[go: up one dir, main page]

JP2008298036A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2008298036A
JP2008298036A JP2007147901A JP2007147901A JP2008298036A JP 2008298036 A JP2008298036 A JP 2008298036A JP 2007147901 A JP2007147901 A JP 2007147901A JP 2007147901 A JP2007147901 A JP 2007147901A JP 2008298036 A JP2008298036 A JP 2008298036A
Authority
JP
Japan
Prior art keywords
exhaust
exhaust gas
nitrogen oxide
exhaust passage
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007147901A
Other languages
Japanese (ja)
Other versions
JP4767909B2 (en
Inventor
Taisuke Ono
泰右 小野
Yoshikazu Uchida
美和 内田
Toshihisa Kanda
俊久 神田
Shogo Matsubayashi
昌吾 松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Petroleum Energy Center PEC
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Yanmar Co Ltd filed Critical Petroleum Energy Center PEC
Priority to JP2007147901A priority Critical patent/JP4767909B2/en
Publication of JP2008298036A publication Critical patent/JP2008298036A/en
Application granted granted Critical
Publication of JP4767909B2 publication Critical patent/JP4767909B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Silencers (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device of an internal combustion engine or the like capable of efficiently removing NOx and the like in exhaust gas and improving the adsorption performance and desorption performance of a nitrogen oxide adsorbent. <P>SOLUTION: The exhaust emission control device comprises the nitrogen oxide adsorbent 10 temporarily adsorbing a nitrogen oxide such as NOx and desorbing the adsorbed NOx in an elevated temperature or a reduction atmosphere, an adsorbed material desorption means 11 disposed at the exhaust upstream side of the nitrogen oxide adsorbent 10 and bringing the exhaust gas in the elevated temperature or the reduction atmosphere, and a burning device 12 disposed at the exhaust downstream side of the nitrogen oxide adsorbent 10 and having a fuel supply section, an air supply section and an ignition section. The exhaust passage comprises an upstream exhaust passage 5 in which at least the adsorbed material desorption means 11 and the nitrogen oxide adsorbent 10 are disposed and a downstream exhaust passage 6 guiding the exhaust gas passing through the burning device 12 to the outer peripheral wall surface of a part where the nitrogen oxide adsorbent 10 of the upstream exhaust passage 5 is situated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ディーゼル機関、ガス機関、ガソリン機関あるいはガスタービン機関等の内燃機関又は焼却炉やボイラ等の燃焼機器の排気ガスを浄化する装置に関し、特に排気通路内に設置されて主として窒素酸化物と一酸化炭素等の未燃成分を除去する排気ガス浄化装置に関する。   The present invention relates to an apparatus for purifying exhaust gas of an internal combustion engine such as a diesel engine, a gas engine, a gasoline engine or a gas turbine engine, or combustion equipment such as an incinerator or boiler, and in particular, is mainly installed in an exhaust passage and mainly composed of nitrogen oxides. And an exhaust gas purifying device for removing unburned components such as carbon monoxide.

排気ガス浄化の対象となる物質は、窒素酸化物、一酸化炭素、未燃炭化水素及びすす等粒子状物質であるが、これらの物質を浄化する装置については、従来各種開発されている。 Substances that are subject to exhaust gas purification are particulate substances such as nitrogen oxides, carbon monoxide, unburned hydrocarbons, and soot. Various devices for purifying these substances have been developed in the past.

窒素酸化物(NOx)を低減するための装置としてはアンモニアや尿素を還元剤として用いた還元触媒を排気通路中に設置し、窒素酸化物を選択的に還元する脱硝装置等が実用化されている。また、比較的小型のガス機関や自動車用ガソリン機関では、窒素酸化物、一酸化炭素(CO)及び未燃炭化水素(HC)の三者を同時に分解できる三元触媒が開発されており、排気ガスの効果的な浄化に寄与している。   As a device for reducing nitrogen oxide (NOx), a denitration device that selectively reduces nitrogen oxide by installing a reduction catalyst using ammonia or urea as a reducing agent in the exhaust passage has been put into practical use. Yes. In addition, relatively small gas engines and gasoline engines for automobiles have developed three-way catalysts capable of simultaneously decomposing nitrogen oxides, carbon monoxide (CO), and unburned hydrocarbons (HC). Contributes to effective gas purification.

しかし、前記三元触媒は、理論空燃比又はそれに近い範囲内で運転されている時には有効に浄化作用を発揮するが、それ以外の条件下、特に空気(酸素)過剰な排気ガス中では有効に作用しないことが判明している。これに対処するため、空気過剰状態で運転されるガス又はガソリン機関においては、前記空気(酸素)過剰条件での運転時に一時的に窒素酸化物を吸蔵材に吸蔵しておき、次に燃料過剰条件で運転することにより、前記吸蔵した窒素酸化物を放出・還元する窒素酸化物吸蔵触媒方式が実用化されている。   However, the three-way catalyst exhibits a purification action effectively when operated within the stoichiometric air-fuel ratio or a range close thereto, but is effective under other conditions, particularly in exhaust gas with excessive air (oxygen). It has been found that it does not work. In order to cope with this, in a gas or gasoline engine operated in an excessive air state, nitrogen oxide is temporarily stored in the storage material during the operation in the above-described excessive air (oxygen) condition, and then the excess fuel is stored. A nitrogen oxide storage catalyst system that releases and reduces the stored nitrogen oxide by operating under conditions has been put into practical use.

しかし、窒素酸化物吸蔵触媒方式は、燃料中の硫黄成分に由来する排ガス中の硫黄酸化物(SOx)によって触媒が被毒し、窒素酸化物の浄化能力が急激に減少することが判明しており、そのため低硫黄含有燃料を使用する機関においてのみ使用されているのが現状である。なお、窒素酸化物浄化塔内において吸蔵材により窒素酸化物を吸蔵し、同じ窒素酸化物浄化塔内において燃焼することにより、吸蔵材に吸着されている窒素酸化物を還元すると共に硫黄酸化物等を放出する構成の浄化装置(特許文献1)も開発されているが、吸蔵材を内蔵する浄化塔内で燃焼する構成のため、現実的に吸蔵材の耐久性が問題となる。   However, it has been found that the nitrogen oxide storage catalyst system poisons the catalyst by sulfur oxide (SOx) in the exhaust gas derived from the sulfur component in the fuel and the purification ability of nitrogen oxide decreases rapidly. Therefore, it is currently used only in engines that use low sulfur content fuel. In addition, nitrogen oxide is occluded by the occlusion material in the nitrogen oxide purification tower and burned in the same nitrogen oxide purification tower, thereby reducing the nitrogen oxide adsorbed on the occlusion material and sulfur oxide etc. Although the purification apparatus (patent document 1) of the structure which discharges | emits is also developed, since it is the structure which burns in the purification tower which contains an occlusion material, durability of an occlusion material becomes a problem in reality.

また、すす等の粒子状物質の除去には、電気集塵器やDPFが実用化されている。該DPFは、フィルターにより粒子状物質を物理的に捕獲し、電気ヒータ等により、前記捕獲した粒子状物質を焼却除去するようになっているが、最近では、酸化作用のある触媒成分を微粒子フィルターに担持させ、粒子状物質を連続的に除去できるDPFも開発されている。   Moreover, an electrostatic precipitator and a DPF have been put into practical use for removing particulate substances such as soot. The DPF physically captures particulate matter with a filter and incinerates and removes the captured particulate matter with an electric heater or the like, but recently, a catalytic component having an oxidizing action is removed by a particulate filter. A DPF that can be supported on a substrate and continuously remove particulate matter has also been developed.

前記三元触媒では、既に説明しているように、空気過剰条件で運転される内燃機関や燃焼機器では触媒機能を発揮させることができず、また、小型のガス機関や自動車用ガソリン機関で実用化されている前記窒素酸化物吸蔵触媒方式では、硫黄酸化物や粒子状物質が含まれる排気中では、その浄化能力を効果的に発揮させることは困難である。   As described above, the three-way catalyst cannot exert its catalytic function in an internal combustion engine or a combustion device operated under an excess air condition, and is practical in a small gas engine or an automobile gasoline engine. In the above-described nitrogen oxide storage catalyst system, it is difficult to exert its purification ability effectively in exhaust gas containing sulfur oxide and particulate matter.

産業用内燃機関や燃焼機器及び船舶用内燃機関では、空気過剰条件で運転されているものが殆どであり、また、硫黄成分が含まれる燃料を使用していることから、排気ガス中には硫黄酸化物や粒子状物質が多く含まれており、そのような排気ガス中でも、性能が十分に発揮できる排気ガス浄化装置が要望されている。   Industrial internal combustion engines, combustion equipment, and marine internal combustion engines are mostly operated under excessive air conditions, and since fuel containing sulfur components is used, sulfur is contained in the exhaust gas. There is a demand for an exhaust gas purifying apparatus that contains a large amount of oxides and particulate matter and that can sufficiently exhibit performance even in such exhaust gas.

なお、アンモニアや尿素等を用いて窒素酸化物を選択的に還元する脱硝装置は、比較的大型の産業用内燃機関や燃焼機器に適用されているが、装置自体が大掛かりで非常に高価なものであり、また、還元剤のアンモニアや尿素の維持費も高くなる。さらに、消費されないアンモニアが大気中に放出される可能性も大きい。   A denitration device that selectively reduces nitrogen oxides using ammonia, urea, etc. is applied to relatively large industrial internal combustion engines and combustion equipment, but the device itself is large and very expensive. In addition, the maintenance cost of the reducing agents ammonia and urea is high. Furthermore, there is a high possibility that ammonia that is not consumed is released into the atmosphere.

本件出願人は、前記各従来例の課題に鑑み、排気ガス中の窒素酸化物、すす等の粒子状物質、一酸化炭素及び未燃炭化水素を除去でき、しかもその浄化能力を低下させることなく維持できる排気ガス浄化装置を開発し、出願している(特許文献2)。該特許文献2に開示されている排気ガス浄化装置では、吸着運転時に排気通路から排出される排気ガス並びに脱離運転時に排気通路から排出される燃焼ガスを、大気に放出したり、内燃機関等の吸気通路に供給したりしている。
特開2003−27927号公報 特開2006−112313号公報
In view of the problems of the conventional examples, the present applicant can remove particulate oxides such as nitrogen oxides and soot, carbon monoxide and unburned hydrocarbons in the exhaust gas, and without reducing the purification capacity thereof. An exhaust gas purification device that can be maintained has been developed and applied (Patent Document 2). In the exhaust gas purification device disclosed in Patent Document 2, the exhaust gas discharged from the exhaust passage during the adsorption operation and the combustion gas discharged from the exhaust passage during the desorption operation are discharged to the atmosphere, the internal combustion engine, etc. Or supply to the intake passage.
JP 2003-27927 A JP 2006-112313 A

前記特許文献2等の排気ガス浄化装置において、窒素酸化物吸着材の吸着性能及び脱離性能は、温度によって変化する。すなわち、許容吸着量は、所定の最適温度において最大となり、温度が前記最適温度より低下しても、上昇しても、許容吸着量は減少する。また、窒素酸化物吸着材の窒素酸化物脱離性能は、温度の上昇に伴って向上し、温度の低下に伴って低下する。   In the exhaust gas purifying apparatus of Patent Document 2 or the like, the adsorption performance and desorption performance of the nitrogen oxide adsorbent change depending on the temperature. That is, the allowable adsorption amount becomes maximum at a predetermined optimum temperature, and the allowable adsorption amount decreases even if the temperature falls below the optimum temperature or rises. Moreover, the nitrogen oxide desorption performance of the nitrogen oxide adsorbent improves as the temperature increases, and decreases as the temperature decreases.

具体的に説明すると、内燃機関の低負荷運転時には、排気ガスの温度が下がり、窒素酸化物吸着材の前記最適温度よりも低くなるので、窒素酸化物吸着材の許容吸着量が低下し、吸着性能が低下する。   Specifically, during low load operation of the internal combustion engine, the temperature of the exhaust gas decreases and becomes lower than the optimum temperature of the nitrogen oxide adsorbent, so that the allowable adsorption amount of the nitrogen oxide adsorbent decreases and the adsorption Performance decreases.

本発明は、前記特許文献2等に開示された排気ガス浄化装置を改良したものであり、吸着運転時並びに脱離運転時に、排気ガス又は燃焼ガスを、窒素酸化物吸着材の保温媒体あるいは昇温媒体として有効に利用できるようにすることにより、窒素酸化物吸着材の吸着性能及び脱離性能を向上させることを目的としている。   The present invention is an improvement of the exhaust gas purifying device disclosed in Patent Document 2 and the like. During the adsorption operation and the desorption operation, the exhaust gas or the combustion gas is converted into a nitrogen oxide adsorbent heat retaining medium or ascending temperature. The object is to improve the adsorption performance and desorption performance of the nitrogen oxide adsorbent by making it effectively usable as a warm medium.

前記課題を解決するため、請求項1記載の発明は、窒素酸化物を一時的に吸着し、該吸着した窒素酸化物を昇温又は還元雰囲気で脱離する窒素酸化物吸着材と、該窒素酸化物吸着材より排気上流側に配置され、排気ガスを昇温又は還元雰囲気にする吸着物質脱離手段と、前記窒素酸化物吸着材より排気下流側に配置され、燃料供給部、空気供給部及び着火部を有する燃焼装置と、を備えている排気ガス浄化装置において、前記排気通路は、少なくとも前記吸着物質脱離手段及び前記窒素酸化物吸着材が配置された上流側排気通路と、前記燃焼装置を通過した排気ガスを、前記上流側排気通路の前記窒素酸化物吸着材が位置する部位の外周壁面まで導く下流側排気通路と、を備えている。   In order to solve the above-mentioned problem, the invention according to claim 1 is directed to a nitrogen oxide adsorbent that temporarily adsorbs nitrogen oxide and desorbs the adsorbed nitrogen oxide in a temperature rising or reducing atmosphere, and the nitrogen An adsorbent detachment means that is disposed upstream of the oxide adsorbent and makes the exhaust gas a temperature rising or reducing atmosphere, and a fuel supply unit and an air supply unit that are disposed on the exhaust downstream side of the nitrogen oxide adsorbent. And an exhaust gas purifying apparatus comprising an ignition part, wherein the exhaust passage includes at least an upstream exhaust passage in which the adsorbed substance desorbing means and the nitrogen oxide adsorbent are disposed, and the combustion A downstream exhaust passage that guides the exhaust gas that has passed through the apparatus to an outer peripheral wall surface of the upstream exhaust passage where the nitrogen oxide adsorbent is located.

上記構成において、内燃機関等の通常運転中は吸着物質脱離手段及び燃焼装置は停止しており、内燃機関等から上流側排気通路に排出される排気ガス中の窒素酸化物は、窒素酸化物吸着材に吸着される。窒素酸化物が吸着された後の排気ガスは、停止中の燃焼装置を通って下流側排気通路内に入り、窒素酸化物吸着材が位置する上流側排気通路の部位の外周壁面に至り、窒素酸化物吸着材を保温する。これにより、NOx吸着量の低下を抑制することができる。なお、排気ガス中の炭化水素や一酸化炭素等の未燃分は、窒素酸化物吸着材に含まれている酸化作用を有する触媒により酸化され、無害化される。   In the above configuration, the adsorbed substance desorbing means and the combustion device are stopped during normal operation of the internal combustion engine or the like, and nitrogen oxides in the exhaust gas discharged from the internal combustion engine or the like to the upstream exhaust passage are nitrogen oxides. Adsorbed on the adsorbent. The exhaust gas after adsorption of nitrogen oxides enters the downstream exhaust passage through the stopped combustion device, reaches the outer peripheral wall surface of the upstream exhaust passage where the nitrogen oxide adsorbent is located, Keep the oxide adsorbent warm. Thereby, the fall of NOx adsorption amount can be suppressed. In addition, unburned components such as hydrocarbons and carbon monoxide in the exhaust gas are oxidized and rendered harmless by a catalyst having an oxidizing action contained in the nitrogen oxide adsorbent.

窒素酸化物吸着材の吸着量が所定量(たとえば飽和量)に達すると、吸着物質脱離手段及び燃焼装置を作動させ、吸着物質脱離手段で昇温及び還元雰囲気にした排気ガス或いは燃焼ガスを、窒素酸化物吸着材に流入し、該窒素酸化物吸着材内から窒素酸化物を脱離させる。脱離した窒素酸化物は、たとえば窒素酸化物吸着材の触媒成分により、吸着物質脱離手段によって生成された還元雰囲気において還元除去され、あるいは、燃焼装置の燃焼火炎内での燃料過濃燃焼領域で還元除去される。そして、燃焼装置で燃焼し、昇温した燃焼ガスは、下流側排気通路を通って、窒素酸化物吸着材が位置する上流側排気通路の部位の外周壁面に至り、窒素酸化物吸着材と熱交換し、窒素酸化物吸着材を昇温する。これにより、窒素酸化物の脱離効率が向上し、窒素酸化物の低減率及び窒素酸化物再生時のエネルギー消費率が向上する。   When the adsorption amount of the nitrogen oxide adsorbent reaches a predetermined amount (for example, a saturation amount), the adsorbed substance desorbing means and the combustion device are operated, and the exhaust gas or the combustion gas that has been heated to the reducing atmosphere by the adsorbed substance desorbing means Flows into the nitrogen oxide adsorbent, and nitrogen oxide is desorbed from the nitrogen oxide adsorbent. The desorbed nitrogen oxide is reduced and removed, for example, by the catalyst component of the nitrogen oxide adsorbent in the reducing atmosphere generated by the adsorbent desorbing means, or the fuel rich combustion region in the combustion flame of the combustion device Is reduced and removed. Then, the combustion gas heated by the combustion device and heated is passed through the downstream exhaust passage and reaches the outer peripheral wall surface of the upstream exhaust passage where the nitrogen oxide adsorbent is located. Exchange and raise the temperature of the nitrogen oxide adsorbent. Thereby, the desorption efficiency of nitrogen oxides is improved, and the reduction rate of nitrogen oxides and the energy consumption rate during nitrogen oxide regeneration are improved.

請求項2記載の発明は、請求項1記載の排気ガス浄化装置において、前記上流側排気通路は、内燃機関又は燃焼機器に接続された内側排気管内に形成され、前記下流側排気通路は、前記内側排気管の外周壁面と、前記内側排気管を、環状空間を介して外方から囲む外側排気管の内周壁面との間に形成されている。   According to a second aspect of the present invention, in the exhaust gas purifying apparatus according to the first aspect, the upstream exhaust passage is formed in an inner exhaust pipe connected to an internal combustion engine or combustion equipment, and the downstream exhaust passage is It is formed between the outer peripheral wall surface of the inner exhaust pipe and the inner peripheral wall surface of the outer exhaust pipe surrounding the inner exhaust pipe from the outside through an annular space.

上記構成によると、窒素酸化物吸着材全体を、外周側から略均等に保温し、あるいは昇温することができ、窒素酸化物吸着材の吸着性能及び脱離性能を、より向上させることができる。また、排気ガス浄化装置の大型化を防ぐことができる。   According to the above configuration, the entire nitrogen oxide adsorbing material can be kept warm from the outer peripheral side, or the temperature can be raised, and the adsorption performance and desorption performance of the nitrogen oxide adsorbing material can be further improved. . Further, it is possible to prevent the exhaust gas purification device from becoming large.

請求項3記載の発明は、請求項2記載の排気ガス浄化装置において、前記窒素酸化物吸着材が位置する内側排気管の外周壁面には、前記下流側排気通路内に露出する熱交換フィンが設けられている。   According to a third aspect of the present invention, in the exhaust gas purifying apparatus according to the second aspect, heat exchange fins exposed in the downstream exhaust passage are formed on an outer peripheral wall surface of the inner exhaust pipe where the nitrogen oxide adsorbent is located. Is provided.

上記構成によると、排気ガス等と窒素酸化物吸着材との間の熱伝達性が向上し、窒素酸化物吸着材の保温又は昇温効果が向上する。   According to the said structure, the heat transfer property between exhaust gas etc. and a nitrogen oxide adsorbent improves, and the heat retention or temperature rising effect of a nitrogen oxide adsorbent improves.

請求項4記載の発明は、請求項2記載の排気ガス浄化装置において、前記下流側排気通路内には、該下流側排気通路内を流れる排気ガスを旋回させる旋回流形成羽根が配置されている。   According to a fourth aspect of the present invention, in the exhaust gas purifying apparatus according to the second aspect, a swirl flow forming blade for swirling the exhaust gas flowing in the downstream exhaust passage is disposed in the downstream exhaust passage. .

上記構成によると、環状断面の下流側排気通路で排気ガスを旋回させ、流れの分布を均一にすることで、窒素酸化物吸着材の全体をより効率よく、かつ、略均等に保温又は昇温することができる。特に、内燃機関の低負荷運転時には、排気ガス量が減少するが、上記のように排気ガスを下流側配意通路内で旋回させることにより、少量の排気ガスの熱量を、無駄なく、効率的に昇温等に利用することができる。   According to the above configuration, the exhaust gas is swirled in the downstream side exhaust passage having an annular cross section, and the flow distribution is made uniform, so that the entire nitrogen oxide adsorbent can be kept warm or heated evenly and efficiently. can do. In particular, when the internal combustion engine is operated at a low load, the amount of exhaust gas decreases. However, by rotating the exhaust gas in the downstream side passage as described above, the heat amount of a small amount of exhaust gas can be efficiently consumed without waste. It can be used for heating.

[発明の第1の実施の形態]
図1は、本発明による排気ガス浄化装置の第1の実施の形態であり、排気ガス浄化装置は、内燃機関1又は燃焼機器の排気通路に備えられている。内燃機関1としては、ディーゼル機関、ガス機関、ガソリン機関又はガスタービン機関などがあり、燃焼機器としては産業用ボイラ等がある。
[First Embodiment of the Invention]
FIG. 1 is a first embodiment of an exhaust gas purification apparatus according to the present invention, and the exhaust gas purification apparatus is provided in an exhaust passage of an internal combustion engine 1 or combustion equipment. Examples of the internal combustion engine 1 include a diesel engine, a gas engine, a gasoline engine, and a gas turbine engine, and examples of the combustion equipment include an industrial boiler.

排気通路の外殻構造は、内側排気管2と、該内側排気管2の外周壁面を、環状空間を介して取り囲む外側排気管3と、延長排気管4等と、から構成されている。内側排気管2の排気上流端部が内燃機関1の排気口部に接続され、内側排気管2の排気下流端部に外側排気管3の排気上流端部が接続され、外側排気管3の排気下流端部に延長排気管4が接続されている。   The outer shell structure of the exhaust passage includes an inner exhaust pipe 2, an outer exhaust pipe 3 surrounding the outer peripheral wall surface of the inner exhaust pipe 2 via an annular space, an extended exhaust pipe 4, and the like. The exhaust upstream end of the inner exhaust pipe 2 is connected to the exhaust port of the internal combustion engine 1, the exhaust upstream end of the outer exhaust pipe 3 is connected to the exhaust downstream end of the inner exhaust pipe 2, and the exhaust of the outer exhaust pipe 3 An extended exhaust pipe 4 is connected to the downstream end.

排気通路としては、前記内側排気管2内に形成された上流側排気通路5と、前記内側排気管2の外周壁面と前記外側排気管3の内周壁面との間で形成されると共に上流側排気通路5の下流端部に連通する断面環状の下流側排気通路6と、延長排気管4内に形成されると共に前記下流側排気通路6の排気下流端部に連通する延長排気通路7と、を備えている。   The exhaust passage is formed between the upstream exhaust passage 5 formed in the inner exhaust pipe 2, the outer peripheral wall surface of the inner exhaust pipe 2, and the inner peripheral wall surface of the outer exhaust pipe 3. A downstream exhaust passage 6 having an annular cross section that communicates with the downstream end of the exhaust passage 5, an extended exhaust passage 7 that is formed in the extended exhaust pipe 4 and communicates with the exhaust downstream end of the downstream exhaust passage 6, It has.

上流側排気通路5内には、窒素酸化物吸着材(以下「NOx吸着材」と称する)10が配置されると共に、該NOx吸着材10より排気上流側に吸着物質脱離手段11が配置されている。下流側排気通路6の排気上流端部6aには、上流側排気通路5の排気下流端部に対向する位置に燃焼装置12が配置されている。   A nitrogen oxide adsorbent (hereinafter referred to as “NOx adsorbent”) 10 is disposed in the upstream exhaust passage 5, and an adsorbed substance desorbing means 11 is disposed on the exhaust upstream side of the NOx adsorbent 10. ing. A combustion device 12 is disposed at a position facing the exhaust downstream end of the upstream exhaust passage 5 at the exhaust upstream end 6 a of the downstream exhaust passage 6.

図2は図1のII-II断面拡大図であり、断面円形の内側排気管2と断面円形の外側排気管3との二重管構造を明確に示している。   2 is an enlarged cross-sectional view taken along the line II-II of FIG. 1, and clearly shows a double-pipe structure of an inner exhaust pipe 2 having a circular cross section and an outer exhaust pipe 3 having a circular cross section.

(NOx吸着材10の構成)
図1において、NOx吸着材10は、特に空気過剰雰囲気においても効率良く窒素酸化物(以下「NOx」と称する)を吸着することができ、かつ、所定温度に昇温した時あるいは還元雰囲気においては前記吸着したNOxを脱離する性質を有している。該実施の形態では、NOx吸着材10は酸化作用を有する触媒を含み、一酸化炭素(以下「CO」と称する)や炭化水素(以下「HC」と称する)等の未燃成分を酸化すると共に、窒素酸化物吸着材4自体の形状が、粒子状物質を捕獲するのに適した形状となっている。
(Configuration of NOx adsorbent 10)
In FIG. 1, the NOx adsorbent 10 can adsorb nitrogen oxides (hereinafter referred to as “NOx”) efficiently even in an excess air atmosphere, and when the temperature is raised to a predetermined temperature or in a reducing atmosphere. It has the property of desorbing the adsorbed NOx. In this embodiment, the NOx adsorbent 10 includes a catalyst having an oxidizing action, and oxidizes unburned components such as carbon monoxide (hereinafter referred to as “CO”) and hydrocarbons (hereinafter referred to as “HC”). The shape of the nitrogen oxide adsorbing material 4 itself is a shape suitable for capturing particulate matter.

NOx吸着材10には、NOx吸着量が所定量(たとえば飽和量又は飽和量より少ない量)まで達したことを検出して、ECU23に検出信号を送るNOx吸着量検出センサー29が設けられている。   The NOx adsorbent 10 is provided with a NOx adsorption amount detection sensor 29 that detects that the NOx adsorption amount has reached a predetermined amount (for example, a saturation amount or an amount less than the saturation amount) and sends a detection signal to the ECU 23. .

(燃焼装置12の構成)
図1において、燃焼装置12は、燃料供給部としての燃料ノズル16と、着火部としての点火装置17と、空気供給部15と、を備えている。燃料ノズル16は燃料調量装置20を介して燃料タンク21に接続し、電子制御ユニット(以下「ECU」と称する)23により、燃料の供給量及び供給時期が制御されるようになっている。空気供給部15は空気調量装置25を介して空気供給源26に接続し、空気調量装置25はECU23により空気の供給及び停止並びにその供給量が制御されるようになっている。
(Composition of combustion device 12)
In FIG. 1, the combustion device 12 includes a fuel nozzle 16 as a fuel supply unit, an ignition device 17 as an ignition unit, and an air supply unit 15. The fuel nozzle 16 is connected to a fuel tank 21 via a fuel metering device 20, and a fuel supply amount and supply timing are controlled by an electronic control unit (hereinafter referred to as “ECU”) 23. The air supply unit 15 is connected to an air supply source 26 via an air metering device 25, and the air metering device 25 is controlled by the ECU 23 to supply and stop air and to control its supply amount.

(吸着物質脱離手段11の構成)
図1において、吸着物質脱離手段11は、吸着物質脱離用燃料ノズル(バーナー)31と、吸着物質脱離用点火装置32と、空気供給部33と、を備えている。燃料ノズル31は燃料調量装置20を介して燃料タンク21に接続し、ECU23により、燃料の供給量及び供給時期が制御されるようになっている。空気供給部33は空気調量装置25を介して空気供給源26に接続し、空気調量装置25はECU23により空気の供給及び停止並びにその供給量が制御されるようになっている。
(Configuration of the adsorbed substance desorbing means 11)
In FIG. 1, the adsorbed substance desorbing means 11 includes an adsorbed substance desorbing fuel nozzle (burner) 31, an adsorbed substance desorbing ignition device 32, and an air supply unit 33. The fuel nozzle 31 is connected to the fuel tank 21 via the fuel metering device 20, and the fuel supply amount and the supply timing are controlled by the ECU 23. The air supply unit 33 is connected to the air supply source 26 via the air metering device 25, and the air metering device 25 is controlled by the ECU 23 to supply and stop air and to control its supply amount.

(作用)
(1)内燃機関1等の通常運転中は、吸着物質脱離手段11及び燃焼装置12は停止している。内燃機関1等から排出される排気ガスは、まず、上流側排気通路5内に流入し、排気ガス中のNOxはNOx吸着材10に吸着される。NOxが除去された後の排気ガスは、上流側排気通路5から下流側排気通路6の排気上流端部6aに流入し、該排気上流端部6aで径方向の外方に拡散すると共に折り返し、内側排気管2の外周壁面に沿って下流側排気通路6内を流れる。
(Function)
(1) During normal operation of the internal combustion engine 1 or the like, the adsorbed substance desorbing means 11 and the combustion device 12 are stopped. The exhaust gas discharged from the internal combustion engine 1 or the like first flows into the upstream exhaust passage 5, and NOx in the exhaust gas is adsorbed by the NOx adsorbent 10. The exhaust gas from which NOx has been removed flows from the upstream exhaust passage 5 into the exhaust upstream end portion 6a of the downstream exhaust passage 6, and diffuses and turns outward in the radial direction at the exhaust upstream end portion 6a. It flows in the downstream exhaust passage 6 along the outer peripheral wall surface of the inner exhaust pipe 2.

(2)下流側排気通路6内の排気ガスが、NOx吸着材10が位置する内側排気管2の外周壁面を通過することにより、排気ガスとNOx吸着材10との間で熱交換され、NOx吸着材10を保温する。これにより、NOx吸着量の低下を抑制することができる。なお、排気ガス中の炭化水素や一酸化炭素等の未燃分は、たとえば、NOx吸着材10に含まれている酸化作用を有する触媒により酸化され、無害化される。 (2) When the exhaust gas in the downstream exhaust passage 6 passes through the outer peripheral wall surface of the inner exhaust pipe 2 where the NOx adsorbent 10 is located, heat exchange is performed between the exhaust gas and the NOx adsorbent 10, and NOx The adsorbent 10 is kept warm. Thereby, the fall of NOx adsorption amount can be suppressed. Note that unburned components such as hydrocarbons and carbon monoxide in the exhaust gas are oxidized and rendered harmless by, for example, a catalyst having an oxidizing action contained in the NOx adsorbent 10.

(3)下流側排気通路6を通過し、延長排気通路7に流入した排気ガスは、大気に放出され、あるいは廃熱利用機器に供給される。 (3) The exhaust gas that has passed through the downstream exhaust passage 6 and has flowed into the extended exhaust passage 7 is released to the atmosphere or supplied to waste heat utilization equipment.

(4)所定時間運転した後、NOx吸着材10によるNOx吸着量が所定量に達すると、NOx吸着量検出センサー29による検出信号がECU23に送られ、ECU23からの信号により、吸着物質脱離手段11及び燃料装置12を作動させる。すなわち脱離運転(再生運転)状態とする。 (4) When the NOx adsorption amount by the NOx adsorbent 10 reaches a predetermined amount after operating for a predetermined time, a detection signal from the NOx adsorption amount detection sensor 29 is sent to the ECU 23, and the adsorbed substance desorbing means is transmitted by a signal from the ECU 23. 11 and the fuel device 12 are operated. That is, a desorption operation (regeneration operation) state is set.

脱離運転時には、例えば吸着物質脱離手段11において、燃料ノズル31からの燃料と排気ガスとを混合すると共に、排気ガス中の残留酸素及び空気供給部33からの空気により燃焼し、昇温すると共に還元雰囲気を作り、昇温された還元ガスをNOx吸着材10へ供給する。これにより、NOx吸着材10からNOxを脱離させる。すなわち、NOx吸着材10を再生する。脱離したNOxは、NOx吸着材10中の前記触媒成分により吸着物質脱離手段11によって生成された還元雰囲気で還元除去され、また、燃焼装置12において燃焼することにより、還元除去される。   During the desorption operation, for example, in the adsorbed material desorbing means 11, the fuel from the fuel nozzle 31 and the exhaust gas are mixed and burned with residual oxygen in the exhaust gas and air from the air supply unit 33 to raise the temperature. At the same time, a reducing atmosphere is created and the heated reducing gas is supplied to the NOx adsorbent 10. Thereby, NOx is desorbed from the NOx adsorbent 10. That is, the NOx adsorbent 10 is regenerated. The desorbed NOx is reduced and removed by the catalytic component in the NOx adsorbent 10 in a reducing atmosphere generated by the adsorbed substance desorbing means 11 and is burned in the combustion device 12 to be reduced and removed.

このように、内燃機関1等の運転中、NOx脱離のための脱離運転が間欠的に実施される。   As described above, during the operation of the internal combustion engine 1 or the like, the desorption operation for desorption of NOx is intermittently performed.

(第1の実施の形態の効果)
(1)本実施の形態によると、内燃機関1の通常運転時には、NOx吸着材10を通過した後の排気ガスの熱により、NOx吸着材10を保温するので、NOx吸着量の低下を抑制することができる。
(Effects of the first embodiment)
(1) According to this embodiment, during normal operation of the internal combustion engine 1, the NOx adsorbent 10 is kept warm by the heat of the exhaust gas after passing through the NOx adsorbent 10, so that a decrease in the NOx adsorption amount is suppressed. be able to.

(2)脱離運転時には、燃焼装置12で燃焼し、昇温した燃焼ガスにより、NOx吸着材10を昇温させるので、NOx脱離効率が向上し、NOx低減率及びNOx再生時のエネルギー消費率を向上させることができる。 (2) During the desorption operation, the NOx adsorbent 10 is heated by the combustion gas that has been burned in the combustion device 12 and heated, so that the NOx desorption efficiency is improved, the NOx reduction rate, and the energy consumption during NOx regeneration. The rate can be improved.

(3)排気通路の外郭構造を、内側排気管2と外側排気管3との二重管構造とし、外側排気管3内の下流側排気通路6を流れる排気ガス又は燃焼ガスにより、NOx吸着材10を保温又は昇温しているので、排気装置及び排気ガス浄化装置のコンパクト性を維持できると共に、NOx吸着材10全体を、外周側から略均等に保温し、あるいは昇温することができる。 (3) The outer structure of the exhaust passage is a double-pipe structure of the inner exhaust pipe 2 and the outer exhaust pipe 3, and the NOx adsorbent is generated by the exhaust gas or the combustion gas flowing through the downstream exhaust passage 6 in the outer exhaust pipe 3. 10 can be kept warm or heated, so that the compactness of the exhaust device and the exhaust gas purifying device can be maintained, and the entire NOx adsorbent 10 can be kept warm or evenly heated from the outer peripheral side.

[発明の第2の実施の形態]
図3は本発明の第2の実施の形態を示す概略図、図4は図3のIV-IV断面拡大図であり、該第2の実施の形態は、前記第1の実施の形態と同じ構造に、熱交換フィン40を備えている。他の構造は第1の実施の形態と同様であり、同じ部品等には同じ符号を付している。
[Second Embodiment of the Invention]
FIG. 3 is a schematic view showing a second embodiment of the present invention, and FIG. 4 is an enlarged sectional view taken along the line IV-IV of FIG. 3. The second embodiment is the same as the first embodiment. The structure includes heat exchange fins 40. Other structures are the same as those of the first embodiment, and the same components are denoted by the same reference numerals.

図3において、前記複数の熱交換フィン40は、NOx吸着材10が配置されている内側排気管2の部位の外周壁面に、内側排気管長さ方向(排気流方向)に延びるように設けられ、下流側排気通路6内に露出している。   In FIG. 3, the plurality of heat exchange fins 40 are provided on the outer peripheral wall surface of the inner exhaust pipe 2 where the NOx adsorbent 10 is disposed so as to extend in the inner exhaust pipe length direction (exhaust flow direction), It is exposed in the downstream exhaust passage 6.

図4において、各熱交換フィン40は、内側排気管2の外周壁面に、円周方向に所定間隔をおいて配置されている。   In FIG. 4, the heat exchange fins 40 are arranged on the outer peripheral wall surface of the inner exhaust pipe 2 at a predetermined interval in the circumferential direction.

第2の実施の形態のように、NOx吸着材10の保温又は昇温用に多数の熱交換フィン40を設けていると、排気ガス又は燃焼ガスとNOx吸着材10との間の熱伝達性が向上し、NOx吸着材10の保温又は昇温効果が向上する。   As in the second embodiment, when a large number of heat exchange fins 40 are provided for keeping the temperature of the NOx adsorbent 10 or increasing the temperature, heat transfer between the exhaust gas or the combustion gas and the NOx adsorbent 10 is achieved. And the heat retention effect or temperature rise effect of the NOx adsorbent 10 is improved.

図5は、熱交換フィン40の変形例であり、複数のリング状の円板を、排気流方向に間隔をおいて配設した構造となっている。   FIG. 5 shows a modification of the heat exchange fin 40, which has a structure in which a plurality of ring-shaped disks are arranged at intervals in the exhaust flow direction.

[発明の第3の実施の形態]
図6は本発明の第3の実施の形態を示す概略図であり、該第3の実施の形態は、前記第1の実施の形態と同じ構造に、排気ガス等に旋回流を発生させるための旋回流形成羽根50を備えている。他の構造は第1の実施の形態と同様であり、同じ部品等には同じ符号を付している。
[Third Embodiment of the Invention]
FIG. 6 is a schematic view showing a third embodiment of the present invention. In the third embodiment, a swirling flow is generated in the exhaust gas or the like in the same structure as the first embodiment. The swirl flow forming blades 50 are provided. Other structures are the same as those of the first embodiment, and the same components are denoted by the same reference numerals.

図6において、旋回流形成羽根50は、環状断面の下流側排気通路6の排気上流端部近傍であって、NOx吸着材10が位置する内側排気管2の外周壁面に面する部位よりも排気上流側に配置されている。すなわち、旋回流形成羽根50を通過することにより旋回流となった排気ガス又は燃焼ガスが、NOx吸着材10の外周壁面に対応する部位を通過するように配置されている。   In FIG. 6, the swirl flow forming blade 50 is exhausted from a portion near the exhaust upstream end of the downstream exhaust passage 6 having an annular cross section and facing the outer peripheral wall surface of the inner exhaust pipe 2 where the NOx adsorbent 10 is located. Arranged upstream. That is, the exhaust gas or the combustion gas that has turned into the swirl flow by passing through the swirl flow forming blades 50 is disposed so as to pass through a portion corresponding to the outer peripheral wall surface of the NOx adsorbent 10.

図7は、図6の旋回流形成羽根50の展開図であり、旋回流形成羽根50は、外側排気管3及び内側排気管2の長さ方向に対して所定角度で周方向の同一方向に傾斜すると共に、周方向に等間隔をおいて配設されており、旋回流形成羽根50間を通過する排気ガス等を方向変換し、旋回流を形成するようになっている。   FIG. 7 is a development view of the swirl flow forming blade 50 of FIG. 6. The swirl flow forming blade 50 is arranged in the same circumferential direction at a predetermined angle with respect to the length direction of the outer exhaust pipe 3 and the inner exhaust pipe 2. Inclined and arranged at equal intervals in the circumferential direction, the exhaust gas passing between the swirl flow forming blades 50 is redirected to form a swirl flow.

第3の実施の形態のように、NOx吸着材10を保温又は昇温する下流側排気通路6内の排気ガス等を旋回させ、流れの分布を均一にすることで、NOx吸着材10の全体を、より効率よく、かつ、略均等に保温又は昇温することができる。特に、内燃機関1の低負荷運転時には、排気ガス量が減少するが、上記のように排気ガスを旋回させることにより、少量の排気ガスの熱量を、無駄なく、効率的に保温等に利用することができる。勿論、脱離運転時においても、下流側排気通路6内の燃焼ガスを旋回させることにより、少量の燃焼ガスでも効率的に昇温に利用することができる。   As in the third embodiment, the exhaust gas or the like in the downstream side exhaust passage 6 that keeps the temperature of the NOx adsorbent 10 warm or warmed is swirled to make the flow distribution uniform, thereby making the entire NOx adsorbent 10 uniform. Can be kept warm or heated more efficiently and substantially evenly. In particular, when the internal combustion engine 1 is operated at a low load, the amount of exhaust gas decreases. By turning the exhaust gas as described above, the heat amount of a small amount of exhaust gas can be efficiently used for heat insulation or the like without waste. be able to. Of course, even during the desorption operation, by turning the combustion gas in the downstream side exhaust passage 6, even a small amount of combustion gas can be efficiently used for raising the temperature.

[その他の実施の形態]
(1)内燃機関自体が希薄燃焼用内燃機関であって、たとえば過給機を備えている場合には、過給機の圧縮機の空気を、図1等の各空気供給部に利用することができる。
[Other embodiments]
(1) When the internal combustion engine itself is a lean combustion internal combustion engine and is provided with, for example, a supercharger, use the air of the compressor of the supercharger for each air supply unit in FIG. Can do.

(2)NOx吸着材10としては、微粒子フィルターの壁にNOx吸着材を使用したものを利用することも可能である。 (2) As the NOx adsorbent 10, it is possible to use a NOx adsorbent using a NOx adsorbent on the wall of the particulate filter.

(3)前記第1,第2及び第3の実施の形態では、単一の排気通路を備えた構造に適用しているが、排気通路を、たとえば2本の分岐排気通路に分岐し、分岐排気通路毎に吸着物質脱離手段、窒素酸化物吸着材及び燃焼装置を備え、内燃機関の運転中、各分岐排気通路において、交互に吸着運転と脱離運転を行う排気ガス浄化装置にも、本発明を適用することは可能である。勿論、排気通路を3本以上の分岐排気通路に分岐した構造にも適用可能である。 (3) In the first, second, and third embodiments, the present invention is applied to a structure having a single exhaust passage. However, the exhaust passage is branched into, for example, two branch exhaust passages. An exhaust gas purification apparatus that includes an adsorption substance desorption means, a nitrogen oxide adsorbent, and a combustion device for each exhaust passage, and alternately performs an adsorption operation and a desorption operation in each branch exhaust passage during operation of the internal combustion engine. It is possible to apply the present invention. Of course, the present invention can also be applied to a structure in which the exhaust passage is branched into three or more branch exhaust passages.

本発明は、ディーゼル機関、ガス機関、ガソリン機関又はガスタービン機関等の各種内燃機関又は産業用ボイラ等の燃焼機器の排気ガス浄化装置として利用されるが、特に、希薄燃焼で運転される内燃機関等のように、排気ガス中にNOxが多く含有される内燃機関に適している。 INDUSTRIAL APPLICABILITY The present invention is used as an exhaust gas purification device for various internal combustion engines such as diesel engines, gas engines, gasoline engines or gas turbine engines, or combustion equipment such as industrial boilers. As described above, it is suitable for an internal combustion engine containing a large amount of NOx in the exhaust gas.

本発明による排気ガス浄化装置の第1の実施の形態を示す概略図である。1 is a schematic view showing a first embodiment of an exhaust gas purification apparatus according to the present invention. 図1のII-II断面拡大図である。It is the II-II cross-sectional enlarged view of FIG. 本発明による排気ガス浄化装置の第2の実施の形態を示す概略図である。It is the schematic which shows 2nd Embodiment of the exhaust-gas purification apparatus by this invention. 図3のIV-IV断面拡大図である。FIG. 4 is an enlarged sectional view taken along the line IV-IV in FIG. 3. 熱交換フィンの変形例を備えた図3のIV-IV断面拡大図である。FIG. 4 is an enlarged cross-sectional view taken along the line IV-IV in FIG. 3 provided with a modification of the heat exchange fin. 本発明による排気ガス浄化装置の第3の実施の形態を示す概略図である。It is the schematic which shows 3rd Embodiment of the exhaust-gas purification apparatus by this invention. 図6の旋回流形成羽根の展開図である。It is an expanded view of the swirl | vortex flow formation blade | wing of FIG.

符号の説明Explanation of symbols

1 内燃機関
2 内側排気管
3 外側排気管
5 上流側排気通路
6 下流側排気通路
10 窒素酸化物吸着材(NOx吸着材)
11 吸着物質脱離手段
12 燃焼装置
15 燃焼装置の空気供給部
16 燃焼装置の燃料ノズル(燃料供給部)
17 燃焼装置の点火装置(着火部)
23 電子制御ユニット
31 吸着物質脱離手段の燃料ノズル(燃料供給部)
32 吸着物質脱離手段の点火装置(着火部)
33 吸着物質脱離手段の空気供給部
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Inner exhaust pipe 3 Outer exhaust pipe 5 Upstream exhaust passage 6 Downstream exhaust passage 10 Nitrogen oxide adsorbent (NOx adsorbent)
DESCRIPTION OF SYMBOLS 11 Adsorbed substance desorption means 12 Combustion apparatus 15 Air supply part 16 of a combustion apparatus Fuel nozzle (fuel supply part) of a combustion apparatus
17 Ignition device (ignition part) of combustion device
23 Electronic Control Unit 31 Fuel Nozzle for Adsorbent Release Unit (Fuel Supply Unit)
32 Ignition device for adsorbing substance desorption means (ignition part)
33 Air supply part of adsorbent desorption means

Claims (4)

内燃機関又は燃焼機器の排気通路に設置される排気ガス浄化装置であって、窒素酸化物を一時的に吸着し、該吸着した窒素酸化物を昇温又は還元雰囲気で脱離する窒素酸化物吸着材と、該窒素酸化物吸着材より排気上流側に配置され、排気ガスを昇温又は還元雰囲気にする吸着物質脱離手段と、前記窒素酸化物吸着材より排気下流側に配置され、燃料供給部、空気供給部及び着火部を有する燃焼装置と、を備えている排気ガス浄化装置において、
前記排気通路は、少なくとも前記吸着物質脱離手段及び前記窒素酸化物吸着材が配置された上流側排気通路と、前記燃焼装置を通過した排気ガスを、前記上流側排気通路の前記窒素酸化物吸着材が位置する部位の外周壁面まで導く下流側排気通路と、を備えていることを特徴とする排気ガス浄化装置。
An exhaust gas purifying device installed in an exhaust passage of an internal combustion engine or combustion equipment, which temporarily adsorbs nitrogen oxides and adsorbs the adsorbed nitrogen oxides in a temperature rising or reducing atmosphere. Material, an adsorbent detachment means disposed on the exhaust upstream side of the nitrogen oxide adsorbent, and bringing the exhaust gas to a temperature rising or reducing atmosphere; and a fuel supply disposed on the exhaust downstream side of the nitrogen oxide adsorbent An exhaust gas purifying apparatus comprising: a combustion device having a section, an air supply section, and an ignition section.
The exhaust passage includes an upstream exhaust passage in which at least the adsorbed substance desorbing means and the nitrogen oxide adsorbing material are disposed, and exhaust gas that has passed through the combustion device, the nitrogen oxide adsorption of the upstream exhaust passage. An exhaust gas purification apparatus comprising: a downstream exhaust passage that leads to an outer peripheral wall surface of a portion where the material is located.
請求項1記載の排気ガス浄化装置において、
前記上流側排気通路は、内燃機関又は燃焼機器に接続された内側排気管内に形成され、 前記下流側排気通路は、前記内側排気管の外周壁面と、前記内側排気管を、環状空間を介して外方から囲む外側排気管の内周壁面との間に形成されていることを特徴とする排気ガス浄化装置。
The exhaust gas purification apparatus according to claim 1,
The upstream exhaust passage is formed in an inner exhaust pipe connected to an internal combustion engine or a combustion device, and the downstream exhaust passage connects an outer peripheral wall surface of the inner exhaust pipe and the inner exhaust pipe via an annular space. An exhaust gas purifying device, characterized in that it is formed between an outer peripheral wall surface of an outer exhaust pipe surrounding from the outside.
請求項2記載の排気ガス浄化装置において、
前記窒素酸化物吸着材が位置する内側排気管の外周壁面には、前記下流側排気通路内に露出する熱交換フィンが設けられていることを特徴とする排気ガス浄化装置。
The exhaust gas purification apparatus according to claim 2,
An exhaust gas purifying apparatus, wherein a heat exchange fin exposed in the downstream exhaust passage is provided on an outer peripheral wall surface of an inner exhaust pipe where the nitrogen oxide adsorbent is located.
請求項2記載の排気ガス浄化装置において、
前記下流側排気通路内には、該下流側排気通路内を流れる排気ガスを旋回させる旋回流形成羽根が配置されていることを特徴とする排気ガス浄化装置。
The exhaust gas purification apparatus according to claim 2,
A swirl flow forming blade for swirling exhaust gas flowing in the downstream exhaust passage is disposed in the downstream exhaust passage.
JP2007147901A 2007-06-04 2007-06-04 Exhaust gas purification device Expired - Fee Related JP4767909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007147901A JP4767909B2 (en) 2007-06-04 2007-06-04 Exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007147901A JP4767909B2 (en) 2007-06-04 2007-06-04 Exhaust gas purification device

Publications (2)

Publication Number Publication Date
JP2008298036A true JP2008298036A (en) 2008-12-11
JP4767909B2 JP4767909B2 (en) 2011-09-07

Family

ID=40171767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007147901A Expired - Fee Related JP4767909B2 (en) 2007-06-04 2007-06-04 Exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP4767909B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079619A1 (en) * 2009-01-09 2010-07-15 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engines
JP2013540927A (en) * 2010-08-18 2013-11-07 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Compact exhaust gas treatment device with addition of reaction agent
JP2014526653A (en) * 2011-09-26 2014-10-06 スカニア シーブイ アクチボラグ Device for introducing a liquid medium into the exhaust gas from a combustion engine
KR20140140908A (en) * 2013-05-30 2014-12-10 대동공업주식회사 A combine
JP2015180818A (en) * 2009-06-12 2015-10-15 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Exhaust gas treatment device for use near engine
JP2016050522A (en) * 2014-08-29 2016-04-11 日野自動車株式会社 Exhaust emission control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339810A (en) * 2001-05-16 2002-11-27 Mitsubishi Motors Corp Exhaust gas recirculation system
JP2003120260A (en) * 2001-10-18 2003-04-23 Hino Motors Ltd Exhaust emission control device
JP2005207281A (en) * 2004-01-21 2005-08-04 Yanmar Co Ltd Emission control device and its control method
JP2006348856A (en) * 2005-06-16 2006-12-28 Hino Motors Ltd Heat insulation combined gas flow path structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339810A (en) * 2001-05-16 2002-11-27 Mitsubishi Motors Corp Exhaust gas recirculation system
JP2003120260A (en) * 2001-10-18 2003-04-23 Hino Motors Ltd Exhaust emission control device
JP2005207281A (en) * 2004-01-21 2005-08-04 Yanmar Co Ltd Emission control device and its control method
JP2006348856A (en) * 2005-06-16 2006-12-28 Hino Motors Ltd Heat insulation combined gas flow path structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079619A1 (en) * 2009-01-09 2010-07-15 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engines
JP5158214B2 (en) * 2009-01-09 2013-03-06 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2015180818A (en) * 2009-06-12 2015-10-15 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Exhaust gas treatment device for use near engine
JP2013540927A (en) * 2010-08-18 2013-11-07 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Compact exhaust gas treatment device with addition of reaction agent
JP2014526653A (en) * 2011-09-26 2014-10-06 スカニア シーブイ アクチボラグ Device for introducing a liquid medium into the exhaust gas from a combustion engine
KR20140140908A (en) * 2013-05-30 2014-12-10 대동공업주식회사 A combine
KR101993720B1 (en) 2013-05-30 2019-06-27 대동공업주식회사 A combine
JP2016050522A (en) * 2014-08-29 2016-04-11 日野自動車株式会社 Exhaust emission control system

Also Published As

Publication number Publication date
JP4767909B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
JP4413020B2 (en) Exhaust gas purification device and control method thereof
US8042328B2 (en) Exhaust gas purifier
JP5988493B2 (en) Exhaust system including NOx storage catalyst and catalyst smoke filter
JP4767909B2 (en) Exhaust gas purification device
JP2011052679A (en) Exhaust gas aftertreatment device for diesel engine
JP5431677B2 (en) Exhaust gas purification device
WO2009099181A1 (en) Exhaust gas purification device
JP4515217B2 (en) Exhaust gas purification device control method
JP5285296B2 (en) Exhaust gas purification device
JP2015206274A (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP5282568B2 (en) Exhaust gas purification method and exhaust gas purification system
JP5608962B2 (en) Exhaust gas purification system
JP5163808B2 (en) Exhaust gas purification device for internal combustion engine
JP2019157739A (en) Exhaust purifying device for internal combustion engine
JP2006272116A (en) Exhaust gas purifying apparatus
JP2006272115A (en) Exhaust gas purifying apparatus
JP2019157738A (en) Exhaust purifying device for internal combustion engine
JP2010180709A (en) Exhaust emission control device of engine
JP2009216021A (en) Exhaust emission control device
JP2009215977A (en) Exhaust emission control device
JP2008298034A (en) Exhaust emission control device
JP2009250091A (en) Exhaust emission control device
JP2019157737A (en) Exhaust purifying device for internal combustion engine
JP2012215080A (en) Exhaust gas purifying apparatus and exhaust gas purifying method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees