[go: up one dir, main page]

JP2008289232A - Switching circuit - Google Patents

Switching circuit Download PDF

Info

Publication number
JP2008289232A
JP2008289232A JP2007129939A JP2007129939A JP2008289232A JP 2008289232 A JP2008289232 A JP 2008289232A JP 2007129939 A JP2007129939 A JP 2007129939A JP 2007129939 A JP2007129939 A JP 2007129939A JP 2008289232 A JP2008289232 A JP 2008289232A
Authority
JP
Japan
Prior art keywords
mosfet
main
diode
circuit
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007129939A
Other languages
Japanese (ja)
Other versions
JP5009680B2 (en
Inventor
Takashi Kumagai
隆 熊谷
Akihiko Iwata
明彦 岩田
Noriyuki Matsubara
則幸 松原
Koji Nakajima
浩二 中島
Hiroyasu Iwabuki
寛康 岩蕗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007129939A priority Critical patent/JP5009680B2/en
Publication of JP2008289232A publication Critical patent/JP2008289232A/en
Application granted granted Critical
Publication of JP5009680B2 publication Critical patent/JP5009680B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

【課題】大形化を招くことなく全体の損失を低減できるスイッチング回路を得る。
【解決手段】主及び従MOSFET1a,3aがそのボディダイオード2a,4aが逆直列になるようにして直列に接続された直列回路に対して並列に外付けダイオード5が接続されている。主及び従MOSFET1a,3aはソース端子s同士、ゲート端子g同士が接続され、ボディダイオード2aと同極性に外付けダイオード5が接続されるとともに、駆動回路6aにより主及び従MOSFET1a,3aが同時にスイッチング制御される。主ボディダイオード2aに環流する電流は従ボディダイオード4aによって遮断されるので、環流電流は及びリカバリ電流はともに外付けダイオード5に流れることになるが、高性能な外付けダイオード5を自由に選択でき、全体の損失を低減できる。
【選択図】図1
A switching circuit capable of reducing the overall loss without causing an increase in size is obtained.
An external diode (5) is connected in parallel to a series circuit in which main and secondary MOSFETs (1a, 3a) are connected in series so that their body diodes (2a, 4a) are in reverse series. The main and sub MOSFETs 1a and 3a are connected to each other between the source terminals s and the gate terminals g, the external diode 5 is connected to the same polarity as the body diode 2a, and the main and sub MOSFETs 1a and 3a are simultaneously switched by the drive circuit 6a. Be controlled. Since the current circulating in the main body diode 2a is cut off by the slave body diode 4a, both the circulating current and the recovery current flow to the external diode 5, but a high-performance external diode 5 can be freely selected. , The overall loss can be reduced.
[Selection] Figure 1

Description

本発明は、ボディダイオードを有する主スイッチング素子を組合せて構成されるスイッチング回路に関する。   The present invention relates to a switching circuit configured by combining main switching elements having a body diode.

従来のスイッチング回路では、複数のMOSFETを直列に接続し、各々のMOSFETに構造上寄生するボディダイオードによって負荷から回生される電流を環流していた(例えば、特許文献1参照)。   In a conventional switching circuit, a plurality of MOSFETs are connected in series, and a current regenerated from a load is circulated by a body diode that is structurally parasitic on each MOSFET (see, for example, Patent Document 1).

また、従来のスイッチング回路では、環流用ダイオードに逆電圧印加回路を別途設けてダイオードを低電圧でリカバリさせ、損失を低減していた(例えば、特許文献2参照)。   Further, in the conventional switching circuit, a reverse voltage application circuit is separately provided in the circulating diode, and the diode is recovered at a low voltage to reduce the loss (for example, see Patent Document 2).

特開2007−014059号公報(段落番号0012、0013、0033及び図1)JP 2007-014059 (paragraph numbers 0012, 0013, 0033 and FIG. 1) 特開2006−141167号公報(段落番号0015及び図1)Japanese Patent Laying-Open No. 2006-141167 (paragraph number 0015 and FIG. 1)

このようなスイッチング回路では正ラインと負ラインとの間に、複数のMOSFETを含む直列回路が接続されており、負荷からの回生電流は、これらMOSFETのボディダイオードを通して環流している。通常、何れか一方のMOSFETがオフすると、他方のMOSFETのボディダイオードに電流が環流し、環流電流によって他方のボディダイオードが導通している期間にもう一方のMOSFETが再びオンすると、他方のボディダイオードにはリカバリ電流が流れることによるリカバリ損失、リカバリノイズが発生する。   In such a switching circuit, a series circuit including a plurality of MOSFETs is connected between a positive line and a negative line, and a regenerative current from a load circulates through the body diodes of these MOSFETs. Normally, when one of the MOSFETs is turned off, a current flows through the body diode of the other MOSFET, and when the other MOSFET is turned on again during the period when the other body diode is conducted by the circulating current, the other body diode is turned on. Causes recovery loss and recovery noise due to the flow of recovery current.

MOSFETとして、そのボディダイオードのリカバリ速度が速いものを用いれば上記問題は解決されるが、ボディダイオードはMOSFETの構成上生じる寄生ダイオードであって、寄生ダイオードのリカバリ速度を速くすることは製造上、コスト上ともに困難である。   If a MOSFET with a fast recovery speed of its body diode is used, the above problem can be solved, but the body diode is a parasitic diode that occurs in the configuration of the MOSFET. Both costs are difficult.

また、他方のボディダイオードが非導通の期間にもう一方のMOSFETをオンさせれば上記リカバリ電流は流れずリカバリ損失も、リカバリノイズも発生しないが、環流電流を検出するための電流センサーやMOSFETの制御回路が必要になるので、部品点数が増加しスイッチング回路の信頼性が低下するとともにスイッチング回路が大型化し、また、高コストとなる。また、オン時間の制御に制約を生じるため、スイッチング回路の効率が低下するとともに、負荷の駆動制御にも支障をきたす。   Also, if the other MOSFET is turned on while the other body diode is non-conductive, the recovery current does not flow and no recovery loss or recovery noise occurs. However, a current sensor or MOSFET for detecting the circulating current does not occur. Since a control circuit is required, the number of parts is increased, the reliability of the switching circuit is lowered, the switching circuit is increased in size, and the cost is increased. In addition, since the on-time control is restricted, the efficiency of the switching circuit is lowered and the drive control of the load is hindered.

さらに、ボディダイオードのリカバリ時の逆方向印加電圧が小さければリカバリ損失も低くなるが、ボディダイオードのリカバリ直前に逆電圧を印加するためには、スイッチング回路ごとに大電流、高速応答の電源回路が必要となり、コスト高となる。   Furthermore, if the reverse applied voltage at the time of body diode recovery is small, the recovery loss will be low.However, in order to apply the reverse voltage immediately before the body diode recovery, a power supply circuit with a large current and a fast response is required for each switching circuit. Necessary and costly.

この発明は上記のような問題点を解決するためになされたものであり、大形化を招くことなく損失を低減できるスイッチング回路を得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a switching circuit that can reduce loss without causing an increase in size.

この発明に係るスイッチング回路においては、開閉される主回路開閉端子と制御信号用端子とボディダイオードとをそれぞれ有する第1及び第2の主スイッチング素子が上記ボディダイオードが逆直列になるようにして直列に接続された直列回路と、上記直列回路に上記第1の主スイッチング素子のボディダイオードと同じ導通方向になるようにして並列に接続された外付けダイオードと、上記第1及び第2の主スイッチング素子をほぼ同じタイミングで開閉制御する制御信号を上記制御信号用端子に与える制御手段とを備えたものである。   In the switching circuit according to the present invention, first and second main switching elements each having a main circuit switching terminal to be opened and closed, a control signal terminal, and a body diode are connected in series so that the body diodes are in reverse series. A series circuit connected to the external circuit, an external diode connected in parallel to the series circuit in the same conduction direction as the body diode of the first main switching element, and the first and second main switching circuits And a control means for supplying a control signal for controlling opening / closing of the element to the control signal terminal at substantially the same timing.

この発明に係るスイッチング回路においては、開閉される主回路開閉端子と制御信号用端子とボディダイオードとをそれぞれ有する第1及び第2の主スイッチング素子が上記ボディダイオードが逆直列になるようにして直列に接続された直列回路と、上記直列回路に上記第1の主スイッチング素子のボディダイオードと同じ導通方向になるようにして並列に接続された外付けダイオードと、上記第1及び第2の主スイッチング素子をほぼ同じタイミングで開閉制御する制御信号を上記制御信号用端子に与える制御手段とを備えたものであるので、第1の主スイッチング素子のボディダイオードに環流する電流を第2の主スイッチング素子のボディダイオードによって遮断でき、環流電流は外付けダイオードに流れ、リカバリ電流もまた外付けダイオードに流れるので、ボディダイオードよりも高性能な外付けダイオードを自由に選択でき、高性能な外付けダイオードの使用することにより大形化を招くことなく全体の損失を低減できる。   In the switching circuit according to the present invention, first and second main switching elements each having a main circuit switching terminal to be opened and closed, a control signal terminal, and a body diode are connected in series so that the body diodes are in reverse series. A series circuit connected to the external circuit, an external diode connected in parallel to the series circuit in the same conduction direction as the body diode of the first main switching element, and the first and second main switching circuits And a control means for supplying a control signal for controlling the opening and closing of the element to the control signal terminal at substantially the same timing, so that the current circulating in the body diode of the first main switching element is supplied to the second main switching element. Can be cut off by the body diode, the reflux current flows to the external diode, and the recovery current is also external It flows through the diode, free to select a high-performance external diode than the body diode, thereby reducing the overall loss without causing a large reduction by the use of high-performance external diode.

実施の形態1.
図1及び図2は、この発明を実施するための実施の形態1を示すものであり、図1はこの発明のスイッチング回路を用いた三相インバータ回路の構成を示す構成図、図2は動作を説明するための要部抽出図である。図1において、三相インバータ回路は、本発明に係る6つのスイッチング回路8(以下、説明及び図において個別に区別を要するときは符号8a〜8fを付して区別し、共通的に表すときは単にスイッチング回路8と称する、スッイチング回路の構成要素についても同じ)を三相ブリッジに構成したものである。第1の主スイッチング素子である主MOSFET1は、主回路開閉端子であるドレイン端子dとソース端子sと、制御信号用端子であるゲート端子gと、主MOSFET1に寄生する主ボディダイオード2を有する。第2の主スイッチング素子である従MOSFET3は、主回路開閉端子であるドレイン端子dとソース端子sと、ゲート端子gと、従MOSFET3に寄生する従ボディダイオード4を有する。
Embodiment 1 FIG.
1 and 2 show Embodiment 1 for carrying out the present invention. FIG. 1 is a block diagram showing the configuration of a three-phase inverter circuit using the switching circuit of the present invention. FIG. It is a principal part extraction diagram for demonstrating. In FIG. 1, the three-phase inverter circuit is divided into six switching circuits 8 according to the present invention (hereinafter referred to as 8a to 8f when they need to be individually distinguished in the description and the drawings, and when they are expressed in common. The same applies to the components of the switching circuit, which is simply referred to as switching circuit 8, and is configured as a three-phase bridge. A main MOSFET 1 that is a first main switching element includes a drain terminal d and a source terminal s that are main circuit open / close terminals, a gate terminal g that is a control signal terminal, and a main body diode 2 that is parasitic on the main MOSFET 1. The slave MOSFET 3 that is the second main switching element includes a drain terminal d and a source terminal s that are main circuit open / close terminals, a gate terminal g, and a slave body diode 4 that is parasitic on the slave MOSFET 3.

スイッチング回路8は、主MOSFET1と従MOSFET3とがそのボディダイオード3とボディダイオード4とが逆極性になるようにして直列に接続されるとともに、各ソース端子s同士及びゲート端子g同士が接続されている。また、直列に接続された主及び従両MOSFET1,3の直列回路に並列に接続された外付けダイオード5を有する。外付けダイオード5は、カソードkが主MOSFET1のドレイン端子dに、アノードaが従MOSFET3のドレイン端子dに接続されて、ボディダイオード2と同極性(同じ導通方向)になるようにして接続されている。制御回路としての駆動回路6が各ソース端子sの電位を基準として各ゲート端子gに制御信号としての開閉信号を与え開閉制御する。コンデンサ7は正ラインPと負ラインNの間に接続され、主及び従MOSFET1,3のスイッチングによって生じる高周波電流をバイパスしている。
各スイッチング回路8は、正ラインPと負ラインNの間に直列に接続された3組のハーフブリッジを構成し、各ハーフブリッジの中性点Oに負荷モータ9が接続されている。
In the switching circuit 8, the main MOSFET 1 and the sub MOSFET 3 are connected in series so that the body diode 3 and the body diode 4 have opposite polarities, and the source terminals s and the gate terminals g are connected. Yes. Further, it has an external diode 5 connected in parallel to the series circuit of the main and slave MOSFETs 1 and 3 connected in series. The external diode 5 is connected such that the cathode k is connected to the drain terminal d of the main MOSFET 1 and the anode a is connected to the drain terminal d of the sub-MOSFET 3 so as to have the same polarity (same conduction direction) as the body diode 2. Yes. A drive circuit 6 as a control circuit applies an open / close signal as a control signal to each gate terminal g with reference to the potential of each source terminal s to perform open / close control. The capacitor 7 is connected between the positive line P and the negative line N and bypasses the high-frequency current generated by the switching of the main and slave MOSFETs 1 and 3.
Each switching circuit 8 constitutes three sets of half bridges connected in series between a positive line P and a negative line N, and a load motor 9 is connected to a neutral point O of each half bridge.

次に動作について説明する。図2は、スイッチング回路8の動作についての説明を簡素化するためにスイッチング回路8a,8dで構成される一組のハーフブリッジを抜き出したものである。図2において、今、スイッチング回路8aの主MOSFET1aと従MOSFET3aが共にオフし、また、スイッチング回路8dの主MOSFET1dと従MOSFET3dも共にオフしており、負荷からの環流電流J2が、負ライン側の外付けダイオード5dを介して流れているとする。
このとき、負ライン側のスイッチング回路8dの主MOSFET1dと従MOSFET3dはオフしているために主MOSFET1dのボディダイオード2dは導通することはない。
Next, the operation will be described. FIG. 2 shows a set of half bridges made up of the switching circuits 8a and 8d in order to simplify the description of the operation of the switching circuit 8. In FIG. In FIG. 2, the main MOSFET 1a and the sub MOSFET 3a of the switching circuit 8a are both turned off, and the main MOSFET 1d and the sub MOSFET 3d of the switching circuit 8d are both off, so that the circulating current J2 from the load is on the negative line side. It is assumed that the current flows through the external diode 5d.
At this time, since the main MOSFET 1d and the sub MOSFET 3d of the switching circuit 8d on the negative line side are off, the body diode 2d of the main MOSFET 1d does not conduct.

ここで、負荷からの順方向電流としての環流電流J2が負ライン側の外付けダイオード5dを介して流れている期間中に、主MOSFET1aと従MOSFET3aがともにオンすると、負荷への電流は環流電流J2から順電流J1に転流すると同時に外付けダイオード5dのリカバリ特性によって、外付けダイオード5の導通方向とは逆向きのリカバリ電流J3が流れる。主ボディダイオード2dには従MOSFET3dによって遮断され一切の電流が流れていないのでリカバリは生じず、従ってボディダイオードのリカバリ電流J4も流れない。主MOSFET1aの寄生ダイオードである主ボディダイオード2aに環流する電流を、従MOSFET3aの寄生ダイオードである従ボディダイオード4aによって遮断するので、環流電流は外付けダイオード5に流れ、リカバリ電流もまた外付けダイオード5に流れることになる。   Here, when both the main MOSFET 1a and the sub MOSFET 3a are turned on during the period in which the circulating current J2 from the load as the forward current flows through the external diode 5d on the negative line side, the current to the load is the circulating current. At the same time as commutation from J2 to forward current J1, recovery current J3 flows in the direction opposite to the conduction direction of external diode 5 due to the recovery characteristic of external diode 5d. The main body diode 2d is cut off by the sub MOSFET 3d and no current flows, so that no recovery occurs, and therefore the body diode recovery current J4 does not flow. Since the current circulating to the main body diode 2a which is the parasitic diode of the main MOSFET 1a is cut off by the slave body diode 4a which is the parasitic diode of the slave MOSFET 3a, the circulating current flows to the external diode 5 and the recovery current is also the external diode. Will flow to 5.

外付けダイオード5を流れるリカバリ電流J3は外付けダイオード5dにリカバリ損失を生じさせるが、外付けダイオード5dに使用するダイオードの特性は主MOSFET1dの特性に関係なく設定することができ、主ボディダイオード2dと比較して高性能なすなわち十分に高速、かつ、ソフトリカバリ特性を有するダイオードを選択することが可能になり、環流電流を検出するための電流センサーやMOSFETの制御回路を必要としないので大型化を招くことなくリカバリ損失やリカバリノイズを抑制することができる。また、2つのスイッチング素子である主及び従MOSFET1d及び3dを直列に接続して使用する際に、一方はスイッチング素子である従MOSFET3dは通常の性能のものを使用することができる。
以上、スイッチング回路8dについて説明したが、スイッチング回路8a〜8c、スイッチング回路8e,8fにおいても同様の動作となる。
The recovery current J3 flowing through the external diode 5 causes recovery loss in the external diode 5d, but the characteristics of the diode used for the external diode 5d can be set regardless of the characteristics of the main MOSFET 1d, and the main body diode 2d It is possible to select a diode with high performance, that is, sufficiently high speed and soft recovery characteristics, and it is not necessary to use a current sensor or MOSFET control circuit for detecting the circulating current. Recovery loss and recovery noise can be suppressed without incurring any problems. When the main and sub MOSFETs 1d and 3d, which are two switching elements, are connected in series, the sub MOSFET 3d, which is one of the switching elements, can have a normal performance.
Although the switching circuit 8d has been described above, the same operation is performed in the switching circuits 8a to 8c and the switching circuits 8e and 8f.

ここで、一般にMOSFETの寄生ダイオードはリカバリが速く特性の良いダイオードが得られないので、主MOSFET1dの主ボディダイオード2dでリカバリが発生すると、リカバリ損失は極めて大きくなる。
従MOSFET3dを使用せず、従MOSFET3dと従ボディダイオード4dの代わりにショットキーバリアダイオードの様な低損失ダイオードを用いても同様の効果が得られるが、その場合、ショットキーバリアダイオードの順方向電圧降下による損失が主MOSFET3dのオン抵抗損失と同等の大きさで生じてしまう。しかし、本実施の形態では、従MOSFET3dのオンにより従ボディダイオード4dに電流は流れず、従MOSFET3dを流れる同期整流動作となるので損失は極めて小さくなる。
Here, since the MOSFET parasitic diode generally recovers quickly and a good characteristic cannot be obtained, when recovery occurs in the main body diode 2d of the main MOSFET 1d, the recovery loss becomes extremely large.
The same effect can be obtained by using a low-loss diode such as a Schottky barrier diode instead of the slave MOSFET 3d, instead of the slave MOSFET 3d and the slave body diode 4d. In this case, the forward voltage of the Schottky barrier diode is obtained. The loss due to the drop occurs with the same magnitude as the on-resistance loss of the main MOSFET 3d. However, in the present embodiment, since the secondary MOSFET 3d is turned on, no current flows through the secondary body diode 4d, and the synchronous rectification operation that flows through the secondary MOSFET 3d is performed, so that the loss becomes extremely small.

また、従MOSFET3dのドレインソース間電圧は、主MOSFET1dが遮断することによってほとんど印加されない。仮に主MOSFET1dと従MOSFET3dのオンオフ動作に多少のずれを生じたとしても、外付けダイオードの順方向電圧によってクランプされるため僅少となり、回路配線のインダクタンスによるサージ電圧を考慮しても従MOSFET3dのドレインソース間耐電圧は20〜60Vもあれば十分である。
低耐圧品であれば低オン抵抗のMOSFETを安価で調達できるうえ、本実施の形態では主MOSFET1dと従MOSFET3dの各ソース端子s同士及びゲート端子g同士を接続し、ゲート端子に駆動回路6dから開閉信号を与えるようにしたので、主MOSFET1dと従MOSFET3dの駆動は同じ駆動回路6dでできるので、従MOSFET3dの追加によるコストアップは僅かですむ。
Further, the drain-source voltage of the sub MOSFET 3d is hardly applied when the main MOSFET 1d is cut off. Even if there is a slight deviation in the on / off operation of the main MOSFET 1d and the sub MOSFET 3d, it becomes small because it is clamped by the forward voltage of the external diode, and even if the surge voltage due to the inductance of the circuit wiring is taken into account, the drain of the sub MOSFET 3d A source withstand voltage of 20 to 60 V is sufficient.
In the case of the low breakdown voltage product, a low on-resistance MOSFET can be procured at low cost, and in the present embodiment, the source terminals s and gate terminals g of the main MOSFET 1d and the sub MOSFET 3d are connected to each other, and the gate terminal is connected to the drive circuit 6d. Since the open / close signal is given, the main MOSFET 1d and the sub MOSFET 3d can be driven by the same drive circuit 6d, so that the cost increase by adding the sub MOSFET 3d is slight.

また、主MOSFET1dに600V程度のドレインソース間耐電圧のものを使用する必要がある場合には、主MOSFET1dと従MOSFET3dの耐電圧差は10倍以上となり、それぞれのオン抵抗差は20倍以上に設定することが可能である。すなわち、MOSFET3dのオン抵抗を、MOSFET1dのオン抵抗よりも十分に低いものにすることで、MOSFET1d単体の時と比較しても、MOSFET1d及び3dを合わせた全オン損失の上昇をわずかに抑えることができる。従って、従MOSFET3dの追加によるオン抵抗損失増加は5%程度に抑えることができ、従MOSFET3dの代わりにショットキーバリアダイオードを用いた場合と比較して損失を極めて小さくすることができる。   Also, when it is necessary to use a main MOSFET 1d having a drain-source withstand voltage of about 600 V, the withstand voltage difference between the main MOSFET 1d and the sub MOSFET 3d is 10 times or more, and the respective on-resistance differences are 20 times or more. It is possible to set. That is, by making the on-resistance of the MOSFET 3d sufficiently lower than the on-resistance of the MOSFET 1d, it is possible to slightly suppress an increase in the total on-loss including the MOSFETs 1d and 3d even when compared to the case of the MOSFET 1d alone. it can. Therefore, the increase in on-resistance loss due to the addition of the secondary MOSFET 3d can be suppressed to about 5%, and the loss can be extremely reduced as compared with the case where a Schottky barrier diode is used instead of the secondary MOSFET 3d.

以上のように外付けダイオード5dを設け、主MOSFET1dの主ボディダイオード2dへの電流を遮断する従MOSFET3dを設けることによって、リカバリが遅く特性の悪い主ボディダイオード2dによるリカバリ損失やリカバリノイズを回避できる。
また、従MOSFET3dを主MOSFET1dよりも耐圧の低い、すなわち、オン抵抗の小さいMOSFETとすることで、従MOSFET3dの追加による損失やコストの増大を効果的に抑制することができる。すなわち、従MOSFET3dの追加による損失や外付けダイオード5dの損失があっても、主MOSFET1dの主ボディダイオード2dのリカバリ損失をなくすことにより、全体の損失を低減できる。また、高性能の外付けダイオード5dを使用することにより、リカバリノイズを低減できる。
さらに、主MOSFET1dと従MOSFET3dのソース端子同士をそれぞれ接続し、基準電位を共通にして同じ電圧で主MOSFET1dと従MOSFET3dを駆動することによって、新たに駆動回路を追加する必要がないのでスイッチング回路が小型安価になる。
As described above, by providing the external diode 5d and providing the slave MOSFET 3d that cuts off the current to the main body diode 2d of the main MOSFET 1d, recovery loss and recovery noise due to the main body diode 2d having slow recovery and poor characteristics can be avoided. .
Further, by making the sub MOSFET 3d a MOSFET having a lower withstand voltage than the main MOSFET 1d, that is, having a low on-resistance, loss and cost increase due to the addition of the sub MOSFET 3d can be effectively suppressed. That is, even if there is a loss due to the addition of the sub MOSFET 3d or a loss of the external diode 5d, the overall loss can be reduced by eliminating the recovery loss of the main body diode 2d of the main MOSFET 1d. In addition, recovery noise can be reduced by using a high-performance external diode 5d.
Further, by connecting the source terminals of the main MOSFET 1d and the sub MOSFET 3d and driving the main MOSFET 1d and the sub MOSFET 3d with the same voltage with the common reference potential, there is no need to add a new driving circuit, so that the switching circuit can be realized. Smaller and cheaper.

なお、主MOSFET1,従MOSFET3の各ソース端子同士、各ゲート端子同士がそれぞれ接続されており、駆動回路6が各ソース端子を基準として各ゲート端子を駆動する例を示したが、駆動回路6は主MOSFET1,従MOSFET3それぞれ個別に設けてもよく、それぞれの駆動制御のタイミングに多少のずれがあってもよく、同様の効果を奏する。
また、主MOSFET1dと従MOSFET3dをオフすることで、外付けダイオード5dに環流電流J2が流れる例を示したが、外付けダイオード5dに環流電流J2を流すのは、主MOSFET1aと従MOSFET3aがオンする直前のみでよく、環流電流J2の導通時間が長い場合には、主MOSFET1aと従MOSFET3aがオンする直前まで主MOSFET1dと従MOSFET3dをオンさせておけば、外付けダイオード5dに環流電流J2が流れて生じる損失を低減することができる。
In addition, although each source terminal of each of the main MOSFET 1 and the sub-MOSFET 3 and each gate terminal are connected to each other and the drive circuit 6 drives each gate terminal based on each source terminal, the drive circuit 6 Each of the main MOSFET 1 and the sub MOSFET 3 may be provided individually, and there may be some deviation in the timing of each drive control, and the same effect is obtained.
Further, the example in which the circulating current J2 flows through the external diode 5d by turning off the main MOSFET 1d and the secondary MOSFET 3d is shown. However, the primary MOSFET 1a and the secondary MOSFET 3a are turned on when the circulating current J2 flows through the external diode 5d. When the conduction time of the recirculation current J2 is long, the recirculation current J2 flows to the external diode 5d if the main MOSFET 1d and the sub MOSFET 3d are turned on until just before the main MOSFET 1a and the sub MOSFET 3a are turned on. The resulting loss can be reduced.

また、本実施の形態では、本発明によるスイッチング回路を6回路用いた三相インバータの1アームを例にとって動作を示したが、必ずしも6回路全てを本発明によるスイッチング回路にしなくても、MOSFETのボディダイオードによるリカバリが発生するMOSFETについてのみ本発明を適用しても良い。
また、三相インバータ以外の例であっても、例えば、バックコンバータ、ブーストコンバータのように本発明によるスイッチング回路が直列に接続されて構成されるものや、あるいは、本スイッチング回路と別途MOSFETなどのスイッチング素子が直列に接続されて構成されるものでも同様の効果を奏する。
なお、スイッチング素子は、MOSFETに限らず寄生ダイオードであるボディダイオードを有するものであれば、同様にリカバリ損失やリカバリノイズを軽減することができる。
Further, in this embodiment, the operation is shown by taking one arm of a three-phase inverter using six switching circuits according to the present invention as an example. The present invention may be applied only to a MOSFET in which recovery by a body diode occurs.
In addition to the three-phase inverter, for example, a switching circuit according to the present invention such as a buck converter or a boost converter is connected in series, or the switching circuit and a separate MOSFET, etc. Even when the switching elements are connected in series, the same effect can be obtained.
In addition, if a switching element has not only MOSFET but the body diode which is a parasitic diode, a recovery loss and recovery noise can be reduced similarly.

この発明の実施の形態1であるスイッチング回路を用いた三相インバータ回路の構成図である。It is a block diagram of the three-phase inverter circuit using the switching circuit which is Embodiment 1 of this invention. スイッチング回路の動作を説明するための要部抽出図を示す。The principal part extraction figure for demonstrating operation | movement of a switching circuit is shown.

符号の説明Explanation of symbols

1a〜1f 主MOSFET、2a〜2f 主ボディダイオード、
3a〜3f 従MOSFET、4a〜4f 従ボディダイオード、
5a〜5f 外付けダイオード、6a〜6f 駆動回路、
8,8a〜8f スイッチング回路。
1a to 1f main MOSFET, 2a to 2f main body diode,
3a-3f secondary MOSFET, 4a-4f secondary body diode,
5a to 5f external diode, 6a to 6f drive circuit,
8, 8a-8f Switching circuit.

Claims (4)

開閉される主回路開閉端子と制御信号用端子とボディダイオードとをそれぞれ有する第1及び第2の主スイッチング素子が上記ボディダイオードが逆直列になるようにして直列に接続された直列回路と、上記直列回路に上記第1の主スイッチング素子のボディダイオードと同じ導通方向になるようにして並列に接続された外付けダイオードと、上記第1及び第2の主スイッチング素子をほぼ同じタイミングで開閉制御する制御信号を上記制御信号用端子に与える制御手段とを備えたスイッチング回路。 A series circuit in which first and second main switching elements each having a main circuit open / close terminal to be opened / closed, a control signal terminal, and a body diode are connected in series so that the body diodes are in reverse series; Open / close control of the external diode connected in parallel with the series circuit in the same conduction direction as the body diode of the first main switching element and the first and second main switching elements are performed at substantially the same timing. A switching circuit comprising control means for supplying a control signal to the control signal terminal. 上記第1及び第2の主スイッチング素子の制御信号用端子は共通に接続されたものであり、上記制御手段は上記共通に接続された上記御信号用端子に上記制御信号を与えるものであることを特徴とする請求項1に記載のスイッチング回路。 The control signal terminals of the first and second main switching elements are connected in common, and the control means supplies the control signal to the control signal terminals connected in common. The switching circuit according to claim 1. 上記第2の主スイッチング素子の主開閉端子間耐電圧は、上記第1の主スイッチング素子の主開閉端子間耐電圧よりも低いものであることを特徴とする請求項1に記載のスイッチング回路。 2. The switching circuit according to claim 1, wherein a withstand voltage between main switching terminals of the second main switching element is lower than a withstand voltage between main switching terminals of the first main switching element. 上記制御手段は、上記外付けダイオードに順方向電流が流れている期間中に、上記第1及び第2のスイッチング素子をともに閉路するように上記制御信号を与えるものであることを特徴とする請求項1に記載のスイッチング回路。 The control means provides the control signal so as to close both the first and second switching elements during a period in which a forward current flows through the external diode. Item 4. The switching circuit according to Item 1.
JP2007129939A 2007-05-16 2007-05-16 Switchgear Active JP5009680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007129939A JP5009680B2 (en) 2007-05-16 2007-05-16 Switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007129939A JP5009680B2 (en) 2007-05-16 2007-05-16 Switchgear

Publications (2)

Publication Number Publication Date
JP2008289232A true JP2008289232A (en) 2008-11-27
JP5009680B2 JP5009680B2 (en) 2012-08-22

Family

ID=40148440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007129939A Active JP5009680B2 (en) 2007-05-16 2007-05-16 Switchgear

Country Status (1)

Country Link
JP (1) JP5009680B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055895A1 (en) 2008-11-11 2010-05-20 日本電気株式会社 Mobile terminal, page transmission method for a mobile terminal and program
WO2010119526A1 (en) * 2009-04-15 2010-10-21 三菱電機株式会社 Inverter device, electric motor drive device, refrigeration/air-conditioning device, and electric power generation system
JP2011109749A (en) * 2009-11-13 2011-06-02 Mitsubishi Electric Corp Motor driver and freezing air conditioner
JP2011166897A (en) * 2010-02-08 2011-08-25 Panasonic Corp Gate drive device for bidirectional switch
JP2012010430A (en) * 2010-06-22 2012-01-12 Toshiba Corp Semiconductor switch, control device, power converter, and semiconductor device
DE102011089679A1 (en) * 2011-12-22 2013-06-27 Robert Bosch Gmbh Commutation cell with statically relieved diode
JP2016001991A (en) * 2015-07-29 2016-01-07 三菱電機株式会社 Motor drive device and air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006141167A (en) * 2004-11-15 2006-06-01 Toshiba Corp Power conversion apparatus
JP2007014059A (en) * 2005-06-28 2007-01-18 Toyota Motor Corp Switching circuit
JP2008193839A (en) * 2007-02-06 2008-08-21 Toshiba Corp Semiconductor switch and power converter using the semiconductor switch

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006141167A (en) * 2004-11-15 2006-06-01 Toshiba Corp Power conversion apparatus
JP2007014059A (en) * 2005-06-28 2007-01-18 Toyota Motor Corp Switching circuit
JP2008193839A (en) * 2007-02-06 2008-08-21 Toshiba Corp Semiconductor switch and power converter using the semiconductor switch

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055895A1 (en) 2008-11-11 2010-05-20 日本電気株式会社 Mobile terminal, page transmission method for a mobile terminal and program
WO2010119526A1 (en) * 2009-04-15 2010-10-21 三菱電機株式会社 Inverter device, electric motor drive device, refrigeration/air-conditioning device, and electric power generation system
JPWO2010119526A1 (en) * 2009-04-15 2012-10-22 三菱電機株式会社 Inverter device, electric motor drive device, refrigeration air conditioner, and power generation system
US8836258B2 (en) 2009-04-15 2014-09-16 Mitsubishi Electric Corporation Inverter device, motor driving device, refrigerating air conditioner, and power generation system
JP2011109749A (en) * 2009-11-13 2011-06-02 Mitsubishi Electric Corp Motor driver and freezing air conditioner
JP2011166897A (en) * 2010-02-08 2011-08-25 Panasonic Corp Gate drive device for bidirectional switch
JP2012010430A (en) * 2010-06-22 2012-01-12 Toshiba Corp Semiconductor switch, control device, power converter, and semiconductor device
DE102011089679A1 (en) * 2011-12-22 2013-06-27 Robert Bosch Gmbh Commutation cell with statically relieved diode
JP2016001991A (en) * 2015-07-29 2016-01-07 三菱電機株式会社 Motor drive device and air conditioner

Also Published As

Publication number Publication date
JP5009680B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5009680B2 (en) Switchgear
CN102403919B (en) Multilevel inverter
WO2019129027A1 (en) Boost power conversion circuit
TWI360946B (en)
CN104205602B (en) Rectification circuit
JP2019537417A (en) Bootstrap capacitor overvoltage management circuit for power converter based on GaN transistor
CN101692594B (en) Power adjuster
CN102347702A (en) Highly efficient half-bridge dcac converter
EP2871765A1 (en) NPC converter for use in power module, and power module incorporating same
JP2013070530A (en) Gate drive circuit, power conversion circuit, three-phase inverter and gate drive method
JP2018007403A (en) Power converter
JP6852445B2 (en) Semiconductor device
JP2006141168A (en) Power conversion apparatus
EP1826891A2 (en) Control drive circuit for electric power tool
EP2672617B1 (en) A buck converter with reverse current protection, and a photovoltaic system
US9705423B1 (en) Controlled bootstrap driver for high side electronic switching device
JP5726055B2 (en) Power converter
JP5440201B2 (en) Gate driver for bidirectional switch
JP5644403B2 (en) Switching circuit, half-bridge circuit and three-phase inverter circuit
JP2010115039A (en) Switching circuit
JP6571286B2 (en) Bidirectional converter circuit and bidirectional converter
JP2007252020A (en) Power converter
JP2008029163A (en) Driver circuit for voltage-driven semiconductor switching element
WO2007048196A1 (en) Mosfet circuits
JP2011041348A (en) Power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120531

R150 Certificate of patent or registration of utility model

Ref document number: 5009680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250