[go: up one dir, main page]

JP2008309406A - Ice-making portion of flow-down type ice-making machine - Google Patents

Ice-making portion of flow-down type ice-making machine Download PDF

Info

Publication number
JP2008309406A
JP2008309406A JP2007158210A JP2007158210A JP2008309406A JP 2008309406 A JP2008309406 A JP 2008309406A JP 2007158210 A JP2007158210 A JP 2007158210A JP 2007158210 A JP2007158210 A JP 2007158210A JP 2008309406 A JP2008309406 A JP 2008309406A
Authority
JP
Japan
Prior art keywords
ice making
ice
making
plate
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007158210A
Other languages
Japanese (ja)
Inventor
Tsutomu Taga
勉 多賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2007158210A priority Critical patent/JP2008309406A/en
Publication of JP2008309406A publication Critical patent/JP2008309406A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively provide an ice-making portion of a flow down-type ice-making machine capable of making ice of desired shape. <P>SOLUTION: This ice-making portion S is composed of an evaporation pipe 14 formed into the plane meandering shape constituted by alternately forming straight portions and folded portions, ice-making plates 10 joined to the straight portions of the evaporation pipe 14 at back faces and provided with a plurality of projecting portions 42 at a front side, and joining members 50 having through holes 52 for inserting and joining the evaporation pipe and kept into face-contact with the back faces of the projecting portions 42 at outer faces. The ice-making plates 10 are disposed in opposition to each other in a state that tips of the projecting portions are butted to each other between the straight portions of the evaporation pipe 14, and an ice-making room R is formed by a pair of ice-making face portions. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、流下式製氷機の製氷部に関し、更に詳細には、裏側に冷却パイプが配設された製氷板の表側に製氷用水を流下させて所望形状の氷を生成する流下式製氷機の製氷部に関するものである。   The present invention relates to an ice making part of a flow-down type ice maker, and more specifically, a flow-down type ice maker that generates ice having a desired shape by flowing water for making ice on the front side of an ice making plate having a cooling pipe disposed on the back side. It relates to the ice making department.

多量の氷塊を連続的に生成する自動製氷機が、喫茶店やレストラン等の施設その他の厨房において好適に使用されている。これらの自動製氷機は、下向きに開口する多数の製氷小室に製氷用水を下方から供給して、所要形状の氷を連続的に製造する噴射タイプや、製氷面に製氷用水を流下させる流下タイプ等のものがある。   An automatic ice maker that continuously generates a large amount of ice blocks is suitably used in facilities such as coffee shops and restaurants and other kitchens. These automatic ice making machines supply spraying water from below to a large number of ice-making chambers that open downward, and spray types that continuously produce ice of the required shape, flow-down types that allow ice-making water to flow down the ice-making surface, etc. There are things.

近年、六角氷等の多角形状の氷が要望されており、多角形状の氷を作る製氷機として噴射タイプでは特許文献1に示すように製氷室を構成する板材を所要形状にくり抜くことで製氷空間を形成するもの、流下タイプでは特許文献2に示すように可動式の製氷板により製氷空間を形成するものが提案されている。
特開2004−293826号公報 特開平09−033150号公報
In recent years, polygonal ice such as hexagonal ice has been demanded, and as an ice making machine that produces polygonal ice, as shown in Patent Document 1, an ice making space is formed by punching a plate material constituting an ice making chamber into a required shape. In the flow-down type, as shown in Patent Document 2, there has been proposed one in which an ice making space is formed by a movable ice making plate.
JP 2004-293826 A Japanese Patent Laid-Open No. 09-033150

しかしながら、特許文献1に記載のものは、銅などの金属製の板材をくり抜いて製氷室を形成しなければならないため、加工がしづらく歩留りも悪いことから製造費用が高くなってしまうという問題があった。また、特許文献2に記載のものは、移動装置が必要なために機械が非常に高価になってしまうという問題があった。   However, the one described in Patent Document 1 has a problem that the manufacturing cost is high because it is difficult to process and the yield is low because an ice making chamber must be formed by punching a metal plate material such as copper. there were. Moreover, since the thing of patent document 2 requires a moving apparatus, there existed a problem that a machine will become very expensive.

すなわち本発明は、前述した従来の技術に内在している前記課題に鑑み、これを好適に解決するべく提案されたものであって、安価な構成で所望形状の氷を生成できる流下式製氷機の製氷部を提供することを目的とする。   That is, the present invention has been proposed in view of the above-described problems inherent in the conventional technology described above, and is a flow-down type ice maker that can generate ice having a desired shape with an inexpensive configuration. The purpose is to provide an ice making part.

前記課題を克服し、所期の目的を好適に達成するため、本発明に係る流下式製氷機の製氷部は、
表面に垂直方向に延びる複数の突条部が水平方向に離間して形成されると共に、隣り合う突条部間に製氷面部が形成される製氷板と、製氷板の裏面に配置されて冷媒が循環供給される蒸発管とからなり、該蒸発管に冷媒を循環供給することで製氷板の表面を冷却し、該製氷板の表面に製氷用水が供給されることにより氷塊を生成する流下式製氷機の製氷部において、
前記蒸発管は直線部と折り返し部とが連続する平面蛇行状に形成され、前記直線部間に製氷板を突条部の先端同士が突き合わされるように対向配置することで、一対の製氷面部により製氷室を形成するよう構成したことを特徴とする。
In order to overcome the above-mentioned problems and achieve the intended purpose suitably, the ice making part of the flow-down type ice making machine according to the present invention comprises:
A plurality of protrusions extending in the vertical direction on the surface are formed to be spaced apart in the horizontal direction, an ice making plate in which an ice making surface portion is formed between adjacent protrusions, and a refrigerant disposed on the back surface of the ice making plate A flow-down type ice maker, which comprises a circulatingly supplied evaporation pipe, cools the surface of the ice making plate by circulatingly supplying refrigerant to the evaporation tube, and generates ice blocks by supplying ice making water to the surface of the ice making plate In the ice making section of the machine,
The evaporation pipe is formed in a plane meandering shape in which a straight portion and a folded portion are continuous, and an ice making plate is disposed between the straight portions so that the tips of the ridges face each other. An ice making chamber is formed by the above.

本発明に係る流下式製氷機の製氷部によれば、蛇行状の蒸発管と板状の製氷板により製氷部を形成しているので、所望形状の氷を生成できる製氷部を安価に製造できる。   According to the ice making part of the flow-down type ice making machine according to the present invention, since the ice making part is formed by the meandering evaporator tube and the plate-like ice making plate, an ice making part capable of generating ice having a desired shape can be manufactured at low cost. .

次に、本発明に係る流下式製氷機の製氷部につき、好適な実施例を挙げて、添付図面を参照しながら以下説明する。   Next, the ice making part of the flow-down type ice making machine according to the present invention will be described with reference to the accompanying drawings by giving a preferred embodiment.

図1は、実施例に係る流下式製氷機の製氷部が好適に実施される自動製氷機としての流下式製氷機の概略構成を示すものであって、詳細は後述するが、垂直に配置した製氷板10と、冷凍回路12の一部をなし製氷工程時に冷媒を循環させて製氷板10を強制冷却するための蒸発管(蒸発器)14とにより製氷部Sが構成されている。製氷部Sの直下には、除氷工程により製氷板10から剥離されて落下する氷塊Mを、斜め下方に配設したストッカ18に案内する氷案内板20が傾斜姿勢で配設されている。なお、この氷案内板20には多数の通孔(図示せず)が穿設されており、製氷工程に際し前記製氷板10の製氷面に供給された製氷用水は、該氷案内板20の通孔を介して下方に位置する製氷用水タンク22に回収貯留されるようになっている。また、ストッカ18内には氷塊Mの満杯検知を行なう氷検知手段(図示せず)が配設されており、該氷検知手段による満杯検知信号に基づいて、製氷機の運転または停止の制御を行なうよう構成される。   FIG. 1 shows a schematic configuration of a flow-down type ice maker as an automatic ice maker in which the ice making unit of the flow-down type ice maker according to the embodiment is preferably carried out. An ice making section S is constituted by the ice making plate 10 and an evaporation pipe (evaporator) 14 for forming a part of the refrigeration circuit 12 and forcibly cooling the ice making plate 10 by circulating a refrigerant during the ice making process. Immediately below the ice making section S, an ice guide plate 20 is provided in an inclined posture for guiding the ice mass M, which has been peeled off from the ice making plate 10 by the deicing process and dropped, to the stocker 18 disposed obliquely below. The ice guide plate 20 is provided with a number of through holes (not shown), and the ice making water supplied to the ice making surface of the ice making plate 10 during the ice making process passes through the ice guide plate 20. It is collected and stored in the ice making water tank 22 located below through the hole. The stocker 18 is provided with ice detection means (not shown) for detecting the fullness of the ice block M, and controls the operation or stop of the ice making machine based on the full detection signal from the ice detection means. Configured to do.

前記製氷用水タンク22から循環ポンプPMを介して導出した製氷用水供給管24は、前記製氷部Sの上方に設けた製氷用水散布器25に接続してある。製氷用水散布器25には多数の散水孔26が穿設され、製氷工程時に製氷用水タンク22からポンプ圧送される製氷用水を、前記散水孔26から前記対応する製氷板10の製氷面に散布流下させ、該製氷面に所要形状の氷塊Mを生成するようになっている。また除氷工程に際して、冷凍回路12に配設されるホットガス弁HVの切換えにより、前記蒸発管14にホットガス(高温冷媒)を循環させて製氷板10を加熱し、製氷面と氷塊Mとの氷結面を融解させるよう構成される。   An ice-making water supply pipe 24 led out from the ice-making water tank 22 through a circulation pump PM is connected to an ice-making water spreader 25 provided above the ice making unit S. A large number of water sprinkling holes 26 are formed in the ice making water spreader 25, and the ice making water pumped from the ice making water tank 22 during the ice making process is sprinkled down from the water sprinkling holes 26 to the ice making surface of the corresponding ice making plate 10. Thus, an ice block M having a required shape is generated on the ice making surface. Further, in the deicing process, by switching the hot gas valve HV disposed in the refrigeration circuit 12, the ice making plate 10 is heated by circulating hot gas (high temperature refrigerant) through the evaporation pipe 14, and the ice making surface, the ice mass M, and the like. Constructed to melt the frozen surface of

前記製氷部Sの上方には、外部水道系に接続する給水管29が臨み、前記製氷部Sの上方に設けた除氷水散布器27に接続してある。除氷水散布器27には多数の散水管28が突設され、ホットガスによる除氷行程に先立って該給水管29に介挿した給水弁WVを開放することで、前記散水管28から製氷板10の裏面に除氷水が供給され、製氷面と氷塊Mとの氷結面の密着力を低下させるよう構成される。製氷板10の裏面を流れた後の除氷水は、製氷水タンク22に回収貯留され、次回製氷行程時の製氷用水として用いられるようになっている。また、前記製氷用水タンク22にはオーバーフロー管30が配設され、該タンク22中に貯留される製氷用水の貯留量を規定するようになっている。更に、製氷用水タンク22の底部には排水管31が接続され、該排水管31に介挿した排水弁DVを開放することで、タンク22中に残留する製氷用水を機外に排出し得るよう構成してある。   Above the ice making section S, a water supply pipe 29 connected to an external water system faces and is connected to a deicing water spreader 27 provided above the ice making section S. A large number of sprinkling pipes 28 project from the deicing water spreader 27, and the water supply valve WV inserted into the water supply pipe 29 is opened prior to the deicing process by hot gas, so that the ice making plate is removed from the sprinkling pipe 28. The deicing water is supplied to the back surface of 10 to reduce the adhesion of the iced surface between the ice making surface and the ice mass M. The deiced water after flowing through the back surface of the ice making plate 10 is collected and stored in the ice making water tank 22 and used as ice making water in the next ice making process. The ice making water tank 22 is provided with an overflow pipe 30 so as to regulate the amount of ice making water stored in the tank 22. Further, a drain pipe 31 is connected to the bottom of the ice making water tank 22, and the drain valve DV inserted in the drain pipe 31 is opened so that the ice making water remaining in the tank 22 can be discharged out of the machine. It is configured.

図1に示す如く、前記冷凍回路12において、圧縮機CMで圧縮された気化冷媒は、吐出管32を経て凝縮器34で凝縮液化し、膨張弁36で減圧され、前記蒸発管14に流入してここで一挙に膨張して蒸発し、前記製氷部Sの製氷板10と熱交換を行なって、該製氷板10を氷点下にまで冷却させる。この蒸発管14で蒸発した気化冷媒は、吸入管38を経て圧縮機CMに帰還するサイクルを反復する。   As shown in FIG. 1, in the refrigeration circuit 12, the vaporized refrigerant compressed by the compressor CM is condensed and liquefied by the condenser 34 through the discharge pipe 32, decompressed by the expansion valve 36, and flows into the evaporation pipe 14. The ice making plate 10 expands and evaporates all at once, and exchanges heat with the ice making plate 10 of the ice making unit S to cool the ice making plate 10 to below the freezing point. The vaporized refrigerant evaporated in the evaporation pipe 14 repeats a cycle of returning to the compressor CM via the suction pipe 38.

更に、前記圧縮機CMの吐出管32からホットガス管40が分岐され、このホットガス管40はホットガス弁HVを経て、前記蒸発管14の入口側に連通されている。このホットガス弁HVは、除氷工程の際にのみ開放し、製氷工程時は閉成する制御がなされる。すなわち、除氷工程時にホットガス弁HVが開放して、圧縮機CMから吐出されるホットガスを、前記ホットガス管40を介して蒸発管14にバイパスさせ、製氷部Sの製氷板10を加温することにより、製氷面に生成される氷塊Mの氷結面を融解させて、該氷塊Mを自重により落下させるようになっている。なお、図1中の符号FMは、凝縮器用の冷却ファンを示す。   Further, a hot gas pipe 40 is branched from the discharge pipe 32 of the compressor CM, and the hot gas pipe 40 communicates with the inlet side of the evaporation pipe 14 via a hot gas valve HV. The hot gas valve HV is controlled to be opened only during the deicing process and closed during the ice making process. That is, the hot gas valve HV is opened during the deicing process, and the hot gas discharged from the compressor CM is bypassed to the evaporation pipe 14 via the hot gas pipe 40 to add the ice making plate 10 of the ice making section S. By heating, the icing surface of the ice block M generated on the ice making surface is melted, and the ice block M is dropped by its own weight. In addition, the code | symbol FM in FIG. 1 shows the cooling fan for condensers.

前記製氷板10の所定位置には、図示しない温度センサーが配設され、製氷行程時には所定の製氷完了温度に温度低下したことを検知し、除氷行程時には所定の除氷完了温度に温度上昇したことを検知することで製氷行程と除氷行程を切り替え可能になっている。   A temperature sensor (not shown) is disposed at a predetermined position of the ice making plate 10 to detect that the temperature has dropped to a predetermined ice making completion temperature during the ice making process, and the temperature has risen to the predetermined deicing completion temperature during the ice removing process. By detecting this, the ice making process and the deicing process can be switched.

図2は製氷部Sの一部を分解した分解斜視図、図3は製氷部Sの平面図であって、製氷部Sは、直線部と折り返し部とが交互に配置されて平面蛇行状に形成された蒸発管14と、該蒸発管14の直線部に裏面を接合し、表面側に複数の突条部42が形成された製氷板10と、蒸発管を挿通接合するための貫通孔52を有し、突条部42の裏面に外面が面接触する接合部材50とから構成されている。製氷板10は、金属製(ステンレス鋼板)の板材で形成され、この板材を所要箇所で折り曲げることで縦方向に延在する突条部42が横方向に離間して平行に複数形成されている。突条部42は先鋭の三角形状で形成されているため、製氷板10の表面は、平坦面44と傾斜面46とにより構成されており、平坦面44と、該平坦面44を挟み込む一対の傾斜面46、46とで製氷面部を形成している。   FIG. 2 is an exploded perspective view in which a part of the ice making part S is disassembled, and FIG. 3 is a plan view of the ice making part S. The ice making part S has a meandering shape in which straight portions and folded portions are alternately arranged. The formed evaporation pipe 14, the ice making plate 10 in which the back surface is joined to the straight portion of the evaporation pipe 14 and a plurality of protrusions 42 are formed on the front surface side, and the through hole 52 for inserting and joining the evaporation pipe. And a joining member 50 whose outer surface is in surface contact with the back surface of the ridge 42. The ice making plate 10 is formed of a metal (stainless steel plate) plate material, and a plurality of protrusions 42 extending in the vertical direction by bending the plate material at a required portion are spaced apart in the horizontal direction and formed in parallel. . Since the protrusion 42 is formed in a sharp triangular shape, the surface of the ice making plate 10 is composed of a flat surface 44 and an inclined surface 46, and the flat surface 44 and a pair of sandwiching the flat surface 44 The inclined surfaces 46 and 46 form an ice making surface portion.

製氷板10は、蒸発管14の直線部間に突条部の先端同士を突き合わせた状態で対向配置され、平坦面44の裏面を蒸発管14の直線部に溶接等で接合することで取り付けられる。突条部42の突出寸法は蒸発管14の直線部間の距離の約1/2に設定されるので、対向配置された突条部42の先端同士は略接触した位置関係となり、一対の製氷面部により六角形状の製氷室Rが形成される。また、製氷室Rを画成する平坦面44及び傾斜面46の各面の上方には、製氷用水散布器25の散水孔26がそれぞれの面に対応した位置に配置されている。   The ice making plate 10 is disposed so as to face the straight portions of the evaporating tube 14 with the tips of the ridges facing each other, and is attached by joining the back surface of the flat surface 44 to the straight portion of the evaporating tube 14 by welding or the like. . Since the protrusion dimension of the protrusion 42 is set to about ½ of the distance between the straight portions of the evaporation tube 14, the ends of the protrusions 42 arranged opposite to each other are in a substantially contacted relationship, and a pair of ice making A hexagonal ice making chamber R is formed by the surface portion. Further, above each surface of the flat surface 44 and the inclined surface 46 that define the ice making chamber R, water spray holes 26 of the ice making water spreader 25 are arranged at positions corresponding to the respective surfaces.

接合部材50は、銅板等の熱伝導性の良い材質で図3に示すように平面視でひし形に形成されており、前記貫通孔52に蒸発管14を挿通接合して製氷板10を取り付けたときに、側方に突出する角部54の外面が突条部42の裏面と面接触する外形寸法で形成されている。また、接合部材50は上下面が開口した筒状に形成されており、該接合部材50の内面に臨んだ上方位置には除氷水散布器27の散水管28が配置されている。   The joining member 50 is made of a material having good thermal conductivity, such as a copper plate, and is formed in a rhombus shape in plan view as shown in FIG. 3, and the ice making plate 10 is attached by inserting the evaporating tube 14 into the through hole 52. In some cases, the outer surface of the corner portion 54 projecting sideways is formed with an outer dimension in surface contact with the rear surface of the protrusion 42. In addition, the joining member 50 is formed in a cylindrical shape whose upper and lower surfaces are opened, and a sprinkling pipe 28 of the deicing water spreader 27 is disposed at an upper position facing the inner surface of the joining member 50.

〔実施例の作用〕
次に、前述した実施例に係る流下式製氷機の作用について説明する。
(Effects of Example)
Next, the operation of the flow-down ice making machine according to the above-described embodiment will be described.

前記流下式製氷機での製氷工程を開始すると、前記圧縮機CM、循環ポンプPMおよび冷却ファンFMが起動(ON)し、蒸発管14内を循環する冷媒によって蒸発管14が徐々に冷却されて行く。製氷部Sにおける各製氷板10は蒸発管14と熱交換を行なって強制冷却され、前記製氷用水タンク22から循環ポンプPMを介して製氷用水散布器25に製氷用水が供給される。製氷用水散布器25に供給された製氷用水は、図4に示すように、散水孔26から対応する製氷板10の製氷面に散布流下させ、該製氷面に所要形状の氷塊を生成するようになっている。ここで、製氷面部における平坦面44は蒸発管14により直接冷却され、傾斜面46は接合部材50を介して間接的に冷却されている。なお、氷結することなく製氷面から落下する製氷用水は、前記氷案内板20の通孔を介して製氷用水タンク22に回収され、再び製氷板10に供給される。   When the ice making process in the flow-down type ice making machine is started, the compressor CM, the circulation pump PM and the cooling fan FM are activated (ON), and the evaporation pipe 14 is gradually cooled by the refrigerant circulating in the evaporation pipe 14. go. Each ice making plate 10 in the ice making section S is forcibly cooled by exchanging heat with the evaporation pipe 14, and ice making water is supplied from the ice making water tank 22 to the ice making water spreader 25 via the circulation pump PM. As shown in FIG. 4, the ice making water supplied to the ice making water spreader 25 is sprayed down from the sprinkling holes 26 to the ice making surface of the corresponding ice making plate 10 to generate ice blocks of a required shape on the ice making surface. It has become. Here, the flat surface 44 in the ice making surface portion is directly cooled by the evaporation pipe 14, and the inclined surface 46 is indirectly cooled through the joining member 50. The ice making water falling from the ice making surface without freezing is collected in the ice making water tank 22 through the through hole of the ice guide plate 20 and supplied to the ice making plate 10 again.

前記製氷板10の各製氷面において氷が成長していくと、製氷室Rは各製氷面により側方が閉塞していることから、図5に示すように六角形状の氷塊Mが生成される。製氷室Rに氷塊Mが生成され、図示しない温度センサーが所定の製氷完了温度を検出することで製氷完了を検知し、除氷工程を開始する。なお、氷塊Mは、氷塊の中心に穴Hが存在するタイミングで製氷完了するよう製氷完了温度が設定される。これは、氷塊を成長させすぎて穴Hが塞がってしまうと、流下する製氷用水の流通経路が無くなってしまうからである。   As ice grows on each ice making surface of the ice making plate 10, the ice making chamber R is closed at the sides by each ice making surface, so that a hexagonal ice mass M is generated as shown in FIG. . Ice blocks M are generated in the ice making chamber R, and a temperature sensor (not shown) detects a predetermined ice making completion temperature to detect the completion of ice making and starts the deicing process. Note that the ice making temperature is set so that ice making is completed at the timing when the hole H exists at the center of the ice block. This is because if the ice block grows too much and the hole H is blocked, the flow path of the ice-making water flowing down is lost.

除氷工程に移行すると、先ず給水管29に介挿した給水弁WVを開放することで除氷水散布器27に除氷水(水道水)を供給し、散水管28から接合部材50の内面に除氷水が供給される。接合部材50の内面に除氷水が供給されることで、接合部材50が徐々に昇温され、接合部材50の外面が面接触する傾斜面46と氷塊Mとの氷結面の密着力を低下させる。接合部材50の内面を流下した除氷水は製氷水タンク22に回収され、次回製氷時の製氷用水として使用される。その後所定時間が経過すると、給水弁WVを閉じて除氷水の供給を停止し、ホットガス弁HVが開放されて、前記蒸発管14にホットガスが循環供給される。このホットガスにより製氷板10の平坦面44は蒸発管14により直接昇温され、傾斜面46は接合部材50を介して間接的に昇温される。氷塊Mが製氷室Rから完全に離脱し、除氷完了温度を前記温度センサーが検出すると、除氷工程を終了して製氷工程に移行する。   When the deicing process is started, deicing water (tap water) is first supplied to the deicing water spreader 27 by opening the water supply valve WV inserted in the water supply pipe 29 and removed from the sprinkling pipe 28 to the inner surface of the joining member 50. Ice water is supplied. By supplying deicing water to the inner surface of the joining member 50, the temperature of the joining member 50 is gradually increased, and the adhesion force of the icing surface between the inclined surface 46 and the ice mass M where the outer surface of the joining member 50 comes into surface contact is reduced. . The deicing water flowing down the inner surface of the joining member 50 is collected in the ice making water tank 22 and used as ice making water for the next ice making. Thereafter, when a predetermined time elapses, the water supply valve WV is closed to stop the supply of deicing water, the hot gas valve HV is opened, and hot gas is circulated and supplied to the evaporation pipe 14. With this hot gas, the flat surface 44 of the ice making plate 10 is heated directly by the evaporation tube 14, and the inclined surface 46 is heated indirectly via the joining member 50. When the ice block M completely leaves the ice making chamber R and the temperature sensor detects the deicing completion temperature, the deicing process is terminated and the process proceeds to the ice making process.

ここで、製氷行程において平坦面44は蒸発管14により直接冷却され、傾斜面46は接合部材50を介して間接的に冷却されることから、氷の成長速度に差ができることが懸念されるが、製氷行程は通常数十分かかることから長時間の製氷行程中に平坦面44と傾斜面46との温度が均一化され、各製氷面における氷の成長速度にほとんど差は見られない。しかし、除氷行程は製氷行程よりも短く、数十秒程度しか時間がかからないため、平坦面44と傾斜面46とにおける除氷速度に差が見られ、氷の外側面の融解状態に差が生じてしまう。そこで、本実施例では上述したように、ホットガスによる除氷に先立って、除氷水を傾斜面46の裏面に散布流下させている。これにより、温度上昇速度が平坦面44よりも遅い傾斜面46を先に昇温させておくことができるので、ホットガスを流した際に傾斜面46もすぐに昇温させることができ、平坦面44と傾斜面46とにおける除氷速度の差を小さくすることができる。   Here, in the ice making process, the flat surface 44 is directly cooled by the evaporation pipe 14 and the inclined surface 46 is indirectly cooled through the joining member 50, but there is a concern that the ice growth rate may be different. Since the ice making process usually takes several tens of minutes, the temperatures of the flat surface 44 and the inclined surface 46 are made uniform during the ice making process for a long time, and there is almost no difference in the ice growth rate on each ice making surface. However, since the deicing process is shorter than the ice making process and takes only a few tens of seconds, there is a difference in the deicing speed between the flat surface 44 and the inclined surface 46, and there is a difference in the melting state of the outer surface of the ice. It will occur. Therefore, in this embodiment, as described above, the deicing water is sprayed down on the back surface of the inclined surface 46 prior to deicing with hot gas. As a result, the temperature of the inclined surface 46 whose temperature rise rate is slower than that of the flat surface 44 can be raised first, so that when the hot gas is supplied, the inclined surface 46 can also be heated immediately and flat. The difference in deicing speed between the surface 44 and the inclined surface 46 can be reduced.

このように、実施例の流下式製氷機の製氷部によれば、蛇行状の蒸発管14と板状の製氷板10により製氷部Sを形成しているので、多角形状の氷を生成する製氷部を安価に製造できる。製氷板10の突条部42は、金属製の板材を所要箇所で折り曲げることで形成されているので複雑な加工は必要ない。また、板材を折り曲げることで形成された突条部42の傾斜面46は、熱伝導性の良い材質で形成された接合部材50を介して蒸発管14によって冷却、又は加熱されるので、傾斜面46と平坦面44とにおける冷却、加熱速度の差を小さくすることができ、多角形状氷の各外側面の大きさを揃えることができる。更に、従来の流下式製氷機のように、製氷部を縦長に配置するのではなく、製氷室を横方向に並べることで製氷部Sを横長に配置したので、製氷部Sの高さ寸法を低く抑えることができ、製氷機自体の高さを低くすることができる。   Thus, according to the ice making part of the flow down type ice making machine of the embodiment, since the ice making part S is formed by the meandering evaporator tube 14 and the plate-like ice making plate 10, the ice making part that generates polygonal ice is produced. Parts can be manufactured at low cost. Since the protrusion 42 of the ice making plate 10 is formed by bending a metal plate at a required location, complicated processing is not necessary. Further, the inclined surface 46 of the ridge portion 42 formed by bending the plate material is cooled or heated by the evaporation pipe 14 via the joining member 50 formed of a material having good thermal conductivity. Differences in cooling and heating rates between the flat surface 44 and the flat surface 44 can be reduced, and the sizes of the outer surfaces of the polygonal ice can be made uniform. In addition, the ice making section S is arranged horizontally by arranging the ice making chambers in the horizontal direction, instead of arranging the ice making sections vertically as in the conventional flow-down type ice making machine. The ice making machine itself can be lowered in height.

〔変更例〕
本発明では、前述の実施例に限定されず、以下の如く変更することも可能である。
(1)製氷室Rの形状を六角形状としたが、四角や八角等の他の形状としてもよい。八角等の他の形状とする場合は、突条部42の形状を変更するだけで済む。
(2)除氷工程時に供給する除氷水は、接合部材50の内面のみに供給するようにしたが、製氷面部における平坦面44の裏面側にも供給するようにしてもよい。これにより、平坦面44における氷塊の離脱を早くすることができる。
(3)図6に示すように、製氷板10の上端を蒸発管14側に折り曲げた折曲部60を設け、該折曲部60に向けて散水孔26から製氷用水を散水させるようにしてもよい。散水孔26から散水された製氷用水は折曲部60で受けられ、確実に製氷面に製氷用水を案内することができる。また、図示はしないが製氷板10の下端を蒸発管14側に折り曲げた折曲部を設けてもよい。これにより、製氷板10の裏側の空間が下方に行くに従い小さくなるので、除氷時に製氷板10の裏面に供給される除氷水が一時的に溜まり除氷効率が向上する。更に、製氷室Rの幅寸法が下方に行くに従い広くなるように、製氷板10の製氷面全体を傾斜させて配置してもよい。これにより、除氷時に氷塊が製氷面より離脱し易くなる。
[Example of change]
The present invention is not limited to the above-described embodiments, but can be modified as follows.
(1) Although the ice making chamber R has a hexagonal shape, it may have other shapes such as a square or an octagon. In the case of another shape such as an octagon, it is only necessary to change the shape of the protrusion 42.
(2) The deicing water supplied during the deicing step is supplied only to the inner surface of the joining member 50, but may be supplied to the back side of the flat surface 44 in the ice making surface portion. Thereby, the removal of the ice block on the flat surface 44 can be accelerated.
(3) As shown in FIG. 6, a bent portion 60 in which the upper end of the ice making plate 10 is bent toward the evaporation pipe 14 is provided, and ice making water is sprinkled from the water spray hole 26 toward the bent portion 60. Also good. The ice making water sprayed from the water sprinkling hole 26 is received by the bent portion 60, and the ice making water can be reliably guided to the ice making surface. Although not shown, a bent portion in which the lower end of the ice making plate 10 is bent toward the evaporation pipe 14 may be provided. As a result, the space on the back side of the ice making plate 10 decreases as it goes downward, so that the deicing water supplied to the back surface of the ice making plate 10 during deicing temporarily accumulates, improving the deicing efficiency. Further, the entire ice making surface of the ice making plate 10 may be inclined so that the width dimension of the ice making chamber R becomes wider as it goes downward. This makes it easier for the ice blocks to separate from the ice making surface during deicing.

実施例に係る流下式製氷機の概略構成図である。It is a schematic block diagram of the flow-down type ice making machine which concerns on an Example. 実施例に係る製氷部の一部を分解した分解斜視図である。It is the disassembled perspective view which decomposed | disassembled some ice making parts which concern on an Example. 実施例に係る製氷部の平面図である。It is a top view of the ice making part which concerns on an Example. 図3におけるA−A線に沿った断面図である。It is sectional drawing along the AA in FIG. 氷塊が生成された製氷部の部分平面図である。It is a partial top view of the ice making part in which the ice block was produced | generated. 図3におけるA−A線に沿った断面図の変更例を示す図である。It is a figure which shows the example of a change of sectional drawing along the AA in FIG.

符号の説明Explanation of symbols

10 製氷板,12 冷凍回路,14 蒸発管,25 製氷用水散布器,27 除氷水散布器,42 突条部,44 平坦面,46 傾斜面,50 接合部材,R 製氷室,S 製氷部   DESCRIPTION OF SYMBOLS 10 Ice-making board, 12 Refrigeration circuit, 14 Evaporating pipe, 25 Ice making water spreader, 27 Deicing water spreader, 42 Projection part, 44 Flat surface, 46 Inclined surface, 50 Joining member, R Ice making room, S Ice making part

Claims (1)

表面に垂直方向に延びる複数の突条部が水平方向に離間して形成されると共に、隣り合う突条部間に製氷面部が形成される製氷板と、製氷板の裏面に配置されて冷媒が循環供給される蒸発管とからなり、該蒸発管に冷媒を循環供給することで製氷板の表面を冷却し、該製氷板の表面に製氷用水が供給されることにより氷塊を生成する流下式製氷機の製氷部において、
前記蒸発管は直線部と折り返し部とが連続する平面蛇行状に形成され、前記直線部間に製氷板を突条部の先端同士が突き合わされるように対向配置することで、一対の製氷面部により製氷室を形成するよう構成したことを特徴とする流下式製氷機の製氷部。
A plurality of protrusions extending in the vertical direction on the surface are formed to be spaced apart in the horizontal direction, an ice making plate in which an ice making surface portion is formed between adjacent protrusions, and a refrigerant disposed on the back surface of the ice making plate A flow-down type ice maker, which comprises a circulatingly supplied evaporation pipe, cools the surface of the ice making plate by circulatingly supplying refrigerant to the evaporation tube, and generates ice blocks by supplying ice making water to the surface of the ice making plate In the ice making section of the machine,
The evaporation pipe is formed in a plane meandering shape in which a straight portion and a folded portion are continuous, and an ice making plate is disposed between the straight portions so that the tips of the ridges face each other. An ice making part of a flow-down type ice making machine, characterized in that an ice making chamber is formed by the above.
JP2007158210A 2007-06-15 2007-06-15 Ice-making portion of flow-down type ice-making machine Pending JP2008309406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007158210A JP2008309406A (en) 2007-06-15 2007-06-15 Ice-making portion of flow-down type ice-making machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007158210A JP2008309406A (en) 2007-06-15 2007-06-15 Ice-making portion of flow-down type ice-making machine

Publications (1)

Publication Number Publication Date
JP2008309406A true JP2008309406A (en) 2008-12-25

Family

ID=40237165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007158210A Pending JP2008309406A (en) 2007-06-15 2007-06-15 Ice-making portion of flow-down type ice-making machine

Country Status (1)

Country Link
JP (1) JP2008309406A (en)

Similar Documents

Publication Publication Date Title
CN101983308B (en) Ice making unit for flow down type ice maker
US4366679A (en) Evaporator plate for ice cube making apparatus
JPWO2008026292A1 (en) Flowing ice machine
US10330366B2 (en) Water distribution for an ice maker
US10094607B2 (en) Ice maker with slush-avoiding sump
JP2005201545A (en) Multiple ice-making determining method of automatic ice maker, and operation method
US20080216490A1 (en) Operation method for automatic ice maker
KR101640421B1 (en) Direct ice making device
JP2011038706A (en) Ice-making unit for flow-down type ice making machine
JP4532201B2 (en) How to operate an automatic ice machine
JP2008309406A (en) Ice-making portion of flow-down type ice-making machine
JP2008057862A (en) Ice making machine
JP2006090691A (en) Operating method for flow down type ice maker
JP5253944B2 (en) Automatic ice machine
KR102213188B1 (en) Ice maker
JP4460898B2 (en) Automatic ice machine
US12209786B2 (en) Refrigerator and ice-making assembly having a removable water basin
US12326287B2 (en) Refrigerator and ice-making assembly for making and holding clear ice billets
JP7161946B2 (en) automatic ice machine
KR102345716B1 (en) Evaporator for ice maker
KR910008659Y1 (en) Evaporator structure of ice maker
US20240247852A1 (en) Refrigerator and ice-making assembly and methods for reliably forming clear ice
JP4869826B2 (en) Automatic ice machine heat exchanger
JP2000329435A (en) Automatic ice machine
JP2003194444A (en) Automatic ice making machine