JP2008279319A - Exhaust gas purification catalyst and method for producing acidic oxide-supported alumina used therefor - Google Patents
Exhaust gas purification catalyst and method for producing acidic oxide-supported alumina used therefor Download PDFInfo
- Publication number
- JP2008279319A JP2008279319A JP2007123613A JP2007123613A JP2008279319A JP 2008279319 A JP2008279319 A JP 2008279319A JP 2007123613 A JP2007123613 A JP 2007123613A JP 2007123613 A JP2007123613 A JP 2007123613A JP 2008279319 A JP2008279319 A JP 2008279319A
- Authority
- JP
- Japan
- Prior art keywords
- alumina
- oxide
- supported
- catalyst
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 123
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims abstract description 116
- 230000002378 acidificating effect Effects 0.000 title claims abstract description 69
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000000746 purification Methods 0.000 title description 8
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 8
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 8
- 239000007789 gas Substances 0.000 claims description 31
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 14
- 229910052760 oxygen Inorganic materials 0.000 claims description 14
- 239000001301 oxygen Substances 0.000 claims description 14
- 239000002131 composite material Substances 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 239000002253 acid Substances 0.000 claims description 11
- 229910000510 noble metal Inorganic materials 0.000 claims description 10
- 238000003860 storage Methods 0.000 claims description 10
- 229910052719 titanium Inorganic materials 0.000 claims description 10
- 229910052721 tungsten Inorganic materials 0.000 claims description 10
- 239000011259 mixed solution Substances 0.000 claims description 9
- 239000002244 precipitate Substances 0.000 claims description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims description 8
- 239000002243 precursor Substances 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 150000002500 ions Chemical class 0.000 claims description 4
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims description 3
- 230000003472 neutralizing effect Effects 0.000 claims description 3
- 239000012670 alkaline solution Substances 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 8
- 238000001179 sorption measurement Methods 0.000 abstract description 4
- 238000009825 accumulation Methods 0.000 abstract description 2
- 239000000843 powder Substances 0.000 description 89
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 68
- 239000010410 layer Substances 0.000 description 48
- 239000010936 titanium Substances 0.000 description 42
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 37
- 230000000052 comparative effect Effects 0.000 description 36
- 239000010948 rhodium Substances 0.000 description 33
- 239000002002 slurry Substances 0.000 description 24
- 239000000758 substrate Substances 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 22
- 239000000243 solution Substances 0.000 description 22
- 238000003795 desorption Methods 0.000 description 21
- 239000011247 coating layer Substances 0.000 description 15
- 239000007864 aqueous solution Substances 0.000 description 13
- 239000011230 binding agent Substances 0.000 description 12
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 12
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 11
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 11
- 239000006104 solid solution Substances 0.000 description 11
- 229910001930 tungsten oxide Inorganic materials 0.000 description 11
- IXSUHTFXKKBBJP-UHFFFAOYSA-L azanide;platinum(2+);dinitrite Chemical compound [NH2-].[NH2-].[Pt+2].[O-]N=O.[O-]N=O IXSUHTFXKKBBJP-UHFFFAOYSA-L 0.000 description 10
- 239000000446 fuel Substances 0.000 description 7
- 229910052697 platinum Inorganic materials 0.000 description 7
- 229910052703 rhodium Inorganic materials 0.000 description 7
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 229910002091 carbon monoxide Inorganic materials 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 239000011593 sulfur Substances 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 229910052788 barium Inorganic materials 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000000383 hazardous chemical Substances 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- PXSIFGRGUVISHI-UHFFFAOYSA-N [Ni].[Ba] Chemical compound [Ni].[Ba] PXSIFGRGUVISHI-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052878 cordierite Inorganic materials 0.000 description 2
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 2
- 229910052815 sulfur oxide Inorganic materials 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- JVPGYYNQTPWXGE-UHFFFAOYSA-N 2-(4-methylphenyl)-1,3-benzothiazole Chemical compound C1=CC(C)=CC=C1C1=NC2=CC=CC=C2S1 JVPGYYNQTPWXGE-UHFFFAOYSA-N 0.000 description 1
- 229910000505 Al2TiO5 Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 230000010718 Oxidation Activity Effects 0.000 description 1
- 230000010757 Reduction Activity Effects 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- LCKIEQZJEYYRIY-UHFFFAOYSA-N Titanium ion Chemical compound [Ti+4] LCKIEQZJEYYRIY-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- AABBHSMFGKYLKE-SNAWJCMRSA-N propan-2-yl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(C)C AABBHSMFGKYLKE-SNAWJCMRSA-N 0.000 description 1
- -1 respectively Substances 0.000 description 1
- 230000008786 sensory perception of smell Effects 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/64—Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/652—Chromium, molybdenum or tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9445—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
- B01D53/945—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/63—Platinum group metals with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/64—Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/652—Chromium, molybdenum or tungsten
- B01J23/6527—Tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0207—Pretreatment of the support
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0209—Impregnation involving a reaction between the support and a fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0242—Coating followed by impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0244—Coatings comprising several layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0248—Coatings comprising impregnated particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20707—Titanium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20769—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20776—Tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/209—Other metals
- B01D2255/2092—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/30—Tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/30—Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
- B01J2523/31—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/30—Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
- B01J2523/37—Lanthanides
- B01J2523/3712—Cerium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/40—Constitutive chemical elements of heterogeneous catalysts of Group IV (IVA or IVB) of the Periodic Table
- B01J2523/48—Zirconium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
【課題】三元活性を従来と同等に維持しつつ、H2S の排出を抑制する。
【解決手段】アルミナより酸性度が高い金属酸化物からなる酸性酸化物がアルミナに選択的に担持されてなる酸性酸化物担持アルミナを担体中に含む触媒とする。
酸性酸化物担持アルミナにおけるアルミナの塩基点が酸性酸化物によって中和状態にある。そのためSO3 あるいはSO4 の吸着が抑制され、触媒上に蓄積されるのが抑制されるため、ストイキあるいはリッチ雰囲気におけるH2S の生成が抑制され、H2S の排出を抑制することができる。
【選択図】図1[PROBLEMS] To suppress the emission of H 2 S while maintaining the same three-way activity as before.
The catalyst includes an oxide-supported alumina in which an acidic oxide composed of a metal oxide having a higher acidity than alumina is selectively supported on the alumina.
The basic point of alumina in the acidic oxide-supported alumina is neutralized by the acidic oxide. As a result, adsorption of SO 3 or SO 4 is suppressed and accumulation on the catalyst is suppressed, so that generation of H 2 S in a stoichiometric or rich atmosphere is suppressed, and emission of H 2 S can be suppressed. .
[Selection] Figure 1
Description
本発明は、ストイキ雰囲気で燃焼制御される内燃機関から排出される排ガスを浄化する排ガス浄化用触媒(三元触媒)に関し、詳しくは硫化水素(H2S )の排出を抑制できる排ガス浄化用触媒に関する。 The present invention relates to an exhaust gas purifying catalyst (three-way catalyst) for purifying exhaust gas discharged from an internal combustion engine that is combustion-controlled in a stoichiometric atmosphere, and more specifically, an exhaust gas purifying catalyst capable of suppressing the discharge of hydrogen sulfide (H 2 S). About.
自動車の排ガス中のHC、CO及びNOx を浄化する触媒として、三元触媒が広く用いられている。この三元触媒は、アルミナ、セリア、ジルコニア、セリア−ジルコニアなどの多孔質酸化物担体にPt、Rhなどの白金族貴金属を担持してなるものであり、HC及びCOを酸化して浄化するとともに、NOx を還元して浄化する。これらの反応は、酸化成分と還元成分がほぼ当量で存在する雰囲気下で最も効率よく進行するので、三元触媒を搭載した自動車においては、理論空燃比(ストイキ)近傍(A/F =14.6± 0.2程度)で燃焼されるように空燃比の制御が行われている。 HC in exhaust gas of an automobile, as a catalyst for purifying CO and NO x, the three-way catalyst is widely used. This three-way catalyst is a porous oxide carrier such as alumina, ceria, zirconia, ceria-zirconia, etc. supported on platinum group noble metals such as Pt and Rh, and oxidizes and purifies HC and CO. , to purify by reduction of NO x. Since these reactions proceed most efficiently in an atmosphere in which an oxidizing component and a reducing component are present in approximately equivalent amounts, in a vehicle equipped with a three-way catalyst, the vicinity of the stoichiometric air-fuel ratio (Stoichi) (A / F = 14.6 ± The air-fuel ratio is controlled so that it is burned at about 0.2).
ところが三元触媒においては、排ガス雰囲気が還元側に振れた際に、排ガス中の硫黄酸化物が還元されてH2S となって排出されるという不具合があった。例えばアルミナは三元触媒に必須の成分となっているが、アルミナを用いた三元触媒を搭載した自動車では、加速時など排ガス雰囲気がリッチ側(還元雰囲気)の際にH2S が生成するという問題があった。H2S が生成する機構は、以下のように説明される。 However, the three-way catalyst has a problem that when the exhaust gas atmosphere moves toward the reduction side, sulfur oxides in the exhaust gas are reduced and discharged as H 2 S. For example, alumina is an essential component of a three-way catalyst, but in an automobile equipped with a three-way catalyst using alumina, H 2 S is generated when the exhaust gas atmosphere is rich (reducing atmosphere) such as during acceleration. There was a problem. The mechanism generated by H 2 S is explained as follows.
排ガス中のSO2 は、リーン雰囲気において触媒によって酸化されてSO3 又はSO4 となる。SO3 又はSO4 はアルミナの塩基点に吸着され、吸着されたSO3 又はSO4 はアルミナ上に徐々に濃縮される。そしてストイキあるいはリッチ雰囲気においてSO3 又はSO4 が還元され、H2S が生成すると考えられる。H2S は微量でも人の嗅覚に知覚されて不快感を与えるので、その排出を抑制する必要がある。 SO 2 in the exhaust gas is oxidized by the catalyst in a lean atmosphere to become SO 3 or SO 4 . SO 3 or SO 4 is adsorbed on the base point of alumina, and the adsorbed SO 3 or SO 4 is gradually concentrated on the alumina. Then, it is considered that SO 3 or SO 4 is reduced and H 2 S is generated in a stoichiometric or rich atmosphere. H 2 S is perceived by human olfaction even in a trace amount and gives discomfort, so it is necessary to suppress its discharge.
そこで三元触媒の成分として、NiあるいはCuの酸化物をさらに用いることが考えられる。NiあるいはCuの酸化物は、酸化雰囲気でSO2 をSO3 あるいはSO4 とし、還元雰囲気では例えば Ni3S2などの硫化物として硫黄成分を貯蔵するので、H2S の生成を抑制することができる。 Therefore, it is conceivable to further use an oxide of Ni or Cu as a component of the three-way catalyst. Ni or Cu oxide suppresses the generation of H 2 S because SO 2 is changed to SO 3 or SO 4 in an oxidizing atmosphere, and sulfur components are stored as sulfides such as Ni 3 S 2 in a reducing atmosphere. Can do.
例えば特公平08−015554号公報には、ニッケル−バリウム複合酸化物、アルミナ、セリアからなる担体に貴金属を担持してなる排ガス浄化用触媒が記載されている。この担体は、リーン雰囲気ではアルミナ及びセリアが硫黄酸化物を硫酸塩として捕捉し、還元雰囲気ではH2S をニッケルバリウムの複合酸化物が捕捉する。したがってH2S の生成を抑制することができる。 For example, Japanese Examined Patent Publication No. 08-015554 describes an exhaust gas purifying catalyst in which a noble metal is supported on a carrier made of nickel-barium composite oxide, alumina, and ceria. In this carrier, alumina and ceria capture sulfur oxides as sulfates in a lean atmosphere, and H 2 S is captured by nickel barium complex oxide in a reducing atmosphere. Therefore, generation of H 2 S can be suppressed.
また特表2000−515419号公報あるいは特許第02598817号には、NiO 、 Fe2O3などを混合した担体とすることで、H2S の生成を抑制することが記載されている。また特開平07−194978号公報には、Ni及びCaを担持させた担体とすることで、H2S の生成を抑制することが記載されている。 Japanese Patent Publication No. 2000-515419 or Japanese Patent No. 02598817 describes that the formation of H 2 S is suppressed by using a carrier in which NiO 2 , Fe 2 O 3, or the like is mixed. Japanese Patent Application Laid-Open No. 07-194978 describes that the formation of H 2 S is suppressed by using a support on which Ni and Ca are supported.
しかしながら、NiあるいはCuは環境負荷物質であるため、自動車の排ガス浄化用触媒用には使用が制限されつつあるという現状がある。また三元触媒にバリウムなどを添加すると、本来の浄化性能を悪化させてしまう場合がある。 However, since Ni or Cu is an environmentally hazardous substance, there is a current situation that its use is being limited for automobile exhaust gas purification catalysts. Further, when barium or the like is added to the three-way catalyst, the original purification performance may be deteriorated.
さらに特開平09−075739号公報、特開平11−005035号公報には、アルミナ、ジルコニアなどに加えて酸化亜鉛、酸化錫などを含む多孔質酸化物に白金族貴金属を担持した触媒が記載されている。しかしこれらの触媒は、いずれも理論反応量以上の酸素を含有する排ガス中で用いられるものであり、三元触媒に応用することは到底考えられない。
本発明は、上記事情に鑑みてなされたものであり、三元活性を従来と同等に維持しつつ、環境負荷物質であるNiあるいはCuを用いることなく、H2S の排出を抑制することを解決すべき課題とする。 The present invention has been made in view of the above circumstances, and suppresses the emission of H 2 S without using Ni or Cu, which are environmentally hazardous substances, while maintaining the ternary activity equivalent to the conventional one. It is a problem to be solved.
上記課題を解決する本発明の排ガス浄化用触媒の特徴は、少なくともアルミナを含む多孔質酸化物からなる担体と、担体に担持された貴金属と、を含む排ガス浄化用触媒であって、
担体には、アルミナより酸性度が高い金属酸化物からなる酸性酸化物がアルミナに選択的に担持されてなる酸性酸化物担持アルミナを含むことにある。
A feature of the exhaust gas purifying catalyst of the present invention that solves the above problems is an exhaust gas purifying catalyst that includes a support made of a porous oxide containing at least alumina, and a noble metal supported on the support,
The support includes an acidic oxide-supported alumina in which an acidic oxide composed of a metal oxide having a higher acidity than alumina is selectively supported on the alumina.
酸性酸化物としては、W、Ti、Si、P及びMoから選ばれる少なくとも一種の金属の酸化物が代表的に例示される。酸性酸化物とアルミナとは複合酸化物を形成していることが望ましい。 Typical examples of the acidic oxide include oxides of at least one metal selected from W, Ti, Si, P, and Mo. It is desirable that the acidic oxide and alumina form a composite oxide.
また本発明の排ガス浄化用触媒を製造するにあたり、予め酸性酸化物担持アルミナを製造する方法として、酸性酸化物を構成する金属の酸塩と可溶性アルミニウム塩とが溶解した混合溶液を調製する工程と、混合溶液中の酸イオンの全量を中和可能なアルカリ水溶液中に混合溶液を滴下し、酸化物前駆体からなる沈殿物を生成する工程と、次いで沈殿物を焼成する工程と、を含むことが望ましい。 Further, in producing the exhaust gas purifying catalyst of the present invention, as a method for producing the acidic oxide-supported alumina in advance, a step of preparing a mixed solution in which the metal acid salt and the soluble aluminum salt constituting the acidic oxide are dissolved; A step of dropping the mixed solution into an alkaline aqueous solution capable of neutralizing the total amount of acid ions in the mixed solution to form a precipitate composed of an oxide precursor, and then a step of firing the precipitate. Is desirable.
本発明の排ガス浄化用触媒によれば、酸性酸化物担持アルミナにおけるアルミナの塩基点が酸性酸化物によって中和状態にある。そのためSO3 あるいはSO4 の吸着が抑制され、触媒上に蓄積されるのが抑制されると考えられる。したがってストイキあるいはリッチ雰囲気におけるH2S の生成が抑制され、H2S の排出を抑制することができる。また環境負荷物質を含まないので、環境面での問題も生じない。 According to the exhaust gas purifying catalyst of the present invention, the basic point of alumina in the acidic oxide-supported alumina is in a neutralized state by the acidic oxide. Therefore, it is considered that adsorption of SO 3 or SO 4 is suppressed and accumulation on the catalyst is suppressed. Accordingly, the generation of H 2 S in a stoichiometric or rich atmosphere is suppressed, and the emission of H 2 S can be suppressed. In addition, since it does not contain environmentally hazardous substances, there are no environmental problems.
そして本発明の酸性酸化物担持アルミナの製造方法によって製造された酸性酸化物担持アルミナによれば、酸性酸化物の粒径がきわめて小さく表面積が大きい。したがって、H2S の排出を効果的に抑制することができる。またアルミナ自体の比表面積を高く維持することができるので、HC、CO、NOx の浄化性能を高く維持することができる。 And according to the acidic oxide carrying | support alumina manufactured by the manufacturing method of the acidic oxide carrying | support alumina of this invention, the particle size of acidic oxide is very small, and a surface area is large. Accordingly, H 2 S emission can be effectively suppressed. In addition, since the specific surface area of alumina itself can be maintained high, the purification performance of HC, CO, and NO x can be maintained high.
本発明の排ガス浄化用触媒は、少なくともアルミナを含む多孔質酸化物からなる担体と、担体に担持された貴金属と、を含み、担体には少なくとも酸性酸化物担持アルミナを含む。アルミナとしては、γ-Al2O3、θ-Al2O3などを用いることができる。また担体には、アルミナ以外に、セリア、ジルコニア、セリア−ジルコニア、チタニアなど、他の多孔質酸化物を含んでもよい。特に、セリア、セリア−ジルコニアなどを含むことが望ましい。セリア又はセリアを含む複合酸化物は酸素吸放出能を有し、雰囲気変動を調整することができるので浄化性能が向上する。なお、酸性酸化物担持アルミナのみから担体を構成することも可能である。 The exhaust gas purifying catalyst of the present invention includes a support made of a porous oxide containing at least alumina and a noble metal supported on the support, and the support contains at least acidic oxide-supported alumina. As alumina, γ-Al 2 O 3 , θ-Al 2 O 3 and the like can be used. In addition to alumina, the support may contain other porous oxides such as ceria, zirconia, ceria-zirconia, and titania. In particular, it is desirable to contain ceria, ceria-zirconia and the like. Ceria or a complex oxide containing ceria has an oxygen absorption / release capability and can adjust atmospheric fluctuations, so that purification performance is improved. It is also possible to form the carrier only from the acidic oxide-supported alumina.
貴金属は、その触媒作用によってHC及びCOを酸化するもの、NOx を還元するものが用いられ、Pt、Rh、Pdなどが代表的に例示される。酸化活性に優れたPtと、還元活性に優れたRhとを併用することが好ましい。貴金属の担持量は、従来の三元触媒と同様でよく、金属種によっても異なるが、触媒1リットルあたり 0.1〜10gの範囲が好ましい。 As the noble metal, one that oxidizes HC and CO by its catalytic action and one that reduces NO x are used, and Pt, Rh, Pd and the like are typically exemplified. It is preferable to use together Pt excellent in oxidation activity and Rh excellent in reduction activity. The amount of noble metal supported may be the same as that of the conventional three-way catalyst, and varies depending on the metal species, but is preferably in the range of 0.1 to 10 g per liter of the catalyst.
本発明の最大の特徴は、担体には、アルミナより酸性度が高い金属酸化物からなる酸性酸化物がアルミナに選択的に担持されてなる酸性酸化物担持アルミナを含むところにある。 The greatest feature of the present invention lies in that the support includes acidic oxide-supported alumina in which an acidic oxide composed of a metal oxide having a higher acidity than alumina is selectively supported on alumina.
アルミナより酸性度が高い金属酸化物を構成する金属元素としては、W、Ti、Si、P、Moが代表的に挙げられ、酸性酸化物は、W、Ti、Si、P及びMoから選ばれる少なくとも一種の金属の酸化物が好ましい。中でも、W、Tiは、Alと共にタングステン酸アルミニウム、チタン酸アルミニウムといった複合酸化物を形成し、アルミナの塩基点を消失させる作用に優れている。またSiもアルミナの塩基点を消失させる作用に優れている。したがって、W、Si及びTiから選ばれる少なくとも一種の金属の酸化物を用いることが特に好ましい。 Typical examples of the metal element constituting the metal oxide having higher acidity than alumina include W, Ti, Si, P, and Mo, and the acid oxide is selected from W, Ti, Si, P, and Mo. At least one metal oxide is preferred. Among these, W and Ti are excellent in the action of forming a composite oxide such as aluminum tungstate and aluminum titanate together with Al and eliminating the base point of alumina. Si also has an excellent effect of eliminating the basic point of alumina. Therefore, it is particularly preferable to use an oxide of at least one metal selected from W, Si and Ti.
酸性酸化物を規定するための指標として、後述するCO2 脱離量を用いることもできる。CO2 脱離量とは、アルミナに金属酸化物を 0.1モル/L担持し、さらにPtを1g/L担持した触媒に対して、CO2 を0.5 %含む窒素ガスを90℃で10分間流通させてCO2 を吸着させ、その後窒素気流中にて90℃から 810℃まで40℃/分の速度で昇温したときに脱離するCO2 量であり、酸性酸化物は、このCO2 脱離量が1ミリモル/L以下と定義することができる。 The CO 2 desorption amount described later can also be used as an index for defining the acidic oxide. The amount of CO 2 desorbed refers to a catalyst in which 0.1 mol / L of metal oxide is supported on alumina and 1 g / L of Pt, and nitrogen gas containing 0.5% CO 2 is circulated at 90 ° C for 10 minutes. Te of CO 2 adsorbed is then amount of CO 2 desorbed when heating at 40 ° C. / min up to 810 ° C. from 90 ° C. in a nitrogen stream, the acidic oxide, the CO 2 desorption The amount can be defined as 1 mmol / L or less.
酸性酸化物担持アルミナにおける酸性酸化物の担持量は、触媒1リットルあたり0.01〜 0.3モルの範囲が好ましい。酸性酸化物の担持量が0.01モル/Lより少ないと効果の発現が困難となり、H2S が発生し易くなる。また 0.3モル/Lを超えると、アルミナの比表面積が低下しHC、CO、NOx の浄化性能が低下する場合がある。 The amount of acidic oxide supported on the acidic oxide-supported alumina is preferably in the range of 0.01 to 0.3 mol per liter of catalyst. When the amount of acidic oxide supported is less than 0.01 mol / L, it becomes difficult to achieve the effect and H 2 S is likely to be generated. On the other hand, if it exceeds 0.3 mol / L, the specific surface area of alumina may decrease and the purification performance of HC, CO, and NO x may decrease.
酸性酸化物担持アルミナを製造するには、酸性酸化物を構成する金属元素の酸塩の水溶液をアルミナに含浸させ、それを焼成して酸性酸化物とすることで製造することができる。あるいはアルミナを酸性酸化物を構成する金属元素の酸塩の水溶液中に混合した懸濁液を調製し、それを撹拌しながらアンモニア水などのアルカリ水溶液を添加して酸化物前駆体をアルミナ粒子の表面に析出させ、それを焼成して酸性酸化物を担持させることもできる。 In order to produce acidic oxide-supported alumina, it can be produced by impregnating alumina with an aqueous solution of an acid salt of a metal element constituting the acidic oxide, and baking it to obtain an acidic oxide. Alternatively, a suspension is prepared by mixing alumina in an aqueous solution of an acid salt of a metal element constituting an acidic oxide, and while stirring it, an aqueous alkaline solution such as aqueous ammonia is added to convert the oxide precursor into an alumina particle. It can also be deposited on the surface and fired to carry an acidic oxide.
しかしながら、これらの方法で担持された酸性酸化物は、粒径が比較的大きいために表面積が小さい。したがって酸性酸化物の担持量を比較的多くしないと、H2S の排出抑制効果が小さい。また酸性酸化物がアルミナの細孔を塞ぎ、その結果アルミナの比表面積が低下するという不具合が生じる場合もある。 However, acidic oxides supported by these methods have a small surface area due to their relatively large particle size. Therefore, unless the amount of acidic oxide supported is relatively large, the H 2 S emission suppressing effect is small. In addition, the acidic oxide may block the pores of the alumina, resulting in a problem that the specific surface area of the alumina is reduced.
そこで本発明の酸性酸化物担持アルミナの製造方法では、酸性酸化物を構成する金属の酸塩と可溶性アルミニウム塩とが溶解した混合溶液を調製し、混合溶液中の酸イオンの全量を中和可能なアルカリ水溶液中に混合溶液を滴下して酸化物前駆体からなる沈殿物を生成し、次いで沈殿物を焼成している。この製造方法によれば、アルミナ前駆体と酸性酸化物前駆体とがほぼ同時に生成し、それを焼成することで酸性酸化物とアルミナとが分子レベルで混合された複合酸化物となる。また複合酸化物においては、Alの原子数に比べて酸性酸化物を構成する金属原子の数は一般に少ないので、アルミナによる高比表面積の効果が低下するような不具合もない。 Therefore, in the method for producing acidic oxide-supported alumina according to the present invention, a mixed solution in which a metal acid salt and a soluble aluminum salt constituting the acidic oxide are dissolved can be prepared, and the total amount of acid ions in the mixed solution can be neutralized. A mixed solution is dropped into an alkaline aqueous solution to form a precipitate made of an oxide precursor, and then the precipitate is fired. According to this manufacturing method, an alumina precursor and an acidic oxide precursor are generated almost simultaneously, and are fired to form a composite oxide in which acidic oxide and alumina are mixed at a molecular level. In the composite oxide, since the number of metal atoms constituting the acidic oxide is generally smaller than the number of Al atoms, there is no problem that the effect of the high specific surface area by alumina is reduced.
すなわち得られた酸性酸化物担持アルミナでは、アルミナ中に酸性酸化物が原子レベルで分散した状態となり、酸性酸化物の粒径がきわめて小さく表面積が大きい。したがって、アルミナへのSOx の吸着が抑制され、H2S の排出を効果的に抑制することができる。またアルミナの比表面積を高く維持することができるので、HC、CO、NOx の浄化性能を高く維持することができる。 That is, in the obtained acidic oxide-supported alumina, the acidic oxide is dispersed at the atomic level in the alumina, and the particle size of the acidic oxide is extremely small and the surface area is large. Therefore, adsorption of SO x onto alumina is suppressed, and H 2 S emission can be effectively suppressed. Moreover, since the specific surface area of alumina can be maintained high, the purification performance of HC, CO, and NO x can be maintained high.
また、酸性酸化物の粒径がきわめて小さいので、この酸性酸化物担持アルミナにセリアやセリア−ジルコニアなどを共存させた場合に相互の反応が起こりにくく、酸素吸蔵放出能が損なわれるのを防止することができる。 In addition, since the particle size of the acidic oxide is extremely small, when the acidic oxide-supported alumina coexists with ceria, ceria-zirconia, etc., mutual reaction is unlikely to occur and the oxygen storage / release capability is prevented from being impaired. be able to.
本発明の排ガス浄化用触媒は、ペレット形状、ハニカム形状、フォーム形状などとして用いられる。例えばハニカム形状の触媒の場合は、コージェライト、メタルなどからなるハニカム基材に、アルミナ、セリア−ジルコニアなどの多孔質酸化物及び酸性酸化物担持アルミナを含むスラリーをウォッシュコートし、それを焼成してコート層を形成し、そのコート層に吸着担持法あるいは吸水担持法で貴金属を担持すればよい。 The exhaust gas purifying catalyst of the present invention is used as a pellet shape, a honeycomb shape, a foam shape or the like. For example, in the case of a honeycomb-shaped catalyst, a slurry containing a porous oxide such as alumina or ceria-zirconia and an acidic oxide-supported alumina is washed on a honeycomb substrate made of cordierite or metal, and then fired. Then, a coating layer may be formed, and a noble metal may be supported on the coating layer by an adsorption supporting method or a water absorbing supporting method.
また、多孔質酸化物に予め貴金属を担持した触媒粉末を調製しておき、それに酸性酸化物担持アルミナ粉末を混合し、それからコート層を形成することで本発明の触媒を調製することもできる。 Moreover, the catalyst of this invention can also be prepared by preparing the catalyst powder which carry | supported the noble metal beforehand to the porous oxide, mixing acidic oxide carrying | support alumina powder in it, and forming a coating layer from it.
担体にセリア又はセリア系複合酸化物などの酸素吸蔵能を有する多孔質酸化物を含む場合、酸素吸蔵能を有する多孔質酸化物には酸性酸化物を担持しないことが望ましい。酸性酸化物が担持された例えばセリアは、その酸素吸放出能が低下する傾向があり、雰囲気変動緩和作用が小さくなってHC、CO、NOx の浄化性能が低下するからである。 When the support contains a porous oxide having oxygen storage ability such as ceria or ceria-based composite oxide, it is desirable that the porous oxide having oxygen storage ability does not carry an acidic oxide. For example ceria acidic oxide was supported tend to its capability of adsorbing and releasing oxygen is reduced, HC and atmosphere change mitigation action is reduced, CO, purifying performance of the NO x is lowered.
以下、試験例、実施例及び比較例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to test examples, examples and comparative examples.
(試験例)
先ずθ-Al2O3粉末 100重量部を用意し、タングステン酸アンモニウム水溶液の所定量を含浸させ、 500℃で2時間焼成してタングステン酸化物を担持したW/Al2O3(酸性酸化物担持アルミナ)粉末を調製した。Wの担持量は、θ-Al2O3粉末 100重量部に対して 0.1モルである。
(Test example)
First, 100 parts by weight of θ-Al 2 O 3 powder was prepared, impregnated with a predetermined amount of ammonium tungstate aqueous solution, and baked at 500 ° C. for 2 hours to support W / Al 2 O 3 (acidic oxide). (Supported alumina) powder was prepared. The supported amount of W is 0.1 mol with respect to 100 parts by weight of θ-Al 2 O 3 powder.
次いで、W/Al2O3粉末全量と、バインダとしてのアルミナ水和物(アルミナとして3重量部)と、所定量の純水とを混合し、ミリングしてスラリーを調製した。 Next, a total amount of W / Al 2 O 3 powder, alumina hydrate as a binder (3 parts by weight as alumina), and a predetermined amount of pure water were mixed and milled to prepare a slurry.
ストレートフロー構造のハニカム基材(35cc、直径30mm、長さ50mm)を用意し、上記スラリーをウォッシュコートして、 120℃で乾燥後 450℃で2時間焼成してコート層を形成した。コート層は、触媒1Lあたり 100g形成された。
A honeycomb substrate having a straight flow structure (35 cc, diameter 30 mm,
さらにコート層をもつハニカム基材に、所定濃度のジニトロジアンミン白金溶液の所定量を含浸させて吸水担持し、 120℃で乾燥後 450℃で2時間焼成してPtを担持した。Ptの担持量は、触媒1Lあたり1gである。 Further, a honeycomb substrate having a coating layer was impregnated with a predetermined amount of a dinitrodiammine platinum solution having a predetermined concentration and supported for water absorption, dried at 120 ° C., and fired at 450 ° C. for 2 hours to support Pt. The amount of Pt supported is 1 g per liter of catalyst.
タングステン酸アンモニウムに代えてTi、P、Mo、Fe、Mg、Baの水溶性塩を用い、上記と同様にしてTi、P、Mo、Fe、Mg、Baの各酸化物をそれぞれ担持したアルミナ粉末を調製し、同様にしてそれぞれ触媒を調製した。 Alumina powder carrying Ti, P, Mo, Fe, Mg and Ba oxides in the same manner as described above using water-soluble salts of Ti, P, Mo, Fe, Mg and Ba instead of ammonium tungstate The catalyst was prepared in the same manner.
各触媒を評価装置にそれぞれ配置し、CO2 を0.5 %含む窒素ガスを90℃で10分間流通させてCO2 を吸着させ、その後窒素気流中にて90℃から 810℃まで40℃/分の速度で昇温したときに脱離するCO2 量をそれぞれ測定した。結果を図5に示す。 Each catalyst is placed in an evaluation device, and nitrogen gas containing 0.5% CO 2 is allowed to flow at 90 ° C for 10 minutes to adsorb CO 2 and then in a nitrogen stream from 90 ° C to 810 ° C at 40 ° C / min. The amount of CO 2 desorbed when the temperature was increased at a rate was measured. The results are shown in FIG.
図5から、W、Ti、P、Moの酸化物をそれぞれ担持した触媒は、Fe、Mg、Baの酸化物をそれぞれ担持した触媒に比べてCO2 脱離量が大幅に少ないことがわかる。すなわちW、Ti、P、Moの酸化物は、Fe、Mg、Baの酸化物に比べてCO2 が脱離し易い、つまり酸性度が高い、と云え、そのしきい値はCO2 脱離量が1ミリモル/L以下であると云える。 FIG. 5 shows that the catalyst supporting W, Ti, P, and Mo oxides has significantly less CO 2 desorption than the catalyst supporting Fe, Mg, and Ba oxides, respectively. That is, the oxides of W, Ti, P, and Mo are more likely to desorb CO 2 than the oxides of Fe, Mg, and Ba, that is, the acidity is high. The threshold value is the amount of CO 2 desorption. Is 1 mmol / L or less.
(実施例1)
図1に本実施例の三元触媒を示す。この触媒は、ストレートフロー構造のハニカム基材1と、ハニカム基材1のセル壁表面に形成された下コート層2と、下コート層2の表面に形成された上コート層3とからなる。下コート層2には、セリア−ジルコニア固溶体粉末20と、θ-Al2O3粉末にタングステン酸化物(×)が担持された酸性酸化物担持アルミナ21とが含まれ、Pt(●)が全体に均一に担持されている。また上コート層3は、θ-Al2O3粉末にタングステン酸化物(×)が担持された酸性酸化物担持アルミナ21を担体とし、Rh(▲)が全体に均一に担持されている。
Example 1
FIG. 1 shows the three-way catalyst of this example. This catalyst comprises a
先ずθ-Al2O3粉末を用意し、タングステン酸アンモニウム水溶液の所定量を含浸させ、 500℃で2時間焼成してタングステン酸化物を担持したW/Al2O3(酸性酸化物担持アルミナ)粉末を調製した。 First, θ-Al 2 O 3 powder is prepared, impregnated with a predetermined amount of ammonium tungstate aqueous solution, and calcined at 500 ° C. for 2 hours to support tungsten oxide and W / Al 2 O 3 (acidic oxide supporting alumina) A powder was prepared.
比表面積が3m2/gのセリア−ジルコニア固溶体粉末60重量部と、W/Al2O3粉末37重量部と、バインダとしてのアルミナ水和物(アルミナとして3重量部)と、を所定量の純水と混合し、ミリングしてスラリーを調製した。 60 parts by weight of ceria-zirconia solid solution powder having a specific surface area of 3 m 2 / g, 37 parts by weight of W / Al 2 O 3 powder, and alumina hydrate (3 parts by weight as alumina) as a binder in a predetermined amount It was mixed with pure water and milled to prepare a slurry.
次にコージェライト製のハニカム基材(容積 0.9L、セル密度 400cpsi)を用意し、上記スラリーをウォッシュコートして、 120℃で乾燥後 450℃で2時間焼成し下コート層を形成した。下コート層は、ハニカム基材の体積1Lあたり 100g形成された。 Next, a cordierite-made honeycomb substrate (volume: 0.9 L, cell density: 400 cpsi) was prepared, and the slurry was wash-coated, dried at 120 ° C. and fired at 450 ° C. for 2 hours to form an undercoat layer. The lower coat layer was formed in an amount of 100 g per liter of the honeycomb substrate.
上記下コート層をもつハニカム基材に、所定濃度のジニトロジアンミン白金溶液の所定量を含浸させて吸水担持し、 120℃で乾燥後 450℃で2時間焼成してPtを担持した。 A honeycomb base material having the above lower coat layer was impregnated with a predetermined amount of a dinitrodiammine platinum solution having a predetermined concentration and supported for water absorption, dried at 120 ° C., and fired at 450 ° C. for 2 hours to support Pt.
続いて、上記と同様に調製されたW/Al2O3粉末に予めRhが0.35重量%担持されたRh/W/Al2O3触媒粉末57重量部と、バインダとしてのアルミナ水和物(アルミナとして3重量部)と、を所定量の純水と混合し、ミリングしてスラリーを調製した。そしてPtが担持された下コート層の表面にウォッシュコートして、 120℃で乾燥後 450℃で2時間焼成し上コート層を形成した。上コート層は、ハニカム基材の体積1Lあたり60g形成された。 Subsequently, 57 parts by weight of Rh / W / Al 2 O 3 catalyst powder in which 0.35% by weight of Rh was previously supported on the W / Al 2 O 3 powder prepared in the same manner as described above, and alumina hydrate ( 3 parts by weight as alumina) was mixed with a predetermined amount of pure water and milled to prepare a slurry. Then, the surface of the lower coat layer carrying Pt was wash coated, dried at 120 ° C., and then baked at 450 ° C. for 2 hours to form an upper coat layer. The upper coat layer was formed in an amount of 60 g per liter of the honeycomb substrate.
触媒1リットルあたりの担持量は、Wが0.078 モル、Ptが 1.0g、Rhが 0.2gである。 The supported amount per liter of the catalyst is 0.078 mol of W, 1.0 g of Pt, and 0.2 g of Rh.
(比較例1)
W/Al2O3粉末に代えてタングステン酸化物を担持していないθ-Al2O3粉末を用いたこと以外は実施例1と同様にして、上下コート層をもつ触媒を調製した。
(Comparative Example 1)
A catalyst having upper and lower coat layers was prepared in the same manner as in Example 1, except that θ-Al 2 O 3 powder not supporting tungsten oxide was used instead of W / Al 2 O 3 powder.
(実施例2)
タングステン酸化物の担持量が異なるW/Al2O3粉末を用いたこと以外は実施例1と同様にして、上下コート層をもつ触媒を調製した。触媒1リットルあたりの担持量は、Wが0.039 モル、Ptが 1.0g、Rhが 0.2gである。
(Example 2)
A catalyst having upper and lower coat layers was prepared in the same manner as in Example 1 except that W / Al 2 O 3 powder having a different loading of tungsten oxide was used. The supported amount per liter of the catalyst is 0.039 mol of W, 1.0 g of Pt, and 0.2 g of Rh.
(実施例3)
タングステン酸化物の担持量が異なるW/Al2O3粉末を用いたこと以外は実施例1と同様にして、上下コート層をもつ触媒を調製した。触媒1リットルあたりの担持量は、Wが0.019 モル、Ptが 1.0g、Rhが 0.2gである。
(Example 3)
A catalyst having upper and lower coat layers was prepared in the same manner as in Example 1 except that W / Al 2 O 3 powder having a different loading of tungsten oxide was used. The supported amount per liter of the catalyst is 0.019 mol of W, 1.0 g of Pt, and 0.2 g of Rh.
(実施例4)
実施例1と同様のセリア−ジルコニア固溶体粉末を用意し、タングステン酸アンモニウム水溶液の所定量を含浸させ、 500℃で2時間焼成してタングステン酸化物を担持したW/CeO2−ZrO2粉末を調製した。そしてセリア−ジルコニア固溶体粉末に代えてW/CeO2−ZrO2粉末を用いたこと以外は実施例1と同様にして、上下コート層をもつ触媒を調製した。触媒1リットルあたりの担持量は、Wが0.086 モル、Ptが 1.0g、Rhが 0.2gである。
Example 4
Prepare the same ceria-zirconia solid solution powder as in Example 1, impregnate a predetermined amount of ammonium tungstate aqueous solution, and calcinate at 500 ° C. for 2 hours to prepare W / CeO 2 —ZrO 2 powder carrying tungsten oxide. did. A catalyst having upper and lower coat layers was prepared in the same manner as in Example 1 except that W / CeO 2 —ZrO 2 powder was used instead of ceria-zirconia solid solution powder. The supported amount per liter of catalyst is 0.086 mol of W, 1.0 g of Pt, and 0.2 g of Rh.
(実施例5)
実施例1と同様のセリア−ジルコニア固溶体粉末を用意し、チタン酸アンモニウム水溶液の所定量を含浸させ、 500℃で2時間焼成してチタン酸化物を担持したTi/CeO2−ZrO2粉末を調製した。そしてセリア−ジルコニア固溶体粉末に代えてTi/CeO2−ZrO2粉末を用いたこと以外は実施例1と同様にして、上下コート層をもつ触媒を調製した。触媒1リットルあたりの担持量は、Wが0.078 モル、Tiが0.023 モル、Ptが 1.0g、Rhが 0.2gである。
(Example 5)
Prepare the same ceria-zirconia solid solution powder as in Example 1, impregnate with a predetermined amount of ammonium titanate aqueous solution and calcinate for 2 hours at 500 ° C. to prepare Ti / CeO 2 —ZrO 2 powder supporting titanium oxide did. A catalyst having upper and lower coat layers was prepared in the same manner as in Example 1 except that Ti / CeO 2 —ZrO 2 powder was used instead of ceria-zirconia solid solution powder. The supported amount per liter of the catalyst is 0.078 mol of W, 0.023 mol of Ti, 1.0 g of Pt, and 0.2 g of Rh.
(実施例6)
比表面積が 0.8m2/gであること以外は実施例1と同様のセリア−ジルコニア固溶体粉末を用いたこと以外は実施例1と同様にして、上下コート層をもつ触媒を調製した。触媒1リットルあたりの担持量は、Wが0.078 モル、Ptが 1.0g、Rhが 0.2gである。
(Example 6)
A catalyst having upper and lower coat layers was prepared in the same manner as in Example 1 except that the same ceria-zirconia solid solution powder as in Example 1 was used except that the specific surface area was 0.8 m 2 / g. The supported amount per liter of the catalyst is 0.078 mol of W, 1.0 g of Pt, and 0.2 g of Rh.
(実施例7)
γ-Al2O3粉末95重量部と、 Al2O3−CeO2−ZrO2複合酸化物粉末(重量比 Al2O3:CeO2:ZrO2=26/39.5/34.5) 100重量部と、バインダとしてのアルミナ水和物(アルミナとして3重量部)と、を所定量の純水と混合し、ミリングしてスラリーを調製した。
(Example 7)
95 parts by weight of γ-Al 2 O 3 powder and 100 parts by weight of Al 2 O 3 —CeO 2 —ZrO 2 composite oxide powder (weight ratio Al 2 O 3 : CeO 2 : ZrO 2 = 26 / 39.5 / 34.5) Then, alumina hydrate as a binder (3 parts by weight as alumina) was mixed with a predetermined amount of pure water and milled to prepare a slurry.
次に実施例1と同様のハニカム基材を用意し、このスラリーをウォッシュコートして、 120℃で乾燥後 450℃で2時間焼成しコート層を形成した。コート層は、ハニカム基材の体積1Lあたり 198g形成された。 Next, a honeycomb base material similar to that in Example 1 was prepared, this slurry was wash coated, dried at 120 ° C. and then fired at 450 ° C. for 2 hours to form a coat layer. The coating layer was formed in an amount of 198 g per liter of honeycomb substrate volume.
次いで、ジニトロジアンミン白金溶液と硝酸ロジウム水溶液を用いて、コート層にPt及びRhをそれぞれ担持し、さらにタングステン酸アンモニウム水溶液を用いてタングステン酸化物を担持した。触媒1リットルあたりの担持量は、Wが0.18モル、Ptが 1.0g、Rhが 0.2gである。 Next, using a dinitrodiammine platinum solution and an aqueous rhodium nitrate solution, Pt and Rh were supported on the coating layer, respectively, and an tungsten tungstate aqueous solution was further used to support tungsten oxide. The supported amount per liter of the catalyst is 0.18 mol of W, 1.0 g of Pt, and 0.2 g of Rh.
(実施例8)
γ-Al2O3粉末の所定量にタングステン酸アンモニウム水溶液の所定量を含浸させ、 500℃で2時間焼成してタングステン酸化物を担持したW/Al2O3粉末を調製した。このW/Al2O3粉末95重量部と、実施例7と同様の Al2O3−CeO2−ZrO2複合酸化物粉末 100重量部と、バインダとしてのアルミナ水和物(アルミナとして3重量部)と、を所定量の純水と混合し、ミリングしてスラリーを調製した。
(Example 8)
A predetermined amount of γ-Al 2 O 3 powder was impregnated with a predetermined amount of an aqueous solution of ammonium tungstate and fired at 500 ° C. for 2 hours to prepare W / Al 2 O 3 powder supporting tungsten oxide. 95 parts by weight of this W / Al 2 O 3 powder, 100 parts by weight of the same Al 2 O 3 —CeO 2 —ZrO 2 composite oxide powder as in Example 7, and alumina hydrate (3 wt. Part) was mixed with a predetermined amount of pure water and milled to prepare a slurry.
次に実施例1と同様のハニカム基材を用意し、このスラリーをウォッシュコートして、 120℃で乾燥後 450℃で2時間焼成しコート層を形成した。コート層は、ハニカム基材の体積1Lあたり 160g形成された。 Next, a honeycomb base material similar to that in Example 1 was prepared, this slurry was wash coated, dried at 120 ° C. and then fired at 450 ° C. for 2 hours to form a coat layer. The coating layer was formed in an amount of 160 g per liter of the honeycomb substrate.
次いで、ジニトロジアンミン白金溶液と硝酸ロジウム水溶液を用いて、コート層にPt及びRhをそれぞれ担持した。触媒1リットルあたりの担持量は、Wが0.18モル、Ptが 1.0g、Rhが 0.2gである。 Next, using a dinitrodiammine platinum solution and an aqueous rhodium nitrate solution, Pt and Rh were supported on the coating layer, respectively. The supported amount per liter of the catalyst is 0.18 mol of W, 1.0 g of Pt, and 0.2 g of Rh.
(実施例9)
図2に本実施例の酸性酸化物担持アルミナの製造方法を示す。95gのγ-Al2O3に相当する硝酸アルミニウムを純水に溶解し、さらにタングステン酸アンモニウム0.18モルを加え、pH調整して混合水溶液を調製した。混合水溶液中の酸イオンの全量を中和可能なアンモニア水を撹拌しながら、この混合水溶液を滴下し、沈殿物を生成した。この沈殿物は、大半がWとAlの水酸化物と考えられる。この沈殿物を濾過し、減圧恒温環境下にて水分を除去した後、 500℃で5時間焼成して、酸性酸化物担持アルミナ粉末を調製した。
Example 9
FIG. 2 shows a method for producing the acidic oxide-carrying alumina of this example. 95 g of aluminum nitrate corresponding to γ-Al 2 O 3 was dissolved in pure water, 0.18 mol of ammonium tungstate was further added, and the pH was adjusted to prepare a mixed aqueous solution. While stirring aqueous ammonia capable of neutralizing the total amount of acid ions in the mixed aqueous solution, the mixed aqueous solution was added dropwise to produce a precipitate. Most of the precipitate is considered to be hydroxides of W and Al. The precipitate was filtered and water was removed under a reduced pressure and constant temperature environment, followed by firing at 500 ° C. for 5 hours to prepare acidic oxide-supported alumina powder.
次に、得られた酸性酸化物担持アルミナ粉末全量に対し、実施例7と同様の Al2O3−CeO2−ZrO2複合酸化物粉末 100gと、バインダとしてのアルミナ水和物(アルミナとして3g)と、純水とを加えてスラリーを調製し、実施例7と同様にしてコート層を形成した。次いでジニトロジアンミン白金溶液と硝酸ロジウム水溶液を用いて、コート層にPt及びRhをそれぞれ担持した。触媒1リットルあたりの担持量は、Wが0.18モル、Ptが 1.0g、Rhが 0.2gである。 Next, 100 g of the same Al 2 O 3 —CeO 2 —ZrO 2 composite oxide powder as in Example 7 and alumina hydrate (3 g as alumina) as the binder were used with respect to the total amount of the acidic oxide-supported alumina powder obtained. ) And pure water were added to prepare a slurry, and a coating layer was formed in the same manner as in Example 7. Next, using a dinitrodiammine platinum solution and an aqueous rhodium nitrate solution, Pt and Rh were supported on the coating layer, respectively. The supported amount per liter of the catalyst is 0.18 mol of W, 1.0 g of Pt, and 0.2 g of Rh.
(比較例2)
タングステン酸化物を担持しなかったこと以外は実施例7と同様である。
(Comparative Example 2)
Example 7 is the same as Example 7 except that no tungsten oxide was supported.
<試験・評価>
各実施例及び」比較例の触媒組成をまとめて表1に示す。
<Test and evaluation>
Table 1 summarizes the catalyst compositions of the Examples and Comparative Examples.
(H2S 抑制能試験)
直列4気筒の 2.4Lエンジンを搭載した車両の床下触媒に、各実施例及び各比較例の触媒を各々搭載して、硫黄濃度300ppmのガソリン燃料を用い、LA#4モード(Bagt1〜3)を走行した。走行後パージ時に排出される H2S積算量を評価した。比較例2の触媒の H2S積算量に対する比を算出し、結果を図3に示す。
(H 2 S inhibition test)
LA # 4 mode (Bagt1-3) using gasoline fuel with a sulfur concentration of 300ppm on the underfloor catalyst of a vehicle equipped with an inline 4-cylinder 2.4L engine and each of the examples and comparative examples. Ran. The accumulated amount of H 2 S discharged during purging after running was evaluated. The ratio of the catalyst of Comparative Example 2 to the accumulated amount of H 2 S was calculated, and the results are shown in FIG.
図3より、各実施例の触媒は比較例1、2の触媒に比べてH2S の脱離量が少ないことがわかる。また実施例1〜3の比較から、酸性酸化物担持アルミナの量が多くなるほどH2S の脱離量が少なくなっていることもわかる。すなわち、酸性酸化物担持アルミナを含むことにより、H2S の排出を大きく抑制できることが明らかである。 From FIG. 3, it can be seen that the catalyst of each Example has a smaller amount of H 2 S desorption than the catalysts of Comparative Examples 1 and 2 . Further, it can be seen from the comparison of Examples 1 to 3 that the amount of desorbed H 2 S decreases as the amount of acidic oxide-supported alumina increases. That is, it is clear that the emission of H 2 S can be greatly suppressed by including acidic oxide-supported alumina.
また実施例9の触媒は、酸性酸化物担持アルミナの量が実施例7、8の触媒と同じであるにも関わらず、実施例7、8の触媒よりH2S の脱離量が少ない。すなわち本発明の製造方法によって製造された酸性酸化物担持アルミナを用いた触媒は、一般的な含浸担持法で製造された酸性酸化物担持アルミナを用いた触媒に比べてH2S の脱離量をさらに低減できることが明らかである。 The catalyst of Example 9 has a smaller amount of H 2 S desorption than the catalysts of Examples 7 and 8 although the amount of acidic oxide-supported alumina is the same as that of Examples 7 and 8. That is, the catalyst using the acidic oxide-supported alumina produced by the production method of the present invention has a H 2 S desorption amount as compared with the catalyst using the acidic oxide-supported alumina produced by a general impregnation support method. It is clear that can be further reduced.
(酸素吸蔵能試験)
実施例7及び比較例2の触媒をV型8気筒 4.3Lエンジンの排気系にそれぞれ装着し、入りガス温度 850℃、A/F=15とA/F=14とを1Hzで振動させる条件にて50時間の耐久試験を施した。
(Oxygen storage capacity test)
The catalyst of Example 7 and Comparative Example 2 were respectively mounted on the exhaust system of a V-type 8-cylinder 4.3L engine, and the inlet gas temperature was 850 ° C, and A / F = 15 and A / F = 14 were oscillated at 1 Hz A 50-hour durability test was conducted.
直列4気筒の 2.4Lエンジン後段に、耐久試験後の実施例7の触媒と比較例2の触媒をそれぞれ搭載し、触媒入りガス温度が 500℃になるまで理論空燃比で燃焼させた。その後 A/Fを14.1から15.1へ、次いで15.1から14.1へ数サイクルスイープするように、サブO2センサの反転タイミングで切り替えた。次式に基づいて触媒流入O2量を算出し、触媒から排出された酸素量との差から酸素吸蔵量を測定した。結果を図4に示す。 The catalyst of Example 7 after the endurance test and the catalyst of Comparative Example 2 were mounted on the rear stage of the inline 4-cylinder 2.4L engine, and burned at the stoichiometric air-fuel ratio until the temperature of the gas with catalyst reached 500 ° C. Thereafter, the A / F was switched at the inversion timing of the sub O 2 sensor so as to sweep several cycles from 14.1 to 15.1 and then from 15.1 to 14.1. Based on the following equation, the catalyst inflow O 2 amount was calculated, and the oxygen storage amount was measured from the difference from the oxygen amount discharged from the catalyst. The results are shown in FIG.
触媒流入O2量=O2質量割合×ΔA/F ×燃料噴射量
図4より、実施例7の触媒は、比較例2の触媒に比べて酸素吸蔵量が少ない。これは、 Al2O3−CeO2−ZrO2複合酸化物粉末にもタングステン酸化物を担持したことに起因していることが明らかである。したがって酸素吸蔵能を有する多孔質酸化物には、酸性酸化物を担持しないことが望ましい。
Catalyst inflow O 2 amount = O 2 mass ratio × ΔA / F × fuel injection amount From FIG. 4, the catalyst of Example 7 has a smaller oxygen storage amount than the catalyst of Comparative Example 2. This is apparent that in Al 2 O 3 -CeO 2 -ZrO 2 composite oxide powder due to the fact that the carrying tungsten oxide. Therefore, it is desirable that the porous oxide having oxygen storage capacity does not carry an acidic oxide.
なお、各実施例及び各比較例の触媒の三元活性は、いずれもほぼ同等であり、十分な活性を有していた。 In addition, the ternary activity of the catalyst of each Example and each comparative example was almost equivalent, and had sufficient activity.
(実施例10)
先ず純水を70〜75℃に加温し、クエン酸を投入した後、70〜75℃で撹拌する。そこへクエン酸に対して1/4モル量のチタンイソプロポキシドをゆっくり滴下し、80℃で6時間以上撹拌保持する。これを室温まで冷却し、Tiクエン酸錯体の溶液が得られる。
(Example 10)
First, pure water is heated to 70 to 75 ° C., citric acid is added, and the mixture is stirred at 70 to 75 °
次にTiクエン酸錯体溶液中のTi濃度に見合った所定量のγ-Al2O3粉末を混合し、1時間撹拌後に乾燥し、 500℃で1時間焼成してTiを担持したTi/Al2O3粉末を調製した。 Next, a predetermined amount of γ-Al 2 O 3 powder commensurate with the Ti concentration in the Ti citrate complex solution is mixed, dried after stirring for 1 hour, and fired at 500 ° C. for 1 hour to support Ti / Al carrying Ti. 2 O 3 powder was prepared.
このTi/Al2O3粉末95重量部と、 Al2O3−CeO2−ZrO2複合酸化物粉末(重量比 Al2O3:CeO2:ZrO2=26/39.5/34.5) 100重量部と、バインダとしてのアルミナ水和物(アルミナとして3重量部)と、を所定量の純水と混合し、ミリングしてスラリーを調製した。 95 parts by weight of this Ti / Al 2 O 3 powder and Al 2 O 3 —CeO 2 —ZrO 2 composite oxide powder (weight ratio Al 2 O 3 : CeO 2 : ZrO 2 = 26 / 39.5 / 34.5) 100 parts by weight Alumina hydrate (3 parts by weight as alumina) as a binder was mixed with a predetermined amount of pure water and milled to prepare a slurry.
そして実施例1と同様のハニカム基材を用意し、このスラリーをウォッシュコートして、 120℃で乾燥後 450℃で2時間焼成しコート層を形成した。コート層は、ハニカム基材の体積1Lあたり 198g形成された。次いで、ジニトロジアンミン白金溶液と硝酸ロジウム水溶液を用いて、コート層にPt及びRhをそれぞれ担持した。 A honeycomb substrate similar to that in Example 1 was prepared, and this slurry was wash-coated, dried at 120 ° C. and then fired at 450 ° C. for 2 hours to form a coat layer. The coating layer was formed in an amount of 198 g per liter of honeycomb substrate volume. Next, using a dinitrodiammine platinum solution and an aqueous rhodium nitrate solution, Pt and Rh were supported on the coating layer, respectively.
触媒1リットルあたりの担持量は、Tiが0.18モル、Ptが 1.0g、Rhが 0.2gである。 The supported amount per liter of catalyst is 0.18 mol of Ti, 1.0 g of Pt, and 0.2 g of Rh.
(比較例3)
Ti/Al2O3粉末に代えてγ-Al2O3粉末を用いたこと以外は実施例10と同様である。
(Comparative Example 3)
Example 10 is the same as Example 10 except that γ-Al 2 O 3 powder is used instead of Ti / Al 2 O 3 powder.
(実施例11)
先ずθ-Al2O3粉末を用意し、実施例10と同様にしてTiを担持しTi/Al2O3粉末を調製した。
(Example 11)
First, θ-Al 2 O 3 powder was prepared, and Ti was supported in the same manner as in Example 10 to prepare Ti / Al 2 O 3 powder.
比表面積が3m2/gのセリア−ジルコニア固溶体粉末(重量比CeO2:ZrO2=53/47)60重量部と、Ti/Al2O3粉末94重量部と、バインダとしてのアルミナ水和物(アルミナとして3重量部)と、を所定量の純水と混合し、ミリングしてスラリーを調製した。 60 parts by weight of ceria-zirconia solid solution powder (weight ratio CeO 2 : ZrO 2 = 53/47) having a specific surface area of 3 m 2 / g, 94 parts by weight of Ti / Al 2 O 3 powder, and alumina hydrate as a binder (3 parts by weight as alumina) was mixed with a predetermined amount of pure water and milled to prepare a slurry.
次にコージェライト製のハニカム基材(容積 0.9L、セル密度 400cpsi)を用意し、上記スラリーをウォッシュコートして、 120℃で乾燥後 450℃で2時間焼成し下コート層を形成した。下コート層は、ハニカム基材の体積1Lあたり 100g形成された。 Next, a cordierite-made honeycomb substrate (volume: 0.9 L, cell density: 400 cpsi) was prepared, and the slurry was wash-coated, dried at 120 ° C. and fired at 450 ° C. for 2 hours to form an undercoat layer. The lower coat layer was formed in an amount of 100 g per liter of the honeycomb substrate.
上記下コート層をもつハニカム基材に、所定濃度のジニトロジアンミン白金溶液の所定量を含浸させて吸水担持し、 120℃で乾燥後 450℃で2時間焼成してPtを担持した。 A honeycomb base material having the above lower coat layer was impregnated with a predetermined amount of a dinitrodiammine platinum solution having a predetermined concentration and supported for water absorption, dried at 120 ° C., and fired at 450 ° C. for 2 hours to support Pt.
続いて、上記と同様に調製されたTi/Al2O3粉末に予めRhが0.35重量%担持されたRh/Ti/Al2O3触媒粉末57重量部と、バインダとしてのアルミナ水和物(アルミナとして3重量部)と、を所定量の純水と混合し、ミリングしてスラリーを調製した。そしてPtが担持された下コート層の表面にウォッシュコートして、 120℃で乾燥後 450℃で2時間焼成し上コート層を形成した。上コート層は、ハニカム基材の体積1Lあたり60g形成された。 Subsequently, 57 parts by weight of Rh / Ti / Al 2 O 3 catalyst powder in which 0.35% by weight of Rh was previously supported on Ti / Al 2 O 3 powder prepared in the same manner as above, and alumina hydrate as a binder ( 3 parts by weight as alumina) was mixed with a predetermined amount of pure water and milled to prepare a slurry. Then, the surface of the lower coat layer carrying Pt was wash coated, dried at 120 ° C., and then baked at 450 ° C. for 2 hours to form an upper coat layer. The upper coat layer was formed in an amount of 60 g per liter of the honeycomb substrate.
触媒1リットルあたりの担持量は、Tiが0.078 モル、Ptが 1.0g、Rhが 0.2gである。 The supported amount per liter of catalyst is 0.078 mol of Ti, 1.0 g of Pt, and 0.2 g of Rh.
(比較例4)
Ti/Al2O3粉末に代えてTiを担持していないθ-Al2O3粉末を用いたこと以外は実施例11と同様にして、上下コート層をもつ触媒を調製した。
(Comparative Example 4)
A catalyst having upper and lower coat layers was prepared in the same manner as in Example 11 except that θ-Al 2 O 3 powder not supporting Ti was used instead of Ti / Al 2 O 3 powder.
(実施例12)
先ず Al2O3粉末を1200℃で5時間焼成し、比表面積が 100m2/gから40m2/gに低下した低比表面積アルミナ粉末を調製した。γ-Al2O3粉末に代えてこの低比表面積アルミナ粉末を用い、実施例10と同様にしてTiを担持したTi/Al2O3粉末を調製した。このTi/Al2O3粉末を用いたこと以外は実施例11と同様にして、上下コート層をもつ触媒を調製した。
(Example 12)
First, Al 2 O 3 powder was fired at 1200 ° C. for 5 hours to prepare a low specific surface area alumina powder having a specific surface area reduced from 100 m 2 / g to 40 m 2 / g. A Ti / Al 2 O 3 powder supporting Ti was prepared in the same manner as in Example 10 using this low specific surface area alumina powder instead of the γ-Al 2 O 3 powder. A catalyst having upper and lower coat layers was prepared in the same manner as in Example 11 except that this Ti / Al 2 O 3 powder was used.
(比較例5)
Ti/Al2O3粉末に代えて低比表面積アルミナ粉末を用いたこと以外は実施例12と同様にして、上下コート層をもつ触媒を調製した。
(Comparative Example 5)
A catalyst having upper and lower coat layers was prepared in the same manner as in Example 12 except that low specific surface area alumina powder was used instead of Ti / Al 2 O 3 powder.
(実施例13)
実施例12と同様の低比表面積アルミナ粉末を用い、実施例10と同様にしてTiを担持したTi/Al2O3粉末を調製した。このTi/Al2O3粉末94重量部と、比表面積が3m2/gのセリア−ジルコニア固溶体粉末(重量比CeO2:ZrO2=53/47)60重量部と、バインダとしてのアルミナ水和物(アルミナとして3重量部)と、を所定量の純水と混合し、ミリングしてスラリーを調製した。
(Example 13)
Using the same low specific surface area alumina powder as in Example 12, Ti / Al 2 O 3 powder supporting Ti was prepared in the same manner as in Example 10. 94 parts by weight of this Ti / Al 2 O 3 powder, 60 parts by weight of ceria-zirconia solid solution powder (weight ratio CeO 2 : ZrO 2 = 53/47) having a specific surface area of 3 m 2 / g, and hydration of alumina as a binder A product (3 parts by weight as alumina) was mixed with a predetermined amount of pure water and milled to prepare a slurry.
次にコージェライト製のハニカム基材(容積 0.9L、セル密度 400cpsi)を用意し、上記スラリーを上流側半分にウォッシュコートして、 120℃で乾燥後 450℃で2時間焼成し上流側コート層を形成した。上流側コート層は、ハニカム基材の体積1Lあたり 100g形成された。この上流側コート層に、所定濃度のジニトロジアンミン白金溶液の所定量を含浸させて吸水担持し、 120℃で乾燥後 450℃で2時間焼成してPtを担持した。 Next, prepare a cordierite honeycomb substrate (volume: 0.9 L, cell density: 400 cpsi), wash coat the slurry on the upstream half, dry at 120 ° C., and fire at 450 ° C. for 2 hours to upstream coat layer Formed. The upstream coat layer was formed in an amount of 100 g per liter of honeycomb substrate volume. The upstream coat layer was impregnated with a predetermined amount of a dinitrodiammine platinum solution having a predetermined concentration and supported for water absorption, dried at 120 ° C., and baked at 450 ° C. for 2 hours to support Pt.
続いて、上記と同様に調製されたTi/Al2O3粉末に予めRhが0.35重量%担持されたRh/Ti/Al2O3触媒粉末57重量部と、バインダとしてのアルミナ水和物(アルミナとして3重量部)と、を所定量の純水と混合し、ミリングしてスラリーを調製した。そして上流側コート層の下流側半分にウォッシュコートして、 120℃で乾燥後 450℃で2時間焼成し下流側コート層を形成した。下流側コート層は、ハニカム基材の体積1Lあたり60g形成された。 Subsequently, 57 parts by weight of Rh / Ti / Al 2 O 3 catalyst powder in which 0.35% by weight of Rh was previously supported on Ti / Al 2 O 3 powder prepared in the same manner as above, and alumina hydrate as a binder ( 3 parts by weight as alumina) was mixed with a predetermined amount of pure water and milled to prepare a slurry. Then, the downstream half of the upstream coat layer was wash-coated, dried at 120 ° C., and then fired at 450 ° C. for 2 hours to form a downstream coat layer. The downstream coat layer was formed in an amount of 60 g per liter of honeycomb substrate volume.
触媒1リットルあたりの担持量は、Tiが0.078 モル、Ptが 1.0g、Rhが 0.2gである。 The supported amount per liter of catalyst is 0.078 mol of Ti, 1.0 g of Pt, and 0.2 g of Rh.
(比較例6)
Ti/Al2O3粉末に代えて低比表面積アルミナ粉末を用いたこと以外は実施例13と同様にして、上流側コート層及び下流側コート層をもつ触媒を調製した。
(Comparative Example 6)
A catalyst having an upstream coat layer and a downstream coat layer was prepared in the same manner as in Example 13 except that a low specific surface area alumina powder was used instead of the Ti / Al 2 O 3 powder.
<試験・評価>
直列4気筒の 2.4Lエンジンを搭載した車両の床下触媒に、各実施例及び各比較例の触媒を各々搭載して、硫黄濃度300ppmのガソリン燃料を用い、LA#4モード(Bagt1〜3)を走行した。走行後パージ時に排出される H2S積算量を評価した。比較例3の触媒の H2S積算量に対する比を算出し、結果を図6に示す。
<Test and evaluation>
LA # 4 mode (Bagt1-3) using gasoline fuel with a sulfur concentration of 300ppm on the underfloor catalyst of a vehicle equipped with an inline 4-cylinder 2.4L engine and each of the examples and comparative examples. Ran. The accumulated amount of H 2 S discharged during purging after running was evaluated. The ratio of the catalyst of Comparative Example 3 to the accumulated amount of H 2 S was calculated, and the results are shown in FIG.
図6より、各実施例の触媒は比較例の触媒に比べてH2S の脱離量が少ないことがわかる。すなわち、Ti担持アルミナを含むことにより、H2S の排出を大きく抑制できることが明らかである。 From FIG. 6, it can be seen that the catalyst of each example has a smaller amount of H 2 S desorption than the catalyst of the comparative example. That is, it is clear that the emission of H 2 S can be greatly suppressed by including Ti-supported alumina.
(実施例14)
チタン(IV)テトラブトキシモノマーのエタノール溶液を用いて調製されたTi/Al2O3粉末を用いたこと以外は、実施例11と同様である。
(Example 14)
Example 11 is the same as Example 11 except that a Ti / Al 2 O 3 powder prepared using an ethanol solution of titanium (IV) tetrabutoxy monomer is used.
(実施例15)
塩化チタン水溶液を用いて調製されたTi/Al2O3粉末を用いたこと以外は、実施例11と同様である。
(Example 15)
Example 11 is the same as Example 11 except that Ti / Al 2 O 3 powder prepared using an aqueous titanium chloride solution is used.
<試験・評価>
実施例11、実施例14、実施例15、比較例3、比較例4の各触媒をテストピースサイズに切り出し、SO2 を含むモデルガスを流通させて硫黄被毒させた。その後、表2に示すモデルガスを30℃、25L/分の流量で流通させた時に排出される H2S積算量を評価した。比較例3の触媒の H2S積算量に対する比をそれぞれ算出し、結果を図7に示す。
<Test and evaluation>
Each catalyst of Example 11, Example 14, Example 15, Comparative Example 3 and Comparative Example 4 was cut to a test piece size, and model gas containing SO 2 was circulated to cause sulfur poisoning. Thereafter, the accumulated amount of H 2 S discharged when the model gas shown in Table 2 was circulated at 30 ° C. and a flow rate of 25 L / min was evaluated. The ratio of the catalyst of Comparative Example 3 to the accumulated amount of H 2 S was calculated, and the results are shown in FIG.
この試験からも、各実施例の触媒は比較例の触媒に比べてH2S の脱離量が少ないことがわかる。すなわち、Ti担持アルミナを含むことにより、H2S の排出を大きく抑制できることが明らかである。またTiの担持方法によってH2S の脱離量が異なることもわかる。 Also from this test, it can be seen that the catalyst of each example has a smaller amount of H 2 S desorption than the catalyst of the comparative example. That is, it is clear that the emission of H 2 S can be greatly suppressed by including Ti-supported alumina. It can also be seen that the amount of H 2 S desorption varies depending on the Ti loading method.
(実施例16)
γ-Al2O3粉末にテトラメトキシシランのアルコール溶液を添加し、 500℃で1時間焼成してSiを担持したSi/Al2O3粉末を調製した。
(Example 16)
An alcohol solution of tetramethoxysilane was added to γ-Al 2 O 3 powder and baked at 500 ° C. for 1 hour to prepare Si / Al 2 O 3 powder supporting Si.
このSi/Al2O3粉末95重量部と、 Al2O3−CeO2−ZrO2複合酸化物粉末(重量比 Al2O3:CeO2:ZrO2=26/39.5/34.5) 100重量部と、バインダとしてのアルミナ水和物(アルミナとして3重量部)と、を所定量の純水と混合し、ミリングしてスラリーを調製した。 95 parts by weight of this Si / Al 2 O 3 powder and Al 2 O 3 —CeO 2 —ZrO 2 composite oxide powder (weight ratio Al 2 O 3 : CeO 2 : ZrO 2 = 26 / 39.5 / 34.5) 100 parts by weight Alumina hydrate (3 parts by weight as alumina) as a binder was mixed with a predetermined amount of pure water and milled to prepare a slurry.
そして実施例1と同様のハニカム基材を用意し、このスラリーをウォッシュコートして、 120℃で乾燥後 450℃で2時間焼成しコート層を形成した。コート層は、ハニカム基材の体積1Lあたり 198g形成された。次いで、ジニトロジアンミン白金溶液と硝酸ロジウム水溶液を用いて、コート層にPt及びRhをそれぞれ担持した。 A honeycomb substrate similar to that in Example 1 was prepared, and this slurry was wash-coated, dried at 120 ° C. and then fired at 450 ° C. for 2 hours to form a coat layer. The coating layer was formed in an amount of 198 g per liter of honeycomb substrate volume. Next, using a dinitrodiammine platinum solution and an aqueous rhodium nitrate solution, Pt and Rh were supported on the coating layer, respectively.
触媒1リットルあたりの担持量は、Siが 0.1モル、Ptが 1.0g、Rhが 0.2gである。 The supported amount per liter of the catalyst is 0.1 mol of Si, 1.0 g of Pt, and 0.2 g of Rh.
(比較例7)
Si/Al2O3粉末に代えてγ-Al2O3粉末を用いたこと以外は実施例16と同様である。なお、この触媒は比較例3の触媒と同じものである。
(Comparative Example 7)
Example 16 is the same as Example 16 except that γ-Al 2 O 3 powder was used instead of the Si / Al 2 O 3 powder. This catalyst is the same as the catalyst of Comparative Example 3.
(実施例17)
先ずθ-Al2O3粉末を用意し、実施例16と同様にしてSiを担持しSi/Al2O3粉末を調製した。
(Example 17)
First, θ-Al 2 O 3 powder was prepared, and Si was supported in the same manner as in Example 16 to prepare Si / Al 2 O 3 powder.
比表面積が3m2/gのセリア−ジルコニア固溶体粉末(重量比CeO2:ZrO2=53/47)60重量部と、Si/Al2O3粉末94重量部と、バインダとしてのアルミナ水和物(アルミナとして3重量部)と、を所定量の純水と混合し、ミリングしてスラリーを調製した。 60 parts by weight of ceria-zirconia solid solution powder (weight ratio CeO 2 : ZrO 2 = 53/47) having a specific surface area of 3 m 2 / g, 94 parts by weight of Si / Al 2 O 3 powder, and alumina hydrate as a binder (3 parts by weight as alumina) was mixed with a predetermined amount of pure water and milled to prepare a slurry.
次にコージェライト製のハニカム基材(容積 0.9L、セル密度 400cpsi)を用意し、上記スラリーをウォッシュコートして、 120℃で乾燥後 450℃で2時間焼成し下コート層を形成した。下コート層は、ハニカム基材の体積1Lあたり 100g形成された。 Next, a cordierite-made honeycomb substrate (volume: 0.9 L, cell density: 400 cpsi) was prepared, and the slurry was wash-coated, dried at 120 ° C. and fired at 450 ° C. for 2 hours to form an undercoat layer. The lower coat layer was formed in an amount of 100 g per liter of the honeycomb substrate.
上記下コート層をもつハニカム基材に、所定濃度のジニトロジアンミン白金溶液の所定量を含浸させて吸水担持し、 120℃で乾燥後 450℃で2時間焼成してPtを担持した。 A honeycomb base material having the above lower coat layer was impregnated with a predetermined amount of a dinitrodiammine platinum solution having a predetermined concentration and supported for water absorption, dried at 120 ° C., and fired at 450 ° C. for 2 hours to support Pt.
続いて、上記と同様に調製されたSi/Al2O3粉末に予めRhが0.35重量%担持されたRh/Si/Al2O3触媒粉末57重量部と、バインダとしてのアルミナ水和物(アルミナとして3重量部)と、を所定量の純水と混合し、ミリングしてスラリーを調製した。そしてPtが担持された下コート層の表面にウォッシュコートして、 120℃で乾燥後 450℃で2時間焼成し上コート層を形成した。上コート層は、ハニカム基材の体積1Lあたり60g形成された。 Subsequently, 57 parts by weight of Rh / Si / Al 2 O 3 catalyst powder in which 0.35% by weight of Rh was previously supported on the Si / Al 2 O 3 powder prepared in the same manner as described above, and alumina hydrate as a binder ( 3 parts by weight as alumina) was mixed with a predetermined amount of pure water and milled to prepare a slurry. Then, the surface of the lower coat layer carrying Pt was wash coated, dried at 120 ° C., and then baked at 450 ° C. for 2 hours to form an upper coat layer. The upper coat layer was formed in an amount of 60 g per liter of the honeycomb substrate.
触媒1リットルあたりの担持量は、Siが 0.1モル、Ptが 1.0g、Rhが 0.2gである。 The supported amount per liter of the catalyst is 0.1 mol of Si, 1.0 g of Pt, and 0.2 g of Rh.
(比較例8)
Si/Al2O3粉末に代えてSiを担持していないθ-Al2O3粉末を用いたこと以外は実施例17と同様にして、上下コート層をもつ触媒を調製した。
(Comparative Example 8)
A catalyst having upper and lower coat layers was prepared in the same manner as in Example 17 except that θ-Al 2 O 3 powder not supporting Si was used instead of Si / Al 2 O 3 powder.
<試験・評価>
直列4気筒の 2.4Lエンジンを搭載した車両の床下触媒に、各実施例及び各比較例の触媒を各々搭載して、硫黄濃度300ppmのガソリン燃料を用い、LA#4モード(Bagt1〜3)を走行した。走行後パージ時に排出される H2S積算量を評価した。比較例7の触媒の H2S積算量に対する比を算出し、結果を図8に示す。
<Test and evaluation>
LA # 4 mode (Bagt1-3) using gasoline fuel with a sulfur concentration of 300ppm on the underfloor catalyst of a vehicle equipped with an inline 4-cylinder 2.4L engine and each of the examples and comparative examples. Ran. The accumulated amount of H 2 S discharged during purging after running was evaluated. The ratio of the catalyst of Comparative Example 7 to the accumulated amount of H 2 S was calculated, and the result is shown in FIG.
図8より、各実施例の触媒は比較例の触媒に比べてH2S の脱離量が少ないことがわかる。すなわち、Si担持アルミナを含むことにより、H2S の排出を大きく抑制できることが明らかである。 FIG. 8 shows that the catalyst of each Example has a smaller amount of H 2 S desorption than the catalyst of the comparative example. That is, it is clear that the discharge of H 2 S can be greatly suppressed by including Si-supported alumina.
(実施例18)
テトラメトキシシランの濃度が異なるアルコール溶液を用いて調製されたSi/Al2O3粉末を用いたこと以外は、実施例16と同様である。触媒1リットルあたりの担持量は、Siが0.02モル、Ptが 1.0g、Rhが 0.2gである。
(Example 18)
Example 16 is the same as Example 16 except that Si / Al 2 O 3 powders prepared using alcohol solutions having different tetramethoxysilane concentrations are used. The supported amount per liter of catalyst is 0.02 mol of Si, 1.0 g of Pt, and 0.2 g of Rh.
(実施例19)
テトラメトキシシランの濃度が異なるアルコール溶液を用いて調製されたSi/Al2O3粉末を用いたこと以外は、実施例16と同様である。触媒1リットルあたりの担持量は、Siが 0.5モル、Ptが 1.0g、Rhが 0.2gである。
(Example 19)
Example 16 is the same as Example 16 except that Si / Al 2 O 3 powders prepared using alcohol solutions having different tetramethoxysilane concentrations are used. The supported amount per liter of catalyst is 0.5 mol of Si, 1.0 g of Pt, and 0.2 g of Rh.
<試験・評価>
実施例16、実施例18、実施例19、比較例7の各触媒をテストピースサイズに切り出し、SO2 を含むモデルガスを流通させて硫黄被毒させた。その後、表2に示すモデルガスを30℃、25L/分の流量で流通させた時に排出される H2S積算量を評価した。比較例7の触媒の H2S積算量に対する比をそれぞれ算出し、結果を図9に示す。
<Test and evaluation>
Each catalyst of Example 16, Example 18, Example 19, and Comparative Example 7 was cut out to a test piece size, and sulfur gas was poisoned by circulating a model gas containing SO 2 . Thereafter, the accumulated amount of H 2 S discharged when the model gas shown in Table 2 was circulated at 30 ° C. and a flow rate of 25 L / min was evaluated. The ratio of the catalyst of Comparative Example 7 to the cumulative amount of H 2 S was calculated, and the results are shown in FIG.
この試験からも、各実施例の触媒は比較例の触媒に比べてH2S の脱離量が少ないことがわかる。すなわち、Si担持アルミナを含むことにより、H2S の排出を大きく抑制できることが明らかである。またSiの担持量が多いほどH2S の脱離量が多くなることもわかる。 Also from this test, it can be seen that the catalyst of each example has a smaller amount of H 2 S desorption than the catalyst of the comparative example. That is, it is clear that the discharge of H 2 S can be greatly suppressed by including Si-supported alumina. It can also be seen that the greater the amount of Si supported, the greater the amount of H 2 S desorption.
本発明の排ガス浄化用触媒は、自動車の三元触媒として有用であるが、ストイキ雰囲気近傍で燃焼制御される内燃機関であれば自動車用に限られるものではない。 The exhaust gas-purifying catalyst of the present invention is useful as a three-way catalyst for automobiles, but is not limited to automobiles as long as it is an internal combustion engine that is combustion controlled in the vicinity of a stoichiometric atmosphere.
1:ハニカム基材 2:下コート層 3:上コート層
20:セリア−ジルコニア固溶体粉末
21:酸性酸化物担持アルミナ粉末
1: Honeycomb base material 2: Lower coat layer 3: Upper coat layer
20: Ceria-zirconia solid solution powder
21: Acid oxide-supported alumina powder
Claims (6)
該担体には、アルミナより酸性度が高い金属酸化物からなる酸性酸化物がアルミナに選択的に担持されてなる酸性酸化物担持アルミナを含むことを特徴とする排ガス浄化用触媒。 An exhaust gas purifying catalyst comprising a support made of a porous oxide containing at least alumina, and a noble metal supported on the support,
An exhaust gas purifying catalyst characterized in that the carrier contains acidic oxide-supported alumina in which an acidic oxide made of a metal oxide having a higher acidity than alumina is selectively supported on alumina.
前記酸性酸化物を構成する金属の酸塩と可溶性アルミニウム塩とが溶解した混合溶液を調製する工程と、
該混合溶液中の酸イオンの全量を中和可能なアルカリ水溶液中に該混合溶液を滴下し、酸化物前駆体からなる沈殿物を生成する工程と、
次いで該沈殿物を焼成する工程と、を含むことを特徴とする酸性酸化物担持アルミナの製造方法。 In producing the exhaust gas purifying catalyst according to any one of claims 1 to 5, a method of producing the acidic oxide-supported alumina in advance,
Preparing a mixed solution in which a metal acid salt and a soluble aluminum salt constituting the acidic oxide are dissolved;
Dropping the mixed solution into an aqueous alkaline solution capable of neutralizing the total amount of acid ions in the mixed solution to produce a precipitate composed of an oxide precursor;
And then baking the precipitate. The method for producing acidic oxide-supported alumina.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007123613A JP2008279319A (en) | 2007-05-08 | 2007-05-08 | Exhaust gas purification catalyst and method for producing acidic oxide-supported alumina used therefor |
PCT/JP2008/058547 WO2008136529A1 (en) | 2007-05-08 | 2008-05-08 | Exhaust gas purification catalyst, and method for production of alumina-supported acidic oxide for use in the catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007123613A JP2008279319A (en) | 2007-05-08 | 2007-05-08 | Exhaust gas purification catalyst and method for producing acidic oxide-supported alumina used therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008279319A true JP2008279319A (en) | 2008-11-20 |
Family
ID=39943632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007123613A Withdrawn JP2008279319A (en) | 2007-05-08 | 2007-05-08 | Exhaust gas purification catalyst and method for producing acidic oxide-supported alumina used therefor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2008279319A (en) |
WO (1) | WO2008136529A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011167677A (en) * | 2010-02-22 | 2011-09-01 | Korea Inst Of Energy Research | Method for producing tungsten oxide-alumina catalyst, tungsten oxide-alumina catalyst produced by the method and method for removing free fatty acid from free fatty acid-including waste edible oil by using the catalyst |
JP2022051070A (en) * | 2020-09-18 | 2022-03-31 | 株式会社豊田中央研究所 | Core-shell type oxygen absorption/desorption material, its manufacturing method, exhaust gas purification catalyst using the same and exhaust gas purification method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010050312A1 (en) | 2010-11-03 | 2012-05-03 | Süd-Chemie AG | Ammonia oxidation catalyst with low N2O by-product formation |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS621737U (en) * | 1985-06-21 | 1987-01-08 | ||
JP2003305363A (en) * | 2002-02-15 | 2003-10-28 | Toyota Central Res & Dev Lab Inc | Catalyst carrier and catalyst for exhaust gas purification |
-
2007
- 2007-05-08 JP JP2007123613A patent/JP2008279319A/en not_active Withdrawn
-
2008
- 2008-05-08 WO PCT/JP2008/058547 patent/WO2008136529A1/en active Application Filing
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011167677A (en) * | 2010-02-22 | 2011-09-01 | Korea Inst Of Energy Research | Method for producing tungsten oxide-alumina catalyst, tungsten oxide-alumina catalyst produced by the method and method for removing free fatty acid from free fatty acid-including waste edible oil by using the catalyst |
JP2022051070A (en) * | 2020-09-18 | 2022-03-31 | 株式会社豊田中央研究所 | Core-shell type oxygen absorption/desorption material, its manufacturing method, exhaust gas purification catalyst using the same and exhaust gas purification method |
JP7307710B2 (en) | 2020-09-18 | 2023-07-12 | 株式会社豊田中央研究所 | Core-shell type oxygen storage/release material, method for producing same, catalyst for purifying exhaust gas using the same, and method for purifying exhaust gas |
Also Published As
Publication number | Publication date |
---|---|
WO2008136529A1 (en) | 2008-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6703537B2 (en) | Nitrous oxide removal catalyst for exhaust systems | |
WO2002066155A1 (en) | Exhaust gas clarification catalyst | |
JP2002331238A (en) | Composite oxide, method for producing the same, exhaust gas purifying catalyst and method for producing the same | |
JP2003126694A (en) | Exhaust gas purification catalyst | |
JP4631230B2 (en) | Exhaust gas purification catalyst | |
JP5327048B2 (en) | Exhaust gas purification catalyst carrier manufacturing method and exhaust gas purification catalyst carrier | |
WO2007145152A1 (en) | Exhaust gas purifying catalyst | |
JP3855426B2 (en) | Method for producing exhaust gas purifying catalyst | |
CN101119789B (en) | Exhaust gas purifying catalyst | |
JP5157068B2 (en) | Hydrogen sulfide production inhibitor and exhaust gas purification catalyst | |
CN115551621A (en) | SCR catalyst composition based on metal oxides | |
JP3640130B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP2006159021A (en) | Exhaust gas purification catalyst | |
EP2823887B1 (en) | Oxidation catalyst and exhaust gas purification method using same | |
JP2008279319A (en) | Exhaust gas purification catalyst and method for producing acidic oxide-supported alumina used therefor | |
JP2007301471A (en) | Exhaust gas purification catalyst | |
JP2003020227A (en) | Fine mixed oxide powder, method for producing the same and catalyst | |
JP3246295B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP2004209323A (en) | Exhaust gas purifying catalyst and production method of the same | |
JP2003010646A (en) | Diesel exhaust gas purification device and exhaust gas purification method | |
JP2006043637A (en) | Exhaust gas purification catalyst | |
JP4534749B2 (en) | NOx storage material, method for supporting the same, and NOx storage reduction catalyst | |
JP4721241B2 (en) | Catalyst for CO shift reaction | |
JP2000051705A (en) | Exhaust gas purification catalyst and method for producing the same | |
JP2005169280A (en) | Exhaust gas purification catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20090319 |