than about 20% of the total reflux (ie, the liquid feed to the scrub column above the first location). 該エタンに富む流れが、スクラブ塔への供給物の温度、およびスクラブ塔内にエタンに富む第2の還流として導入される前にポンピングされる凝縮流の温度よりも低温で凝縮される、前掲の請求項のいずれかに記載の方法。   The ethane rich stream is condensed below the temperature of the feed to the scrub column and the temperature of the condensed stream pumped before being introduced as a second ethane rich reflux into the scrub column, supra. A method according to any of the claims. 該エタンに富む第2の還流が、メタンに富む第1の還流と別個にスクラブ塔に供給される、前掲の請求項のいずれかに記載の方法。   The process according to any of the preceding claims, wherein the second ethane-rich reflux is fed to the scrub column separately from the first methane-rich reflux. スクラブ塔内への導入前に、エタンに富む第2の還流がメタンに富む第1の還流と混合される、請求項1から5のいずれかに記載の方法。   6. A process according to any preceding claim, wherein the second reflux rich in ethane is mixed with the first reflux enriched in methane prior to introduction into the scrub column. 該エタンに富む第2の還流が、還流ドラムの上流および内部から選択される位置で第1の二相流と組み合わされる、請求項7に記載の方法。   The method of claim 7, wherein the second ethane-rich reflux is combined with the first two-phase flow at a location selected from upstream and inside the reflux drum. 該第1の二相流は、エタンに富む第2の還流が還流として供給される吸収塔の塔底に供給される、請求項7に記載の方法。   8. The process of claim 7, wherein the first two-phase stream is fed to the bottom of an absorption tower where a second reflux rich in ethane is fed as reflux. 該エタンに富む流れが、メタンに富む第1の還流と混合される前に完全に凝縮される、請求項7から9のいずれかに記載の方法。   10. A process according to any of claims 7 to 9, wherein the ethane rich stream is fully condensed before being mixed with the first methane rich reflux. 該エタンに富む流れが、脱エタン装置の塔頂の蒸気である、前掲の請求項のいずれかに記載の方法。   A process according to any of the preceding claims, wherein the ethane-rich stream is the vapor at the top of the deethanizer. 該エタンよりも重い成分に富む1または2以上の流れに由来する吸収剤液が、第1の位置の上方の第2の位置、第3の位置および第4の位置から選択される位置でスクラブ塔内に導入される、前掲の請求項のいずれかに記載の方法。   The absorbent liquid derived from one or more streams rich in components heavier than the ethane is scrubbed at a position selected from the second position, the third position and the fourth position above the first position. A method according to any of the preceding claims, which is introduced into the tower. 該吸収剤液が、ペンタンおよびイソペンタンを含む、請求項12に記載の方法。   The method of claim 12, wherein the absorbent liquid comprises pentane and isopentane. 該吸収剤液が、1種または複数種のC4炭化水素を含む、請求項12または13に記載の方法。 The absorbent solution comprises a C 4 hydrocarbons of one or more, The method of claim 12 or 13. 該吸収剤液が、1種または複数種のC5+炭化水素を含む、請求項12から14のいずれかに記載の方法。 15. A method according to any of claims 12 to 14, wherein the absorbent liquid comprises one or more C5 + hydrocarbons. 該吸収剤液が、エタンに富む第2の還流またはメタンに富む第1の還流のいずれかと別個にスクラブ塔に供給される、請求項12から16のいずれかに記載の方法。   17. A process according to any of claims 12 to 16, wherein the absorbent liquid is fed to the scrub column separately from either the second reflux rich in ethane or the first reflux rich in methane. 該吸収剤液が、スクラブ塔内への導入前に、メタンに富む第1の還流およびエタンに富む第2の還流の少なくともいずれかと組み合わされる、請求項12から15のいずれかに記載の方法。   16. A process according to any of claims 12 to 15 wherein the absorbent liquid is combined with at least one of a first reflux rich in methane and a second reflux rich in ethane prior to introduction into the scrub column. 該吸収剤液が、還流ドラムの上流および内部から選択される位置で、第1の二相流およびエタンに富む第2の還流の少なくともいずれかと組み合わされる、請求項17に記載の方法。   The method of claim 17, wherein the absorbent liquid is combined with at least one of a first two-phase flow and an ethane rich second reflux at a location selected from upstream and inside the reflux drum. 該第1の二相流は、吸収剤液およびエタンに富む第2の還流の少なくともいずれかが還流として供給される吸収塔の塔底に供給される、請求項17に記載の方法。   18. The method of claim 17, wherein the first two-phase stream is fed to the bottom of an absorption tower in which at least one of an absorbent liquid and an ethane rich second reflux is fed as reflux. 該吸収剤液が、該流れの部分的な凝縮で第1の二相流を形成する前に第1の塔頂蒸気流と組み合わされる、請求項19に記載の方法。   21. The method of claim 19, wherein the absorbent liquid is combined with a first overhead vapor stream prior to forming a first two-phase stream with partial condensation of the stream. 該吸収剤液を該流れの凝縮前に気体状のエタンに富む流れと組み合わせて第2の還流を与える、請求項12から15のいずれかに記載の方法。   16. A method according to any of claims 12 to 15, wherein the absorbent liquid is combined with a gaseous ethane rich stream to provide a second reflux prior to condensing the stream. 組み合わされた吸収剤液および気体状のエタンに富む流れが、相分離しており、かつ液体画分が第1の位置の上方のスクラブ塔に供給される、請求項21に記載の方法。   The method of claim 21, wherein the combined absorbent liquid and gaseous ethane-rich stream are phase separated and the liquid fraction is fed to a scrub column above the first location. 該蒸気画分が凝縮され、かつ第1の位置の上方のスクラブ塔に供給される、請求項22に記載の方法。   23. The method of claim 22, wherein the vapor fraction is condensed and fed to a scrub column above the first location. 該液体画分と該第1の塔頂流とをその塔頂流の部分的な凝縮の前に組み合わせて第1の二相流を与える、請求項22または23に記載の方法。   24. A method according to claim 22 or 23, wherein the liquid fraction and the first overhead stream are combined prior to partial condensation of the overhead stream to provide a first two-phase flow. 該凝縮された蒸気画分と該第1の塔頂流とをその塔頂流の部分的な凝縮の前に組み合わせて第1の二相流を与える、請求項22または23に記載の方法。   24. The method of claim 22 or 23, wherein the condensed vapor fraction and the first overhead stream are combined prior to partial condensation of the overhead stream to provide a first two-phase flow. 該吸収剤液が、還流全体(すなわち第1の位置の上方のスクラブ塔への液体供給物)の約10%未満である、請求項12から25のいずれかに記載の方法。   26. A method according to any of claims 12 to 25, wherein the absorbent liquid is less than about 10% of the total reflux (i.e., liquid feed to the scrub column above the first location). 該第2の還流が約0.05%未満のプロパンを含む、前掲の請求項のいずれかに記載の方法。   The process of any preceding claim, wherein the second reflux comprises less than about 0.05% propane. メタンがエタンに富む流れから除去されることによって、第2の還流が本質的にエタンからなる、前掲の請求項のいずれかに記載の方法。   The method according to any of the preceding claims, wherein the second reflux consists essentially of ethane by removing methane from the ethane-rich stream. メタンよりも重い成分を、エタンおよびより重い1種または複数種の炭化水素と混合されているメタンの供給物から、請求項1に記載の方法によって回収するための装置であって、
スクラブ塔(114)、
該供給物を第1の位置でスクラブ塔内に導入するための導管手段(110)、
メタンよりも重い成分に乏しい第1の塔頂蒸気流およびメタンよりも重い成分に富む塔底流(126)をスクラブ塔から取り出すための導管手段(116)、
該第1の塔頂蒸気流を冷却および部分的に凝縮して第1の二相流を形成するための熱交換手段(122)、
該第1の二相流を分離して第2の塔頂蒸気流およびメタンに富む第1の還流を与えるための分離手段(118,218)、
該メタンに富む第1の還流を、第1の位置の上方のスクラブ塔内の第2の位置で導入するための導管手段(119)、
該塔底流をエタンに富む流れおよびエタンよりも重い複数種の成分に富む1または2以上の流れに分離するための分離手段(128)、および
該第1の位置の上方の第2の位置および第3の位置から選択される位置で、エタンに富む流れに由来するエタンに富む第2の還流をスクラブ塔内に導入するための導管手段(130,136および119)、
を含む装置。
An apparatus for recovering components heavier than methane from a feed of methane mixed with ethane and heavier one or more hydrocarbons by the method of claim 1, comprising:
Scrub tower (114),
Conduit means (110) for introducing the feed into the scrub column at a first location;
Conduit means (116) for removing from the scrub column a first overhead vapor stream rich in components heavier than methane and a bottoms stream (126) rich in components heavier than methane;
Heat exchange means (122) for cooling and partially condensing the first overhead vapor stream to form a first two-phase stream;
Separation means (118, 218) for separating the first two-phase stream to provide a second overhead vapor stream and a methane-rich first reflux;
Conduit means (119) for introducing the first reflux rich in methane at a second location in the scrub column above the first location;
Separation means (128) for separating the bottom stream into an ethane-rich stream and one or more streams rich in a plurality of components heavier than ethane; and a second position above the first position and Conduit means (130, 136 and 119) for introducing into the scrub column a second ethane-rich reflux derived from an ethane-rich stream at a position selected from the third position;
Including the device.
該エタンに富む流れをスクラブ塔への供給物の温度より低温で凝縮するための熱交換手段(132および122)、およびスクラブ塔(114)内にエタンに富む第2の還流として導入する前に凝縮流をポンピングするためのポンプ手段(134)を含む、請求項29に記載の装置。   Before introducing the ethane rich stream as a second ethane rich reflux into the scrub column (114), heat exchange means for condensing the ethane rich stream below the temperature of the feed to the scrub column, and 30. Apparatus according to claim 29, comprising pump means (134) for pumping the condensed stream. 還流ドラム(118)を含み、該還流ドラムから、エタンに富む第2の還流およびメタンに富む第1の還流の混合物がスクラブ塔(114)に供給される、請求項29または30に記載の装置。   31. Apparatus according to claim 29 or 30, comprising a reflux drum (118) from which a mixture of a second reflux rich in ethane and a first reflux rich in methane is fed to a scrub column (114). . 第1の二相流を塔底供給物として、およびエタンに富む第2の還流を還流として受入れる吸収塔(218)を含み、該吸収塔から塔底液がスクラブ塔(114)に供給される、請求項29または30に記載の装置。   An absorption tower (218) that accepts the first two-phase stream as bottom feed and the second reflux rich in ethane as reflux, from which the bottom liquid is fed to the scrub tower (114) Apparatus according to claim 29 or 30. エタンよりも重い1種または複数種の成分に富みかつスクラブ塔の塔底流を分離するための分離手段(128)によって供給される吸収剤液を、第1の位置の上方の第2の位置、第3の位置および第4の位置から選択される位置でスクラブ塔(114)内に導入するための導管手段(140,136および119)を含む、請求項29から32のいずれかに記載の装置。   An absorbent liquid enriched with one or more components heavier than ethane and supplied by a separating means (128) for separating the bottom stream of the scrub column, a second position above the first position; 33. Apparatus according to any of claims 29 to 32, comprising conduit means (140, 136 and 119) for introduction into the scrub tower (114) at a position selected from the third position and the fourth position. . 還流ドラム(118)を含み、該還流ドラムから、吸収剤液とメタンに富む第1の還流およびエタンに富む第2の還流の少なくともいずれかとの混合物がスクラブ塔(114)に供給される、請求項33に記載の装置。   Comprising a reflux drum (118) from which a mixture of absorbent liquid and at least one of a first reflux rich in methane and a second reflux rich in ethane is fed to a scrub column (114). Item 34. The apparatus according to Item 33. 第1の二相流を塔底供給物として受入れかつ吸収剤液とエタンに富む第2の還流との少なくともいずれかを還流として受入れる吸収塔(218)を含み、塔底液が該吸収塔からスクラブ塔(114)に供給される、請求項33に記載の装置。   An absorption tower (218) for receiving a first two-phase stream as a bottom feed and receiving at least one of an absorbent liquid and a second reflux rich in ethane as a reflux, 34. Apparatus according to claim 33, fed to a scrub tower (114). 該吸収剤液と該第1の塔頂蒸気流とを該流れの部分的な凝縮の前に組み合わせて第1の二相流を形成するための手段(438)を含む、請求項33から35のいずれかに記載の装置。   36. Means for combining (438) the absorbent liquid and the first overhead vapor stream prior to partial condensation of the stream to form a first two-phase stream. The apparatus in any one of. 該吸収剤液と気体状の該エタンに富む流れとを該流れの凝縮の前に組み合わせて第2の還流を与えるための手段(140および330)を含む、請求項33から36のいずれかに記載の装置。   37. A means according to any of claims 33 to 36 comprising means (140 and 330) for combining the absorbent liquid and the gaseous ethane-rich stream prior to condensation of the stream to provide a second reflux. The device described. 組み合わされた吸収剤液と気体状のエタンに富む流れとを相分離するための分離器手段(430)、および液体画分を第1の位置の上方のスクラブ塔(114)に供給するための導管手段(438および416)を含む、請求項37に記載の装置。   Separator means (430) for phase separating the combined absorbent liquid and gaseous ethane rich stream, and for feeding the liquid fraction to a scrub column (114) above the first location. 38. Apparatus according to claim 37 comprising conduit means (438 and 416). 蒸気画分を凝縮するための熱交換手段(122,532)および凝縮された蒸気を第1の位置の上方のスクラブ塔(114)に供給するための導管手段(436,536,538および516)を含む、請求項38に記載の装置。   Heat exchange means (122, 532) for condensing the vapor fraction and conduit means (436, 536, 538 and 516) for supplying condensed steam to the scrub column (114) above the first location 40. The apparatus of claim 38, comprising: 該液体画分と該第1の塔頂流とをその塔頂流の部分的な凝縮の前に組み合わせて第1の二相流を与えるための手段(438)を含む、請求項38または39に記載の装置。   40. Means for combining (438) the liquid fraction and the first overhead stream prior to partial condensation of the overhead stream to provide a first two-phase flow. The device described in 1. 凝縮された該蒸気画分と該第1の塔頂流とをその塔頂流の部分的な凝縮の前に組み合わせて第1の二相流を与えるための手段(532および538)を含む、請求項39または40に記載の装置。   Means (532 and 538) for combining the condensed vapor fraction and the first overhead stream prior to partial condensation of the overhead stream to provide a first two-phase flow; 41. Apparatus according to claim 39 or 40.
JP2008511816A 2005-05-19 2006-05-15 Integrated NGL recovery and liquefied natural gas production Ceased JP2008545819A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/132,795 US20060260355A1 (en) 2005-05-19 2005-05-19 Integrated NGL recovery and liquefied natural gas production
PCT/IB2006/001357 WO2006123240A1 (en) 2005-05-19 2006-05-15 Integrated ngl recovery and liquefied natural gas production

Publications (1)

Publication Number Publication Date
JP2008545819A true JP2008545819A (en) 2008-12-18

Family

ID=36809164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008511816A Ceased JP2008545819A (en) 2005-05-19 2006-05-15 Integrated NGL recovery and liquefied natural gas production

Country Status (14)

Country Link
US (2) US20060260355A1 (en)
EP (1) EP1883773A1 (en)
JP (1) JP2008545819A (en)
KR (1) KR100939053B1 (en)
CN (1) CN101268325A (en)
AU (1) AU2006248647B2 (en)
CA (1) CA2608302A1 (en)
MX (1) MX2007014475A (en)
MY (1) MY142025A (en)
NO (1) NO20076216L (en)
RU (1) RU2367860C1 (en)
SG (1) SG148188A1 (en)
TW (1) TWI314578B (en)
WO (1) WO2006123240A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018013326A (en) * 2016-07-21 2018-01-25 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Heavy hydrocarbon removal system for lean natural gas liquefaction
JP2022046685A (en) * 2015-04-10 2022-03-23 チャート・エナジー・アンド・ケミカルズ,インコーポレーテッド Mixed refrigerant liquefaction system and method

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530505A (en) * 2005-02-17 2008-08-07 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Plant and method for liquefying natural gas
US7530236B2 (en) * 2006-03-01 2009-05-12 Rajeev Nanda Natural gas liquid recovery
US9869510B2 (en) * 2007-05-17 2018-01-16 Ortloff Engineers, Ltd. Liquefied natural gas processing
NO329177B1 (en) * 2007-06-22 2010-09-06 Kanfa Aragon As Process and system for forming liquid LNG
US20090025422A1 (en) 2007-07-25 2009-01-29 Air Products And Chemicals, Inc. Controlling Liquefaction of Natural Gas
FR2923000B1 (en) * 2007-10-26 2015-12-11 Inst Francais Du Petrole METHOD FOR LIQUEFACTING NATURAL GAS WITH IMPROVED RECOVERY OF PROPANE
US20090145167A1 (en) * 2007-12-06 2009-06-11 Battelle Energy Alliance, Llc Methods, apparatuses and systems for processing fluid streams having multiple constituents
BRPI0820028B1 (en) * 2007-12-10 2020-09-24 Conocophillips Company PROCESS TO LIQUEFEND A NATURAL GAS CHAIN
US9243842B2 (en) 2008-02-15 2016-01-26 Black & Veatch Corporation Combined synthesis gas separation and LNG production method and system
US8209997B2 (en) * 2008-05-16 2012-07-03 Lummus Technology, Inc. ISO-pressure open refrigeration NGL recovery
US20090282865A1 (en) 2008-05-16 2009-11-19 Ortloff Engineers, Ltd. Liquefied Natural Gas and Hydrocarbon Gas Processing
US9151537B2 (en) * 2008-12-19 2015-10-06 Kanfa Aragon As Method and system for producing liquefied natural gas (LNG)
JP5367411B2 (en) 2009-02-27 2013-12-11 独立行政法人石油天然ガス・金属鉱物資源機構 Method and apparatus for recovering hydrocarbons from FT gas components
US20100287982A1 (en) 2009-05-15 2010-11-18 Ortloff Engineers, Ltd. Liquefied Natural Gas and Hydrocarbon Gas Processing
CN102510770B (en) * 2009-09-25 2014-06-11 大阪瓦斯株式会社 Method and apparatus for removing low concentrations of methane
US9021832B2 (en) * 2010-01-14 2015-05-05 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US9561730B2 (en) * 2010-04-08 2017-02-07 Qualcomm Incorporated Wireless power transmission in electric vehicles
US10113127B2 (en) 2010-04-16 2018-10-30 Black & Veatch Holding Company Process for separating nitrogen from a natural gas stream with nitrogen stripping in the production of liquefied natural gas
KR101787334B1 (en) 2010-06-30 2017-10-19 쉘 인터내셔날 리써취 마트샤피지 비.브이. Method of treating a hydrocarbon stream comprising methane, and an apparatus therefor
US8635885B2 (en) * 2010-10-15 2014-01-28 Fluor Technologies Corporation Configurations and methods of heating value control in LNG liquefaction plant
WO2012075266A2 (en) * 2010-12-01 2012-06-07 Black & Veatch Corporation Ngl recovery from natural gas using a mixed refrigerant
US10451344B2 (en) 2010-12-23 2019-10-22 Fluor Technologies Corporation Ethane recovery and ethane rejection methods and configurations
EP2597407A1 (en) 2011-11-23 2013-05-29 Shell Internationale Research Maatschappij B.V. Method and apparatus for preparing a lean methane-containing gas stream
EP2597408A1 (en) 2011-11-23 2013-05-29 Shell Internationale Research Maatschappij B.V. Method and apparatus for preparing a lean methane-containing gas stream
US10139157B2 (en) 2012-02-22 2018-11-27 Black & Veatch Holding Company NGL recovery from natural gas using a mixed refrigerant
CA2790961C (en) * 2012-05-11 2019-09-03 Jose Lourenco A method to recover lpg and condensates from refineries fuel gas streams.
US20140075987A1 (en) 2012-09-20 2014-03-20 Fluor Technologies Corporation Configurations and methods for ngl recovery for high nitrogen content feed gases
US9803917B2 (en) 2012-12-28 2017-10-31 Linde Engineering North America, Inc. Integrated process for NGL (natural gas liquids recovery) and LNG (liquefaction of natural gas)
CA2906366A1 (en) * 2013-03-15 2014-09-25 Conocophillips Company Mixed-reflux for heavies removal in lng processing
US10563913B2 (en) 2013-11-15 2020-02-18 Black & Veatch Holding Company Systems and methods for hydrocarbon refrigeration with a mixed refrigerant cycle
WO2015130030A1 (en) * 2014-02-28 2015-09-03 한양대학교 산학협력단 Natural gas liquid recovery system and natural gas liquid recovery method using same
US9574822B2 (en) 2014-03-17 2017-02-21 Black & Veatch Corporation Liquefied natural gas facility employing an optimized mixed refrigerant system
EP3573312B1 (en) * 2014-05-22 2023-09-27 Huawei Technologies Co., Ltd. Node interconnection apparatus, resource control node, and server system
US10288347B2 (en) 2014-08-15 2019-05-14 1304338 Alberta Ltd. Method of removing carbon dioxide during liquid natural gas production from natural gas at gas pressure letdown stations
RU2701018C2 (en) 2014-09-30 2019-09-24 Дау Глоубл Текнолоджиз Ллк Method for increasing output of ethylene and propylene in propylene production plant
US20160216030A1 (en) 2015-01-23 2016-07-28 Air Products And Chemicals, Inc. Separation of Heavy Hydrocarbons and NGLs from Natural Gas in Integration with Liquefaction of Natural Gas
US10619918B2 (en) 2015-04-10 2020-04-14 Chart Energy & Chemicals, Inc. System and method for removing freezing components from a feed gas
KR102291922B1 (en) * 2015-04-28 2021-08-20 대우조선해양 주식회사 Flng making heavy hydrocarbon out of natural gasand method of making heavy hydrocarbon out of natural gas in flng
AR105277A1 (en) 2015-07-08 2017-09-20 Chart Energy & Chemicals Inc MIXED REFRIGERATION SYSTEM AND METHOD
FR3039080B1 (en) * 2015-07-23 2019-05-17 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD OF PURIFYING HYDROCARBON-RICH GAS
WO2017045055A1 (en) 2015-09-16 2017-03-23 1304342 Alberta Ltd. A method of preparing natural gas at a gas pressure reduction stations to produce liquid natural gas (lng)
WO2017067908A1 (en) 2015-10-21 2017-04-27 Shell Internationale Research Maatschappij B.V. Method and system for preparing a lean methane-containing gas stream
US10006701B2 (en) 2016-01-05 2018-06-26 Fluor Technologies Corporation Ethane recovery or ethane rejection operation
CN105783420A (en) * 2016-04-11 2016-07-20 中国海洋石油总公司 Double-refrigerant circulating natural gas liquefaction system based on wound-tube heat exchanger
US10330382B2 (en) 2016-05-18 2019-06-25 Fluor Technologies Corporation Systems and methods for LNG production with propane and ethane recovery
US10533794B2 (en) 2016-08-26 2020-01-14 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10551119B2 (en) 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10551118B2 (en) 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US11402155B2 (en) 2016-09-06 2022-08-02 Lummus Technology Inc. Pretreatment of natural gas prior to liquefaction
US11725879B2 (en) 2016-09-09 2023-08-15 Fluor Technologies Corporation Methods and configuration for retrofitting NGL plant for high ethane recovery
US10539364B2 (en) * 2017-03-13 2020-01-21 General Electric Company Hydrocarbon distillation
AU2018243452A1 (en) * 2017-03-31 2019-09-19 Exxonmobil Upstream Research Company Hydraulic turbine between middle and cold bundles of natural gas liquefaction heat exchanger
US11543180B2 (en) 2017-06-01 2023-01-03 Uop Llc Hydrocarbon gas processing
US11428465B2 (en) 2017-06-01 2022-08-30 Uop Llc Hydrocarbon gas processing
AU2018328192B2 (en) * 2017-09-06 2023-08-24 Linde Engineering North America, Inc. Methods for providing refrigeration in natural gas liquids recovery plants
US10619917B2 (en) 2017-09-13 2020-04-14 Air Products And Chemicals, Inc. Multi-product liquefaction method and system
US11112175B2 (en) 2017-10-20 2021-09-07 Fluor Technologies Corporation Phase implementation of natural gas liquid recovery plants
CN108195135A (en) * 2017-12-11 2018-06-22 常州西夏墅东方工具有限公司 Low temperature heat exchanger and its application process in a kind of natural gas liquefaction
AU2019281725B2 (en) * 2018-06-07 2022-03-17 Exxonmobil Upstream Research Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
RU2744138C2 (en) * 2018-11-30 2021-03-03 Андрей Владиславович Курочкин Installation for natural gas treatment resulting in liquefied natural gas
US12098882B2 (en) 2018-12-13 2024-09-24 Fluor Technologies Corporation Heavy hydrocarbon and BTEX removal from pipeline gas to LNG liquefaction
US12215922B2 (en) 2019-05-23 2025-02-04 Fluor Technologies Corporation Integrated heavy hydrocarbon and BTEX removal in LNG liquefaction for lean gases
WO2021023393A1 (en) * 2019-08-02 2021-02-11 Linde Gmbh Process and plant for producing liquefied natural gas
EP4031821A1 (en) 2019-09-19 2022-07-27 ExxonMobil Upstream Research Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
WO2021055020A1 (en) 2019-09-19 2021-03-25 Exxonmobil Upstream Research Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
CN112300844B (en) * 2020-11-13 2022-02-18 大庆市中瑞燃气有限公司 LNG liquefied heavy hydrocarbon removal method
TW202309456A (en) 2021-05-14 2023-03-01 美商圖表能源與化學有限公司 Side draw reflux heavy hydrocarbon removal system and method
WO2023288162A1 (en) 2021-07-16 2023-01-19 Exxonmobil Upstream Research Company Methods for operating hydrocarbon removal systems from natural gas streams

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129671A (en) * 1984-05-08 1986-02-10 ウイリアム、ロバ−ト、ストザ−ス Distillation column having high thermal and dynamic efficiency
US4707171A (en) * 1984-12-17 1987-11-17 Linde Aktiengesellschaft Process for obtaining C2+ or C3+ hydrocarbons
JPH05240576A (en) * 1991-09-30 1993-09-17 Cie Fr Etud Constr Technip Method of liquefaction of natural gas
US5685170A (en) * 1995-11-03 1997-11-11 Mcdermott Engineers & Constructors (Canada) Ltd. Propane recovery process
JP2005042093A (en) * 2003-04-16 2005-02-17 Air Products & Chemicals Inc Method for recovering component heavier than methane from natural gas and apparatus for the same
US20060005573A1 (en) * 2002-07-23 2006-01-12 Rudolf Stockmann Method for liquefying a hydrocarbon-rich flow while simultaneously obtaining a c3/c4-rich fraction

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3247649A (en) * 1963-04-29 1966-04-26 Union Oil Co Absorption process for separating components of gaseous mixtures
US3313724A (en) * 1965-03-29 1967-04-11 Lummus Co Process for the separation of normally gaseous hydrocarbon mixtures
US4065278A (en) * 1976-04-02 1977-12-27 Air Products And Chemicals, Inc. Process for manufacturing liquefied methane
US4657571A (en) * 1984-06-29 1987-04-14 Snamprogetti S.P.A. Process for the recovery of heavy constituents from hydrocarbon gaseous mixtures
FR2571129B1 (en) * 1984-09-28 1988-01-29 Technip Cie PROCESS AND PLANT FOR CRYOGENIC FRACTIONATION OF GASEOUS LOADS
DE3802553C2 (en) * 1988-01-28 1996-06-20 Linde Ag Process for the separation of hydrocarbons
FR2646166B1 (en) * 1989-04-25 1991-08-16 Technip Cie PROCESS FOR RECOVERING LIQUID HYDROCARBONS FROM A GASEOUS LOAD AND PLANT FOR CARRYING OUT SAID PROCESS
US6098425A (en) * 1993-10-01 2000-08-08 Stothers; William R. Thermodynamic separation
US5473900A (en) * 1994-04-29 1995-12-12 Phillips Petroleum Company Method and apparatus for liquefaction of natural gas
DE69523437T2 (en) * 1994-12-09 2002-06-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Gas liquefaction plant and method
US6308531B1 (en) * 1999-10-12 2001-10-30 Air Products And Chemicals, Inc. Hybrid cycle for the production of liquefied natural gas
US6401486B1 (en) * 2000-05-18 2002-06-11 Rong-Jwyn Lee Enhanced NGL recovery utilizing refrigeration and reflux from LNG plants
US6405561B1 (en) * 2001-05-15 2002-06-18 Black & Veatch Pritchard, Inc. Gas separation process
US6742358B2 (en) * 2001-06-08 2004-06-01 Elkcorp Natural gas liquefaction
DE10205366A1 (en) * 2002-02-08 2003-08-21 Linde Ag Liquefaction of hydrocarbon stream, such as natural gas, with simultaneous recovery of liquid natural gas fraction comprises rectification and absorption process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129671A (en) * 1984-05-08 1986-02-10 ウイリアム、ロバ−ト、ストザ−ス Distillation column having high thermal and dynamic efficiency
US4707171A (en) * 1984-12-17 1987-11-17 Linde Aktiengesellschaft Process for obtaining C2+ or C3+ hydrocarbons
JPH05240576A (en) * 1991-09-30 1993-09-17 Cie Fr Etud Constr Technip Method of liquefaction of natural gas
US5685170A (en) * 1995-11-03 1997-11-11 Mcdermott Engineers & Constructors (Canada) Ltd. Propane recovery process
US20060005573A1 (en) * 2002-07-23 2006-01-12 Rudolf Stockmann Method for liquefying a hydrocarbon-rich flow while simultaneously obtaining a c3/c4-rich fraction
JP2005042093A (en) * 2003-04-16 2005-02-17 Air Products & Chemicals Inc Method for recovering component heavier than methane from natural gas and apparatus for the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022046685A (en) * 2015-04-10 2022-03-23 チャート・エナジー・アンド・ケミカルズ,インコーポレーテッド Mixed refrigerant liquefaction system and method
JP7273941B2 (en) 2015-04-10 2023-05-15 チャート・エナジー・アンド・ケミカルズ,インコーポレーテッド Mixed refrigerant liquefaction system and method
JP2018013326A (en) * 2016-07-21 2018-01-25 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Heavy hydrocarbon removal system for lean natural gas liquefaction
KR20180010980A (en) * 2016-07-21 2018-01-31 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Heavy hydrocarbon removal system for lean natural gas liquefaction
KR101943743B1 (en) 2016-07-21 2019-01-29 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Heavy hydrocarbon removal system for lean natural gas liquefaction

Also Published As

Publication number Publication date
KR20080015819A (en) 2008-02-20
NO20076216L (en) 2008-02-11
CA2608302A1 (en) 2006-11-23
AU2006248647B2 (en) 2009-09-03
TWI314578B (en) 2009-09-11
AU2006248647A1 (en) 2006-11-23
US20100024477A1 (en) 2010-02-04
CN101268325A (en) 2008-09-17
SG148188A1 (en) 2008-12-31
RU2007147253A (en) 2009-06-27
WO2006123240A1 (en) 2006-11-23
RU2367860C1 (en) 2009-09-20
MX2007014475A (en) 2008-02-11
TW200641114A (en) 2006-12-01
US20060260355A1 (en) 2006-11-23
EP1883773A1 (en) 2008-02-06
MY142025A (en) 2010-08-16
KR100939053B1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
KR100939053B1 (en) Integrated ngl recovery and liquefied natural gas production
CA2593886C (en) Integrated ngl recovery in the production of liquefied natural gas
US6125653A (en) LNG with ethane enrichment and reinjection gas as refrigerant
KR101568763B1 (en) Method and system for producing lng
US7204100B2 (en) Natural gas liquefaction
JP4230956B2 (en) Method and apparatus for recovery of components heavier than methane from natural gas
JP5710137B2 (en) Nitrogen removal by isobaric open frozen natural gas liquid recovery
US20130061632A1 (en) Integrated NGL Recovery In the Production Of Liquefied Natural Gas
JP5770870B2 (en) Isobaric open frozen NGL recovery
NO158478B (en) PROCEDURE FOR SEPARATING NITROGEN FROM NATURAL GAS.
JP2011530058A (en) Method and apparatus for cooling hydrocarbon streams
US20190041128A1 (en) Recovery Of Helium From Nitrogen-Rich Streams
US7152428B2 (en) Refrigeration system
CA2583724C (en) Method for providing cooling for gas liquefaction

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110520

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110520

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20111129