[go: up one dir, main page]

JP2008309539A - Two-dimensional electrophoretic apparatus - Google Patents

Two-dimensional electrophoretic apparatus Download PDF

Info

Publication number
JP2008309539A
JP2008309539A JP2007155908A JP2007155908A JP2008309539A JP 2008309539 A JP2008309539 A JP 2008309539A JP 2007155908 A JP2007155908 A JP 2007155908A JP 2007155908 A JP2007155908 A JP 2007155908A JP 2008309539 A JP2008309539 A JP 2008309539A
Authority
JP
Japan
Prior art keywords
electrophoresis
dimensional
dimensional electrophoresis
separation
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007155908A
Other languages
Japanese (ja)
Inventor
Norio Okuyama
典生 奥山
Koji Honma
孝治 本間
Motoko Yoshida
基子 吉田
Katsutoshi Saito
勝利 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemitronics Co Ltd
Original Assignee
Chemitronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemitronics Co Ltd filed Critical Chemitronics Co Ltd
Priority to JP2007155908A priority Critical patent/JP2008309539A/en
Publication of JP2008309539A publication Critical patent/JP2008309539A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Separation (AREA)
  • Peptides Or Proteins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a two-dimensional electrophoretic apparatus easy to automate. <P>SOLUTION: The two-dimensional electrophoretic apparatus is constituted so as to perform electrophoresis by introducing a migration liquid, which is prepared by mixing a wide region buffer solution using an ampholyte, either one of a water soluble straight chain polymer and a water-soluble straight chain polymer containing a branch structure and a sample, into a unidimensional separation flow channel and a two-dimensional electrophoretic flow channel composed of a plurality of two-dimensional separation flow channels crossing the unidimensional separation flow channel to communicate with it. By using this two-dimensional electrophoretic apparatus, two-dimensional electrophoresis can be performed immediately after the completion of the unidimensional electrophoresis. Since conventionally required operation for transferring a support containing the sample after the unidimensional electrophoresis to the surface of the two-dimensional electrophoresis is dispensed with, the automation of a two-dimensional electrophoretic apparatus becomes easy. Further, the electrophoretic tank is formed into a microchip structure to further increase the speed of electrophoresis. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、たんぱく質の分離分析を行う2次元電気泳動装置及びこれを用いた電気泳動方法に関する。 The present invention relates to a two-dimensional electrophoresis apparatus for performing protein separation analysis and an electrophoresis method using the same.

ポリアクリルアミドゲルを電気泳動用支持体として用いるゲル電気泳動法は生命科学、医療、環境、食品の分野でたんぱく質、ペプチド、神経伝達物質、ホルモン、核酸などの分離分析手段として広く用いられている。特に、たんぱく質を等電点と分子量という二つの異なる分離モードで分離するポリアクリルアミドゲル2次元電気泳動法は、分離能の優れた分析法として知られている。 Gel electrophoresis using polyacrylamide gel as a support for electrophoresis is widely used as a means for separating and analyzing proteins, peptides, neurotransmitters, hormones, nucleic acids and the like in the fields of life science, medicine, environment and food. In particular, polyacrylamide gel two-dimensional electrophoresis, which separates proteins in two different separation modes, isoelectric point and molecular weight, is known as an analytical method with excellent resolution.

上記の従来方法の一例を説明すれば、チューブゲルを用いた1次元目の等電点分離電気泳動と、スラブ(平板)ゲルを用いた2次元目の分子量分離電気泳動を組み合わせた2次元電気泳動においては、1次元目の分離が終了したのちにゲルをチューブから取り出して、これを2次元目分離用のスラブゲルの上に密着させてから、2次元目の電気泳動を行う必要があった。
O’Farrell, J.Biol. Chem., 250, 4007-4021, 1975
Explaining one example of the conventional method described above, two-dimensional electrophoresis is a combination of first-dimension isoelectric focusing using tube gel and second-dimension molecular weight separation electrophoresis using slab gel. In the electrophoresis, after the first-dimensional separation was completed, the gel was taken out from the tube, and it was necessary to perform the second-dimensional electrophoresis after adhering it to the slab gel for the second-dimensional separation. .
O'Farrell, J. Biol. Chem., 250, 4007-4021, 1975

ポリアクリルアミドゲル2次元電気泳動法は、泳動用支持体であるポリアクリルアミドゲルの調製が煩雑で、品質の規格化が難しい。近年、ゲルのサイズは小さくなり泳動時間の短縮もはかられてきてはいるが、さらに簡便で実用的な電気泳動法および電気泳動装置が望まれている。 In polyacrylamide gel two-dimensional electrophoresis, preparation of polyacrylamide gel, which is a support for electrophoresis, is complicated, and quality standardization is difficult. In recent years, the gel size has been reduced and the electrophoresis time has been shortened. However, a simpler and more practical electrophoresis method and electrophoresis apparatus are desired.

本発明が解決しようとする主要な課題は、2次元電気泳動の高速化と分離性能に優れる2次元電気泳動装置を提供することにある。さらには周辺機器も含めた全システムの小型化、自動化を図ることである。 The main problem to be solved by the present invention is to provide a two-dimensional electrophoresis apparatus excellent in speeding up and separation performance of two-dimensional electrophoresis. Furthermore, the entire system including peripheral devices must be miniaturized and automated.

本発明による解決手段を以下に述べる。
請求項1、2に示す発明は本願発明の基本をなし、2次元電気泳動に際し、試料のみの導入流路を持たない1本の1次元目用分離流路と、これと交差して複数本並列する2次元目用分離流路を設けて2次元電気泳動を行うことにある。さらに上記流路内の全域に水溶性直鎖ポリマー若しくは分岐構造を含む水溶性直鎖ポリマーのいずれか一以上と両性電解質を用いた広領域緩衝液を混合した泳動液、又はこれにさらに試料を混合した泳動液を導入して2次元電気泳動を行うものである。
The solution according to the present invention will be described below.
The invention described in claims 1 and 2 constitutes the basis of the present invention, and in the case of two-dimensional electrophoresis, a single first-dimensional separation channel that does not have a sample-only introduction channel, and a plurality of crossing channels. The purpose is to perform two-dimensional electrophoresis by providing parallel separation channels for the second dimension. Furthermore, an electrophoresis solution in which one or more of a water-soluble linear polymer or a water-soluble linear polymer containing a branched structure and a wide-area buffer solution using an amphoteric electrolyte are mixed in the entire region of the flow path, or a sample is further added thereto. Two-dimensional electrophoresis is performed by introducing a mixed electrophoresis solution.

以下、図1を用いて上記発明を詳細に説明する。図1(A)は2次元電気泳動槽100の斜視図、図1(B)は図1(A)のP−P位置の部分断面図である。複数本の流路121,122で構成される2次元目の電気泳動分離用流路120が1次元目の電気泳動分離用流路110と交差して一体化している。上記交差部においては、各流路110、121、122は連通しており、各流路間を流体が自由に往来することができる。図示のように、1次元目分離用流路と2次元目分離用流路の全域に泳動液130が導入されている。この泳動液は、先に述べたように、水溶性直鎖ポリマー若しくは分岐構造を含む水溶性直鎖ポリマーのいずれか一以上と両性電解質を用いた広領域緩衝液を混合したもの、又はこれにさらに試料を混合したものである。 Hereinafter, the above-described invention will be described in detail with reference to FIG. 1A is a perspective view of the two-dimensional electrophoresis tank 100, and FIG. 1B is a partial cross-sectional view taken along the line PP in FIG. 1A. A second-dimensional electrophoresis separation channel 120 constituted by a plurality of channels 121 and 122 intersects and is integrated with the first-dimensional electrophoresis separation channel 110. In the intersection, the flow paths 110, 121, and 122 communicate with each other, and fluid can freely pass between the flow paths. As shown in the figure, the electrophoresis solution 130 is introduced into the entire area of the first-dimensional separation channel and the second-dimensional separation channel. As described above, this electrophoresis solution is a mixture of at least one of a water-soluble linear polymer or a water-soluble linear polymer containing a branched structure and a wide-area buffer solution using an amphoteric electrolyte, or a mixture thereof. Furthermore, the sample is mixed.

2次元目電気泳動分離用の複数本の流路は、1次元目電気泳動分離用の流路との交差部分以外においては互いに物理的に独立している。このため、然るべき電極と電極液とにより1次元目電気泳動分離用流路の両端に電圧を加えて1次元目の電気泳動を行った場合にも、交差して一体化接続している2次元目電気泳動分離用複数本流路の存在の影響は受けにくい。 The plurality of flow paths for second-dimensional electrophoretic separation are physically independent from each other except at the intersection with the flow path for first-dimensional electrophoretic separation. For this reason, even when the first-dimensional electrophoresis is performed by applying a voltage to both ends of the first-dimensional electrophoresis separation channel with an appropriate electrode and electrode liquid, the two-dimensionally crossed and integrally connected Less susceptible to the presence of multiple flow paths for eye electrophoresis separation.

1次元目電気泳動の電圧印加には、例えば、図5(A)に示す1次元目電気泳動用電極システム510を一対で用いればよい。1次元目電気泳動用電極システム510では、キャピラリー513の中に電極液511が充填されており、毛細管作用により一定量が保持されている。電極液中に事前に試料(たんぱく質など)を混合しておくことも可能である。電極液中には電極線512が設けられている。今、一対の1次元目電気泳動用電極システムの電極液面515の各々を1次元目電気泳動分離用流路の両端に接触させれば、電極液と1次元目分離用泳動液とが接触するので、電極線に所定の電圧を加えることにより、1次元目の電気泳動を行うことが出来る。この時に、1次元目電気泳動分離用流路に交差して一体化接続している2次元目電気泳動分離用複数本の流路は、1次元目電気泳動に影響を与えにくくするために両端が開放されている。 For voltage application in the first-dimensional electrophoresis, for example, a pair of first-dimensional electrophoresis electrode systems 510 illustrated in FIG. 5A may be used. In the first-dimensional electrophoresis electrode system 510, the capillary 513 is filled with the electrode solution 511, and a constant amount is held by capillary action. It is also possible to mix a sample (protein, etc.) in advance in the electrode solution. An electrode wire 512 is provided in the electrode liquid. Now, if each of the electrode liquid surfaces 515 of the pair of first-dimensional electrophoretic electrode systems is brought into contact with both ends of the first-dimensional electrophoretic separation channel, the electrode liquid and the first-dimensional electrophoretic liquid are brought into contact with each other. Therefore, the first-dimensional electrophoresis can be performed by applying a predetermined voltage to the electrode lines. At this time, the plurality of second-dimensional electrophoretic separation channels crossing and integrally connecting the first-dimensional electrophoretic separation channels are arranged at both ends to make it difficult to influence the first-dimensional electrophoresis. Is open.

また、2次元目電気泳動分離用流路120に電圧を加えるには、例えば、図5(B)に示す2次元目電気泳動用電極システム520を一対で用いればよい。2次元目電気泳動用電極システムの構成は1次元目用と類似しており、電極液容器523の中に電極液521が充填されており、毛細管作用により一定量が保持されている。電極液中には電極線522が設けられている。 In order to apply a voltage to the second-dimensional electrophoresis separation channel 120, for example, a pair of second-dimensional electrophoresis electrode systems 520 shown in FIG. 5B may be used. The configuration of the electrode system for the second dimension electrophoresis is similar to that for the first dimension, and the electrode liquid container 523 is filled with the electrode liquid 521, and a constant amount is held by capillary action. An electrode wire 522 is provided in the electrode liquid.

本発明によれば、1次元目の電気泳動終了後直ちに2次元目の電気泳動を開始することが出来る。従来の方法で必要とされた1次元目電気泳動終了後、試料を含む泳動用支持体を2次元目電気泳動用支持体上に移す煩雑な操作が不要になり、電気泳動時間が短縮されると同時に工程が簡素化されるため、装置の自動化が容易になる。泳動液に混合した水溶性直鎖ポリマー(若しくは分岐構造を含む水溶性直鎖ポリマー)は分離スポットの拡散を抑え、若しくは分子篩効果により分離能を向上させる。 According to the present invention, the second-dimensional electrophoresis can be started immediately after the completion of the first-dimensional electrophoresis. After completion of the first-dimensional electrophoresis required by the conventional method, the complicated operation of transferring the electrophoresis support containing the sample onto the support for the second-dimensional electrophoresis is not required, and the electrophoresis time is shortened. At the same time, since the process is simplified, it is easy to automate the apparatus. The water-soluble linear polymer (or the water-soluble linear polymer containing a branched structure) mixed in the electrophoresis solution suppresses the diffusion of the separation spot or improves the separation ability by the molecular sieve effect.

請求項2に示す発明のポイントは、請求項1に示した泳動液中に試料をさらに混合したことにある。これにより、1次元目の電気泳動開始にあたって試料を導入する必要が無くなり、電気泳動操作と工程の簡素化が図れる。 The point of the invention shown in claim 2 is that the sample is further mixed in the electrophoresis solution shown in claim 1. This eliminates the need to introduce a sample when starting the first-dimensional electrophoresis, and simplifies the electrophoresis operation and process.

また、請求項3に示す発明のポイントは、上記の流路をキャピラリーで構成することにある。さらに、請求項4に示す発明では、請求項3に示した1次元目電気泳動分離用のキャピラリーの両端に電極槽を設け、また、2次元目電気泳動用の複数本のキャピラリーの両端にも各キャピラリーに共通の電極槽を設け、さらに、上記の2次元目電気泳動用電極槽の内面に撥水処理を施している。上記の撥水処理を施すことにより、1次元目・2次元目電気泳動用キャピラリー全域に泳動液を導入したときに、2次元目電気泳動分離用の各キャピラリー端部から電極槽の内面を濡らしながら泳動液が漏れ出すのを防止することが出来る。 Further, the point of the invention shown in claim 3 is that the flow path is constituted by a capillary. Furthermore, in the invention shown in claim 4, electrode tanks are provided at both ends of the capillary for separation of the first dimension electrophoretic separation shown in claim 3, and also at both ends of the plurality of capillaries for electrophoresis of the second dimension. Each capillary is provided with a common electrode tank, and the inner surface of the electrode tank for the second dimensional electrophoresis is subjected to water repellent treatment. By applying the above water-repellent treatment, the inner surface of the electrode tank is wetted from the end of each capillary for 2D electrophoretic separation when the electrophoresis solution is introduced to the entire area of the 1D and 2D electrophoresis capillaries. However, it is possible to prevent the electrophoresis solution from leaking.

さらに、請求項5に示す発明のポイントは、1次元目および2次元目電気泳動分離用流路を基板上に設けた溝状の流路で構成することにある。さらには、請求項6に示す発明では、請求項4の発明と同様に、上記の溝状流路の両端に電極槽を設けることにある。2次元目電気泳動分離用の複数本の溝状流路の両端には、各溝状流路に対して共通の電極槽を設け、さらに、上記の2次元目電気泳動用の電極槽の内面に撥水処理を施すことにある。 Furthermore, the point of the invention shown in claim 5 is that the first-dimensional and second-dimensional electrophoretic separation flow paths are constituted by groove-shaped flow paths provided on the substrate. Furthermore, in the invention shown in claim 6, as in the invention of claim 4, electrode tanks are provided at both ends of the groove-shaped channel. A common electrode tank is provided at each end of the plurality of groove-shaped channels for separation of the second-dimensional electrophoresis, and the inner surface of the electrode tank for the second-dimensional electrophoresis is further provided. It is to give water repellent treatment.

本発明によれば、プロセスの簡素化に基づいて、2次元電気泳動所要時間が短縮され、また、装置の小型化・自動化が容易となる。さらに、両性電解質を用いた広領域緩衝液と水溶性直鎖ポリマー(若しくは分岐構造を含む水溶性直鎖ポリマー)とを混合した泳動液を用いることで、分離能の優れた泳動分離像が得られる。 According to the present invention, the time required for two-dimensional electrophoresis is shortened based on the simplification of the process, and the apparatus can be easily downsized and automated. Furthermore, an electrophoretic separation image with excellent resolution can be obtained by using an electrophoretic solution in which a wide-area buffer using an ampholyte and a water-soluble linear polymer (or a water-soluble linear polymer containing a branched structure) are mixed. It is done.

図面を用いて、以下に本発明を実施するための最良の形態について説明する。図2は、1次元目及び2次元目電気泳動分離用流路をキャピラリーで構成し、1次元目及び2次元目電気泳動分離用キャピラリーの両端には、電極槽251、252を設けた2次元電気泳動装置200を示す。各キャピラリーには、下記に示すA、B、のいずれかの仕様の泳動液を導入する。
A仕様泳動液:両性電解質を使用する広領域緩衝液と、水溶性直鎖ポリマー若しくは分岐構造を含む水溶性直鎖ポリマーのいずれか一以上を混合した泳動液
B仕様泳動液:上記A仕様泳動液に、試料を予め混合した泳動液
The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 2 shows a two-dimensional structure in which the first-dimensional and second-dimensional electrophoresis separation channels are constituted by capillaries, and electrode tanks 251 and 252 are provided at both ends of the first-dimensional and second-dimensional electrophoresis separation capillaries. An electrophoresis apparatus 200 is shown. Into each capillary, an electrophoretic solution having a specification of A or B shown below is introduced.
A specification electrophoresis solution: Electrophoresis solution in which either a wide-area buffer solution using an ampholyte and one or more of a water-soluble linear polymer or a water-soluble linear polymer containing a branched structure are mixed B specification electrophoresis solution: the above A specification electrophoresis Electrophoresis solution in which the sample is mixed with the solution in advance

上記の水溶性直鎖ポリマー若しくは分岐構造を含む水溶性直鎖ポリマーとは、例えば、直鎖状ポリアクリルアミド、セルロース、メチルセルロース、ヒドロキシメチルセルロース、デキストラン、ポリエチレングリコールなどである。 Examples of the water-soluble linear polymer or the water-soluble linear polymer containing a branched structure include linear polyacrylamide, cellulose, methyl cellulose, hydroxymethyl cellulose, dextran, and polyethylene glycol.

図6は、1次元目電気泳動用泳動液と2次元目電気泳動用泳動液に電圧を加えるための電極システムを示す。図6(A)は1次元目電気泳動用の電極システム610であり、キャピラリー状容器中に電極液と電極線がセットされている。また、図6(B)は2次元目電気泳動用の電極システム620であり、電極液容器中に電極液と電極線がセットされている。 FIG. 6 shows an electrode system for applying a voltage to the electrophoresis solution for the first-dimensional electrophoresis and the electrophoresis solution for the second-dimensional electrophoresis. FIG. 6A shows an electrode system 610 for first-dimensional electrophoresis, in which an electrode solution and an electrode wire are set in a capillary vessel. FIG. 6B shows an electrode system 620 for second-dimensional electrophoresis, in which an electrode solution and an electrode wire are set in an electrode solution container.

図3は、電気泳動用流路を溝状流路で形成した、マイクロチップの例である。図4は、上記のマイクロチップに設けられた1次元目及び2次元目電気泳動用溝状流路の端部に各々電極槽を設けた例である。図3及び図4に示す流路に導入した泳動液に電圧を印加するに際しても、先の図6に示した電極システムを適用することができる。 FIG. 3 shows an example of a microchip in which the electrophoresis channel is formed by a groove-like channel. FIG. 4 shows an example in which an electrode tank is provided at each end of the first-dimensional and second-dimensional electrophoresis channel provided in the microchip. The electrode system shown in FIG. 6 can also be applied when applying a voltage to the electrophoresis solution introduced into the flow path shown in FIGS.

図2に、本発明の第1の実施例である2次元電気泳動装置を示す。図2(A)は本実施例の2次元電気泳動装置200の斜視図であり、1次元目・2次元目電気泳動分離用流路をキャピラリーで構成したことを特徴としている。図2(B)は図2(A)におけるS−S箇所の部分断面図である。1次元目電気泳動分離用キャピラリー210と、複数本の2次元目電気泳動分離用キャピラリー221・222とは交差して一体化している。また、図2(B)に示すように交差部分において1次元目電気泳動分離用キャピラリーと2次元目電気泳動分離用キャピラリーは連通している。さらに、1次元目電気泳動分離用キャピラリーの両端には1次元目電気泳動用電極槽251を設けている。 FIG. 2 shows a two-dimensional electrophoresis apparatus according to the first embodiment of the present invention. FIG. 2A is a perspective view of the two-dimensional electrophoresis apparatus 200 of the present embodiment, which is characterized in that the first-dimensional / second-dimensional electrophoresis separation channel is constituted by a capillary. FIG. 2B is a partial cross-sectional view taken along the line S-S in FIG. The first-dimension electrophoretic separation capillary 210 and the plurality of second-dimensional electrophoretic separation capillaries 221 and 222 intersect and are integrated. Further, as shown in FIG. 2B, the first-dimensional electrophoresis separation capillary and the second-dimensional electrophoresis separation capillary communicate with each other at the intersection. Furthermore, a first-dimensional electrophoresis electrode tank 251 is provided at both ends of the first-dimensional electrophoresis separation capillary.

さらには、複数本の2次元目電気泳動分離用キャピラリーの両端にも2次元目電気泳動用電極槽252を設けている。また、2次元目電気泳動用電極槽252の内面には図示のように撥水処理コート層255が設けられており、1次元目・2次元目電気泳動用キャピラリー全域に泳動液230を導入したときに、2次元目電気泳動分離用の各キャピラリー端部から電極槽の内面を濡らしながら泳動液が漏れ出すのを防止している。 Furthermore, a two-dimensional electrophoretic electrode tank 252 is also provided at both ends of the plurality of second-dimensional electrophoretic separation capillaries. Further, as shown in the drawing, a water repellent coating layer 255 is provided on the inner surface of the electrode tank 252 for the second dimensional electrophoresis, and the electrophoretic solution 230 is introduced to the entire area of the first and second dimensional electrophoresis capillaries. Occasionally, the electrophoresis solution is prevented from leaking out while wetting the inner surface of the electrode tank from the end of each capillary for second-dimensional electrophoresis separation.

上記の2次元電気泳動装置を用いてたんぱく質を分離する場合の一例を以下に説明する。まず、1次元目電気泳動用電極槽から泳動液230を1次元目・2次元目電気泳動分離用キャピラリーの全域に導入する。このとき、2次元目電気泳動用電極槽の中に泳動液が流れ込まないように、導入液量を調整する。泳動液には前述したA仕様泳動液を用いた。本実施例ではA仕様泳動液を、市販の両性電解質(両性電解質を使用した広領域緩衝液、pH3.5〜pH10:pH3.5〜pH5.0=1:1)0.1%、直鎖ポリアクリルアミド溶液(3%T、0%C)に調製した水溶液とした。 An example of separating proteins using the above two-dimensional electrophoresis apparatus will be described below. First, the electrophoresis solution 230 is introduced from the first-dimensional electrophoresis electrode tank to the entire area of the first- and second-dimensional electrophoresis separation capillaries. At this time, the amount of the introduced solution is adjusted so that the electrophoresis solution does not flow into the second-dimensional electrophoresis electrode tank. As the electrophoresis solution, the aforementioned A-specific electrophoresis solution was used. In this example, the A-specific electrophoretic solution is a commercially available amphoteric electrolyte (wide-area buffer solution using an amphoteric electrolyte, pH 3.5 to pH 10: pH 3.5 to pH 5.0 = 1: 1), 0.1%, linear polyacrylamide. An aqueous solution prepared in a solution (3% T, 0% C) was obtained.

次に、1次元目の電気泳動について説明する。1次元目電気泳動分離用キャピラリー中の泳動液に電圧を印加するには、図6(A)に示す1次元目電気泳動用電極システム610を用いる。キャピラリー613の中には電極液611と電極線612が設けられている。キャピラリーは毛細管作用により別容器から所定電極液の所定量を吸い上げて保持できる構造となっている。本例では、電極液として0.01Mのリン酸溶液(陽極用)と0.04Mの水酸化ナトリウム溶液(陰極用)を用い、さらに上記陽極液中には予め試料(たんぱく質)を混合させている。上記の一対の電極システム610を1次元目電気泳動用電極槽251中の泳動液230に接触させた後、電圧を印加して1次元目の等電点電気泳動を行う。 Next, the first-dimensional electrophoresis will be described. In order to apply a voltage to the electrophoretic solution in the first-dimensional electrophoresis separation capillary, a first-dimensional electrophoresis electrode system 610 shown in FIG. 6A is used. In the capillary 613, an electrode solution 611 and an electrode wire 612 are provided. The capillary has a structure capable of sucking and holding a predetermined amount of a predetermined electrode solution from another container by capillary action. In this example, 0.01 M phosphoric acid solution (for anode) and 0.04 M sodium hydroxide solution (for cathode) are used as electrode solutions, and a sample (protein) is mixed in the anolyte in advance. After bringing the pair of electrode systems 610 into contact with the electrophoretic solution 230 in the electrode tank 251 for the first-dimensional electrophoresis, voltage is applied to perform the first-dimensional isoelectric focusing.

上記の1次元目電気泳動終了後、直ちに2次元目の電気泳動に移行する。これには、図6(B)に示す2次元目電気泳動用電極システム620を用いて2次元目分離用泳動液に電圧を印加する。2次元目電気泳動用電極システムも、大略1次元目と同様の構造であり、電極液容器623の中に電極液621と電極線622が設けられている。電極液容器は毛細管作用により別容器から所定電極液の所定量を吸い上げて保持できる構造となっている。本例では、陽極用/陰極用電極液として、0.05Mトリス(Tris(hydroxy)aminomethane)−0.38Mグリシン緩衝液を用いた。 Immediately after the completion of the first-dimensional electrophoresis, the process proceeds to the second-dimensional electrophoresis. For this purpose, a voltage is applied to the electrophoresis solution for second dimension separation using the electrode system 620 for second dimension electrophoresis shown in FIG. 6B. The electrode system for the second dimensional electrophoresis has a structure substantially similar to that of the first dimension, and an electrode liquid 621 and an electrode wire 622 are provided in the electrode liquid container 623. The electrode solution container has a structure capable of sucking and holding a predetermined amount of a predetermined electrode solution from another container by capillary action. In this example, 0.05 M Tris (hydroxys aminomethane) -0.38 M glycine buffer was used as the anode / cathode electrode solution.

上記の一対の2次元目電気泳動用電極システムを2次元目電気泳動用電極槽の上部にセットした後、2次元目電気泳動用泳動液と電極液との液絡をはかり、電圧を印加して2次元目電気泳動(ゾーンまたは分子量電気泳動)を行う。微量分析試料は蛍光標識など高感度検出を可能にする前処理を施して用い、泳動用流路に励起光を照射して発する蛍光をCCDカメラでコンピュータに取り込めば、電気泳動分離の経過および結果の観察が可能となり、画像解析、デイスプレイもできる。励起用光源は、用いる蛍光体の種類により選択する。 After setting the pair of electrode systems for the second-dimensional electrophoresis on the upper part of the electrode tank for the second-dimensional electrophoresis, measure the liquid junction between the electrophoresis solution for the second-dimensional electrophoresis and the electrode liquid, and apply a voltage. Second-dimensional electrophoresis (zone or molecular weight electrophoresis) is performed. Trace analysis samples can be used with pretreatment that enables high-sensitivity detection such as fluorescent labeling, and the fluorescence generated by irradiating the electrophoresis channel with excitation light is captured by a CCD camera in the computer. Observation, image analysis, and display. The excitation light source is selected according to the type of phosphor used.

本発明の第2の実施例を図3に示す。図3は、1次元目・2次元目分離用流路を微細な溝状流路(以下ではマイクロ流路と呼ぶ。)で構成した2次元電気泳動用マイクロチップ300である。図3(A)は、上記マイクロチップの斜視図、図3(B)は図3(A)におけるT−T箇所の部分断面図である。1次元目分離用マイクロ流路310と、複数本の2次元目分離用マイクロ流路321・322とは交差して一体化している。また、図3(A)、(B)に示すように交差部分において1次元目電気泳動分離用マイクロ流路と2次元目電気泳動分離用マイクロ流路は連通している。 A second embodiment of the present invention is shown in FIG. FIG. 3 shows a microchip 300 for two-dimensional electrophoresis in which the first-dimensional / second-dimensional separation channel is constituted by a fine groove-like channel (hereinafter referred to as a microchannel). 3A is a perspective view of the microchip, and FIG. 3B is a partial cross-sectional view taken along a line TT in FIG. The first-dimensional separation microchannel 310 and the plurality of second-dimensional separation microchannels 321 and 322 are integrated so as to intersect. 3A and 3B, the first-dimensional electrophoretic separation microchannel and the second-dimensional electrophoretic separation microchannel are in communication with each other at the intersection.

上記のマイクロチップは、半導体微細加工技術を応用して基板340上にマイクロ流路を形成している。基板材料は、シリコンである。上記マイクロ流路のサイズは、流路幅100μm、深さ100μm, 長さ20mmである。複数本の2次元目電気泳動用マイクロ流路は隣り合う流路の間隔(並列流路の仕切り壁の厚み)を約20μmに保ち、100本のマイクロ流路で構成している。1次元目・2次元目用マイクロ流路内部表面には厚さ約1μmの酸化膜(SiO2膜)が形成されている。 In the microchip described above, a microchannel is formed on the substrate 340 by applying a semiconductor microfabrication technique. The substrate material is silicon. The microchannel has a channel width of 100 μm, a depth of 100 μm, and a length of 20 mm. The plurality of micro-channels for second-dimensional electrophoresis are composed of 100 micro-channels while keeping the interval between adjacent channels (the thickness of the partition walls of the parallel channels) at about 20 μm. An oxide film (SiO 2 film) having a thickness of about 1 μm is formed on the inner surface of the first and second dimension microchannels.

マイクロ流路内には、全域に亘って泳動液330が導入されている。泳動液には前述したB仕様泳動液を用いた。本実施例ではB仕様泳動液を、市販の両性電解質(両性電解質を使用した広領域緩衝液、pH3.5〜pH10:pH3.5〜pH5.0=1:1)0.1%、直鎖ポリアクリルアミド溶液(3%T、0%C)、試料として海苔由来の蛍光たんぱく質phycoerythrinなど2種を各0.7μg/μlになる様に調製した水溶液とした。 In the microchannel, the electrophoresis solution 330 is introduced over the entire area. As the electrophoresis solution, the aforementioned B-specific electrophoresis solution was used. In this example, a B-type electrophoretic solution was prepared by using a commercially available amphoteric electrolyte (wide-area buffer solution using an amphoteric electrolyte, pH 3.5 to pH 10: pH 3.5 to pH 5.0 = 1: 1), 0.1%, linear polyacrylamide. A solution (3% T, 0% C) and two kinds of samples such as laver-derived fluorescent protein phycoerythrin were prepared to be 0.7 μg / μl.

マイクロ流路内の泳動液330に電圧を印加するには、前述した図6に示す電極システムを用いる。使用する電極液については、実施例1に示したと同様であるが、試料については泳動液中に事前に混合させているため、あらためて試料を電極液中に混合することはない。 In order to apply a voltage to the electrophoretic solution 330 in the microchannel, the above-described electrode system shown in FIG. 6 is used. The electrode solution to be used is the same as that shown in Example 1. However, since the sample is mixed in advance in the electrophoresis solution, the sample is not mixed again in the electrode solution.

まず、1次元目分離に際しては一対の1次元目電気泳動用電極システム610をマイクロチップ上の1次元目電気泳動用電極液接触ゾーン351の領域に接触させて、電極液と泳動液との液絡をはかった後、電圧を印加して1次元目の電気泳動(等電点電気泳動)を行う。 First, in the first-dimensional separation, a pair of electrode systems for first-dimensional electrophoresis 610 are brought into contact with the region of the first-dimensional electrophoresis electrode liquid contact zone 351 on the microchip, so that the liquid of the electrode liquid and the electrophoretic liquid is obtained. After entanglement, voltage is applied to perform first-dimensional electrophoresis (isoelectric focusing).

上記により、1次元目の電気泳動が終了したら、直ちに2次元目の電気泳動に移行する。一対の2次元目電気泳動用電極システム620をマイクロチップ上の2次元目電気泳動用電極液接触ゾーン352に接触させて、泳動液と電極液の液絡をはかった後、直ちに電圧を印加して2次元目の電気泳動(ゾーンまたは分子量電気泳動)を行う。2次元電気泳動経過および終了時の電気泳動像の観察手法などは、実施例1と同様であるので記述を省略する。 As described above, when the first-dimensional electrophoresis is completed, the process immediately proceeds to the second-dimensional electrophoresis. A pair of 2D electrophoretic electrode system 620 is brought into contact with the 2D electrophoretic electrode liquid contact zone 352 on the microchip, and the voltage between the electrophoretic liquid and the electrode liquid is measured. Second-dimensional electrophoresis (zone or molecular weight electrophoresis) is performed. Since the two-dimensional electrophoresis process and the observation method of the electrophoresis image at the end are the same as those in the first embodiment, description thereof is omitted.

本発明の第3の実施例を図4に示す。図4は、1次元目・2次元目電気泳動の分離用流路を実施例2と同様にマイクロ流路で構成し、また、1次元目・2次元目電気泳動用マイクロ流路の両端に電極槽を設けたことを特徴とする2次元電気泳動用マイクロチップ400である。図4(A)は、上記マイクロチップの平面図、図4(B)は図4(A)におけるY−Y箇所の断面図である。   A third embodiment of the present invention is shown in FIG. FIG. 4 shows that the separation channel for the first and second dimension electrophoresis is composed of microchannels as in the second embodiment, and is provided at both ends of the first and second dimension electrophoresis microchannels. The microchip 400 for two-dimensional electrophoresis is provided with an electrode tank. 4A is a plan view of the microchip, and FIG. 4B is a cross-sectional view taken along a line YY in FIG. 4A.

1次元目・2次元目電気泳動用マイクロ流路の両端に、1次元目電気泳動用電極槽451、2次元目電気泳動用電極槽452を設けたことを除けば、その構造は大略、実施例2と同様であるので詳細な記述を省略する。実施例1で述べたのと同様の目的で、図示のように、2次元目電気泳動用電極槽452の内面全体には撥水処理コート層455を設けている。ここで、図4(A)に示す平面図においては、2次元目電気泳動用電極槽452の底面に施された撥水処理コート層の描画を省略している。また、本実施例で用いる泳動液や電気泳動方法は前述の実施例1、2で説明した内容に極めて類似しているので、詳細な説明を省略する。 The structure of the first and second dimension electrophoresis microchannels is substantially the same except that the first dimension electrophoresis electrode tank 451 and the second dimension electrophoresis electrode tank 452 are provided at both ends. Since it is similar to Example 2, detailed description is omitted. For the same purpose as described in the first embodiment, as shown in the figure, a water repellent coating layer 455 is provided on the entire inner surface of the electrode tank 452 for second-dimensional electrophoresis. Here, in the plan view shown in FIG. 4A, the drawing of the water-repellent coating layer applied to the bottom surface of the electrode tank 452 for the second-dimensional electrophoresis is omitted. Further, the electrophoresis solution and the electrophoresis method used in the present embodiment are very similar to the contents described in the first and second embodiments, and thus detailed description thereof is omitted.

なお、実施例2、3に示したマイクロチップでは、マイクロ流路上にカバーを設置していないが、必要に応じてカバープレートを設けてもよい。このときのカバープレートは、電気泳動像の観察のための照明光や蛍光標識体を発光させるための励起光に対して透明であることが必要であり、ガラスや合成樹脂製の板状カバーが好適である。さらには、マイクロチップの基板材質は、絶縁性の基板、あるいは流路が基板と電気的に絶縁できる構造を採れるものであれば、特にシリコンに限定されるものではない。ガラスや合成樹脂で作製されたものは、照明光や励起光を基板の裏面からも照射が出来るので、マイクロチップの基板材質として好適である。上記基板材料は照射光によって蛍光を発しないものでなくてはならない。 In the microchips shown in Examples 2 and 3, no cover is provided on the microchannel, but a cover plate may be provided as necessary. The cover plate at this time must be transparent to illumination light for observing the electrophoretic image and excitation light for causing the fluorescent label to emit light, and a plate-like cover made of glass or synthetic resin is required. Is preferred. Furthermore, the substrate material of the microchip is not particularly limited to silicon as long as it can take an insulating substrate or a structure in which the flow path can be electrically insulated from the substrate. A material made of glass or synthetic resin can be irradiated with illumination light or excitation light from the back surface of the substrate, and is therefore suitable as a substrate material for a microchip. The substrate material must not emit fluorescence when irradiated with light.

本発明の活用例としては、医療、食品、環境分析、又はその品質管理など広い分野に適用可能である。 As an application example of the present invention, it can be applied to a wide range of fields such as medical care, food, environmental analysis, or quality control thereof.

本発明による2次元電気泳動槽の斜視図及び部分断面図The perspective view and partial sectional view of the two-dimensional electrophoresis tank according to the present invention 実施例1に示す2次元電気泳動装置の斜視図及び部分断面図The perspective view and partial sectional view of the two-dimensional electrophoresis apparatus shown in Example 1 実施例2に示す2次元電気泳動用マイクロチップの斜視図及び断面図Perspective view and cross-sectional view of a microchip for two-dimensional electrophoresis shown in Example 2 実施例3に示す2次元電気泳動用マイクロチップの斜視図及び断面図The perspective view and sectional drawing of the microchip for two-dimensional electrophoresis shown in Example 3 本発明の説明に用いた電気泳動用電極システムの斜視図The perspective view of the electrode system for electrophoresis used for explanation of the present invention 各実施例で用いた電気泳動用電極システムの斜視図The perspective view of the electrode system for electrophoresis used in each example

符号の説明Explanation of symbols

100――2次元電気泳動槽
110――1次元目電気泳動の分離用流路
120――2次元目電気泳動の分離用流路
121、122――2次元目電気泳動の分離用単独流路
130、230、330、430――泳動液
200――2次元電気泳動装置
210――1次元目電気泳動の分離用キャピラリー
221、222――2次元目電気泳動の分離用キャピラリー
251、451――1次元目電気泳動用電極槽
252、452――2次元目電気泳動用電極槽
255、455――撥水処理コート層
300、400――2次元電気泳動用マイクロチップ
310、410――1次元目電気泳動の分離用マイクロ流路
320、420――2次元目電気泳動の分離用マイクロ流路
321、322、421、422――2次元目電気泳動の分離用単独マイクロ流路
340、440――基板
351――1次元目電気泳動用電極液接触ゾーン
352――2次元目電気泳動用電極液接触ゾーン
510、610――1次元目電気泳動用電極システム
511、521、611、621――電極液
512、522、612、622――電極線
513、613――キャピラリー
520、620――2次元目電気泳動用電極システム
523、623――電極液容器
515、525――電極液面
100-2D electrophoresis tank
110-Separation flow path for 1D electrophoresis
120-Separation flow path for 2D electrophoresis
121, 122-Single flow path for separation of 2D electrophoresis
130, 230, 330, 430-electrophoresis solution
200--two-dimensional electrophoresis device
210--Capillary for separation of first dimension electrophoresis
221 and 222-Capillaries for separation of the second dimension electrophoresis
251 and 451-Electrode bath for first dimension electrophoresis
252 and 452-Electrode bath for second-dimensional electrophoresis
255, 455-water repellent coating layer
300, 400-Microchip for two-dimensional electrophoresis
310, 410-Microchannel for separation of 1st dimension electrophoresis
320, 420-Microchannel for separation of 2D electrophoresis
321, 322, 421, 422-Single microchannel for separation of 2D electrophoretic separation
340, 440--Board
351-Electrolyte contact zone for 1D electrophoresis
352-Electrolyte contact zone for 2D electrophoretic electrophoresis
510, 610-1D electrophoretic electrode system
511, 521, 611, 621-Electrode solution
512, 522, 612, 622-electrode wire
513, 613-Capillary
520, 620-2D electrophoretic electrode system
523, 623-Electrolyte container
515, 525--Electrode liquid level

Claims (8)

1次元目電気泳動の分離用流路に2次元目電気泳動の分離用流路たる複数本の流路が交差して一体化しており、前記交差部分では前記1次元目電気泳動・2次元目電気泳動用の流路が互に連通しており、かつ、前記2次元目電気泳動の分離用の複数本の流路は前記交差部分以外を除いては互いに独立していて電気的にも互いに絶縁されて構成されている2次元電気泳動用の泳動槽において、
前記1次元目電気泳動の分離用流路及び2次元目電気泳動の分離用流路に、両性電解質を使用する広領域緩衝液と、水溶性直鎖ポリマー若しくは分岐構造を含む水溶性直鎖ポリマーのいずれか一以上を混合した泳動液を導入したことを特徴とする2次元電気泳動装置。
A plurality of flow paths that are separation flow paths for the second dimensional electrophoresis intersect and are integrated with the separation flow path for the first dimensional electrophoresis, and the first dimensional electrophoresis and the second dimensional electrophoresis are intersected at the intersection. Electrophoresis channels are in communication with each other, and the plurality of separation channels for the second-dimensional electrophoresis are independent from each other except for the intersections, and are electrically connected to each other. In the electrophoresis tank for two-dimensional electrophoresis which is configured to be insulated,
A water-soluble linear polymer containing a wide-area buffer solution using an amphoteric electrolyte and a water-soluble linear polymer or a branched structure in the separation channel for the first-dimensional electrophoresis and the separation channel for the second-dimensional electrophoresis A two-dimensional electrophoresis apparatus, wherein an electrophoretic solution in which any one of the above is mixed is introduced.
請求項1に記載の泳動液に、
さらに試料を混合して泳動液としたことを特徴とする請求項1に記載の2次元電気泳動装置。
In the electrophoresis solution according to claim 1,
The two-dimensional electrophoresis apparatus according to claim 1, wherein the sample is further mixed to obtain an electrophoresis solution.
1次元目電気泳動の分離用流路および2次元目電気泳動の分離用流路を、キャピラリーで構成したことを特徴とする請求項1ないし2のいずれか1項に記載の2次元電気泳動装置。 3. The two-dimensional electrophoresis apparatus according to claim 1, wherein the separation channel for the first-dimensional electrophoresis and the separation channel for the second-dimensional electrophoresis are configured by capillaries. 4. . 1次元目電気泳動の分離用キャピラリーの両端に電極槽を設け、また、複数本の2次元目電気泳動の分離用キャピラリーの両端には各キャピラリーに対して共通の電極槽を設け、前記2次元目電気泳動用電極槽の内面に撥水処理を施したことを特徴とする請求項3に記載の2次元電気泳動装置。 Electrode chambers are provided at both ends of the separation capillaries for the first dimension electrophoresis, and common electrode chambers are provided for both capillaries at both ends of the plurality of separation capillaries for the second dimension electrophoresis. The two-dimensional electrophoresis apparatus according to claim 3, wherein a water repellent treatment is applied to an inner surface of the eye electrophoresis electrode tank. 1次元目電気泳動の分離用流路および2次元目電気泳動の分離用流路を、基板上に設けた溝状流路で構成したことを特徴とする請求項1ないし2のいずれか1項に記載の2次元電気泳動装置。 3. The separation channel for the first-dimensional electrophoresis and the separation channel for the second-dimensional electrophoresis are configured by groove-shaped channels provided on the substrate. 2. The two-dimensional electrophoresis apparatus described in 1. 基板上に設けた1次元目電気泳動の分離用溝状流路の両端に電極槽を設け、
また、複数本の2次元目電気泳動の分離用溝状流路の両端には、前記複数本の2次元目電気泳動の分離用溝状流路の各溝に対して共通の電極槽を設け、前記の各溝に対して共通の電極槽の内面に撥水処理を施したことを特徴とする請求項5に記載の2次元電気泳動装置。
Electrode tanks are provided at both ends of the separation channel for separation of the first-dimensional electrophoresis provided on the substrate,
In addition, a common electrode tank is provided at each end of the plurality of second-dimensional electrophoresis separation groove-shaped channels for each of the plurality of second-dimensional electrophoresis separation groove-shaped channels. 6. The two-dimensional electrophoresis apparatus according to claim 5, wherein a water repellent treatment is applied to the inner surface of a common electrode tank for each of the grooves.
請求項1ないし6のいずれか1項に記載の2次元電気泳動装置を用いることを特徴とする2次元電気泳動方法。 A two-dimensional electrophoresis method using the two-dimensional electrophoresis apparatus according to any one of claims 1 to 6. 1次元目の電気泳動が等電点分離、2次元目の電気泳動がゾーン若しくは分子量分離であることを特徴とする請求項7に記載の2次元電気泳動方法。 The two-dimensional electrophoresis method according to claim 7, wherein the first-dimensional electrophoresis is isoelectric point separation, and the second-dimensional electrophoresis is zone or molecular weight separation.
JP2007155908A 2007-06-13 2007-06-13 Two-dimensional electrophoretic apparatus Pending JP2008309539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007155908A JP2008309539A (en) 2007-06-13 2007-06-13 Two-dimensional electrophoretic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007155908A JP2008309539A (en) 2007-06-13 2007-06-13 Two-dimensional electrophoretic apparatus

Publications (1)

Publication Number Publication Date
JP2008309539A true JP2008309539A (en) 2008-12-25

Family

ID=40237284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007155908A Pending JP2008309539A (en) 2007-06-13 2007-06-13 Two-dimensional electrophoretic apparatus

Country Status (1)

Country Link
JP (1) JP2008309539A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107085029A (en) * 2017-05-16 2017-08-22 苏州伯楷安生物科技有限公司 A kind of electrophoresis slot device for isoelectric focusing electrophoresis
WO2023248280A1 (en) * 2022-06-20 2023-12-28 株式会社東陽テクニカ Microchip, two-dimensional sample separation system, and method for manufacturing microchip

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000052458A1 (en) * 1999-03-02 2000-09-08 Isao Karube Two-dimensional separating method
JP2004069430A (en) * 2002-08-05 2004-03-04 Mitsubishi Kagaku Iatron Inc Electrophoresis chip, method for producing the same, and method for separating substances
WO2004038399A1 (en) * 2002-10-28 2004-05-06 Katayanagi Institute Method of controlling migration of substance
JP2006071643A (en) * 2004-09-03 2006-03-16 Combisep Inc Microfabricated chip and method of use
JP2006250622A (en) * 2005-03-09 2006-09-21 Shimadzu Corp Electrophoresis method using capillary plate
JP2007155560A (en) * 2005-12-06 2007-06-21 Norio Okuyama Electrophoresis apparatus, and electrophoresis system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000052458A1 (en) * 1999-03-02 2000-09-08 Isao Karube Two-dimensional separating method
JP2004069430A (en) * 2002-08-05 2004-03-04 Mitsubishi Kagaku Iatron Inc Electrophoresis chip, method for producing the same, and method for separating substances
WO2004038399A1 (en) * 2002-10-28 2004-05-06 Katayanagi Institute Method of controlling migration of substance
JP2006071643A (en) * 2004-09-03 2006-03-16 Combisep Inc Microfabricated chip and method of use
JP2006250622A (en) * 2005-03-09 2006-09-21 Shimadzu Corp Electrophoresis method using capillary plate
JP2007155560A (en) * 2005-12-06 2007-06-21 Norio Okuyama Electrophoresis apparatus, and electrophoresis system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107085029A (en) * 2017-05-16 2017-08-22 苏州伯楷安生物科技有限公司 A kind of electrophoresis slot device for isoelectric focusing electrophoresis
WO2023248280A1 (en) * 2022-06-20 2023-12-28 株式会社東陽テクニカ Microchip, two-dimensional sample separation system, and method for manufacturing microchip

Similar Documents

Publication Publication Date Title
US6685813B2 (en) Tandem isotachophoresis/zone electrophoresis method and system
US9377440B2 (en) Method and apparatus for precise selection and extraction of a focused component in isoelectric focusing performed in micro-channels
US9182371B2 (en) Microscale western blot
JP3795823B2 (en) Compensation means for electronic pipettors and electrophoretic bias
US6159353A (en) Capillary electrophoretic separation system
US10107782B2 (en) Method to perform limited two dimensional separation of proteins and other biologicals
JPH11502618A (en) Capillary electrophoresis apparatus and method
WO2006014680A1 (en) Methods and devices for analyte detection
CA2696971A1 (en) Micro-channel chip for electrophoresis and method for electrophoresis
Shen et al. Parallel analysis of biomolecules on a microfabricated capillary array chip
WO2016163052A1 (en) Sample separation and transfer device and sample analysis method
US6676819B1 (en) Methods and apparatus for automatic on-line multi-dimensional electrophoresis
US10101296B2 (en) Mini-gel comb
JP2008309539A (en) Two-dimensional electrophoretic apparatus
JP2007155560A (en) Electrophoresis apparatus, and electrophoresis system
US7204922B1 (en) Method and device for the electrophoretic separation of particles, especially of macromolecules, by electrophoresis
Liu Experimental Study of Free-solution Separation under Pulsed Electrophoresis in Microchip
JP4080996B2 (en) Miniaturized separation device that communicates interfacial fluid using virtual wall
Schwartz et al. Separation of peptides and proteins
JP2008139168A (en) Isoelectric point separation method, and determination method of hydrogen ion concentration gradient in separation field
Jin Development of Microfluidic Based Western Blot Technology for Fast and High-Content Analyses.
US20020195343A1 (en) Microfabricated separation device employing a virtual wall for interfacing fluids
US20170052146A1 (en) Methods and apparatus for introducing a sample into a separation channel for electrophoresis
Chow et al. Protein separations in microfluidic chips
Anderson Development of Microscale Separation and Blotting Methods for Analysis of Small-Volume Biological Mixtures.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108