[go: up one dir, main page]

JP2008298332A - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP2008298332A
JP2008298332A JP2007142816A JP2007142816A JP2008298332A JP 2008298332 A JP2008298332 A JP 2008298332A JP 2007142816 A JP2007142816 A JP 2007142816A JP 2007142816 A JP2007142816 A JP 2007142816A JP 2008298332 A JP2008298332 A JP 2008298332A
Authority
JP
Japan
Prior art keywords
refrigerator
damper
passage
storage chamber
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007142816A
Other languages
Japanese (ja)
Inventor
Hideki Nakane
英樹 中根
Masahiro Ichikawa
正浩 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2007142816A priority Critical patent/JP2008298332A/en
Publication of JP2008298332A publication Critical patent/JP2008298332A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

【課題】異なる温度の複数の貯蔵室を有し、冷蔵庫の消費電力を低減するとともに、コストの安い低冷凍能力の蓄冷型冷凍機で、寿命の長い冷蔵庫を提供すること。
【解決手段】第1通路内に配設され、作動流体を第1通路内に送風する送風機と、第1通路と連通する第1及び第2貯蔵室と、第1通路内の送風機の下流側に配設され、送風機により送風された作動流体を、第1貯蔵室のみ、第2貯蔵室のみ並びに第1、第2貯蔵室の双方の何れかへの流入を許容する第1ダンパと、作動流体が第1貯蔵室及び/又は第2貯蔵室から第1通路の送風機の上流側への戻りを許容する第2通路と、送風手段の上流側に位置するように、第2通路の内部に流体的に並列となるように且つ送風手段よりも台数を多く配設され、作動流体が通過するときに作動流体を冷却する複数の冷却手段と、流体が複数冷却手段の内の少なくとも1つを通過することを許容する第2ダンパとを備えた冷蔵庫。
【選択図】図1
To provide a refrigerator having a long life with a regenerative refrigerator having a plurality of storage rooms at different temperatures, reducing the power consumption of the refrigerator, and having a low refrigerating capacity at low cost.
A blower disposed in a first passage for blowing working fluid into the first passage, first and second storage chambers communicating with the first passage, and a downstream side of the blower in the first passage. And a first damper that allows the working fluid blown by the blower to flow into only the first storage chamber, only the second storage chamber, or both the first and second storage chambers. A second passage that allows the fluid to return from the first storage chamber and / or the second storage chamber to the upstream side of the blower in the first passage, and the second passage so that the fluid is located upstream of the blower means. A plurality of cooling means arranged in fluid parallel and more than the blowing means to cool the working fluid when the working fluid passes, and at least one of the cooling means for the fluid The refrigerator provided with the 2nd damper which permits passage.
[Selection] Figure 1

Description

本発明は、スターリング冷凍機、あるいはパルス管冷凍機などの蓄冷器を使って冷凍を発生する蓄冷型冷凍機によって冷却される冷蔵庫に関するものである。   The present invention relates to a refrigerator cooled by a regenerative refrigerator that generates refrigeration using a regenerator such as a Stirling refrigerator or a pulse tube refrigerator.

従来技術の蓄冷型冷凍機よって冷却される冷蔵庫として、複数の冷却室と、スターリングサイクルにより冷却を行う冷却器を備えたスターリングクーラーと、スターリングクーラーと冷却室とを連通する作動流体通路と、作動流体通路に配されて冷却室のそれぞれへの作動流体の流量を調整する作動流体調整用ダンパとを備えた冷蔵庫であって、各冷却器に設けられるダクトは連通しており、スターリングクーラーは、それぞれ異なる冷凍能力を有し、個別に作動、停止することにより冷却量を調整して冷却室を冷却するスターリング冷蔵庫が開示されている。また、複数の冷却室と、逆スターリングサイクルにより冷却を行う冷却器を備えた冷却室と同数のスターリングクーラーと、スターリングクーラーと冷却室とを連通する作動流体通路と、作動流体通路に配されて冷却室のそれぞれへの作動流体の流量を調整する作動流体調整用ダンパとを備えた冷蔵庫であって、互いに独立したスターリングクーラーで各々の冷却室の冷却を行うスターリング冷蔵庫が開示されている(例えば特許文献1参照。)。   As a refrigerator cooled by a prior art regenerative refrigerator, a plurality of cooling chambers, a Stirling cooler equipped with a cooler that cools by a Stirling cycle, a working fluid passage that communicates the Stirling cooler and the cooling chamber, and operation It is a refrigerator provided with a working fluid adjustment damper that is arranged in the fluid passage and adjusts the flow rate of the working fluid to each of the cooling chambers, and the ducts provided in each cooler communicate with each other, and the Stirling cooler A Stirling refrigerator that has different refrigeration capacities and cools the cooling chamber by adjusting the cooling amount by individually operating and stopping is disclosed. Further, the cooling chambers are provided in a number of cooling chambers, the same number of Stirling coolers as cooling chambers equipped with a cooler that performs cooling by a reverse Stirling cycle, a working fluid passage that connects the Stirling coolers and the cooling chambers, and a working fluid passage. A refrigerator including a working fluid adjustment damper that adjusts the flow rate of the working fluid to each of the cooling chambers, and a Stirling refrigerator that cools each cooling chamber with a Stirling cooler independent of each other is disclosed (for example, (See Patent Document 1).

また、スターリング冷凍機に備えられた冷却器に相当する蒸発器を備えた従来技術の蒸気圧縮式冷凍機によって冷却される冷蔵庫として、低圧容器型である圧縮機と、凝縮器と、流路制御手段と、第一の減圧手段と、第一の蒸発器と、第二の蒸発器と、第一の蒸発器近傍に第一のファンと、第二の蒸発器近傍に第二のファンとを備え、圧縮機と凝縮器と第一の減圧手段と第一の蒸発器とで閉ループを形成するとともに、第一の減圧手段と第一の蒸発器に並列となるように第二の減圧手段と第二の蒸発器とを接続し、第一の減圧手段と第二の減圧手段の入口側に配列した流路制御手段により第一の蒸発器と第二の蒸発器とを切り替えて冷媒回路を構成し、冷媒回路に封入される冷媒を可燃性冷媒とするとともに、第一の蒸発器を高温側の蒸発器、第二の蒸発器を低温側の蒸発器として、圧縮機の停止中は流路制御手段により第二の蒸発器への冷媒回路を閉止する冷蔵庫が開示されている(例えば特許文献2参照。)。
特開2000−130875号公報 特開2006−125843号公報
In addition, as a refrigerator cooled by a conventional vapor compression refrigerator equipped with an evaporator corresponding to a cooler provided in a Stirling refrigerator, a low-pressure container compressor, a condenser, and a flow path control Means, a first pressure reducing means, a first evaporator, a second evaporator, a first fan in the vicinity of the first evaporator, and a second fan in the vicinity of the second evaporator. A compressor, a condenser, a first pressure reduction means, and a first evaporator form a closed loop, and a second pressure reduction means so as to be in parallel with the first pressure reduction means and the first evaporator; The second evaporator is connected, and the refrigerant circuit is switched by switching the first evaporator and the second evaporator by the flow path control means arranged on the inlet side of the first pressure reducing means and the second pressure reducing means. The first evaporator is configured as a high-temperature side evaporator, and the refrigerant enclosed in the refrigerant circuit is a combustible refrigerant. A refrigerator is disclosed in which the second evaporator is a low-temperature evaporator, and the refrigerant circuit to the second evaporator is closed by the flow path control means while the compressor is stopped (see, for example, Patent Document 2). .
JP 2000-130875 A JP 2006-125843 A

しかしながら、特許文献1のスターリング冷蔵庫は、各冷却器に設けられるダクトが互いに連通しており、スターリングクーラーは、それぞれ異なる冷凍能力を有し、個別に作動、停止することにより冷却力を調整して冷却室を冷却している。この場合、冷却力調整のため、一方のスターリングクーラーを停止すると、他方の作動中のスターリングクーラーは、停止中のスターリングクーラーの常温から侵入する侵入熱を吸熱することで、作動中のスターリングクーラーの熱負荷が増大し、熱負荷増大の対応で例えば冷媒の圧力を高めると作動中のスターリングクーラーの消費電力が増大する問題がある。   However, in the Stirling refrigerator of Patent Document 1, the ducts provided in each cooler communicate with each other, and the Stirling coolers have different refrigeration capacities, and adjust the cooling power by individually operating and stopping. The cooling chamber is cooling. In this case, when one Stirling cooler is stopped for cooling power adjustment, the other Stirling cooler in operation operates by absorbing the intrusion heat that enters from the normal temperature of the Stirling cooler in operation, so that the operating Stirling cooler When the heat load increases and the pressure of the refrigerant is increased in response to the increase in the heat load, for example, there is a problem that the power consumption of the Stirling cooler in operation increases.

上記の同じ特許文献1のスターリング冷蔵庫は、冷却室が互いに独立しており、また各冷却室を冷却するスターリングクーラーもそれぞれ独立している。従って、冷却しなければならない貯蔵物がある特定の冷却室に集中した場合、他の冷却室用のスターリングクーラーが利用できず、その冷却室を冷却するスターリングクーラーはその冷却量に対応できる冷凍能力を持たけなければならい。従って、各々のスターリングクーラーは、それぞれ大きな冷凍能力を持たなければならない問題がある。   In the Stirling refrigerator of the same Patent Document 1 described above, the cooling chambers are independent from each other, and the Stirling cooler for cooling each cooling chamber is also independent. Therefore, if the stored items that must be cooled are concentrated in a specific cooling room, the Stirling cooler for the other cooling room cannot be used, and the Stirling cooler that cools the cooling room can handle the cooling capacity. Must have. Therefore, each Stirling cooler has a problem that it must have a large refrigeration capacity.

また、各蓄冷型冷凍機のコールドヘッドの温度はそれぞれ異なり、各蓄冷型冷凍機の累積運転時間の運転負荷もそれぞれ異なるので、各蓄冷型冷凍機の寿命が異なり、冷蔵庫の寿命は、一番短い蓄冷型冷凍機の寿命で決まる問題がある。   In addition, the cold head temperature of each regenerative refrigerator is different, and the operating load of the accumulated operation time of each regenerator is also different, so the life of each regenerator is different and the life of the refrigerator is the best. There is a problem that is determined by the life of short regenerative refrigerators.

また、特許文献2の蒸気圧縮式冷凍機により冷却される冷蔵庫は、異なる温度の冷蔵室の庫内にそれぞれ蒸発器を備え、それぞれの蒸発器近傍にファンが配設される。従って、蒸発器の台数、即ち、冷蔵室の室数と同じ台数のファンが必要となる。このため、各ファンのモータが発生する熱(銅損、鉄損、ヒステリヒス損による発熱)が、各冷却室に流入する作動流体に侵入して、各冷却室における作動流体の冷却量が低下し、この熱侵入量分、蒸気圧縮式冷凍機の熱負荷が増大し、熱負荷の対応で例えば圧縮機の回転数を高くすると、圧縮機の消費電力が増大する問題がある。   Moreover, the refrigerator cooled by the vapor | steam compression refrigerator of patent document 2 is equipped with the evaporator in the store | warehouse | chamber of a different temperature, respectively, and a fan is arrange | positioned in the vicinity of each evaporator. Therefore, the same number of fans as the number of evaporators, that is, the number of refrigerator compartments is required. For this reason, the heat generated by the motor of each fan (heat generation due to copper loss, iron loss, and hysteresis loss) enters the working fluid flowing into each cooling chamber, and the cooling amount of the working fluid in each cooling chamber decreases. The heat load of the vapor compression refrigeration machine increases by the amount of heat intrusion, and if the rotation speed of the compressor is increased in response to the heat load, for example, there is a problem that the power consumption of the compressor increases.

本発明は上記問題点に鑑みてなされたものであり、消費電力を低減し、コストの安い低冷凍能力の蓄冷型冷凍機で冷蔵庫の構成が可能で、しかも寿命の長い冷蔵庫を提供することを目的とする。   The present invention has been made in view of the above problems, and is to provide a refrigerator that can reduce the power consumption and can be configured with a refrigerating type refrigerating machine with low refrigeration capacity at low cost and that has a long lifetime. Objective.

上記課題を解決するため、請求項1に記載の発明は、
第1通路と、
前記第1通路内に配設され、作動流体を前記第1通路内に送風する送風機と、
前記第1通路と連通する第1貯蔵室及び第2貯蔵室と、
前記第1通路内の前記送風機の下流側に配設され、前記送風機により送風された作動流体を、前記第1貯蔵室のみ、前記第2貯蔵室のみ並びに前記第1貯蔵室及び前記第2貯蔵室の双方の何れかへの流入を許容する第1ダンパと、
前記作動流体が前記第1貯蔵室及び/又は前記第2貯蔵室から前記第1通路の前記送風機の上流側への戻りを許容する第2通路と、
前記送風手段の上流側に位置するように、前記第2通路の内部に流体的に並列となるように且つ前記送風手段よりも台数を多く配設され、前記作動流体が通過するときに前記作動流体を冷却する複数の冷却手段と、
前記流体が前記複数冷却手段の内の少なくとも1つを通過することを許容する第2ダンパとを備えた、冷蔵庫を構成したものである。
In order to solve the above-mentioned problem, the invention described in claim 1
A first passage;
A blower disposed in the first passage and for blowing working fluid into the first passage;
A first storage chamber and a second storage chamber communicating with the first passage;
The working fluid, which is disposed on the downstream side of the blower in the first passage and is blown by the blower, allows only the first storage chamber, only the second storage chamber, and the first storage chamber and the second storage. A first damper that allows inflow to either of the chambers;
A second passage allowing the working fluid to return from the first storage chamber and / or the second storage chamber to the upstream side of the blower in the first passage;
When the working fluid passes through the second passage, it is arranged in a fluidly parallel manner in the second passage so as to be positioned on the upstream side of the blowing means, and the working fluid passes through the second passage. A plurality of cooling means for cooling the fluid;
The refrigerator comprises a second damper that allows the fluid to pass through at least one of the plurality of cooling means.

また、請求項2に記載の発明は、貯蔵室は温度センサを備え、温度センサからの信号で第1ダンパと第2ダンパとを制御する。   According to a second aspect of the present invention, the storage chamber includes a temperature sensor, and the first damper and the second damper are controlled by a signal from the temperature sensor.

また、請求項3に記載の発明は、蓄冷型冷凍機の所定の運転時間で、第1ダンパと第2ダンパとを制御する。   The invention according to claim 3 controls the first damper and the second damper in a predetermined operation time of the cold storage type refrigerator.

また、請求項4に記載の発明は、第2ダンパは1台で構成される。   According to a fourth aspect of the present invention, the second damper is composed of a single unit.

また、請求項5に記載の発明は、複数の蓄冷型冷凍機のそれぞれは、同じ蓄冷型冷凍機である。   In the invention according to claim 5, each of the plurality of cool storage type refrigerators is the same cool storage type refrigerator.

請求項1に記載の発明では、送風手段により、作動流体が第1貯蔵室と第2貯蔵室との間で循環する。しかして、作動流体は、複数の冷却手段の全て若しくは少なくとも1つにより冷却されるので、機が、各々の貯蔵室の流入口より上流側の送り風路に1台配設さるので、各々の冷却器から送り風路を通って、各貯蔵室へ流入する作動流体は、送風機を通過する。従って、冷蔵庫は蓄冷型冷凍機に備えた冷却器が複数台配設しているが、従来のように各冷却器にごとに送風機を備える必要はなく、その分、送風機のモータからの侵入熱が減少して蓄冷型冷凍機の熱負荷が低減され、また送風機の台数減少分、消費電力も減少する。よって従来技術より冷凍機と送風機の消費電力が減少するため、冷蔵庫の消費電力を低減できる。   In invention of Claim 1, a working fluid circulates between a 1st storage chamber and a 2nd storage chamber by a ventilation means. Thus, since the working fluid is cooled by all or at least one of the plurality of cooling means, one machine is disposed in the feed air path upstream from the inlet of each storage chamber. The working fluid flowing from the cooler through the feed air passage into each storage chamber passes through the blower. Accordingly, the refrigerator is provided with a plurality of coolers provided in the regenerator type refrigerator, but it is not necessary to provide a blower for each cooler as in the prior art, and the intrusion heat from the motor of the blower is correspondingly reduced. As a result, the heat load of the regenerative refrigerator is reduced, and the power consumption is reduced by the number of fans. Therefore, since the power consumption of the refrigerator and the blower is reduced as compared with the prior art, the power consumption of the refrigerator can be reduced.

また、請求項2に記載の発明では、各貯蔵室の温度を温度センサで検出し、温度センサからの信号により第1ダンパと第2ダンパとを制御して、各貯蔵室を冷却することで、各貯蔵室の熱負荷に対応した冷却ができ、冷凍機の消費電力を低減すること、冷凍機の寿命を伸ばすこと、短時間で冷却することが可能になる。   In the invention according to claim 2, the temperature of each storage chamber is detected by a temperature sensor, and the first damper and the second damper are controlled by a signal from the temperature sensor to cool each storage chamber. It is possible to perform cooling corresponding to the heat load of each storage room, to reduce the power consumption of the refrigerator, to extend the life of the refrigerator, and to cool in a short time.

また、各々の貯蔵室のうち、いずれかの貯蔵室の庫内温度が設定温度より高い場合、温度センサからの検知信号により第2ダンパと、第1ダンパとを制御して複数の蓄冷型冷凍機で冷却すべき貯蔵室を集中して冷却することで、従来技術の1貯蔵室/1冷凍機の場合より、各蓄冷型冷凍機の冷凍能力を低くでき、小型にできる。従って、冷蔵庫は、従来技術の1貯蔵室/1冷凍機の場合よりコストの安い低冷凍能力の蓄冷型冷凍機で構成することが可能になる。   In addition, when the internal temperature of any one of the storage rooms is higher than the set temperature, a plurality of cold storage refrigeration units are controlled by controlling the second damper and the first damper by a detection signal from the temperature sensor. By concentrating and cooling the storage chambers to be cooled by the machine, the refrigerating capacity of each regenerative refrigerator can be lowered and the size can be reduced as compared with the conventional one storage chamber / 1 refrigerator. Therefore, the refrigerator can be constituted by a cold storage type refrigerator having a low refrigeration capacity, which is cheaper than the case of the conventional one storage room / 1 refrigerator.

また、請求項3に記載の発明では、蓄冷型冷凍機の運転時間が所定の時間経過ごとに、第1ダンパと第2ダンパとを切替えることで、蓄冷型冷凍機の冷却すべき貯蔵室の割り当てが替り、各蓄冷型冷凍機の運転負荷バランスが揃い、従来技術の1貯蔵室/1冷凍機の場合より、各蓄冷型冷凍機の寿命を長く揃えることができ、寿命の長い冷蔵庫を提供することが可能になる。   In the invention according to claim 3, the operation time of the regenerative refrigerator is switched between the first damper and the second damper every time a predetermined time elapses. Allocation is changed, the operation load balance of each regenerative refrigerator is aligned, and the life of each regenerative refrigerator can be made longer than in the case of the conventional one storage room / 1 refrigerator, providing a long-life refrigerator It becomes possible to do.

また、請求項4に記載の発明では、複数の冷却器に1台の第2ダンパを配設して複数の冷却器で冷却される作動流体の流れを制御することで、第2ダンパの台数を減らすことができ、第2ダンパを駆動する電力が少なくなり、冷蔵庫の消費電力が低減でき、さらには、冷蔵庫の信頼性が向上するとともにコストも安くなる。   In the invention according to claim 4, the number of second dampers is controlled by controlling the flow of the working fluid cooled by the plurality of coolers by disposing one second damper in the plurality of coolers. The power for driving the second damper can be reduced, the power consumption of the refrigerator can be reduced, and the reliability of the refrigerator can be improved and the cost can be reduced.

また、請求項5に記載の発明では、複数の蓄冷型冷凍機が、それぞれ同じ蓄冷型冷凍機であることから、共通化が図られて蓄冷型冷凍機のコストが安くなる。また、蓄冷型冷凍機の運転負荷バランスが揃い、蓄冷型冷凍機の寿命も伸び、従来技術より冷蔵庫の寿命が伸び、且つ安定する。   Further, in the invention described in claim 5, since the plurality of cool storage type refrigerators are the same cool storage type refrigerator, respectively, common use is achieved and the cost of the cool storage type refrigerator is reduced. In addition, the operation load balance of the cold storage type refrigerator is uniform, the life of the cold storage type refrigerator is extended, and the lifetime of the refrigerator is extended and stabilized as compared with the prior art.

(実施形態1)
以下に本発明の実施形態について図面を参照しつつ詳細に説明する。
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明に係わる実施形態1の冷蔵庫の扉を開き、庫内を見た図である。図2、図3は、それぞれ図1のA−A断面図とB−B断面図である。図1に示すように、冷蔵庫1は、庫内温度の異なる貯蔵室2bと、貯蔵室2bの上部に設けられる貯蔵室2aと、各貯蔵室2a、2bの扉11aと、11b(図2に図示)とを備える。貯蔵室2aの奥面上部中央に流入口8aが設けられ、流入口8aは送りダクト8(送り風路)の一端に連通し、作動流体はそれぞれ送りダクト8から流入口8aを通過して貯蔵室2a流入する。貯蔵室2bの奥面上部中央にも流入口8bが設けられ、流入口8bは送りダクト8の途中に連通し、作動流体はそれぞれ送りダクト8から流入口8bを通過して貯蔵室2bに流入する。貯蔵室2aと貯蔵室2bとは、1本の送りダクト8を共有する。   FIG. 1 is a view of the refrigerator door according to the first embodiment of the present invention when the refrigerator door is opened and the inside of the refrigerator is viewed. 2 and 3 are a cross-sectional view taken along the line AA and a cross-sectional view taken along the line BB in FIG. 1, respectively. As shown in FIG. 1, the refrigerator 1 includes a storage room 2b having a different internal temperature, a storage room 2a provided on the upper part of the storage room 2b, doors 11a and 11b of the storage rooms 2a and 2b (see FIG. 2). As shown). An inflow port 8a is provided at the center of the upper surface of the storage chamber 2a. The inflow port 8a communicates with one end of the feed duct 8 (feed air passage), and the working fluid is stored from the feed duct 8 through the inflow port 8a. The chamber 2a flows in. An inflow port 8b is also provided in the center of the upper surface of the storage chamber 2b. The inflow port 8b communicates with the feed duct 8 and the working fluid flows into the storage chamber 2b from the feed duct 8 through the inflow port 8b. To do. The storage chamber 2a and the storage chamber 2b share one feed duct 8.

貯蔵室2aの奥面下部の左右に流出口9aと流出口10aがそれぞれ設けられ、流出口9aと流出口10aはそれぞれ戻りダクト9(戻り風路)の一端と、戻りダクト10(戻り風路)の一端とに連通し、作動流体は貯蔵室2aからそれぞれ流出口9a、流出口10aを通過して戻りダクト9、戻りダクト10へ流出する。貯蔵室2bの奥面下部の左右にも、作動流体が流出する流出口9bと流出口10bがそれぞれ設けられ、流出口9bと流出口10bはそれぞれ戻りダクト9の途中、戻りダクト10の途中とに連通し、作動流体は貯蔵室2bからそれぞれ流出口9b、流出口10bを通過して戻りダクト9、戻りダクト10へ流出する。   An outlet 9a and an outlet 10a are respectively provided on the left and right of the lower part of the inner surface of the storage chamber 2a. The outlet 9a and the outlet 10a are respectively connected to one end of the return duct 9 (return air path) and the return duct 10 (return air path). The working fluid flows from the storage chamber 2a to the return duct 9 and the return duct 10 through the outlet 9a and the outlet 10a, respectively. An outlet 9b and an outlet 10b from which the working fluid flows out are also provided on the left and right of the lower part of the inner surface of the storage chamber 2b. The outlet 9b and the outlet 10b are respectively provided in the middle of the return duct 9, and in the middle of the return duct 10. The working fluid flows from the storage chamber 2b to the return duct 9 and the return duct 10 through the outlet 9b and the outlet 10b, respectively.

戻りダクト9の下流側の端部9c(図3)と、送りダクト8の上流側の合流位置8c(図1)との間に冷却器4aが配設される。同様に、戻りダクト10の下流側の端部10c(図3)と、送りダクト8の上流側の合流位置8d(図1)との間に冷却器4bが設けられ、冷却器4aと冷却器4bとは互いに並列に配設される。   A cooler 4 a is disposed between the downstream end portion 9 c (FIG. 3) of the return duct 9 and the upstream joining position 8 c (FIG. 1) of the feed duct 8. Similarly, a cooler 4b is provided between the downstream end portion 10c (FIG. 3) of the return duct 10 and the upstream joining position 8d (FIG. 1) of the feed duct 8, and the cooler 4a and cooler 4 4b are arranged in parallel with each other.

冷却器4aから流れる作動流体と冷却器4bから流れる作動流体が合流する合流位置8c、8dと、両方の流入口8a、8bより上流側との間の送り風路8に作動流体を圧送する送風機6が配設される。   A blower that pumps the working fluid to the feed air passage 8 between the merging positions 8c and 8d where the working fluid flowing from the cooler 4a and the working fluid flowing from the cooler 4b merge, and the upstream side of both the inlets 8a and 8b. 6 is disposed.

図1、図2に示すように、冷蔵庫1の下部中央の背面側にスターリング冷凍機の蓄冷器を使った蓄冷型冷凍機3aと蓄冷型冷凍機3bが設けられ、蓄冷型冷凍機3aのコールドヘッド3cと蓄冷型冷凍機3bのコールドヘッド3dに、それぞれ作動流体を冷却する冷却器4aと冷却器4bとが備えられる。また、コールドヘッド3c、3dを形成するそれぞれの外周面にフィン等を設けて冷却器4a、4bにしてもよい。   As shown in FIGS. 1 and 2, a regenerator type refrigerating machine 3 a using a Stirling refrigerating machine regenerator and a regenerator type refrigerating machine 3 b are provided on the back side of the lower center of the refrigerator 1. The head 3c and the cold head 3d of the regenerative refrigerator 3b are provided with a cooler 4a and a cooler 4b for cooling the working fluid, respectively. Further, fins or the like may be provided on the outer peripheral surfaces forming the cold heads 3c and 3d to form the coolers 4a and 4b.

合流位置8c、8dにV字形状の1台の第2ダンパ5bが配設される。第2ダンパ5bは、それぞれ冷却器4a、4bで冷却される作動流体のそれぞれの流れを制御する。第2ダンパ5bは、合流位置8cを閉じると合流位置8d(冷却器4b側の流路)開く状態と、合流位置8dを閉じると合流位置8c(冷却器4a側の流路)を開く状態と、合流位置8c、8dをともに半開にする中立位置状態と、合流位置8cをX%開くと合流位置8dを(100−X)%開く状態とにすることができる。   One V-shaped second damper 5b is disposed at the merging positions 8c and 8d. The second damper 5b controls the flow of the working fluid cooled by the coolers 4a and 4b, respectively. The second damper 5b is in a state in which the merge position 8c (flow path on the cooler 4b side) opens when the merge position 8c is closed, and in a state in which the merge position 8c (flow path on the cooler 4a side) opens when the merge position 8d is closed. The neutral position state where both the merge positions 8c and 8d are half-opened and the merge position 8d can be opened (100-X)% when the merge position 8c is opened by X%.

尚、第2ダンパは、流出口9a、9bの下流側と送風機6の上流側との間に冷却器4aに対して直列に1台配設し、同様に流出口10a、10bの下流側と送風機6の上流側との間に冷却器4bに対して直列に1台配設しても良い。   One second damper is arranged in series with respect to the cooler 4a between the downstream side of the outlets 9a, 9b and the upstream side of the blower 6, and similarly the downstream side of the outlets 10a, 10b. One unit may be arranged in series with respect to the cooler 4 b between the upstream side of the blower 6.

送りダクト8の流入口8bに第1ダンパ5aが配設される。第1ダンパ5aは、流入口8aに流れる作動流体の流れと、流入口8bに流れる作動流体の流れとを制御する。即ち、第1ダンパ5aは、流入口8b側の流路を閉じると流入口8a側の流路を開く状態(図2の太い一点鎖線)と、流入口8b側の流路を開くと流入口8a側の流路を閉じる状態(図2の太い破線)と、流入口8b側の流路と流入口8a側の流路をともに半開にする状態(図2の太い実線)と、流入口8b側の流路面積をX%分開すると流入口8a側の流路面積を(100−X)%開にする状態とにすることができる。また、第1ダンパ5aは、流入口8aと流入口8bとにそれぞれ配設してもよい。   A first damper 5 a is disposed at the inlet 8 b of the feed duct 8. The 1st damper 5a controls the flow of the working fluid which flows into the inflow port 8a, and the flow of the working fluid which flows into the inflow port 8b. That is, the first damper 5a opens the flow path on the inlet 8a side when the flow path on the inlet 8b side is closed (the thick dashed line in FIG. 2), and opens the flow path on the flow inlet 8b side. The state where the channel on the 8a side is closed (thick broken line in FIG. 2), the state where both the channel on the inlet 8b side and the channel on the inlet 8a side are half open (thick solid line in FIG. 2), and the inlet 8b. When the channel area on the side is opened by X%, the channel area on the inlet 8a side can be opened (100-X)%. Further, the first damper 5a may be disposed at each of the inlet 8a and the inlet 8b.

図1に示すように、庫内温度を検出する温度センサ7aと温度センサ7bとが、それぞれ貯蔵室2aの流入口8a近傍と貯蔵室2bの流入口8b近傍とに配備され、温度センサ7a、7bの検出信号は制御装置20に入力され、制御装置20は各貯蔵室2a、2bの温度と温度の時間変化計測、冷凍機の運転時間を計測する。制御装置20には、各貯蔵室2a、2bに適した各蓄冷型冷凍機の運転条件である供給電流値と振動数(回転数)のデータが事前にメモリされる。前述の測定結果やメモリされたデータから、制御装置20は第1ダンパ5aの切替え、開閉、開度調整の制御、第2ダンパ5bの切替え、開閉、開度調整の制御、送風機6の運転、蓄冷型冷凍機3a、3bの運転および制御とを行う。   As shown in FIG. 1, a temperature sensor 7a and a temperature sensor 7b for detecting the internal temperature are disposed near the inlet 8a of the storage chamber 2a and the inlet 8b of the storage chamber 2b, respectively. The detection signal 7b is input to the control device 20, and the control device 20 measures the temperature of each storage chamber 2a, 2b and the time change of the temperature, and measures the operation time of the refrigerator. The control device 20 stores in advance data on supply current values and vibration frequencies (rotations), which are operating conditions of each regenerative refrigerator suitable for each storage chamber 2a, 2b. From the above measurement results and stored data, the control device 20 switches the first damper 5a, opens / closes, controls the opening degree, controls the second damper 5b, opens / closes, controls the opening degree adjustment, operates the blower 6, The cold storage type refrigerators 3a and 3b are operated and controlled.

次に、本発明に係わる実施形態1の作用と効果について説明する。以下に述べる作用は、制御装置20のもとで、以下の作動が行われる。   Next, the operation and effect of the first embodiment according to the present invention will be described. The following operations are performed under the control device 20 as described below.

送風機6は、第2ダンパ5bが配設される位置、即ち、送りダクト8の合流位置8c、8dと、流入口8a、8bの両流入口より上流側との間に位置する送りダクト8に設けられているので、冷却器4a、4bで冷却され、送りダクト8に流入する作動流体は、送風機6を通過する。従って、冷蔵庫1には蓄冷型冷凍機3a、3bが2台設けられているが、送風機6は1台備えればよく、従来のようにそれぞれの冷却器(又は蓄冷型冷凍機)にそれぞれ送風機を備える必要はなく、その分、送風機のモータからの侵入熱が少なくすることができ、蓄冷型冷凍機3a、3bの熱負荷は従来技術より低くなり、蓄冷型冷凍機3a、3bと送風機6の消費電力は少なくなり、その結果、冷蔵庫1の消費電力を低減できる。   The blower 6 is disposed at a position where the second damper 5b is disposed, that is, the feed duct 8 located between the joining positions 8c and 8d of the feed duct 8 and the upstream side of both the inlets 8a and 8b. Since it is provided, the working fluid cooled by the coolers 4 a and 4 b and flowing into the feed duct 8 passes through the blower 6. Therefore, although the refrigerator 1 is provided with two cool storage type refrigerators 3a and 3b, it is only necessary to provide one blower 6, and each conventional cooler (or cool storage type refrigerator) has a blower. Therefore, the intrusion heat from the motor of the blower can be reduced accordingly, and the heat load of the regenerative refrigerators 3a and 3b is lower than that of the prior art, and the regenerative refrigerators 3a and 3b and the blower 6 are reduced. As a result, the power consumption of the refrigerator 1 can be reduced.

第2ダンパ5bは、流出口9a、9bより下流側と、送風機6より上流側との間に冷却器4a、冷却器4bのそれぞれに対し直列に配設することで、蓄冷型冷凍機3a、3bのうち、いずれかが停止した場合、例えば、蓄冷型冷凍機3bが停止したとしても、停止中の蓄冷型冷凍機3b側の第2ダンパ5bを閉じると、運転中の蓄冷型冷凍機3a側の第2ダンパ5bが開かれて、冷却器4bの暖まった作動流体は送りダクト8に流入しないことから、運転中の蓄冷型冷凍機3aは停止中の蓄冷型冷凍機3bが熱負荷にはならない。従って、従来技術のような停止中の蓄冷型冷凍機の侵入熱負荷はなく、その分、蓄冷型冷凍機の消費電力を低減することができる。   The second damper 5b is arranged in series with respect to each of the cooler 4a and the cooler 4b between the downstream side from the outlets 9a and 9b and the upstream side from the blower 6, so that the regenerative refrigerator 3a, If any one of 3b stops, for example, even if the regenerative refrigerator 3b stops, if the second damper 5b on the cold storage refrigerator 3b side is closed, the regenerative refrigerator 3a in operation Since the second working damper 5b is opened and the warm working fluid of the cooler 4b does not flow into the feed duct 8, the cold storage refrigerating machine 3a in operation is operated by the cold storage refrigerating machine 3b that is stopped. Must not. Therefore, there is no intrusion heat load of the cold storage refrigerator that is stopped as in the prior art, and the power consumption of the cold storage refrigerator can be reduced correspondingly.

(2台以上の蓄冷型冷凍機で一つの貯蔵室を冷却する場合について)
一方の貯蔵室、例えば貯蔵室2aに冷却すべき貯蔵物が多量に貯蔵され、貯蔵室2aの時間に対する温度変化が所定値を越えると、温度センサ7aからの信号で制御装置20は第2ダンパ5bを中立位置にし、第1ダンパ5aを流入口8bが閉位置、即ち、送りダクト8の流入口8aに通じる流路を開位置にする。冷却器3a、3bで冷却された作動流体は、送りダクト8を通って貯蔵室2aに流入し、貯蔵物を冷却して戻りダクト9、10を通って冷却器3a、3bに戻り、再び循環を繰り返して貯蔵室2aを所定の温度にし冷却を終了する。この場合、蓄冷型冷凍機3aと蓄冷型冷凍機3bの2台で、貯蔵室2aを冷却するので、従来技術のように1貯蔵室/1冷凍機の場合の冷凍能力と比較すると、蓄冷型冷凍機3a、3bの冷凍能力は半分の冷凍能力でよく、蓄冷型冷凍機3a、3bは小型になり、冷蔵庫はコストの安い低冷凍能力の蓄冷型冷凍機3a、3bで構成することができる。
(When cooling one storage room with two or more regenerative refrigerators)
When a large amount of storage to be cooled is stored in one storage chamber, for example, the storage chamber 2a, and the temperature change with respect to time of the storage chamber 2a exceeds a predetermined value, the control device 20 uses the signal from the temperature sensor 7a to indicate the second damper. 5b is set to the neutral position, and the first damper 5a is set to the closed position of the inlet 8b, that is, the flow path leading to the inlet 8a of the feed duct 8 is set to the open position. The working fluid cooled by the coolers 3a and 3b flows into the storage chamber 2a through the feed duct 8, cools the stored material, returns to the coolers 3a and 3b through the return ducts 9 and 10, and circulates again. Is repeated to bring the storage chamber 2a to a predetermined temperature and finish the cooling. In this case, since the storage room 2a is cooled by two units of the cold storage type refrigerator 3a and the cold storage type refrigerator 3b, the cold storage type is compared with the refrigeration capacity in the case of one storage room / 1 refrigerator as in the prior art. The refrigerating capacity of the refrigerating machines 3a and 3b may be half that of the refrigerating capacity, the regenerator type refrigerating machines 3a and 3b are reduced in size, and the refrigerator can be composed of the refrigerating refrigerating machines 3a and 3b with low refrigerating capacity at low cost. .

(複数の蓄冷型冷凍機の寿命を揃えて冷蔵庫の寿命を伸ばす運転について)
蓄冷型冷凍機3aは、例えば庫内温度が−55℃の貯蔵室2aの冷却を担い、蓄冷型冷凍機3bは、庫内温度が−30℃の貯蔵室2bの冷却を担う。冷凍機にとって運転負荷の大きい貯蔵室2aは蓄冷型冷凍機3aで冷却されており、所定の運転時間に達すると、所定の時間経過後も引続き貯蔵室2aを冷却しなければならない場合は、第1ダンパ5aは現状状態が維持され、第2ダンパ5bは送りダクト8の合流位置8cの開状態の流路を閉じて、送りダクト8の合流位置8dの流路を開き、蓄冷型冷凍機3bで貯蔵室2aを冷却する。所定の時間経過後、貯蔵室2aから貯蔵室2bに冷却を替えなければならない場合は、第2ダンパ5bを現状状態のまま維持し、第1ダンパ5aは流入口8aに通じる送りダクト8の流路を閉じ、流入口8bを開き、蓄冷型冷凍機3aで運転負荷の小さい貯蔵室2bを冷却する。いずれの場合も、所定の運転時間経過前は蓄冷型冷凍機3aが運転負荷の大きい貯蔵室2aの冷却を担い、蓄冷型冷凍機3bが運転負荷の小さい貯蔵室2bの冷却を担うが、所定の運転時間経過後は蓄冷型冷凍機3aが運転負荷の小さい貯蔵室2bの冷却を担い、蓄冷型冷凍機3bが運転負荷の大きい貯蔵室2aの冷却を担う。このように運転時間が所定の時間経過ごとに第1ダンパ5aと第2ダンパ5bを切替えて、各蓄冷型冷凍機3a、3bの冷却すべき貯蔵室2a、2bを替えることで、蓄冷型冷凍機3a、3bの運転負荷バランスする。また各蓄冷冷凍機3a、3bとも作動冷媒のガス温に起因する摺動部の摩耗の進行と作動冷媒のガス汚染の進行が揃うので、各蓄冷冷凍機3a、3bの寿命が揃う。従って、従来技術の1貯蔵室/1冷凍機製の冷蔵庫より、冷蔵庫の寿命を伸ばすことが可能になる。
(About operation to extend the life of refrigerators by aligning the life of multiple regenerative refrigerators)
The regenerator type refrigerator 3a is responsible for cooling the storage room 2a, for example, having an internal temperature of −55 ° C., and the regenerative type refrigerator 3b is responsible for cooling the storage room 2b, where the internal temperature is −30 ° C. The storage chamber 2a having a large operating load for the refrigerator is cooled by the regenerative refrigerator 3a. When the predetermined operation time is reached, the storage chamber 2a must be continuously cooled even after the predetermined time elapses. The first damper 5a is maintained in its current state, and the second damper 5b closes the open flow path at the merge position 8c of the feed duct 8, opens the flow path at the merge position 8d of the feed duct 8, and the regenerative refrigerator 3b. To cool the storage chamber 2a. When the cooling has to be changed from the storage chamber 2a to the storage chamber 2b after a predetermined time has elapsed, the second damper 5b is maintained as it is, and the first damper 5a flows in the feed duct 8 leading to the inlet 8a. The passage is closed, the inlet 8b is opened, and the storage chamber 2b having a small operation load is cooled by the cold storage type refrigerator 3a. In either case, before the predetermined operating time elapses, the regenerative refrigerator 3a is responsible for cooling the storage chamber 2a with a large operating load, and the regenerative refrigerator 3b is responsible for cooling the storage chamber 2b with a small operating load. After the operation time elapses, the regenerative refrigerator 3a is responsible for cooling the storage chamber 2b with a small operating load, and the regenerative refrigerator 3b is responsible for cooling the storage chamber 2a with a large operational load. In this way, by switching the first damper 5a and the second damper 5b every time the operation time has passed, and changing the storage chambers 2a and 2b to be cooled of the respective cold storage refrigerators 3a and 3b, the cold storage refrigeration Balance the operation load of the machines 3a and 3b. Further, in each of the cold storage refrigerators 3a and 3b, the progress of wear of the sliding portion due to the gas temperature of the working refrigerant and the progress of gas contamination of the working refrigerant are aligned, so that the lifetime of each of the cold storage refrigerators 3a and 3b is aligned. Therefore, it is possible to extend the life of the refrigerator as compared with the refrigerator made of one storage room / 1 refrigerator of the prior art.

尚、上記の第1ダンパ5a、第2ダンパ5bの切替えは、制御装置20により冷凍機の所定の運転時間を計測して行っていたが、タイマー等で予め第1ダンパ5a、第2ダンパ5bを切替る所定時間を設定して行ってもよい。   The first damper 5a and the second damper 5b are switched by measuring a predetermined operation time of the refrigerator by the control device 20, but the first damper 5a and the second damper 5b are previously set by a timer or the like. It may be performed by setting a predetermined time for switching.

(第1ダクトおよび第2ダクトについて)
冷却器4aに配設する1台の第2ダンパ5bで、冷却器4aを流れる作動流体の流れと、冷却器4aに隣設する冷却器4bを流れる作動流体の流れを連動して制御することで、各冷却器4aと4bの各々に第2ダンパを配置する場合と比較して、第2ダンパの数を1台減らすことができ、第2ダンパを駆動する電力も1台分少なくなり、冷蔵庫の消費電力を低減できる。また、第2ダンパの数が減ることで機器構成がシンプルになり、冷蔵庫の信頼性が向上するとともにコストが安くなる。
(About the first duct and the second duct)
The flow of the working fluid flowing through the cooler 4a and the flow of the working fluid flowing through the cooler 4b adjacent to the cooler 4a are controlled in conjunction with one second damper 5b disposed in the cooler 4a. Thus, compared to the case where the second damper is disposed in each of the coolers 4a and 4b, the number of the second dampers can be reduced by one, and the power for driving the second damper is also reduced by one, The power consumption of the refrigerator can be reduced. Moreover, the device configuration is simplified by reducing the number of second dampers, and the reliability of the refrigerator is improved and the cost is reduced.

同様に、1台の第1ダンパ5aで、流出口8bを流れる作動流体の流れと、流出口8aを流れる作動流体の流れとを連動して制御することで、各流出口8aと8bの各々に第1ダンパを配置する場合と比較して、第1ダンパの数を1台減らすことができ、第1ダンパを駆動する電力も1台分少なくなり、冷蔵庫の消費電力を低減できる。また、第1ダンパの台数が減るので機器構成がシンプルになり、冷蔵庫の信頼性が向上するとともにコストが安くなる。   Similarly, the flow of the working fluid that flows through the outlet 8b and the flow of the working fluid that flows through the outlet 8a are controlled by one first damper 5a in conjunction with each other, so that each of the outlets 8a and 8b Compared with the case where the first dampers are arranged, the number of the first dampers can be reduced by one, the power for driving the first dampers can be reduced by one, and the power consumption of the refrigerator can be reduced. Further, since the number of first dampers is reduced, the device configuration is simplified, the reliability of the refrigerator is improved and the cost is reduced.

(複数の蓄冷型冷凍機の共通化について)
蓄冷型冷凍機3a、3bが同じ蓄冷型冷凍機であることから、共通化が図られることで蓄冷型冷凍機3a、3bのコストを安くすることができる。また、蓄冷型冷凍機3a、3bの運転負荷バランスが揃い、蓄冷型冷凍機の寿命が揃う。よって従来技術より、冷蔵庫の寿命が伸びる。
(About common use of multiple regenerative refrigerators)
Since the cold storage type refrigerators 3a and 3b are the same cold storage type refrigerator, the cost of the cold storage type refrigerators 3a and 3b can be reduced by sharing the cold storage type refrigerators 3a and 3b. Moreover, the operation load balance of the cold storage type refrigerators 3a and 3b is aligned, and the lifetime of the cold storage type refrigerator is aligned. Therefore, the lifetime of the refrigerator is extended from the prior art.

(冷蔵庫のクールダウンについて)
常温の貯蔵室を設定温度に冷却するクールダウン過程では、第1ダンパ5aと第2ダンパ5bをそれぞれ半開状態にし、蓄冷型冷凍機3aと3bとで、同時に貯蔵室2aと2bを冷却する。そして、例えば庫内温度−30℃の貯蔵室2bが先に−35℃(設定温度より5℃低い)到達すると、第1ダンパ5aで流入口8bの流路を閉じ、蓄冷型冷凍機3aと3bの2台で例えば庫内温度−55℃の貯蔵室2aを−60℃(設定温度より5℃低い)に冷却してクールダウンを終了する。この場合、蓄冷型冷凍機3aと3bの2台の冷凍機で冷却するので短時間でクールダウンを終了することができる。
(About refrigerator cool down)
In the cool-down process of cooling the room temperature storage room to the set temperature, the first damper 5a and the second damper 5b are respectively in a half-open state, and the storage rooms 2a and 2b are simultaneously cooled by the regenerative refrigerators 3a and 3b. For example, when the storage chamber 2b having the internal temperature of −30 ° C. reaches −35 ° C. (5 ° C. lower than the set temperature) first, the flow path of the inlet 8b is closed by the first damper 5a, and the regenerative refrigerator 3a Cooling down is completed by cooling the storage room 2a, for example, having an internal temperature of −55 ° C. to −60 ° C. (5 ° C. lower than the set temperature) with two units 3b. In this case, since cooling is performed by the two refrigerating machines 3a and 3b, the cool-down can be completed in a short time.

(蓄冷型冷凍機が故障した場合の対応について)
蓄冷型冷凍機3a、3bのうち、例えば、庫内温度が−55℃の貯蔵室2aを冷却している蓄冷型冷凍機3aが故障した場合、第2ダンパ5bを送りダクト8の上流側の合流位置8cの流路を閉状態すれば、合流位置8dの流路が開状態となり、蓄冷型冷凍機3bで貯蔵室2aを冷却することができるので、貯蔵室2aに冷凍保存されている魚肉などの貯蔵物の鮮度を維持でき、さらには、複数の冷凍機のうち1台の冷凍機が正常で、他の冷凍機が故障したとしても冷蔵庫1は冷却機能を維持することが可能である。
(Responding to the case where a regenerative refrigerator is broken down)
Of the cold storage type refrigerators 3a and 3b, for example, when the cold storage type refrigerator 3a that cools the storage room 2a having an internal temperature of −55 ° C. breaks down, the second damper 5b is fed upstream of the duct 8 If the flow path at the merge position 8c is closed, the flow path at the merge position 8d is opened, and the storage room 2a can be cooled by the cold storage type refrigerator 3b, so that the fish meat stored frozen in the storage room 2a The freshness of stored items such as the refrigerator can be maintained, and even if one of the plurality of refrigerators is normal and the other refrigerator fails, the refrigerator 1 can maintain the cooling function. .

(冷却回路のフローパターンについて)
図4は、本発明に係わる冷蔵庫の貯蔵室と、送りダクトと、戻りダクトと、蓄冷型冷凍機に備えられる冷却器とを中心に配置した冷却回路のフローパターンを示す。図中、第1ダンパと第2ダンパは省略している。図4の(a)は、実施形態1に相当し、冷蔵庫1が温度の異なる貯蔵室2a、2bと、2本の戻りダクト9、10とを有する。図4の(b)は、冷蔵庫1が温度の異なる貯蔵室2a、2bと、下流で分岐する戻りダクト18を備える1本の戻りダクト9とを有する。図4の(c)は、冷蔵庫1が温度の異なる貯蔵室2a、2bと、貯蔵室2aの温度と同じ温度の貯蔵室2cと、2本の戻りダクト9、10とを有する。貯蔵室2cには、流入口8cと、流出口9c、10cとが備えられる。図4の(d)は、冷蔵庫1がそれぞれ温度の異なる貯蔵室2a、2b、2dと、3本の戻りダクト9、10、19とを有する。各戻りダクト9、10、19には、蓄冷型冷凍機に備えられた冷却器4a、4b、4cが配設される。貯蔵室2dには、流入口8dと、流出口9d、10d、19dとが備えられる。いずれの場合も作用と効果は、実施形態1と同様である。
(Cooling circuit flow pattern)
FIG. 4 shows a flow pattern of a cooling circuit in which a refrigerator storage room, a feed duct, a return duct, and a cooler provided in a cold storage type refrigerator are arranged at the center. In the figure, the first damper and the second damper are omitted. (A) of FIG. 4 is equivalent to Embodiment 1, and the refrigerator 1 has the storage chambers 2a and 2b from which temperature differs, and the two return ducts 9 and 10. FIG. 4B, the refrigerator 1 has storage chambers 2a and 2b having different temperatures, and one return duct 9 including a return duct 18 branched downstream. 4C, the refrigerator 1 has storage chambers 2a and 2b having different temperatures, a storage chamber 2c having the same temperature as the storage chamber 2a, and two return ducts 9 and 10. In FIG. The storage chamber 2c includes an inflow port 8c and outflow ports 9c and 10c. 4D, the refrigerator 1 has storage rooms 2a, 2b, and 2d having different temperatures, and three return ducts 9, 10, and 19, respectively. In each of the return ducts 9, 10 and 19, coolers 4 a, 4 b and 4 c provided in the cold storage type refrigerator are arranged. The storage chamber 2d is provided with an inflow port 8d and outflow ports 9d, 10d, and 19d. In either case, the operation and effect are the same as in the first embodiment.

図5は、本発明に係わる冷蔵庫の第2ダンパとを中心に配置した冷却回路のフローパターンを示す。図中、(a)〜(d)は第1ダンパを省略している。図5の(a)は、実施形態1に相当し、送りダクト8の上流の合流位置8c、8dに1台の第2ダンパ5bを設け、1台の第2ダンパ5bで合流位置8c、8dの流路を流れる作動流体の流れを制御する。図5の(b)は、それぞれ送りダクト8の上流の合流位置8c、8dと、冷却器4a、4bとの間に第2ダンパ5c、5dを設けている。図5の(c)は、それぞれ流出口9bより下流側、流出口10bより下流側と、冷却器4a、4bとの間にそれぞれ第2ダンパ5e、5fを設けている。図5の(d)戻りダクト9の下流側の分岐位置9e、9fに1台のダンパ5eを設け、ダンパ5eで分岐位置9e、9fの流路を流れる作動流体の流れを制御する。いずれの場合も作用と効果は、実施形態1と同様である。   FIG. 5 shows a flow pattern of the cooling circuit arranged around the second damper of the refrigerator according to the present invention. In the drawing, the first damper is omitted from (a) to (d). FIG. 5A corresponds to the first embodiment, and one second damper 5b is provided at the merging position 8c, 8d upstream of the feed duct 8, and the merging position 8c, 8d is provided by one second damper 5b. The flow of the working fluid flowing through the flow path is controlled. In FIG. 5B, second dampers 5c and 5d are provided between the joining positions 8c and 8d upstream of the feed duct 8 and the coolers 4a and 4b, respectively. In FIG. 5C, second dampers 5e and 5f are provided between the coolers 4a and 4b, respectively, downstream from the outlet 9b, downstream from the outlet 10b, and the coolers 4a and 4b, respectively. In FIG. 5D, one damper 5e is provided at branch positions 9e and 9f on the downstream side of the return duct 9, and the flow of the working fluid flowing through the flow paths at the branch positions 9e and 9f is controlled by the damper 5e. In either case, the operation and effect are the same as in the first embodiment.

図6は、本発明に係わる冷蔵庫の第1ダンパとを中心に配置した冷却回路のフローパターンを示す。図中、(a)、(b)は第2ダンパを省略している。図6の(a)は、実施形態1に相当し、流入口8bに1台の第1ダンパ5aを設け、1台の第1ダンパ5aで流入口8bと流入口8baに通じる送りダクト8の流路を流れる作動流体の流れを制御する。図6の(b)は、流入口8a、流入口8bにそれぞれ第1ダンパ5h、5iを設け、第1ダンパ5h、5iでそれぞれ流入口8aと流入口8bの流路を流れる作動流体の流れを制御する。いずれの場合も作用と効果は、実施形態1と同様である。   FIG. 6 shows a flow pattern of a cooling circuit arranged around the first damper of the refrigerator according to the present invention. In the drawing, the second damper is omitted in (a) and (b). FIG. 6A corresponds to the first embodiment, in which one first damper 5a is provided at the inlet 8b, and the first duct 5a is used to connect the inlet duct 8b and the inlet 8ba. The flow of the working fluid flowing through the flow path is controlled. In FIG. 6B, the first dampers 5h and 5i are provided at the inlet 8a and the inlet 8b, respectively, and the flow of the working fluid flowing through the flow paths of the inlet 8a and the inlet 8b respectively at the first dampers 5h and 5i. To control. In either case, the operation and effect are the same as in the first embodiment.

(実施形態2)
図7は、本発明に係わる実施形態2で、実施形態1の蓄冷型冷凍機がスターリング冷凍機である場合の冷凍機の断面図を示し、図1のC−C断面から見た断面図に相当する。実施形態2は、スターリング冷凍機を除いて、構成と作用は実施形態1と同じである。図1と異なる点を説明する。スターリング冷凍機50aとスターリング冷凍機(以下、冷凍機)50bは、諸元が同じである。冷凍機50aは、圧縮機51によって形成される第1圧縮空間60と、膨張部90のディスプレイサ92の背面92b側に形成される第2圧縮空間96と、放熱部70と、蓄冷部80と、膨張部90のディスプレイサ92の前面92a側に形成される膨張空間95とからスターリングサイクルを形成する。
(Embodiment 2)
FIG. 7 is a cross-sectional view of the refrigerator according to the second embodiment of the present invention in the case where the regenerator type refrigerator of the first embodiment is a Stirling refrigerator, and is a cross-sectional view seen from the CC section of FIG. Equivalent to. Embodiment 2 is the same as Embodiment 1 except for the Stirling refrigerator. Differences from FIG. 1 will be described. The specifications of the Stirling refrigerator 50a and the Stirling refrigerator (hereinafter referred to as the refrigerator) 50b are the same. The refrigerator 50a includes a first compression space 60 formed by the compressor 51, a second compression space 96 formed on the back surface 92b side of the displacer 92 of the expansion unit 90, a heat radiating unit 70, and a cold storage unit 80. A Stirling cycle is formed from the expansion space 95 formed on the front surface 92 a side of the displacer 92 of the expansion portion 90.

冷凍機50aの構成から説明する。圧縮機51は、シリンダー52と、シリンダー52に摺動可能に内接し、互いに対向して配置した一対のピストン53と、ピストン54とがリニアモータ55、56で駆動されるフリーピストン型のリニア圧縮機である。ピストン53とピストン54の対向側は圧縮空間60を形成し、ピストン53、54の背面側はそれぞれバッファ空間61a、62aを形成する。圧縮空間60は流路52aを介し放熱器70に連通する。リニアモータ55、56は、それぞれ電磁石55a、56aと、電磁石55a、56aの内周面とシリンダー52の外筒面との間にそれぞれ設けられる円弧状の永久磁石57a、57b、57c、57dと、永久磁石58a、58b、58c、58dと、ピストン53とピストン54に備えられる磁性材の可動子53a、54aとを備える。   The configuration of the refrigerator 50a will be described. The compressor 51 is a free piston type linear compression in which a cylinder 52, a pair of pistons 53 that are slidably inscribed in the cylinder 52 and arranged to face each other, and a piston 54 are driven by linear motors 55 and 56. Machine. The opposite sides of the piston 53 and the piston 54 form a compression space 60, and the back sides of the pistons 53 and 54 form buffer spaces 61a and 62a, respectively. The compression space 60 communicates with the radiator 70 through the flow path 52a. The linear motors 55 and 56 include electromagnets 55a and 56a, arc-shaped permanent magnets 57a, 57b, 57c, and 57d provided between the inner peripheral surface of the electromagnets 55a and 56a and the outer cylindrical surface of the cylinder 52, respectively. Permanent magnets 58a, 58b, 58c, 58d, and a movable member 53a, 54a of a magnetic material provided in the piston 53 and the piston 54 are provided.

膨張部90は、ロッド92cを備えたディスプレイサ92と、ロッド92cを往復運動可能に支持する板バネ93と、シリンダー91と、蓄冷部80を形成する容器94とを備え、ディスプレイサ92を挟み両側に膨張空間95と第2圧縮空間96とを有するディスプレイサ型であり、ディスプレイサ92と板バネ93とで振動系が形成される。第2圧縮空間96はシリンダー91に設けられた孔91aを介し放熱部70に連通され、第2圧縮空間96と第1圧縮空間60とからスターリングサイクルの圧縮空間が形成される。   The expansion unit 90 includes a displacer 92 including a rod 92c, a leaf spring 93 that supports the rod 92c so as to be able to reciprocate, a cylinder 91, and a container 94 that forms a cold storage unit 80. This is a displacer type having an expansion space 95 and a second compression space 96 on both sides, and a vibration system is formed by the displacer 92 and the leaf spring 93. The second compression space 96 is communicated with the heat radiating portion 70 through a hole 91 a provided in the cylinder 91, and a compression space of a Stirling cycle is formed from the second compression space 96 and the first compression space 60.

スターリング冷凍機50bも、スターリング冷凍機50aと同様に構成される。冷凍機50aのバッファ空間61aと、冷凍機50bのバッファ空間61bとは、配管63で連通され、冷凍機50aのバッファ空間62aと、冷凍機50bのバッファ空間62bとは、配管64で連通される。   The Stirling refrigerator 50b is configured similarly to the Stirling refrigerator 50a. The buffer space 61a of the refrigerator 50a and the buffer space 61b of the refrigerator 50b are connected by a pipe 63, and the buffer space 62a of the refrigerator 50a and the buffer space 62b of the refrigerator 50b are connected by a pipe 64. .

スターリング冷凍機50a、50bを組合せた作用と効果を説明する。制御装置20(図1)から冷凍機50a、50bのリニアモータ55、56に交番電流を通電すると、電磁石55a、55bと可動子53a、53bとの間に交番磁界が発生して、交番磁界による磁気力でピストン53、54が互いに対向して交番電流と同じ周波数で交番運動する。   The operation and effect obtained by combining the Stirling refrigerators 50a and 50b will be described. When an alternating current is supplied from the control device 20 (FIG. 1) to the linear motors 55 and 56 of the refrigerators 50a and 50b, an alternating magnetic field is generated between the electromagnets 55a and 55b and the movers 53a and 53b, and the alternating magnetic field is generated. The pistons 53 and 54 are opposed to each other by the magnetic force and alternately move at the same frequency as the alternating current.

図8は、冷凍機50aのピストン55、56に対する冷凍機50bのピストン53、54の位相(以下、冷凍機50bに対する冷凍機50aの位相)と冷凍機50aと50bの冷凍能力の関係を示す。   FIG. 8 shows the relationship between the phases of the pistons 53 and 54 of the refrigerator 50b with respect to the pistons 55 and 56 of the refrigerator 50a (hereinafter, the phase of the refrigerator 50a with respect to the refrigerator 50b) and the refrigerating capacity of the refrigerators 50a and 50b.

図9は、1サイクルにける後述するバッファ容積ΣV、およびピストン変位比の一例(位相が180°と190°の場合)を示す。図中、ピストン変位比は、中立点を原点にし、上死点側をプラスにとり、ピストン変位Xを振幅Xmaxで割り無次元化した値である。図8示すように位相が180度の場合(冷凍機50aのピストン53、54が中立位置から上死点に向かうとき、冷凍機50bのピストン53、54が中立位置から下死点に向かう場合)、冷凍機50aと50bの冷凍能力は同じになる。冷凍能力が同じになることは、図9に示すように、冷凍機50aのバッファ空間61aと冷凍機51bのバッファ空間61bの合計容積(以下、バッファ容積ΣV)が1サイクル中、常に一定で変化せず、バッファ空間62a、62bについても同様で、バッファ空間61a、61bと、62a、62bの圧力も一定となることから冷凍機50a、51bのピストン53、54のストロークが同一になるためである。   FIG. 9 shows an example of a buffer volume ΣV (described later) in one cycle and a piston displacement ratio (when the phase is 180 ° and 190 °). In the figure, the piston displacement ratio is a value obtained by dividing the piston displacement X by the amplitude Xmax and making it dimensionless, with the neutral point as the origin, the top dead center side being positive. As shown in FIG. 8, when the phase is 180 degrees (when the pistons 53 and 54 of the refrigerator 50a go from the neutral position to the top dead center, the pistons 53 and 54 of the refrigerator 50b go from the neutral position to the bottom dead center). The refrigeration capacities of the refrigerators 50a and 50b are the same. As shown in FIG. 9, the refrigerating capacity is the same, as shown in FIG. 9, the total volume of the buffer space 61a of the refrigerator 50a and the buffer space 61b of the refrigerator 51b (hereinafter referred to as buffer volume ΣV) always changes constantly during one cycle. The same applies to the buffer spaces 62a and 62b. Since the pressures in the buffer spaces 61a and 61b and 62a and 62b are constant, the strokes of the pistons 53 and 54 of the refrigerators 50a and 51b are the same. .

冷凍機50bに対し冷凍機50aの位相が180度より遅れる場合、図8に示すように、冷凍機50aの冷凍能力は位相が180度の場合より高くなり、冷凍機50bの冷凍能力は位相が180度の場合より低なる。これは、図9に示すように、冷凍機50aのピストン53が中立位置にいるときのバッファ容積ΣVは、位相が180度の場合のバッファ容積ΣVより小さくなり、バッファ空間61a、61bの圧力が、位相180度の場合の圧力より大きくる。この大きくなった圧力が、冷凍機50a側のピストン53の上死点方向に向かう動きを助け、冷凍機50b側のビストン55の死点方向に向かう動きを抑制するので、冷凍機50a側のピストン53のストロークは増大し、冷凍機50b側のピストン53のストロークが減少するためである。即ち、バッファ空間61a、61bの圧力と、バッファ空間62a、62bの圧力が、冷凍機50a側のピストン53、54のストロークを増大させるように作用し、冷凍機50b側のピストン53、54のストロークを減少させるように作用するためである。従って、冷凍機50bに対し冷凍機50aの位相が180度より遅れるように冷凍機50a、50bを運転し、冷凍機50aが貯蔵室2b(図1)より温度の低い貯蔵室2aを冷却し、冷凍機50bが貯蔵室2a(図1)より温度の高い貯蔵室2bを冷却することで、リニアモータ56の電流を維持しつつ、冷凍機50bより温度の低い冷凍機50aの冷凍能力を増大させることができ、冷凍機50aと冷凍機50bの位相を180度で運転する場合より冷却効率を向上させることが可能となる。   When the phase of the refrigerator 50a is delayed from 180 degrees with respect to the refrigerator 50b, as shown in FIG. 8, the refrigerating capacity of the refrigerator 50a is higher than that when the phase is 180 degrees, and the refrigerating capacity of the refrigerator 50b is out of phase. Lower than in the case of 180 degrees. As shown in FIG. 9, the buffer volume ΣV when the piston 53 of the refrigerator 50a is in the neutral position is smaller than the buffer volume ΣV when the phase is 180 degrees, and the pressure in the buffer spaces 61a and 61b is , Greater than the pressure in the case of 180 degrees phase. This increased pressure helps the movement toward the top dead center of the piston 53 on the refrigerator 50a side, and suppresses the movement of the biston 55 on the refrigerator 50b side toward the dead center, so the piston on the refrigerator 50a side This is because the stroke of 53 increases and the stroke of the piston 53 on the refrigerator 50b side decreases. That is, the pressure in the buffer spaces 61a and 61b and the pressure in the buffer spaces 62a and 62b act to increase the stroke of the pistons 53 and 54 on the refrigerator 50a side, and the stroke of the pistons 53 and 54 on the refrigerator 50b side. This is because it acts so as to decrease the. Accordingly, the refrigerators 50a and 50b are operated so that the phase of the refrigerator 50a is delayed from 180 degrees with respect to the refrigerator 50b, and the refrigerator 50a cools the storage chamber 2a having a lower temperature than the storage chamber 2b (FIG. 1), The refrigerator 50b cools the storage chamber 2b having a higher temperature than the storage chamber 2a (FIG. 1), thereby increasing the refrigerating capacity of the refrigerator 50a having a lower temperature than the refrigerator 50b while maintaining the current of the linear motor 56. Therefore, the cooling efficiency can be improved as compared with the case where the phases of the refrigerator 50a and the refrigerator 50b are operated at 180 degrees.

尚、実施形態2の蓄冷型冷凍機は、圧縮機51と膨張部91とが一体となった集中型のスターリン冷凍機50a、50bであるが、パルス管冷凍機でもよく、また圧縮機51と膨張部91とが分離したスプリット型スターリング冷凍機、又はスプリット型パルス管冷凍機でもよい。   The regenerative refrigerator of the second embodiment is a centralized Stalin refrigerator 50a, 50b in which the compressor 51 and the expansion unit 91 are integrated, but may be a pulse tube refrigerator or a compressor 51. A split type Stirling refrigerator or a split type pulse tube refrigerator separated from the expansion unit 91 may be used.

本発明に係わる実施形態1の冷蔵庫の扉を開き、庫内を見た図である。It is the figure which opened the door of the refrigerator of Embodiment 1 concerning this invention, and looked in the store | warehouse | chamber. 図1のA−A断面図である。It is AA sectional drawing of FIG. 図1のB−B断面図である。It is BB sectional drawing of FIG. 本発明に係わる冷蔵庫の貯蔵室と、送りダクトと、戻りダクトと、冷却器とを中心に配置した冷却回路のフローパターンを示す。The flow pattern of the cooling circuit which has arrange | positioned centering on the storage room of the refrigerator concerning this invention, a feed duct, a return duct, and a cooler is shown. 本発明に係わる冷蔵庫の第2ダンパを中心に配置した冷却回路のフローパターンを示す。The flow pattern of the cooling circuit arrange | positioned centering on the 2nd damper of the refrigerator concerning this invention is shown. 本発明に係わる冷蔵庫の第1ダンパを中心に配置した冷却回路のフローパターンを示す。The flow pattern of the cooling circuit arrange | positioned centering on the 1st damper of the refrigerator concerning this invention is shown. 本発明に係わる実施形態2で、実施形態1の蓄冷型冷凍機がスターリン冷凍機である場合の冷凍機の断面図である。In Embodiment 2 which concerns on this invention, it is sectional drawing of a refrigerator in case the cool storage type refrigerator of Embodiment 1 is a Stalin refrigerator. 図7に示すスターリング冷凍機間の冷凍能力と位相の関係を示す。The relationship between the refrigerating capacity and the phase between the Stirling refrigerators shown in FIG. 7 is shown. 図7のスターリン冷凍機のバッファ容積、およびピストン変位比を示す。8 shows the buffer volume and piston displacement ratio of the Stalin refrigerator of FIG.

符号の説明Explanation of symbols

1 冷蔵庫
2a、2b、2c、2d 貯蔵室
3a、3b 蓄冷型冷凍機
4a、4b、4c 冷却器
5a、5h、5i 第1ダンパ
5b、5c、5d、5e、5f、5g、5h、5i 第2ダンパ
6 送風機
7a、7b 温度センサ
8 送りダクト(送り風路)
8a、8b、8c、8d 流入口
9、10、19 戻りダクト(戻り風路)
9a、9b、9c、9d、10a、10b、10c、10d、19a、19b、19c、19d 流出口
1 Refrigerator 2a, 2b, 2c, 2d Storage room 3a, 3b Regenerative refrigerator 4a, 4b, 4c Cooler 5a, 5h, 5i First damper 5b, 5c, 5d, 5e, 5f, 5g, 5h, 5i Second damper
6 Blower 7a, 7b Temperature sensor 8 Feed duct (feed air path)
8a, 8b, 8c, 8d Inlet 9, 10, 19 Return duct (return air channel)
9a, 9b, 9c, 9d, 10a, 10b, 10c, 10d, 19a, 19b, 19c, 19d Outlet

Claims (5)

第1通路と、
前記第1通路内に配設され、作動流体を前記第1通路内に送風する送風機と、
前記第1通路と連通する第1貯蔵室及び第2貯蔵室と、
前記第1通路内の前記送風機の下流側に配設され、前記送風機により送風された作動流体を、前記第1貯蔵室のみ、前記第2貯蔵室のみ並びに前記第1貯蔵室及び前記第2貯蔵室の双方の何れかへの流入を許容する第1ダンパと、
前記作動流体が前記第1貯蔵室及び/又は前記第2貯蔵室から前記第1通路の前記送風機の上流側への戻りを許容する第2通路と、
前記送風手段の上流側に位置するように、前記第2通路の内部に流体的に並列となるように且つ前記送風手段よりも台数を多く配設され、前記作動流体が通過するときに前記作動流体を冷却する複数の冷却手段と、
前記流体が前記複数冷却手段の内の少なくとも1つを通過することを許容する第2ダンパとを備えた、冷蔵庫。
A first passage;
A blower disposed in the first passage and for blowing working fluid into the first passage;
A first storage chamber and a second storage chamber communicating with the first passage;
The working fluid, which is disposed on the downstream side of the blower in the first passage and is blown by the blower, allows only the first storage chamber, only the second storage chamber, and the first storage chamber and the second storage. A first damper that allows inflow to either of the chambers;
A second passage allowing the working fluid to return from the first storage chamber and / or the second storage chamber to the upstream side of the blower in the first passage;
When the working fluid passes through the second passage, it is arranged in a fluidly parallel manner in the second passage so as to be positioned on the upstream side of the blowing means, and the working fluid passes through the second passage. A plurality of cooling means for cooling the fluid;
A refrigerator comprising: a second damper that allows at least one of the plurality of cooling means to pass through the fluid.
前記貯蔵室は温度センサを備え、前記温度センサからの信号で前記第1ダンパと前記第2ダンパとを制御すること、を特徴とする請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the storage chamber includes a temperature sensor, and the first damper and the second damper are controlled by a signal from the temperature sensor. 前記蓄冷型冷凍機の所定の運転時間で、前記第1ダンパと前記第2ダンパとを制御すること、を特徴とする請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the first damper and the second damper are controlled with a predetermined operation time of the cold storage type refrigerator. 前記第2ダンパは1台で構成されること、を特徴とする請求項1乃至請求項3のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 3, wherein the second damper is configured as a single unit. 複数の前記蓄冷型冷凍機のそれぞれは、同じ前記蓄冷型冷凍機であること、を特徴とする請求項1乃至請求項4のいずれか一項に記載の冷蔵庫。 5. The refrigerator according to claim 1, wherein each of the plurality of cold storage type refrigerators is the same cold storage type refrigerator.
JP2007142816A 2007-05-30 2007-05-30 refrigerator Withdrawn JP2008298332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007142816A JP2008298332A (en) 2007-05-30 2007-05-30 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007142816A JP2008298332A (en) 2007-05-30 2007-05-30 refrigerator

Publications (1)

Publication Number Publication Date
JP2008298332A true JP2008298332A (en) 2008-12-11

Family

ID=40172011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007142816A Withdrawn JP2008298332A (en) 2007-05-30 2007-05-30 refrigerator

Country Status (1)

Country Link
JP (1) JP2008298332A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058804A1 (en) 2008-11-21 2010-05-27 ヤマハ株式会社 Noise gate, sound collection device, and noise removal method
CN102261790A (en) * 2010-05-24 2011-11-30 日立空调·家用电器株式会社 Refrigerator
CN110636740A (en) * 2018-06-21 2019-12-31 波音公司 Heat transfer device and method of cooling a heat source

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058804A1 (en) 2008-11-21 2010-05-27 ヤマハ株式会社 Noise gate, sound collection device, and noise removal method
CN102261790A (en) * 2010-05-24 2011-11-30 日立空调·家用电器株式会社 Refrigerator
CN102261790B (en) * 2010-05-24 2014-04-16 日立空调·家用电器株式会社 Refrigerator
CN110636740A (en) * 2018-06-21 2019-12-31 波音公司 Heat transfer device and method of cooling a heat source
KR20190143807A (en) * 2018-06-21 2019-12-31 더 보잉 컴파니 Heat transfer devices and methods of cooling heat sources
JP2020024189A (en) * 2018-06-21 2020-02-13 ザ・ボーイング・カンパニーThe Boeing Company Heat transfer device and method of cooling heat source
JP7426787B2 (en) 2018-06-21 2024-02-02 ザ・ボーイング・カンパニー Heat transfer devices and methods for cooling heat sources
KR102749173B1 (en) * 2018-06-21 2024-12-31 더 보잉 컴파니 Heat transfer devices and methods of cooling heat sources

Similar Documents

Publication Publication Date Title
US9599379B2 (en) Integral air conditioning system for heating and cooling
US20070144190A1 (en) Refrigerator
US9399988B2 (en) Variable capacity compressor and refrigerator
JPWO2011048724A1 (en) Air conditioner
CN103175364A (en) Refrigerator
KR102370565B1 (en) A refrigerator
EP2901091B1 (en) Refrigerator and method of controlling refrigerator
CN108800713B (en) Multi-temperature zone air-cooled refrigerator using Stirling refrigerator and temperature control method
JP2008298332A (en) refrigerator
KR20200061767A (en) Refrigerator and method for controlling the same
KR102070266B1 (en) A refrigerator and a control method the same
CN108518912A (en) Multi-zone air-cooled refrigerator using a pulse-type free-piston Stirling refrigerator
WO2018047777A1 (en) Refrigeration device
JP2010014308A (en) Refrigerating device
JP5783790B2 (en) Refrigeration equipment
KR102157544B1 (en) Refrigerator
KR20180087799A (en) A refrigerator and a control method the same
KR102153056B1 (en) A refrigerator and a control method the same
KR102494567B1 (en) A refrigerator and a control method the same
JP2005134080A (en) Refrigerator
CN104006565A (en) Cryogenic refrigerator
KR100461657B1 (en) Refrigeration cycles with multi-evaporator
JP2005283026A (en) Regenerative refrigerator
KR101954198B1 (en) Refrigerator
KR102246351B1 (en) A refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100414

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110331