[go: up one dir, main page]

JP2008285705A - Alloy hot-dip galvanized steel sheet - Google Patents

Alloy hot-dip galvanized steel sheet Download PDF

Info

Publication number
JP2008285705A
JP2008285705A JP2007130054A JP2007130054A JP2008285705A JP 2008285705 A JP2008285705 A JP 2008285705A JP 2007130054 A JP2007130054 A JP 2007130054A JP 2007130054 A JP2007130054 A JP 2007130054A JP 2008285705 A JP2008285705 A JP 2008285705A
Authority
JP
Japan
Prior art keywords
steel sheet
oxide layer
dip galvanized
galvanized steel
flat portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007130054A
Other languages
Japanese (ja)
Other versions
JP5045231B2 (en
Inventor
Masayasu Nagoshi
正泰 名越
Wataru Tanimoto
亘 谷本
Hiroyuki Masuoka
弘之 増岡
Shoichiro Taira
章一郎 平
Yoshiharu Sugimoto
芳春 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007130054A priority Critical patent/JP5045231B2/en
Publication of JP2008285705A publication Critical patent/JP2008285705A/en
Application granted granted Critical
Publication of JP5045231B2 publication Critical patent/JP5045231B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

【課題】優れたプレス成形性を有する合金化溶融亜鉛めっき鋼板を提供する。
【解決手段】Fe-Zn合金めっき相を少なくとも鋼板の片面に有し、かつ、該Fe-Zn合金めっき相はめっき面には平坦部を有し、さらに、該平坦部表面には、ZrをZr/Znの原子比で0.01〜0.4含み、Znを必須成分とする酸化物が、平均厚さ10nm以上200nm以下で形成されている。例えば、Zr/Zn比で0.05のZrを含み、Znを主とする酸化物層が27.6nm形成された合金化溶融亜鉛めっき鋼板では、試料温度25℃(室温)における押付荷重400kgf、押付荷重1500kgfの時の摩擦係数はそれぞれ0.128、0.098である。
【選択図】なし
An alloyed hot-dip galvanized steel sheet having excellent press formability is provided.
A Fe-Zn alloy plating phase has at least one surface of a steel plate, the Fe-Zn alloy plating phase has a flat portion on the plating surface, and Zr is further formed on the surface of the flat portion. An oxide containing Zn as an essential component in an atomic ratio of Zr / Zn of 0.01 to 0.4 is formed with an average thickness of 10 nm to 200 nm. For example, an alloyed hot-dip galvanized steel sheet containing Zr with a Zr / Zn ratio of 0.05 and an oxide layer mainly composed of Zn formed at 27.6 nm has a pressing load of 400 kgf and a pressing load of 1500 kgf at a sample temperature of 25 ° C. (room temperature). In this case, the friction coefficients are 0.128 and 0.098, respectively.
[Selection figure] None

Description

本発明は、高強度合金化溶融亜鉛めっき鋼板などの成形荷重が高く型かじりを生じやすい材料においても、優れたプレス成形性を有する、合金化溶融亜鉛めっき鋼板に関するものである。   The present invention relates to an alloyed hot-dip galvanized steel sheet having excellent press formability even in a material having a high forming load, such as a high-strength alloyed hot-dip galvanized steel sheet, which tends to cause mold galling.

合金化溶融亜鉛めっき鋼板は合金化処理を施さない亜鉛めっき鋼板と比較して溶接性および塗装性に優れることから、自動車車体用途を中心に広範な分野で広く利用されている
。そのような用途での合金化溶融亜鉛めっき鋼板は、プレス成形を施されて使用に供される。しかし、合金化溶融亜鉛めっき鋼板は、冷延鋼板に比べてプレス成形性が劣るという欠点を有する。これはプレス金型での合金化溶融亜鉛めっき鋼板の摺動抵抗が冷延鋼板に比べて大きいことが原因である。すなわち、金型とビードでの摺動抵抗が大きい部分で合金化溶融亜鉛めっき鋼板がプレス金型に流入しにくくなり、鋼板の破断が起こりやすい。
An alloyed hot-dip galvanized steel sheet is widely used in a wide range of fields, mainly for automobile body applications, because it is superior in weldability and paintability compared to a galvanized steel sheet that is not subjected to alloying treatment. The alloyed hot-dip galvanized steel sheet for such applications is subjected to press forming and used. However, the alloyed hot-dip galvanized steel sheet has a disadvantage that its press formability is inferior to that of a cold-rolled steel sheet. This is because the sliding resistance of the alloyed hot-dip galvanized steel sheet in the press die is larger than that of the cold-rolled steel sheet. That is, the alloyed hot-dip galvanized steel sheet is less likely to flow into the press mold at the portion where the sliding resistance between the mold and the bead is large, and the steel sheet tends to break.

合金化溶融亜鉛めっき鋼板は、鋼板に亜鉛めっきを施した後、加熱処理を行い、鋼板中のFeとめっき層中のZnが拡散し合金化反応が生じることにより、Fe−Zn合金相を形成させたものである。このFe−Zn合金相は、通常、Γ相、δ相、ζ相からなる皮膜であり、Fe濃度が低くなるに従い、すなわち、Γ相→δ1相→ζ相の順で、硬度ならびに融点が低下する傾向がある。このため、摺動性の観点からは、高硬度で、融点が高く凝着の起こりにくい高Fe濃度の皮膜が有効であり、プレス成形性を重視する合金化溶融亜鉛めっき鋼板は、皮膜中の平均Fe濃度を高めに製造されている。 An alloyed hot-dip galvanized steel sheet is formed by galvanizing the steel sheet and then heat-treating to form an Fe-Zn alloy phase by diffusion of Fe in the steel sheet and Zn in the plating layer to cause an alloying reaction. It has been made. This Fe-Zn alloy phase is usually a film composed of a Γ phase, a δ 1 phase, and a ζ phase. As the Fe concentration decreases, that is, in the order of Γ phase → δ 1 phase → ζ phase, hardness and melting point Tends to decrease. For this reason, from the viewpoint of slidability, a coating with high hardness, high melting point and high Fe concentration is effective, and alloyed hot-dip galvanized steel sheet, which emphasizes press formability, Manufactured with high average Fe concentration.

しかしながら、高Fe濃度の皮膜では、めっき−鋼板界面に硬くて脆いΓ相が形成されやすく、加工時に界面から剥離する現象、いわゆるパウダリングが生じやすい問題を有している。このため特許文献1に示されているように、摺動性と耐パウダリング性を両立するために、上層に第二層として硬質のFe系合金を電気めっきなどの手法により付与する方法がとられている。   However, a coating film having a high Fe concentration has a problem that a hard and brittle Γ phase is easily formed at the plating-steel plate interface, and a phenomenon of peeling from the interface during processing, that is, so-called powdering is likely to occur. For this reason, as shown in Patent Document 1, in order to achieve both slidability and powdering resistance, there is a method of applying a hard Fe-based alloy as a second layer to the upper layer by a technique such as electroplating. It has been.

亜鉛系めっき鋼板使用時のプレス成形性を向上させる方法としては、この他に、高粘度の潤滑油を塗布する方法が広く用いられる。しかし、この方法では、潤滑油の高粘性のために塗装工程で脱脂不良による塗装欠陥が発生したり、また、プレス時の油切れにより、プレス性能が不安定になる等の問題がある。従って、合金化溶融亜鉛めっき鋼板自身のプレス成形性が改善されることが強く要請されている。   In addition to this, as a method for improving the press formability when using a galvanized steel sheet, a method of applying a high-viscosity lubricating oil is widely used. However, this method has problems such as a coating defect due to poor degreasing in the coating process due to the high viscosity of the lubricating oil, and press performance becoming unstable due to oil shortage during pressing. Therefore, there is a strong demand for improving the press formability of the galvannealed steel sheet itself.

上記の問題を解決する方法として、特許文献2および特許文献3には、亜鉛系めっき鋼板の表面に電解処理、浸漬処理、塗布酸化処理、または加熱処理を施すことにより、ZnOを主体とする酸化膜を形成させて溶接性、加工性を向上させる技術が開示されている。   As a method for solving the above problems, Patent Document 2 and Patent Document 3 describe that the surface of a zinc-based plated steel sheet is subjected to electrolytic treatment, dipping treatment, coating oxidation treatment, or heat treatment to oxidize mainly ZnO. A technique for improving weldability and workability by forming a film is disclosed.

特許文献4には亜鉛系めっき鋼板表面に、リン酸ナトリウム5〜60g/lを含みpH2〜6の水溶液にめっき鋼板を浸漬するか、電解処理を行う、または上記水溶液を塗布することにより、P酸化物を主体とした酸化膜を形成して、プレス成形性および化成処理性を向上させる技術が開示されている。   Patent Document 4 discloses that by immersing a plated steel sheet in an aqueous solution containing 5 to 60 g / l of sodium phosphate and having a pH of 2 to 6 on the surface of the zinc-based plated steel sheet, performing electrolytic treatment, or applying the above aqueous solution, P A technique for improving press moldability and chemical conversion treatment by forming an oxide film mainly composed of oxides is disclosed.

特許文献5には、亜鉛系めっき鋼板の表面に電解処理、浸漬処理、塗布処理、塗布酸化処理、または加熱処理により、Ni酸化物を生成させることにより、プレス成形性および化成処理性を向上させる技術が開示されている。   In Patent Document 5, the surface of a zinc-based plated steel sheet is improved in press formability and chemical conversion treatment by generating Ni oxide by electrolytic treatment, dipping treatment, coating treatment, coating oxidation treatment, or heat treatment. Technology is disclosed.

特許文献6には、合金化溶融亜鉛めっき鋼板を酸性溶液に接触させることで鋼板表面にZnを主体とする酸化物を形成させ、めっき層とプレス金型の凝着を抑制し、摺動性を向上させる技術が開示されている。
特許平1−319661号公報 特開昭53-60332号公報 特開平2−190483号公報 特開平4−88196号公報 特開平3−191093号公報 特開2003-306781号公報
In Patent Document 6, an alloyed hot-dip galvanized steel sheet is brought into contact with an acidic solution to form an oxide mainly composed of Zn on the surface of the steel sheet, suppressing adhesion between the plating layer and the press mold, and slidability. A technique for improving the above is disclosed.
Japanese Patent No. 1-319661 JP-A-53-60332 Japanese Patent Laid-Open No. 2-190483 JP-A-4-88196 Japanese Patent Laid-Open No. 3-191093 JP2003-306781

しかしながら、特許文献1〜6は、自動車外板に多く使用される比較的強度の低い合金化溶融亜鉛めっき鋼板に対しては有効であるが、プレス成形時の荷重が高いがゆえに金型との接触面圧が上昇する高強度合金化溶融亜鉛めっき鋼板においては、必ずしもプレス成形性の改善効果を安定して得ることはできない。   However, Patent Documents 1 to 6 are effective for a relatively low-strength alloyed hot-dip galvanized steel sheet that is often used for automobile outer plates, but because of the high load during press molding, In a high-strength galvannealed steel sheet with increased contact surface pressure, the effect of improving press formability cannot always be obtained stably.

本発明は、かかる事情に鑑み、高強度合金化溶融亜鉛めっき鋼板などの成形荷重が高く型かじりが生じやすい材料においても優れたプレス成形性を有する合金化溶融亜鉛めっき鋼板を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide an alloyed hot-dip galvanized steel sheet having excellent press formability even in a material having a high forming load such as a high-strength alloyed hot-dip galvanized steel sheet, which is likely to cause die galling. And

本発明者らは、上記の課題を解決すべく、さらに鋭意研究を重ねた。その結果、以下の知見を得た。
特許文献6の方法により製造される合金化溶融亜鉛めっき鋼板表面には、Znを主体とする酸化物層が形成されており、このZnを主体とする酸化物層がプレス時に金型との凝着を抑制し摺動抵抗を低減している。このZnを主体とする酸化物(以下、Zn系酸化物と称することもある)は、主に、調質圧延等により形成される平坦部に形成される。実際のプレス成形において、金型と優先的に接触する面はこの平坦部であり、接触面圧が低い場合には、平坦部表面のZn系酸化物が、金型とめっき層表面の直接接触を抑制することでプレス成形性の向上効果が得られる。しかし、めっきの下地鋼板として高強度鋼を使用する場合は、軟質鋼よりも成形荷重が高く型かじりや割れを生じやすく、このような場合には、特許文献6に記載されるZn系酸化物層では効果が不十分であることがわかった。
The inventors of the present invention made further studies to solve the above problems. As a result, the following knowledge was obtained.
An oxide layer mainly composed of Zn is formed on the surface of the alloyed hot-dip galvanized steel sheet manufactured by the method of Patent Document 6, and this oxide layer mainly composed of Zn is condensed with the mold during pressing. Wear resistance is reduced and sliding resistance is reduced. This oxide mainly composed of Zn (hereinafter sometimes referred to as Zn-based oxide) is mainly formed in a flat portion formed by temper rolling or the like. In actual press molding, the surface that preferentially contacts the mold is this flat part. When the contact surface pressure is low, the Zn oxide on the surface of the flat part is in direct contact between the mold and the plating layer surface. By suppressing the above, an effect of improving press formability can be obtained. However, when high strength steel is used as the base steel plate for plating, the forming load is higher than that of soft steel, and galling and cracking are likely to occur. In such a case, the Zn-based oxide described in Patent Document 6 is used. The layer was found to be inefficient.

そして、本発明者らは、この原因を突き止めるべくさらに鋭意研究を重ねた結果、Zn系酸化物層で成形荷重が高い場合でも高い潤滑性を発現するためには、酸化物層の密着性が重要であることを知見した。この理由として、酸化物層の密着性が低いと酸化物層が金型との接触により容易に除去され、めっきの合金相と金型が直接接触し凝着を起こしやすくなるからと考える。成形荷重が高い場合は特に、プレス直前の鋼板と金型との接触面圧が高く、プレス時に酸化物が除去される効果が大きく、その傾向が顕著になると考えられる。本発明者らは、Zn主体の酸化物に、Zrを含有させることが上記の解決に有効であることを見出した。
本発明は、以上の知見に基づきなされたものであり、その要旨は以下の通りである。
[1]Fe-Zn合金めっき相を少なくとも鋼板の片面に有し、かつ、該Fe-Zn合金めっき相の表面には平坦部を有し、さらに、該平坦部表面には、ZrをZr/Znの原子比で0.01〜0.4含み、Znを必須成分とする酸化物が、平均厚さ10nm以上200nm以下で形成されていることを特徴とする合金化溶融亜鉛めっき鋼板。
And, as a result of further earnest research to find out this cause, the inventors of the present invention have developed a high lubricity even when the molding load is high in the Zn-based oxide layer. I found it important. The reason for this is considered to be that when the adhesion of the oxide layer is low, the oxide layer is easily removed by contact with the mold, and the alloy phase of the plating and the mold are in direct contact and are liable to cause adhesion. Particularly when the forming load is high, the contact surface pressure between the steel plate and the mold immediately before pressing is high, and the effect of removing oxides during pressing is large, and this tendency is considered to be remarkable. The present inventors have found that inclusion of Zr in a Zn-based oxide is effective for the above solution.
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] Fe-Zn alloy plating phase is provided on at least one surface of a steel plate, the surface of the Fe-Zn alloy plating phase has a flat portion, and Zr is added to the surface of the flat portion. An alloyed hot-dip galvanized steel sheet characterized in that an oxide containing 0.01 to 0.4 in terms of Zn and containing Zn as an essential component is formed with an average thickness of 10 nm to 200 nm.

本発明によれば、プレス成形時の摺動抵抗が小さく、優れたプレス成形性を有する合金化溶融亜鉛めっき鋼板が得られる。   According to the present invention, an alloyed hot-dip galvanized steel sheet having a low sliding resistance during press forming and excellent press formability can be obtained.

合金化溶融亜鉛めっき鋼板は、合金化処理時の鋼板−めっき界面の反応性の差およびFe-Zn合金の角張った形状により、めっき相表面にマクロな凹凸が存在している。このような合金化溶融亜鉛めっき鋼板に、例えば、調質圧延によりめっき相表面に平坦部を設けることによって、めっき相表面の凹凸を緩和し表面を平滑にすると同時にめっき相表面の凸部を平坦にする(以下、平坦化された凸部を平坦部と称す)。このようにして形成された合金化溶融亜鉛めっき鋼板表面の平坦部は、プレス成形時に金型が直接接触する部分であるため、この平坦部の摺動抵抗を小さくすることが、プレス成形性を安定して改善することにつながり重要となる。平坦部の摺動抵抗を小さくする方法としては、金型との凝着を防止する硬質かつ高融点の物質を平坦部に存在させる方法が挙げられる。この点で、平坦部表面にZn系の酸化物層を存在させることは、酸化物層が金型との凝着を防止するため、摺動特性の向上に有効である。   The alloyed hot-dip galvanized steel sheet has macro unevenness on the surface of the plating phase due to the difference in reactivity between the steel sheet and the plating interface during the alloying treatment and the angular shape of the Fe-Zn alloy. In such an alloyed hot-dip galvanized steel sheet, for example, by providing a flat portion on the surface of the plating phase by temper rolling, the unevenness on the surface of the plating phase is alleviated to smooth the surface, and at the same time, the convex portion on the surface of the plating phase is flattened. (Hereinafter, the flattened convex portion is referred to as a flat portion). Since the flat part of the surface of the galvannealed steel sheet formed in this way is the part where the mold comes into direct contact during press forming, reducing the sliding resistance of the flat part can improve the press formability. It is important to lead to stable improvement. As a method for reducing the sliding resistance of the flat portion, there is a method in which a hard and high-melting substance that prevents adhesion to the mold is present in the flat portion. In this respect, the presence of the Zn-based oxide layer on the surface of the flat portion is effective in improving the sliding characteristics because the oxide layer prevents adhesion with the mold.

プレス成形時の荷重が高い場合には、めっき相表面と金型との高面圧で接触し、高面圧で摺動を受ける。そのため、Zn系酸化物層とめっき相表面との密着性が低いと、酸化物層が剥離することでめっき合金表面が金型と接触し凝着抑制効果が低下する。ここで、Zn系酸化物層にZrを含有させると、めっき相表面とZn系酸化物層との密着性が向上し、摺動性が向上する。この理由は明確になってはいないが、ZrがZn系酸化物の物性や皮膜形状を変化させめっき相表面との密着性を向上させているものと推定する。
さらに、本発明では、平坦部表面に含有するZr量は、Zr/Znの原子比で0.01〜0.4とする。Zr/Znの原子比が0.01より小さいとZrを含有させた効果が不十分である。Zr/Znの原子比が0.4を越えた場合、効果はあるものの、製造することが困難になり工業的に不利である。
When the load at the time of press molding is high, the plating phase surface and the mold come into contact with each other at a high surface pressure, and are slid at a high surface pressure. For this reason, if the adhesion between the Zn-based oxide layer and the plating phase surface is low, the oxide layer peels off and the surface of the plating alloy comes into contact with the mold, thereby reducing the adhesion suppressing effect. Here, when Zr is contained in the Zn-based oxide layer, the adhesion between the plating phase surface and the Zn-based oxide layer is improved, and the slidability is improved. The reason for this is not clear, but it is presumed that Zr changes the physical properties and film shape of the Zn-based oxide to improve the adhesion with the surface of the plating phase.
Furthermore, in the present invention, the amount of Zr contained in the flat portion surface is set to 0.01 to 0.4 in terms of the atomic ratio of Zr / Zn. If the atomic ratio of Zr / Zn is smaller than 0.01, the effect of containing Zr is insufficient. When the atomic ratio of Zr / Zn exceeds 0.4, although effective, it is difficult to produce and disadvantageous industrially.

本発明において、Zrを含有した酸化物層とは、ZrをZr/Znの原子比で0.01〜0.4含み、Znを必須成分とする酸化物などからなる層のことである。なお、ここでいうZnを必須成分とする酸化物層とは、少なくともZnとOを含んでいればよく、水酸化物や処理液に含まれる成分など、その他の元素が結合している場合も含まれる。
そして、このような酸化物層の平均厚さは平坦部において、10 nm以上200nm以下とする。酸化物層の平均厚さが10nm未満になるとZrを含有させても摺動抵抗を低下させる効果が不十分となる。一方、酸化物層の平均厚さが200nmを越えると、プレス加工中に皮膜が破壊し摺動抵抗が上昇し、また溶接性が低下する傾向にある。本発明では、平坦部における酸化物層の厚さと組成を規定しているが、同様の酸化物層が平坦部以外の領域に存在していても問題ない。摺動性の点からは酸化物層が平坦部以外の領域に存在することで、摺動性が向上する傾向にあり、好ましい。その理由は、接触面圧が高い場合、平坦部に加え、平坦部以外の領域も金型と直接接触するようになると考えられる。
以上より、本発明では、ZrをZr/Znの原子比で0.01〜0.4含み、Znを必須成分とする酸化物を、平均厚さ10nm以上200nm以下で、平坦部表面に形成するものとする。
In the present invention, the oxide layer containing Zr is a layer made of an oxide containing Zr in an atomic ratio of Zr / Zn of 0.01 to 0.4 and containing Zn as an essential component. The oxide layer containing Zn as an essential component here may contain at least Zn and O, and other elements such as hydroxide and components contained in the treatment liquid may be bonded. included.
And the average thickness of such an oxide layer shall be 10 nm or more and 200 nm or less in a flat part. When the average thickness of the oxide layer is less than 10 nm, the effect of lowering the sliding resistance is insufficient even if Zr is contained. On the other hand, when the average thickness of the oxide layer exceeds 200 nm, the coating is destroyed during press working, the sliding resistance increases, and the weldability tends to decrease. In the present invention, the thickness and composition of the oxide layer in the flat portion are defined, but there is no problem even if a similar oxide layer exists in a region other than the flat portion. From the viewpoint of slidability, the presence of the oxide layer in a region other than the flat portion is preferable because the slidability tends to be improved. The reason is considered that when the contact surface pressure is high, the region other than the flat portion comes into direct contact with the mold in addition to the flat portion.
As described above, in the present invention, an oxide containing Zr in an atomic ratio of Zr / Zn of 0.01 to 0.4 and having Zn as an essential component is formed on the surface of the flat portion with an average thickness of 10 nm to 200 nm.

なお、本発明では、Zn系酸化物中にZrを含有していれば摺動性に優れるため、その他の金属イオンや無機化合物などを不純物として、あるいは故意に含有していても本発明の効果が損なわれるものではない。   In the present invention, if Zr is contained in the Zn-based oxide, the slidability is excellent. Therefore, the effects of the present invention can be achieved even if other metal ions or inorganic compounds are contained as impurities or intentionally. Is not impaired.

ここで、平坦部表面にZrを含むZn系酸化物を形成させる方法としては、Zrを含む酸性溶液に接触させる方法が挙げられる。具体的には、鋼板に溶融亜鉛めっきを施し、さらに加熱処理により合金化し、調質圧延を施して平坦部を形成した後、Zrを含む酸性溶液に接触させ、接触終了後1〜120秒放置した後、水洗を行うことにより、亜鉛めっき鋼板表面に10nm以上のZn系酸化物層を形成するのである。酸性溶液にはZnを含有させても良い。酸性溶液中のZr、Zn濃度は、皮膜中の含有量が本発明で規定する範囲内にはいるように調整すればよいが、その一例を下記に示す。   Here, as a method of forming a Zn-based oxide containing Zr on the flat portion surface, a method of contacting with an acidic solution containing Zr can be mentioned. Specifically, steel sheet is hot dip galvanized, alloyed by heat treatment, temper rolled to form a flat part, then contacted with an acidic solution containing Zr, and left for 1 to 120 seconds after completion of contact Then, a Zn-based oxide layer of 10 nm or more is formed on the surface of the galvanized steel sheet by washing with water. The acidic solution may contain Zn. The Zr and Zn concentrations in the acidic solution may be adjusted so that the content in the film is within the range defined by the present invention, an example of which is shown below.

酸性溶液中にZrイオンを含有させるためには、酸性溶液にZrの硫酸塩、硝酸塩、塩化物、リン酸塩のうち、少なくとも1種類以上をZrイオン濃度として0.1〜50g/lの範囲で含有することが好ましい。イオン濃度が0.1g/l未満では、Zrの含有が不十分であり摺動性向上効果が不十分な場合がある。一方、100g/lを超えると、酸化物の形成が不安定になる。   In order to contain Zr ions in the acidic solution, the acidic solution contains at least one of Zr sulfate, nitrate, chloride, and phosphate in the range of 0.1 to 50 g / l as the Zr ion concentration. It is preferable to do. If the ion concentration is less than 0.1 g / l, the Zr content is insufficient, and the effect of improving the slidability may be insufficient. On the other hand, if it exceeds 100 g / l, the formation of oxide becomes unstable.

使用する酸性溶液は、pH2.0〜5.0の領域においてpH緩衝作用を有するものが好ましい。これは、pH2.0〜5.0の領域でpH緩衝作用を有する酸性溶液を使用すると、酸性溶液に接触後、所定時間保持することで、酸性溶液とめっき層の反応によるZnの溶解とZn系酸化物の形成反応が十分に生じ、鋼板表面に酸化物層を安定して得ることができるためである。Zrはこの間にZn系酸化物に効果的に取り込まれると考えられる。このようなpH緩衝性を有する酸性溶液としては、酢酸ナトリウム(CH3COONa)などの酢酸塩やフタル酸水素カリウム((KOOC)2C6H4)などのフタル酸塩、クエン酸ナトリウム(Na3C6H5O7)やクエン酸二水素カリウム(KH2C6H5O7)などのクエン酸塩、コハク酸ナトリウム(Na2C4H4O4)などのコハク酸塩、乳酸ナトリウム(NaCH3CHOHCO2)などの乳酸塩、酒石酸ナトリウム(Na2C4H4O6)などの酒石酸塩、ホウ酸塩、リン酸塩等が挙げられ、これらのうち少なくとも1種類以上を、前記各成分含有量を5〜50g/lの範囲で含有する水溶液を使用することが好ましい。前記濃度が5g/l未満では、亜鉛の溶解とともに溶液のpH上昇が比較的すばやく生じるため、摺動性の向上に十分な酸化物層を形成することができない。一方、50g/lを超えると、亜鉛の溶解が促進され、酸化物層の形成に長時間を有するだけでなく、めっき層の損傷も激しく、本来の防錆鋼板としての役割も失うことが考えられるためである。 The acidic solution used preferably has a pH buffering action in the pH range of 2.0 to 5.0. This is because when an acidic solution having a pH buffering action in the pH range of 2.0 to 5.0 is used, it is maintained for a predetermined time after contact with the acidic solution, so that the dissolution of Zn and the Zn-based oxidation are caused by the reaction between the acidic solution and the plating layer. This is because a product formation reaction occurs sufficiently, and an oxide layer can be stably obtained on the steel sheet surface. Zr is considered to be effectively incorporated into the Zn-based oxide during this period. Acidic solutions with such pH buffering properties include acetates such as sodium acetate (CH 3 COONa), phthalates such as potassium hydrogen phthalate ((KOOC) 2 C 6 H 4 ), sodium citrate (Na Citrates such as 3 C 6 H 5 O 7 ) and potassium dihydrogen citrate (KH 2 C 6 H 5 O 7 ), succinates such as sodium succinate (Na 2 C 4 H 4 O 4 ), and lactic acid Examples include lactate such as sodium (NaCH 3 CHOHCO 2 ), tartrate such as sodium tartrate (Na 2 C 4 H 4 O 6 ), borate, phosphate, etc., and at least one of these, It is preferable to use an aqueous solution containing each component content in the range of 5 to 50 g / l. When the concentration is less than 5 g / l, the pH of the solution rises relatively quickly with the dissolution of zinc, so that an oxide layer sufficient for improving the slidability cannot be formed. On the other hand, if it exceeds 50 g / l, dissolution of zinc is promoted, and not only does it take a long time to form an oxide layer, but the plating layer is also severely damaged, and it may lose its original role as a rust-proof steel sheet. Because it is.

酸性溶液のpHは0.5〜2.0の範囲にあることが望ましい。これはpHが2.0を超えると、溶液中でZrイオンの沈殿(水酸化物の形成)が生じ、酸化物層中にZr系酸化物が効果的に取り込まれなくなるためである。一方、pHが低すぎると、亜鉛の溶解が促進され、めっき付着量の減少だけでなく、めっき皮膜に亀裂が生じ加工時に剥離が生じやすくなるため、pH0.5以上であることが望ましい。なお、酸性溶液のpHが0.5〜2.0の範囲より高い場合は硫酸等のpH緩衝性のない無機酸でpH調製することができる。   The pH of the acidic solution is desirably in the range of 0.5 to 2.0. This is because when the pH exceeds 2.0, precipitation of Zr ions (formation of hydroxide) occurs in the solution, and the Zr-based oxide is not effectively taken into the oxide layer. On the other hand, if the pH is too low, dissolution of zinc is promoted and not only the amount of plating is reduced, but also the plating film is cracked and easily peeled during processing. Therefore, the pH is preferably 0.5 or more. When the pH of the acidic solution is higher than the range of 0.5 to 2.0, the pH can be adjusted with an inorganic acid having no pH buffering property such as sulfuric acid.

酸性溶液の温度は、20〜70℃の範囲であることが好ましい。20℃未満では、酸化物層の生成反応に長時間を有し、生産性の低下を招く場合がある。一方、温度が高い場合には、反応は比較的すばやく進行するが、逆に鋼板表面に処理ムラを発生しやすくなるため、70℃以下の温度に制御することが望ましい。
合金化溶融亜鉛めっき鋼板を酸性溶液に接触させる方法には特に制限はないが、例えば、めっき鋼板を酸性溶液に浸漬する方法、めっき鋼板に酸性溶液をスプレーする方法、塗布ロールを介して酸性溶液をめっき鋼板に塗布する方法等があり、最終的に薄い液膜状で鋼板表面に存在することが望ましい。これは、鋼板表面に存在する酸性溶液の量が多いと、亜鉛の溶解が生じても溶液のpHが上昇せず、次々と亜鉛の溶解が生じるのみであり、酸化物層を形成するまでに長時間を有するだけでなく、めっき層の損傷も激しく、本来の防錆鋼板としての役割も失うことが考えられるためである。この観点から、鋼板表面に形成する溶液膜量は、10g/m2以下に調製することが好ましく有効である。なお、溶液膜量の調整は、絞りロール、エアワイピング等で行うことができる。
The temperature of the acidic solution is preferably in the range of 20 to 70 ° C. If it is less than 20 ° C., the production reaction of the oxide layer takes a long time, and the productivity may be lowered. On the other hand, when the temperature is high, the reaction proceeds relatively quickly, but conversely, processing unevenness tends to occur on the surface of the steel sheet, so it is desirable to control the temperature to 70 ° C. or lower.
There is no particular limitation on the method of bringing the alloyed hot-dip galvanized steel sheet into contact with the acidic solution. For example, the method of immersing the plated steel sheet in the acidic solution, the method of spraying the acidic solution onto the plated steel sheet, the acidic solution via the coating roll There is a method of applying to the plated steel sheet, and it is desirable that it is finally formed in a thin liquid film form on the surface of the steel sheet. This is because when the amount of acidic solution present on the steel sheet surface is large, the pH of the solution does not increase even if zinc dissolution occurs, and only zinc dissolution occurs one after another. This is because it not only has a long time but also severely damages the plating layer, and it is considered that the original role as a rust-proof steel sheet is lost. From this viewpoint, it is preferable and effective that the amount of the solution film formed on the surface of the steel plate is adjusted to 10 g / m 2 or less. The amount of the solution film can be adjusted by a squeeze roll, air wiping or the like.

また、酸性溶液に接触後、水洗までの時間(水洗までの保持時間)は、1〜120秒間が好ましい。これは水洗までの時間が1秒未満であると、溶液のpHが上昇しZr系酸化物層およびZn系酸化物層が形成される前に、酸性溶液が洗い流されるために、摺動性の向上効果が得られず、また120秒を超えても、酸化物層の量に変化が見られないためである。
また、これらの製品を製造するにあたっては、溶融金属と素地鋼板との界面に硬くて脆い合金層が成長するのを抑制しめっき密着性を向上させるために、主成分(ZnやAl等)である溶融金属中に主成分以外の成分(例えば主成分Znに対するAl等)が少量添加されることが多い。
また本発明に係る合金化溶融亜鉛めっき鋼板への添加元素成分は特に限定されるものではなく、通常添加されるAl以外にも、例えば、Fe、Pb、Sb、Si、Sn、Mg、Mn、Ni、Ti、Li、Cuなどが含有または添加されていても、本発明の効果が損なわれるものではない。
Moreover, after contacting an acidic solution, the time to water washing (holding time to water washing) is preferably 1 to 120 seconds. If the time until washing with water is less than 1 second, the acidic solution is washed away before the pH of the solution rises and the Zr-based oxide layer and Zn-based oxide layer are formed. This is because the improvement effect cannot be obtained, and even if it exceeds 120 seconds, the amount of the oxide layer is not changed.
Moreover, when manufacturing these products, in order to suppress the growth of hard and brittle alloy layers at the interface between the molten metal and the base steel plate and to improve the plating adhesion, the main component (Zn, Al, etc.) A component other than the main component (for example, Al with respect to the main component Zn) is often added to a molten metal in a small amount.
Further, the additive element component to the galvannealed steel sheet according to the present invention is not particularly limited, and in addition to Al that is usually added, for example, Fe, Pb, Sb, Si, Sn, Mg, Mn, Even if Ni, Ti, Li, Cu or the like is contained or added, the effect of the present invention is not impaired.

さらに、酸化処理などに使用する処理液中に不純物が含まれることによりS、N、Pb、Cl、Na、Mn、Ca、Mg、Ba、Sr、Si、Pなどが酸化物層中に取り込まれても、本発明の効果が損なわれるものではない。   Furthermore, S, N, Pb, Cl, Na, Mn, Ca, Mg, Ba, Sr, Si, P, etc. are taken into the oxide layer due to impurities contained in the treatment solution used for oxidation treatment, etc. However, the effect of the present invention is not impaired.

次に、本発明を実施例により更に詳細に説明する。
板厚0.8mmの冷延鋼板上に、常法の合金化溶融亜鉛めっき皮膜を形成し、更に調質圧延を行い、めっき相表面に平坦部を形成した。引き続き、酸化物形成処理として、酢酸ナトリウム40g/lの酸性水溶液に表1に示す濃度にてZrを添加した酸性溶液に3秒浸漬した。なお、温度は表1に示す通り、適宜変えて行った。その後、ロール絞りを行い、液量を調整した後、1〜30秒間大気中、室温にて放置し、十分水洗を行った後、乾燥を実施した。比較材として、Zrを添加しないで上記と同様の処理を行った材料を作製した。なお、Zrイオン源としてZr(SO4)2・4H2Oを用いた。
Next, the present invention will be described in more detail with reference to examples.
A conventional alloyed hot-dip galvanized film was formed on a cold-rolled steel sheet having a thickness of 0.8 mm, and further subjected to temper rolling to form a flat portion on the surface of the plated phase. Subsequently, as an oxide forming treatment, it was immersed for 3 seconds in an acidic solution obtained by adding Zr at a concentration shown in Table 1 to an acidic aqueous solution of sodium acetate 40 g / l. The temperature was appropriately changed as shown in Table 1. Then, after carrying out roll squeezing and adjusting the amount of liquid, it was allowed to stand at room temperature in the atmosphere for 1 to 30 seconds, sufficiently washed with water, and then dried. As a comparative material, a material which was processed in the same manner as described above without adding Zr was produced. Note that Zr (SO 4 ) 2 .4H 2 O was used as the Zr ion source.

以上のように作製した鋼板について、めっき表層の平坦部における酸化物層の厚さおよびZrの含有量を測定するとともに、酸化物層の密着性と、プレス成形性を簡易的に評価する手法として摩擦係数の測定を行った。なお、測定方法は以下の通りである。   As a technique for measuring the thickness of the oxide layer and the content of Zr in the flat part of the plating surface layer for the steel sheet produced as described above, and simply evaluating the adhesion and press formability of the oxide layer The coefficient of friction was measured. The measuring method is as follows.

(1) 酸化物層厚さの測定
オージェ電子分光(AES)によりめっき表層の平坦部について、Arイオンスパッタリングを用いて、構成元素の深さ方向分析を行い、深さ方向の各元素の組成分布を測定した。その組成分布において、O濃度が、最大値より深い位置で、最大値と一定値との和の1/2となる深さを酸化物層の厚さとした。そして、平坦部の2箇所について酸化物層の厚さを測定し、平均値を酸化物層の厚さとした。
(1) Measurement of the oxide layer thickness Using Auger electron spectroscopy (AES), the surface area of the plating layer is analyzed using Ar ion sputtering in the depth direction of the constituent elements, and the composition distribution of each element in the depth direction. Was measured. In the composition distribution, at a position where the O concentration is deeper than the maximum value, the depth at which the O value is 1/2 of the sum of the maximum value and the constant value is defined as the thickness of the oxide layer. And the thickness of the oxide layer was measured about two places of the flat part, and let the average value be the thickness of the oxide layer.

(2) 酸化物層のZr含有量の測定
平坦部における酸化物層中のZr含有量の評価は、レプリカ法を用いた。酸化物層が存在する合金化溶融亜鉛めっき鋼板の表面に、アセチルセルロースフィルムを、アセトンを介して試料表面に30秒間圧着し、剥離した。剥離面にカーボンを蒸着したのちアセチルセルロースを溶解して透過電子顕微鏡(TEM)用の試料とした。TEM(フィリップス社製 CM30)を用い加速電圧200kVで、平坦部の酸化物層から採取した酸化物層の薄片について、エネルギー分散型X線分光器(EDS)を用いてスタンダードレス定量(薄膜近似法)を行い、得られた結果からZrとZnの原子比を計算した。測定は、1試料あたり5ヶ所以上について実施し平均した。
(2) Measurement of Zr content of oxide layer The replica method was used to evaluate the Zr content in the oxide layer in the flat portion. An acetylcellulose film was pressure-bonded to the surface of the sample for 30 seconds via acetone on the surface of the alloyed hot-dip galvanized steel sheet having the oxide layer, and peeled off. After carbon was deposited on the peeled surface, acetylcellulose was dissolved to prepare a sample for a transmission electron microscope (TEM). Standard-less quantification (thin film approximation method) using an energy dispersive X-ray spectrometer (EDS) for oxide layer flakes collected from a flat oxide layer using TEM (Philips CM30) at an acceleration voltage of 200 kV ) And the atomic ratio between Zr and Zn was calculated from the obtained results. The measurement was carried out at five or more locations per sample and averaged.

(3) 酸化物層の密着性の評価
酸化物層が存在する合金化溶融亜鉛めっき鋼板の表面に、アセチルセルロースフィルムを、アセトンを介して試料表面に30秒間圧着し、剥離する試験を行った。SEM(LEO1530)を用い、加速電圧0.5kVで上記試料表面を走査し、画像をデジタルデータで取り込んだ。画像の取り込みは、剥離試験前後で同一視野について同一条件にて行った。ここでは、表面酸化物の分布を可視化できる条件でSEM画像の取り込みを実施した(酸化物層が存在する領域が暗いコントラストで示される(特開2005-121467号参照)。それぞれの画像データから、平坦部の明るさの平均を数値化した。それぞれの画像データを酸化物が存在する領域としない領域(自然酸化膜厚程度は存在すると考えられる)を明るさで二値化した。その後、酸化物が存在する面積を求め、剥離試験前後のその面積の減少率を密着性の指標とした。すなわち、剥離試験により剥離された皮膜面積率が求まり値が小さいほど密着性が高くなる。ここでSEMの観察倍率は2000倍で、1試料あたり異なる5視野を測定して平均を求めた。なお明るさの数値化は、市販のソフトウエアPhotoshop(Adobe製)を用いて256階調で数値化した。
(3) Evaluation of adhesion of oxide layer A test was conducted in which an acetylcellulose film was pressure-bonded to the surface of a sample for 30 seconds via acetone on the surface of an alloyed hot-dip galvanized steel sheet on which the oxide layer was present. . Using the SEM (LEO1530), the sample surface was scanned at an acceleration voltage of 0.5 kV, and an image was captured as digital data. Image capture was performed under the same conditions for the same field of view before and after the peel test. Here, the SEM image was captured under the condition that the surface oxide distribution can be visualized (the region where the oxide layer is present is shown in dark contrast (see JP-A-2005-121467). The average brightness of the flat area was digitized, and each image data was binarized by brightness in areas where oxides were not present and areas where natural oxide film thickness would be present. The area where an object is present is obtained, and the decrease rate of the area before and after the peel test is used as an index of adhesion, that is, the area ratio of the film peeled by the peel test is obtained, and the smaller the value, the higher the adhesion. The observation magnification of SEM was 2000 times, and the average was obtained by measuring 5 different fields per sample.The brightness was digitized in 256 gradations using commercially available software Photoshop (manufactured by Adobe). Digitized.

(4) 摺動性評価試験(摩擦係数測定試験)
プレス成形性を評価するために、各供試材の摩擦係数を以下のようにして測定した。
(4) Slidability evaluation test (Friction coefficient measurement test)
In order to evaluate the press formability, the friction coefficient of each test material was measured as follows.

図1は、摩擦係数測定装置を示す概略正面図である。同図に示すように、供試材から採取した摩擦係数測定用試料1が試料台2に固定され、試料台2は、水平移動可能なスライドテーブル3の上面に固定されている。スライドテーブル3の下面には、これに接したローラ4を有する上下動可能なスライドテーブル支持台5が設けられ、これを押し上げることにより、ビード6による摩擦係数測定用試料1への押し付け荷重Nを測定するための第1ロードセル7が、スライドテーブル支持台5に取り付けられている。上記押し付け力を作用させた状態でスライドテーブル3を水平方向へ移動させるための摺動抵抗力Fを測定するために第2ロードセル8が、スライドテーブル3の一方の端部に取り付けられている。なお、潤滑油としてスギムラ化学社製のプレス用洗浄油プレトンR352Lを摩擦係数測定用試料1の表面に塗布して試験を行った。   FIG. 1 is a schematic front view showing a friction coefficient measuring apparatus. As shown in the figure, a friction coefficient measuring sample 1 collected from a test material is fixed to a sample table 2, and the sample table 2 is fixed to the upper surface of a slide table 3 that can move horizontally. On the lower surface of the slide table 3, there is provided a slide table support base 5 having a roller 4 in contact therewith and capable of moving up and down, and by pushing it up, a pressing load N applied to the friction coefficient measuring sample 1 by the bead 6 is applied. A first load cell 7 for measurement is attached to the slide table support 5. A second load cell 8 is attached to one end portion of the slide table 3 in order to measure the sliding resistance force F for moving the slide table 3 in the horizontal direction with the pressing force applied. In addition, the cleaning oil Preton R352L for press made by Sugimura Chemical Co., Ltd. was applied to the surface of the friction coefficient measurement sample 1 as a lubricant, and the test was performed.

図2は使用したビードの形状・寸法を示す概略斜視図である。ビード6の下面が摩擦係数測定用試料1の表面に押し付けられた状態で摺動する。図2に示すビード6の形状は幅10mm、試料の摺動方向長さ12mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ3mmの平面を有する。   FIG. 2 is a schematic perspective view showing the shape and dimensions of the beads used. The bead 6 slides with its lower surface pressed against the surface of the friction coefficient measurement sample 1. The shape of the bead 6 shown in FIG. 2 is 10 mm wide, 12 mm long in the sliding direction of the sample, the lower part of both ends of the sliding direction is a curved surface with a curvature of 4.5 mmR, and the bottom surface of the bead against which the sample is pressed is 10 mm wide and in the sliding direction It has a 3mm long plane.

摩擦係数の測定に対しては、成形荷重が高く型かじりが生じやすい高強度合金化溶融亜鉛めっき鋼板での過酷なプレス環境を想定して、室温(25℃)において、押し付け荷重Nを400kgfおよび1500kgfに変化させて行った。なお試料の引抜き速度(スライドテーブル3の水平移動速度)は100cm/min。これらの条件で、押し付け荷重Nと引抜き荷重Fを測定し、供試材とビードとの間の摩擦係数μは、式:μ=F/Nで算出した。   For the measurement of the friction coefficient, assuming a severe press environment with high strength alloyed hot dip galvanized steel sheet with high forming load and high galling, press load N is 400kgf at room temperature (25 ° C). Changed to 1500 kgf. The sample drawing speed (the horizontal movement speed of the slide table 3) is 100 cm / min. Under these conditions, the pressing load N and the pulling load F were measured, and the coefficient of friction μ between the test material and the bead was calculated by the formula: μ = F / N.

以上より得られた試験結果を表1に示す。なお、表1において条件1は、押付荷重400kgf、試料温度25℃(室温)を、条件2は押付荷重1500kgf、試料温度25℃(室温)をそれぞれ指す。   The test results obtained from the above are shown in Table 1. In Table 1, condition 1 indicates a pressing load of 400 kgf and a sample temperature of 25 ° C. (room temperature), and condition 2 indicates a pressing load of 1500 kgf and a sample temperature of 25 ° C. (room temperature).

Figure 2008285705
Figure 2008285705

表1に示す試験結果から下記事項が明らかとなった。
No.1、2は、酸性溶液での処理を行っているものの酸化物層がZrを含有していない比較例である。酸性溶液処理を行わない比較例の摩擦係数に比べると、めっき相表面の平坦部にはZnを主体とする酸化物層が形成されているため、低くなっているが、本発明例に比べると高い。また、酸化物層の密着性試験では平均して面積率50%強で剥離が生じている。
No.3〜12は、Zrを含む酸化物層を平坦部に付与した本発明例である。面積減少率は20%弱と比較例より低く、密着性は良好である。
また、本発明例の摩擦係数は比較例よりも低くなっている。特に、面圧の高い条件2において摩擦係数が低位で安定している。
酸化物層の密着性は、Zrの含有量が高いほど良好であることがわかる。摩擦係数は酸化物層厚に関連しており、層が厚いほど摩擦係数は小さくなる傾向がある。そして、酸化物層厚が同程度でZrを含む本発明例とZrを含まない比較例で比べると、本発明例の方が明らかに、密着性が高く、摩擦係数が低い。この特性発現は、酸化物層にZrを含むことによる効果である。
No.13の比較例3は、酸化処理を行っていないものである。摩擦係数は条件1、2とも本発明例よりも高い。
From the test results shown in Table 1, the following matters were clarified.
Nos. 1 and 2 are comparative examples in which the treatment with an acidic solution was performed, but the oxide layer did not contain Zr. Compared to the coefficient of friction of the comparative example in which the acidic solution treatment is not performed, the oxide layer mainly composed of Zn is formed on the flat portion of the plating phase surface, which is lower, but compared to the example of the present invention. high. Further, in the oxide layer adhesion test, peeling occurred with an area ratio of more than 50% on average.
Nos. 3 to 12 are examples of the present invention in which an oxide layer containing Zr is applied to a flat portion. The area reduction rate is less than 20%, which is lower than that of the comparative example, and the adhesion is good.
Further, the coefficient of friction of the example of the present invention is lower than that of the comparative example. In particular, the friction coefficient is low and stable under condition 2 where the surface pressure is high.
It can be seen that the higher the Zr content, the better the adhesion of the oxide layer. The coefficient of friction is related to the oxide layer thickness, and the thicker the layer, the smaller the coefficient of friction tends to be. When the oxide layer thickness is comparable and the inventive example containing Zr and the comparative example not containing Zr, the inventive example clearly has higher adhesion and a lower friction coefficient. This characteristic expression is an effect due to the inclusion of Zr in the oxide layer.
In Comparative Example 3 of No. 13, no oxidation treatment was performed. The friction coefficient is higher in both conditions 1 and 2 than in the example of the present invention.

摺動性に優れることから、優れたプレス成形性を有しており、自動車車体用途を中心に広範な分野で適用できる。   Since it has excellent slidability, it has excellent press formability and can be applied in a wide range of fields, mainly for automobile body applications.

摩擦係数測定装置を示す概略正面図Schematic front view showing friction coefficient measuring device 図1中のビード形状・寸法を示す概略斜視図Schematic perspective view showing bead shape and dimensions in FIG.

符号の説明Explanation of symbols

1 摩擦係数測定用試料
2 試料台
3 スライドテーブル
4 ローラ
5 スライドテーブル支持台
6 ビード
7 第一ロードセル
8 第二ロードセル
N 押付荷重
F 摺動抵抗力
1 Sample for friction coefficient measurement
2 Sample stage
3 Slide table
4 Roller
5 Slide table support
6 beads
7 First load cell
8 Second load cell
N Push load
F Sliding resistance force

Claims (1)

Fe-Zn合金めっき相を少なくとも鋼板の片面に有し、かつ、該Fe-Zn合金めっき相の表面には平坦部を有し、さらに、該平坦部表面には、ZrをZr/Znの原子比で0.01〜0.4含み、Znを必須成分とする酸化物が、平均厚さ10nm以上200nm以下で形成されていることを特徴とする合金化溶融亜鉛めっき鋼板。   The Fe—Zn alloy plating phase has at least one surface of the steel sheet, and the surface of the Fe—Zn alloy plating phase has a flat portion, and the surface of the flat portion has Zr as Zr / Zn atoms. An alloyed hot-dip galvanized steel sheet characterized in that an oxide containing Zn as an essential component in a ratio of 0.01 to 0.4 is formed with an average thickness of 10 nm to 200 nm.
JP2007130054A 2007-05-16 2007-05-16 Alloy hot-dip galvanized steel sheet Expired - Fee Related JP5045231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007130054A JP5045231B2 (en) 2007-05-16 2007-05-16 Alloy hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007130054A JP5045231B2 (en) 2007-05-16 2007-05-16 Alloy hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2008285705A true JP2008285705A (en) 2008-11-27
JP5045231B2 JP5045231B2 (en) 2012-10-10

Family

ID=40145726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007130054A Expired - Fee Related JP5045231B2 (en) 2007-05-16 2007-05-16 Alloy hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP5045231B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285707A (en) * 2007-05-16 2008-11-27 Jfe Steel Kk Galvanized steel sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02190483A (en) * 1989-01-19 1990-07-26 Nippon Steel Corp Galvanized steel sheet with excellent press formability
JP2003306781A (en) * 2002-04-18 2003-10-31 Jfe Steel Kk Manufacturing method of galvannealed steel sheet
JP2005256042A (en) * 2004-03-10 2005-09-22 Jfe Steel Kk Alloyed hot-dip galvanized steel sheet and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02190483A (en) * 1989-01-19 1990-07-26 Nippon Steel Corp Galvanized steel sheet with excellent press formability
JP2003306781A (en) * 2002-04-18 2003-10-31 Jfe Steel Kk Manufacturing method of galvannealed steel sheet
JP2005256042A (en) * 2004-03-10 2005-09-22 Jfe Steel Kk Alloyed hot-dip galvanized steel sheet and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285707A (en) * 2007-05-16 2008-11-27 Jfe Steel Kk Galvanized steel sheet

Also Published As

Publication number Publication date
JP5045231B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP5044976B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP3807341B2 (en) Method for producing galvannealed steel sheet
JP5239570B2 (en) Galvanized steel sheet
WO2007129678A1 (en) Process for producing alloyed hot-dip zinc-plated steel sheet and alloyed hot-dip zinc-plated steel sheet
JP3675313B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with excellent slidability
TWI516638B (en) Galvanized steel sheet and manufacturing method thereof
JP4529592B2 (en) Process for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet.
JP2007231375A (en) Alloy hot-dip galvanized steel sheet
JP4930182B2 (en) Alloy hot-dip galvanized steel sheet
JP5540459B2 (en) Alloy hot-dip galvanized steel sheet
JP4826486B2 (en) Method for producing galvannealed steel sheet
JP5045231B2 (en) Alloy hot-dip galvanized steel sheet
JP4525252B2 (en) Method for producing galvannealed steel sheet
JP4604712B2 (en) Method for producing hot dip galvanized steel sheet and hot dip galvanized steel sheet
JP3644402B2 (en) Alloy hot-dip galvanized steel sheet
JP5044924B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP4517887B2 (en) Method for producing hot dip galvanized steel sheet and hot dip galvanized steel sheet
JP5045120B2 (en) Alloy hot-dip galvanized steel sheet
JP4998658B2 (en) Method for producing galvannealed steel sheet
JP4696376B2 (en) Alloy hot-dip galvanized steel sheet
JP4539255B2 (en) Alloy hot-dip galvanized steel sheet
JP2005139557A (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP3097472B2 (en) Alloyed hot-dip galvanized steel sheet excellent in press formability and method for producing the same
JP4826017B2 (en) Alloy hot-dip galvanized steel sheet
JP5119734B2 (en) Galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5045231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees