[go: up one dir, main page]

JP2008281297A - Method for removing sulfur in fluidized bed combustor - Google Patents

Method for removing sulfur in fluidized bed combustor Download PDF

Info

Publication number
JP2008281297A
JP2008281297A JP2007127080A JP2007127080A JP2008281297A JP 2008281297 A JP2008281297 A JP 2008281297A JP 2007127080 A JP2007127080 A JP 2007127080A JP 2007127080 A JP2007127080 A JP 2007127080A JP 2008281297 A JP2008281297 A JP 2008281297A
Authority
JP
Japan
Prior art keywords
fluidized bed
sludge
lime
lime sludge
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007127080A
Other languages
Japanese (ja)
Other versions
JP4957371B2 (en
Inventor
Kenjiro Abe
健二郎 阿部
Hideo Igarashi
英夫 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP2007127080A priority Critical patent/JP4957371B2/en
Publication of JP2008281297A publication Critical patent/JP2008281297A/en
Application granted granted Critical
Publication of JP4957371B2 publication Critical patent/JP4957371B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/40Production or processing of lime, e.g. limestone regeneration of lime in pulp and sugar mills

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Paper (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of effectively removing sulfur in combustion gas in a fluid bed furnace which effectively utilizes lime sludge generated in a paper mill. <P>SOLUTION: In the method of removing sulfur in the fluid bed combustion equipment, the lime sludge generated in slaking and causticizing processes as a white liquor manufacturing process for pulp digestion is charged in the fluid bed furnace. The lime sludge has a specific surface area 0.300 m<SP>2</SP>/g, and is charged in the fluid bed by mixing with sludge generated in an effluent treatment process. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、流動層燃焼装置における硫黄分の除去方法に関し、さらに詳しくは、石灰スラッジを脱硫剤とし用いた硫黄分の除去方法に関する。 The present invention relates to a sulfur removal method in a fluidized bed combustion apparatus, and more particularly to a sulfur removal method using lime sludge as a desulfurization agent.

熱エネルギーを得る目的で石油、石炭等の化石燃料だけでなく、最近では廃棄物の有効利用の中でも発熱量が高いという点で廃タイヤも燃料に用いられることから、燃料中に含まれる硫黄の燃焼により、亜硫酸ガス、硫酸ガス等の有害な硫黄酸化物(SOx)の増加が発生している。これらを環境基準に適合する濃度まで除去して燃焼ガスを排出しなければならないため、従来から、硫黄酸化物の除去が行われている。その方法には大きく分けて次の2つの方法があげられ、ひとつは、炉内に脱硫剤を投入し、硫黄酸化物を吸収除去する炉内脱硫方であり、通常、脱硫剤としては、石灰石かドロマイトが使用され、この方法は、主に流動層炉で使用されている。また、炉後流の煙道の一部に脱硫剤と排ガスの接触層(塔)を設け、硫黄酸化物と脱硫剤の中和反応によって排ガス中の硫黄酸化物を除去する排煙脱硫方があり、この方法では、硫黄酸化物と脱硫剤である石灰石が中和反応し石膏に変化するため、有効利用される。 For the purpose of obtaining thermal energy, not only fossil fuels such as oil and coal, but recently, waste tires are also used as fuel because of the high calorific value among the effective use of waste. Combustion causes an increase in harmful sulfur oxides (SOx) such as sulfurous acid gas and sulfuric acid gas. Since these must be removed to a concentration that meets environmental standards and the combustion gas must be discharged, sulfur oxides are conventionally removed. The method is roughly divided into the following two methods. One is a method of desulfurization in the furnace in which a desulfurization agent is introduced into the furnace and the sulfur oxide is absorbed and removed. Usually, the desulfurization agent is limestone. Dolomite is used, and this method is mainly used in fluidized bed furnaces. Also, there is a flue gas desulfurization method in which a contact layer (tower) of a desulfurization agent and exhaust gas is provided in a part of the flue downstream of the furnace, and the sulfur oxide in the exhaust gas is removed by a neutralization reaction between the sulfur oxide and the desulfurization agent. In this method, sulfur oxide and limestone, which is a desulfurizing agent, are neutralized and changed to gypsum, so that they are effectively used.

上記炉内脱硫法においては、脱硫剤として使用されるカルシウムを主成分とする石灰石やドロマイトの利用率が低く、例えば、常圧バブリング型の流動層ボイラーにおいては、90%以上の脱硫率を得る場合、石灰石の利用率は15〜25%程度であり、循環型流動層ボイラーにおいては、その利用率は25〜35%といわれている。従って、燃料や原料中に含まれる硫黄分を完全に除去するには、大量の脱硫剤の投入が必要であった。これは従来の石灰石では、その表面でのみ脱硫反応が起こり粒子の内部まで反応しないため、多くのカルシウムが未利用のまま残ってしまうためである。多量の脱硫剤の使用は灰として処理される残渣の排出量を増大させその処理にエネルギーを必要とするという問題があるだけでなく、過剰の脱硫剤の添加は燃料中のN分を窒素酸化物に転換反応させることによって、脱硫剤がNOへの転換を抑制するが、その一方で、NOxへの転換を促進することが考えられている。 In the in-furnace desulfurization method, the utilization rate of limestone or dolomite mainly composed of calcium used as a desulfurizing agent is low. For example, in a normal pressure bubbling fluidized bed boiler, a desulfurization rate of 90% or more is obtained. In this case, the utilization rate of limestone is about 15 to 25%, and in a circulating fluidized bed boiler, the utilization rate is said to be 25 to 35%. Therefore, in order to completely remove the sulfur content contained in the fuel and raw material, it is necessary to input a large amount of desulfurizing agent. This is because in conventional limestone, a desulfurization reaction occurs only on the surface and does not react to the inside of the particles, so that a lot of calcium remains unused. The use of a large amount of desulfurizing agent not only has the problem of increasing the amount of residue processed as ash and requiring energy for the treatment, but the addition of excessive desulfurizing agent also oxidizes the N content in the fuel with nitrogen. It is considered that the desulfurization agent suppresses the conversion to N 2 O by converting it to a product, while promoting the conversion to NOx.

このような問題を解決するため、より粒子径が細かく、また、利用可能な表面積の割合が多く、反応性にも優れた脱硫剤として、酸化カルシウム(CaO)や水酸化カルシウム(Ca(OH))等の微粒子を用いる方法が検討されてきた。しかし、石灰石の粉砕にはコストがかかり、投入した際にガス流れに同伴して炉外へ排出されてしまう問題があった。 In order to solve such a problem, calcium oxide (CaO) or calcium hydroxide (Ca (OH)) is used as a desulfurization agent having a finer particle diameter, a larger proportion of available surface area, and excellent reactivity. A method using fine particles such as 2 ) has been studied. However, pulverization of limestone is costly, and there is a problem that it is discharged to the outside of the furnace along with the gas flow when it is charged.

石灰石やドロマイトなどの脱硫剤にかえて廃棄物のなかで生コンクリートスラッジ(特許文献1)、砂糖の製造過程で原料ビートの糖液の精製時に排出されるライムケーキ(特許文献2)を代用品にするという技術が開示されているが廃棄物の有効利用という点では有効であるがいずれも特定の場所で入手されるものであるため利用が限られる。また、脱硫剤とともに触媒として多孔質アルミナを投入する方法(特許文献3)も開示されているが装置の改造が必要であり実用的ではない。
特開平10−267221号 特開2005−98673号 特開2004−82111号
In place of desulfurization agents such as limestone and dolomite, raw concrete sludge (Patent Document 1) and lime cake (Patent Document 2) discharged when refining the sugar solution of raw material beet in the sugar production process are substituted. Although it is effective in terms of effective use of waste, the use of the technology is limited because it is obtained at a specific place. Moreover, although a method (Patent Document 3) in which porous alumina is added as a catalyst together with a desulfurizing agent is also disclosed, the apparatus needs to be modified and is not practical.
JP-A-10-267221 JP 2005-98673 A JP 2004-82111 A

本発明は製紙工場内で発生する石灰スラッジを有効に利用した、流動層炉における燃焼ガス中の硫黄分の除去方法を提供することを目的とする。 An object of this invention is to provide the removal method of the sulfur content in the combustion gas in a fluidized bed furnace which utilizes effectively the lime sludge generated in a paper mill.

本発明者らは、上記目的を達成するため、鋭意検討を重ねた結果、パルプ蒸解用の白液製造工程である苛性化工程より発生する石灰スラッジ(以下単に石灰スラッジとする)は、購入石灰に比べ比表面積が大きく、反応性が高いことから、脱硫剤として有効であることを見出し、本発明を完成させた。 As a result of intensive investigations to achieve the above object, the present inventors have found that lime sludge (hereinafter simply referred to as lime sludge) generated from a causticizing process that is a white liquor manufacturing process for pulp cooking is purchased lime. Therefore, the present invention has been completed by finding that it is effective as a desulfurization agent because of its large specific surface area and high reactivity.

本発明によれば、以下の流動層燃焼装置における硫黄分の除去方法及び流動層炉用脱硫剤が提供される。
(1)パルプ蒸解用の白液製造工程である消和・苛性化工程より発生する石灰スラッジを流動層炉内に投入する流動層燃焼装置における硫黄分の除去方法。
(2)前記石灰スラッジは、比表面積が0.300m/g以上である(1)記載の流動層燃焼装置における硫黄分の除去方法。
(3)前記石灰スラッジを排水処理工程より発生する汚泥スラッジと混合して流動層内に投入する(1)又は(2)のいずれか1つに記載の流動層燃焼装置における硫黄分の除去方法。
(4)前記石灰スラッジを蒸解薬品回収工程である緑液清澄工程より発生するドレッグスと混合して流動層炉内に投入する(1)〜(3)のいずれか1つに記載の流動層燃焼装置における硫黄分の除去方法。
According to the present invention, the following sulfur removal method and fluidized bed furnace desulfurization agent in a fluidized bed combustion apparatus are provided.
(1) A method for removing sulfur in a fluidized bed combustor in which lime sludge generated from a soaking / causticizing process, which is a white liquor manufacturing process for pulp cooking, is introduced into a fluidized bed furnace.
(2) The sulfur content removal method in the fluidized bed combustion apparatus according to (1), wherein the lime sludge has a specific surface area of 0.300 m 2 / g or more.
(3) The method for removing sulfur content in a fluidized bed combustion apparatus according to any one of (1) and (2), wherein the lime sludge is mixed with sludge sludge generated from a wastewater treatment step and charged into a fluidized bed. .
(4) The fluidized bed combustion according to any one of (1) to (3), wherein the lime sludge is mixed with dregs generated from a green liquor clarification step which is a cooking chemical recovery step and charged into a fluidized bed furnace. Method for removing sulfur content in the apparatus.

本発明によれば、流動層燃焼装置において、安価に効率よく、硫黄分の除去方法を提供することができ、石灰投入量減による灰処理費の削減、なおかつ石灰キルンにおける石灰焼成量減により重油使用量を削減することができる。 According to the present invention, in a fluidized bed combustion apparatus, it is possible to provide a method for removing sulfur efficiently and inexpensively, reduce ash treatment costs by reducing the amount of lime input, and reduce heavy oil by reducing the amount of lime fired in the lime kiln. The amount used can be reduced.

本発明によれば、流動層燃焼装置において、石灰スラッジを脱硫剤として炉内に投入し、石油、石炭、バイオマス、廃タイヤ、廃プラスチック等を燃料又は原料とする酸化反応(燃焼)、ガス化、熱分解等により、炉内で発生するガス中の硫黄分を除去する。
本発明で使用する石灰スラッジは、木材チップをパルプ化する際に使用される白液(硫化ナトリウムと水酸化ナトリウムの混合物)を製造する工程、いわゆる消和・苛性化工程から発生する炭酸カルシウム粉末である。すなわち、パルプ化工程から排出されたナトリウムと硫黄を含む排液(黒液)が回収ボイラーにて還元燃焼されて炭酸ナトリウムと硫化ナトリウムを含むスメルトと呼ばれる無機固形物が回収される。スメルトを溶解して得られた緑液に酸化カルシウムを添加することにより消和反応(1)と苛性化反応(2)が進行し、硫化ナトリウムと水酸化ナトリウムからなる白液が生成される。この一連の反応の過程で、炭酸カルシウムが生成し、洗浄脱水された白色粉末が石灰スラッジである。
(1)CaO + HO → Ca(OH)
(2)NaCO + Ca(OH) → 2NaOH + CaCO

According to the present invention, in a fluidized bed combustion apparatus, lime sludge is introduced into a furnace as a desulfurizing agent, and an oxidation reaction (combustion) or gasification using petroleum, coal, biomass, waste tires, waste plastics or the like as fuel or raw materials. The sulfur content in the gas generated in the furnace is removed by pyrolysis or the like.
The lime sludge used in the present invention is a calcium carbonate powder generated from a process of producing a white liquor (a mixture of sodium sulfide and sodium hydroxide) used when pulping wood chips, a so-called soaking / causticizing process. It is. That is, the waste liquid (black liquor) containing sodium and sulfur discharged from the pulping process is reduced and burned in the recovery boiler to recover inorganic solids called smelt containing sodium carbonate and sodium sulfide. By adding calcium oxide to the green liquor obtained by dissolving the smelt, the soaking reaction (1) and the causticizing reaction (2) proceed to produce a white liquor composed of sodium sulfide and sodium hydroxide. In the course of this series of reactions, calcium carbonate is produced, and the white powder that has been washed and dehydrated is lime sludge.
(1) CaO + H 2 O → Ca (OH) 2
(2) Na 2 CO 3 + Ca (OH) 2 → 2NaOH + CaCO 3

石灰スラッジは比表面積が0.300m/g以上であることが好ましい。
比表面積は0.300m/g未満のものは硫黄分との反応性が低下して十分な脱硫効果を得るには投入量が増加して灰の量が増えるため好ましくない。
石灰スラッジの比表面積を上記範囲に保つ方法としては石灰スラッジ投入前にスラッジの分級工程を設け、大粒径の粒子を除去することが有効である。
Lime sludge preferably has a specific surface area of 0.300 m 2 / g or more.
A specific surface area of less than 0.300 m 2 / g is not preferred because the reactivity with the sulfur content decreases and a sufficient desulfurization effect is obtained because the input amount increases and the amount of ash increases.
As a method for keeping the specific surface area of the lime sludge within the above range, it is effective to provide a sludge classification step before charging the lime sludge to remove the large particle size.

本発明では、流動層燃焼装置の流動層炉内に、石灰スラッジを脱硫剤として、通常、燃料及び/又は原料中の硫黄分に対する脱硫剤のCa分が0.5〜4(モル比)になるように投入し、炉内で脱硫を行う。このモル比が0.5より低い場合は、十分な反応が得られない場合がある。一方、4より高い場合は、高い反応率が得られるものの、残渣の発生量が増加し、灰処理量が増えてしまう場合がある。従って、好ましくは1〜3(モル比)になるように投入し、炉内で脱硫を行なうことが好ましい。 In the present invention, lime sludge is used as a desulfurizing agent in the fluidized bed furnace of the fluidized bed combustion apparatus, and the Ca content of the desulfurizing agent with respect to the sulfur content in the fuel and / or raw material is usually 0.5 to 4 (molar ratio). The desulfurization is performed in the furnace. When this molar ratio is lower than 0.5, sufficient reaction may not be obtained. On the other hand, when the ratio is higher than 4, a high reaction rate can be obtained, but the amount of residue generated may increase and the amount of ash treatment may increase. Therefore, it is preferable that the desulfurization is performed in the furnace by introducing the mixture in a ratio of preferably 1 to 3 (molar ratio).

石灰スラッジは苛性化工程で脱水処理される前のスラリー状態(固形分濃度約40%)でポンプ移送し、直接または汚泥スラッジなどと混合して投入する。あるいは苛性化工程で真空脱水処理された状態(固形分濃度約70%)でコンベア移送し、直接または汚泥スラッジなどと混合して投入する。あるいはキルン排ガスなどを利用して水分をさらに除去した状態(固形分濃度約100%)で風送し、直接または汚泥スラッジなどと混合して投入する。 The lime sludge is pumped in a slurry state (solid content concentration of about 40%) before being dehydrated in the causticizing process, and directly or mixed with sludge sludge. Or it conveys in the state (vacuum dehydration process about 70%) which was vacuum-dehydrated in the causticizing process, and mixes with direct or sludge sludge etc. Alternatively, it is blown in a state where moisture is further removed using a kiln exhaust gas or the like (solid content concentration of about 100%) and directly or mixed with sludge sludge and the like.

前記石灰スラッジを脱硫剤として流動層燃焼装置に投入する際に、排水処理工程より発生する汚泥スラッジと混合して流動層内に投入することが好ましい。汚泥スラッジと混合することで、粉状の石灰スラッジが炉内で飛散することなく炉底まで達し、十分な滞留時間を得ることで脱硫効果を促進する。 When the lime sludge is introduced into the fluidized bed combustion apparatus as a desulfurizing agent, it is preferably mixed with the sludge sludge generated from the waste water treatment process and introduced into the fluidized bed. By mixing with sludge sludge, powdery lime sludge reaches the bottom of the furnace without being scattered in the furnace and promotes the desulfurization effect by obtaining sufficient residence time.

前記石灰スラッジを脱硫剤として流動層燃焼装置に投入する際には蒸解薬品回収工程である緑液清澄工程より発生するドレッグスと混合して流動層内に投入することが好ましい。ドレッグスは緑液清澄装置において沈降除去された後、ベルトプレスなどの脱水工程で固形分濃度約30%まで濃縮され、流動層燃焼装置において焼却される。粉状の石灰スラッジをこのドレッグスと混合することで石灰スラッジが炉内で飛散することなく炉低まで達し、十分な滞留時間を得ることで脱硫効果を促進する。 When the lime sludge is introduced into the fluidized bed combustion apparatus as a desulfurizing agent, it is preferably mixed with the dregs generated from the green liquor clarification process, which is a cooking chemical recovery process, and then introduced into the fluidized bed. Dregs are settled and removed in a green liquor clarifier, then concentrated to a solids concentration of about 30% in a dehydration process such as a belt press, and incinerated in a fluidized bed combustor. By mixing the powdered lime sludge with the dregs, the lime sludge reaches the furnace low without scattering in the furnace, and the desulfurization effect is promoted by obtaining sufficient residence time.

本発明で使用する流動層燃焼装置とは、適当な大きさの固体粒子を容器内に充填し、容器のそこから均一に空気を吹きこむと粒子がある高さまで浮遊し、激しく動き回る状態になる。この激しく動き回る粒子の層を流動層といい、この中で石炭等を燃焼させ蒸気を発生させる燃焼装置であり、固体粒子の流動により、石炭等は瞬時に乾燥・着火し、更に層内に均一に分散され、空気との良好な混合と長い滞留時間により効率よく燃焼するため、従来の燃焼法では燃えにくかった低質燃料でも燃焼可能とした装置である。本発明では常圧流動層燃焼装置でも加圧流動層燃焼装置でも、外部・内部循環型やバブリング型でもよい。
本発明では石灰スラッジをそのまま脱硫剤として使用できるが、上述した他の成分と混ぜて脱硫剤として使用することができる。
The fluidized bed combustion apparatus used in the present invention is a state in which solid particles of an appropriate size are filled in a container, and when air is blown uniformly from the container, the particles float to a certain height and move around violently. . This layer of particles that moves violently is called a fluidized bed. It is a combustor that burns coal and generates steam, and the coal particles are instantly dried and ignited by the flow of solid particles. In order to burn efficiently with good mixing with air and a long residence time, it is a device that can burn even low-quality fuel that was difficult to burn with the conventional combustion method. In the present invention, an atmospheric fluidized bed combustion apparatus, a pressurized fluidized bed combustion apparatus, an external / internal circulation type, or a bubbling type may be used.
In the present invention, lime sludge can be used as it is as a desulfurization agent, but can be used as a desulfurization agent by mixing with the above-mentioned other components.

本発明の方法において燃焼又はガス化、熱分解、部分酸化される燃料種又は原料としては、亜硫酸ガス、硫酸ガスその他の硫黄酸化物(SOx)等を発生する硫黄分を含有するものが本発明の目的からみて有用であり、例えば、石炭、石油コークス、オイルサンド、バイオマス等の固体燃料、石炭に水あるいは油等を配合した疑似流体燃料、重油、灯油、アルコール混合物等の液体燃料、LPG、LNG、工場排ガス等の気体燃料、ゴミ、汚泥、プラスチック、スラッジ、タイヤ等の廃棄物、又はこれらから選ばれる少なくとも2種類の混合物が使用される。 In the method of the present invention, the fuel species or raw materials to be combusted or gasified, thermally decomposed, and partially oxidized include those containing a sulfur component that generates sulfurous acid gas, sulfuric acid gas, and other sulfur oxides (SOx). For example, solid fuel such as coal, petroleum coke, oil sand and biomass, pseudo fluid fuel containing water or oil blended with coal, liquid fuel such as heavy oil, kerosene, alcohol mixture, LPG, LNG, gaseous fuel such as factory exhaust gas, waste, sludge, plastic, sludge, tire and other waste, or at least two types of mixtures selected from these are used.

本発明の方法においては、流動層燃焼ボイラー、流動層ガス化炉、流動層熱分解炉、流動層部分ガス化炉等の各種流動層装置における反応は、好ましくは500〜2,000℃の範囲内の温度で行われるが、さらに脱硫効率を上げるためには、600〜1,000℃の温度で行うことが反応率を向上させる点から好ましい。 In the method of the present invention, the reaction in various fluidized bed apparatuses such as a fluidized bed combustion boiler, a fluidized bed gasification furnace, a fluidized bed pyrolysis furnace, a fluidized bed partial gasification furnace and the like is preferably in the range of 500 to 2,000 ° C. However, in order to further increase the desulfurization efficiency, it is preferable to perform the reaction at a temperature of 600 to 1,000 ° C. from the viewpoint of improving the reaction rate.

次に、実施例及び比較例により本発明を具体的に示すが、本発明は下記実施例に限定されるものではない。 Next, although an example and a comparative example show the present invention concretely, the present invention is not limited to the following example.

実施例1
廃タイヤ中に1.5%含まれるS分に対しモル比(Ca/S)1.3に相当するCaを含む石灰スラッジ(ドラムフィルター脱水後の水分20%を含む。)を他の燃料と混合することなく単独で表1に示す燃料構成の流動層燃焼装置に投入し、脱硫効果を確認した結果を表2に示す。
Example 1
Lime sludge containing Ca corresponding to a molar ratio (Ca / S) of 1.3 with respect to the S content contained in the waste tire 1.5% (including 20% of water after drum filter dehydration) and other fuels Table 2 shows the result of confirming the effect of desulfurization by introducing it into a fluidized bed combustion apparatus having the fuel configuration shown in Table 1 without mixing.

実施例2
廃タイヤ中に1.5%含まれるS分に対しモル比(Ca/S)1.2に相当するCaを含む石灰スラッとを排水スラッジと混合した石灰スラッジ(、単独石灰スラッジと排水スラッジからの合計持込水分30%を含む。)を表1に示す燃料構成の流動層燃焼装置に投入し脱硫効果を確認した結果を表2に示す。
Example 2
Lime sludge obtained by mixing lime sludge containing Ca corresponding to a molar ratio (Ca / S) 1.2 with respect to S content contained in the waste tire 1.5% with waste sludge (from single lime sludge and waste sludge) Table 2 shows the result of confirming the effect of desulfurization by introducing into the fluidized bed combustion apparatus having the fuel configuration shown in Table 1.

実施例3
廃タイヤ中に1.5%含まれるS分に対しモル比(Ca/S)1.2に相当するCaを含む石灰スラッジとドレッグスと混合した石灰スラッジ(単独石灰スラッジとドレッグスからの合計持込水分30%を含む)を表1に示す燃料構成の流動層燃焼装置に投入し、脱硫効果を確認した結果を表2に示す。
Example 3
Lime sludge mixed with lime sludge and dregs containing Ca corresponding to a molar ratio (Ca / S) of 1.2 with respect to S content of 1.5% in the waste tire (total carry-in from single lime sludge and dregs Table 2 shows the result of confirming the effect of desulfurization by charging the fluidized bed combustor having the fuel composition shown in Table 1 into the fluidized bed combustion apparatus.

比較例1
廃タイヤ中に1.5%含まれるS分に対しモル比(Ca/S)1.8に相当するCaを含む購入石灰(含有水分0%の粉体)を表1に示す燃料構成の流動層燃焼装置に投入し、脱硫効果を確認した結果を表2に示す。
Comparative Example 1
Flow of fuel composition shown in Table 1 for purchased lime (powder with 0% water content) containing Ca corresponding to a molar ratio (Ca / S) of 1.8 to S contained in 1.5% of the waste tire Table 2 shows the result of the desulfurization effect that was introduced into the layer combustion apparatus.

Figure 2008281297
Figure 2008281297

Figure 2008281297
Figure 2008281297

表2に示す通り、石灰スラッジを排水スラッジまたはドレッグスと混合して投入(モル比1.2)することで、石灰スラッジ単独投入(モル比1.3)に比べ効率的に脱硫されたのは、炉内に投入された石灰スラッジが汚泥とともに炉底まで達し、十分な滞留時間が得られたためである。 As shown in Table 2, by mixing lime sludge with drainage sludge or dregs (molar ratio 1.2), it was more efficiently desulfurized than lime sludge alone (molar ratio 1.3). This is because the lime sludge thrown into the furnace reached the furnace bottom together with the sludge, and sufficient residence time was obtained.

表2に示す通り、同等の排ガスSOxを得るために購入石灰が石灰スラッジに比べより多くの投入量を必要とするのは、購入石灰は石灰スラッジに比べ比表面積が小さいことから炉内においてS分との反応性に劣るためである。なおかつ、購入石灰は水分を含まないことから投入直後に炉内で飛散し、十分な滞留が得られないまま系外へ排出されるためである。 As shown in Table 2, purchased lime requires a larger amount of input than lime sludge to obtain equivalent exhaust gas SOx because purchased lime has a smaller specific surface area than lime sludge. This is because the reactivity with the minute is poor. Moreover, since the purchased lime does not contain moisture, it is scattered in the furnace immediately after the addition, and is discharged out of the system without obtaining sufficient retention.

Claims (4)

パルプ蒸解用の白液製造工程である消和・苛性化工程より発生する石灰スラッジを流動層炉内に投入することを特徴とする流動層燃焼装置における硫黄分の除去方法。 A method for removing a sulfur content in a fluidized bed combustion apparatus, wherein lime sludge generated from a soaking / causticizing process, which is a white liquor manufacturing process for pulp cooking, is introduced into a fluidized bed furnace. 前記石灰スラッジの比表面積は0.300m/g以上であることを特徴とする請求項1に記載の流動層燃焼装置における硫黄分の除去方法。 2. The method for removing a sulfur content in a fluidized bed combustion apparatus according to claim 1, wherein the lime sludge has a specific surface area of 0.300 m 2 / g or more. 前記石灰スラッジを排水処理工程より発生する汚泥スラッジと混合して流動層炉内に投入することを特徴とする請求項1又は2に記載の流動層燃焼装置における硫黄分の除去方法。 The method for removing a sulfur content in a fluidized bed combustion apparatus according to claim 1 or 2, wherein the lime sludge is mixed with sludge sludge generated from a wastewater treatment step and charged into a fluidized bed furnace. 前記石灰スラッジを蒸解薬品回収工程である緑液清澄工程より発生するドレッグスと混合して流動層炉内に投入することを特徴とする請求項1〜3のいずれかに記載の流動層燃焼装置における硫黄分の除去方法。 The fluidized bed combustion apparatus according to any one of claims 1 to 3, wherein the lime sludge is mixed with dregs generated from a green liquor clarification step, which is a cooking chemical recovery step, and charged into a fluidized bed furnace. How to remove sulfur.
JP2007127080A 2007-05-11 2007-05-11 Method for removing sulfur in fluidized bed combustor Expired - Fee Related JP4957371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007127080A JP4957371B2 (en) 2007-05-11 2007-05-11 Method for removing sulfur in fluidized bed combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007127080A JP4957371B2 (en) 2007-05-11 2007-05-11 Method for removing sulfur in fluidized bed combustor

Publications (2)

Publication Number Publication Date
JP2008281297A true JP2008281297A (en) 2008-11-20
JP4957371B2 JP4957371B2 (en) 2012-06-20

Family

ID=40142254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007127080A Expired - Fee Related JP4957371B2 (en) 2007-05-11 2007-05-11 Method for removing sulfur in fluidized bed combustor

Country Status (1)

Country Link
JP (1) JP4957371B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014044042A (en) * 2012-07-31 2014-03-13 Idemitsu Kosan Co Ltd Method for removing sulfur contents in pulverized coal combustion device and desulfurization agent
CN115727319A (en) * 2021-08-27 2023-03-03 中国石油化工股份有限公司 A kind of treatment method of oil refinery three sludge

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267221A (en) * 1997-03-28 1998-10-09 Idemitsu Kosan Co Ltd Fluidized bed furnace exhaust gas desulfurization method
JP2001098482A (en) * 1999-09-29 2001-04-10 Oji Paper Co Ltd Method for producing calcium carbonate for filler
JP2003117596A (en) * 2001-10-12 2003-04-22 Oji Paper Co Ltd Dregs treatment
JP2004026639A (en) * 2002-04-30 2004-01-29 Oji Paper Co Ltd Method for producing calcium carbonate
JP2004082111A (en) * 2002-06-28 2004-03-18 Idemitsu Kosan Co Ltd Method for controlling emission of N2O and NOX in combustion device
JP2005098673A (en) * 2003-09-05 2005-04-14 Idemitsu Kosan Co Ltd Method for removing sulfur in fluidized bed apparatus and desulfurizing agent
JP2005233537A (en) * 2004-02-20 2005-09-02 Shimizu Corp Paper sludge treatment method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267221A (en) * 1997-03-28 1998-10-09 Idemitsu Kosan Co Ltd Fluidized bed furnace exhaust gas desulfurization method
JP2001098482A (en) * 1999-09-29 2001-04-10 Oji Paper Co Ltd Method for producing calcium carbonate for filler
JP2003117596A (en) * 2001-10-12 2003-04-22 Oji Paper Co Ltd Dregs treatment
JP2004026639A (en) * 2002-04-30 2004-01-29 Oji Paper Co Ltd Method for producing calcium carbonate
JP2004082111A (en) * 2002-06-28 2004-03-18 Idemitsu Kosan Co Ltd Method for controlling emission of N2O and NOX in combustion device
JP2005098673A (en) * 2003-09-05 2005-04-14 Idemitsu Kosan Co Ltd Method for removing sulfur in fluidized bed apparatus and desulfurizing agent
JP2005233537A (en) * 2004-02-20 2005-09-02 Shimizu Corp Paper sludge treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014044042A (en) * 2012-07-31 2014-03-13 Idemitsu Kosan Co Ltd Method for removing sulfur contents in pulverized coal combustion device and desulfurization agent
CN115727319A (en) * 2021-08-27 2023-03-03 中国石油化工股份有限公司 A kind of treatment method of oil refinery three sludge

Also Published As

Publication number Publication date
JP4957371B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
RU2474762C2 (en) Method (versions) and system of air pollution reduction
US8124561B2 (en) Production of activated char using hot gas
CA2765431C (en) Carbon heat-treatment process
CN101703886B (en) Desulfurization method of magnesium slag directly used in circulating fluidized bed boiler
CN1055874C (en) Desulfurization of carbonaceous fuels
CA2841563E (en) Operational conditions and method for production of high quality activated carbon
WO2021193476A1 (en) Device and method pertaining to combustion exhaust gas purification treatment
JP4625265B2 (en) Method for removing sulfur in fluidized bed apparatus and desulfurizing agent
EP3392563A1 (en) Fluidized bed process particularly for combustion or gasification of undried energy wood from thinning as well as green biomass
JP6224903B2 (en) Method for removing sulfur in pulverized coal combustion equipment
JP4957371B2 (en) Method for removing sulfur in fluidized bed combustor
JP5422098B2 (en) Method of operating fluidized bed gasifier, fluidized bed gasifier, and coal gasification combined power generation system
JP3384435B2 (en) Fluidized bed furnace exhaust gas desulfurization method
CN102921292B (en) Method for Improving CO2 Capturing Performance of Papermaking White Mud in Coal-fired Fluidized Bed Boiler System
CN101367024A (en) Preparation method for high-efficiency composite calcium based desulphurizing agent with papermaking sewage sludge as principal raw material
Zhang et al. NO and SO2 removal and pore structure evolution during reburning with calcium magnesium acetate blended peanut shell
JP4215921B2 (en) Circulating fluidized bed boiler system and operating method thereof
JP2010008040A (en) Sulfur content eliminating method and desulfurizer for fluidized bed apparatus
KR101787418B1 (en) A Composite of low grade lime with CO2 emission reducing and removal of sulfur oxides in exhausted gas and improvement of high basicity efficiency in smelting process and manufacturing method thereof
CN110624387A (en) Method for preparing alkali liquor and replacing desulfurizer by using coal cinder
KR20140016840A (en) Method for removing sulphur component in pulverized coal combustion apparatus, and desulphurizing agent
CN202494119U (en) Municipal sludge treatment device
CN114646067A (en) Desulfurization treatment process for combustion application of furfural residues
KR20160104208A (en) A Composite of low grade lime from fluidize-bed boiler with CO2 emission reducing and removal of sulfur oxides in exhausted gas and improvement of high basicity efficiency in smelting process and manufacturing method thereof
JPH1163458A (en) Method for processing sludge by incineration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4957371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees