[go: up one dir, main page]

JP2008274323A - Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristics and method for producing the same - Google Patents

Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristics and method for producing the same Download PDF

Info

Publication number
JP2008274323A
JP2008274323A JP2007116477A JP2007116477A JP2008274323A JP 2008274323 A JP2008274323 A JP 2008274323A JP 2007116477 A JP2007116477 A JP 2007116477A JP 2007116477 A JP2007116477 A JP 2007116477A JP 2008274323 A JP2008274323 A JP 2008274323A
Authority
JP
Japan
Prior art keywords
hot
less
finish rolling
sheet
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007116477A
Other languages
Japanese (ja)
Other versions
JP5151233B2 (en
Inventor
Kenichiro Eguchi
健一郎 江口
Hiroshi Nakada
博士 中田
Tsutomu Kami
力 上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007116477A priority Critical patent/JP5151233B2/en
Publication of JP2008274323A publication Critical patent/JP2008274323A/en
Application granted granted Critical
Publication of JP5151233B2 publication Critical patent/JP5151233B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

【課題】表面品質に優れ、かつ延性亀裂伝播特性に優れた熱延鋼板の製造方法を提供する。
【解決手段】C:0.02〜0.08%、Nb:0.03〜0.10%、Ti:0.005〜0.05%を含み、Si、Mn、P、S、Al、Nを適正量に調整した組成を有する鋼素材に、粗圧延工程と、仕上圧延工程と、巻取工程とを順次施すに当たり、粗圧延工程後で仕上圧延工程前に、および/または、仕上圧延工程中に、表層部を50℃/s以上の冷却速度でAr変態点超え930℃以下の温度に達するまで急冷する加速冷却、または表層部を50℃/s以上の冷却速度でAr変態点以下の温度に達するまで急冷する加速冷却を施したのち、該加速冷却を停止し、しかる後に仕上圧延を施す。なお、Ar変態点以下の温度に達するまで急冷する加速冷却を施した場合には、仕上圧延は1パス当たりの圧下率を、(1.1×一様伸び)%以下に限定することが好ましい。これにより、表面品質に優れ、靭性、とくに延性亀裂伝播特性に優れた高張力熱延鋼板とすることができる。
【選択図】なし
A method for producing a hot-rolled steel sheet having excellent surface quality and excellent ductile crack propagation characteristics is provided.
A steel material having a composition in which C, 0.02 to 0.08%, Nb: 0.03 to 0.10%, Ti: 0.005 to 0.05%, and Si, Mn, P, S, Al, and N are adjusted to appropriate amounts. In performing the rough rolling step, the finish rolling step, and the winding step in sequence, the surface layer portion is set to 50 ° C./s or more after the rough rolling step and before the finishing rolling step and / or during the finishing rolling step. Accelerated cooling that rapidly cools until reaching a temperature of 930 ° C or more exceeding the Ar 3 transformation point at the cooling rate, or accelerated cooling that quenches the surface layer portion at a temperature of 50 ° C / s or more until it reaches the temperature of the Ar 3 transformation point or less. Thereafter, the accelerated cooling is stopped, and then finish rolling is performed. In addition, when accelerated cooling which quenches rapidly until it reaches the temperature below the Ar 3 transformation point, it is preferable that finish rolling limits the rolling reduction per pass to (1.1 × uniform elongation)% or less. Thereby, it can be set as the high tension hot-rolled steel plate excellent in surface quality, and excellent in toughness, especially ductile crack propagation characteristics.
[Selection figure] None

Description

本発明は、ラインパイプ向け電縫鋼管およびスパイラル鋼管等の用途に供して好適な高張力熱延鋼板の製造方法に係り、とくに表面欠陥の発生防止および延性亀裂伝播特性の向上に関する。なお、鋼板には、鋼板、鋼帯を含むものとする。   The present invention relates to a method for producing a high-tensile hot-rolled steel sheet that is suitable for use in an electric-welded steel pipe and a spiral steel pipe for line pipes, and particularly relates to prevention of surface defects and improvement of ductile crack propagation characteristics. In addition, a steel plate includes a steel plate and a steel strip.

近年、石油危機以来の原油の高騰や、エネルギー供給源の多様化の要求などから、北海、カナダ、アラスカ等のような極寒地での石油、天然ガスの採掘およびパイプラインの敷設が活発に行われるようになっている。さらに、パイプラインにおいては、天然ガスやオイルの輸送効率向上のため、大径で高圧操業を行う傾向となっている。パイプラインの高圧操業に耐えるため、輸送管(ラインパイプ)は厚肉の鋼管とする必要があり、厚鋼板を素材とするUOE鋼管が使用されるようになってきている。しかし、最近では、パイプラインの施工コストの更なる低減という強い要望にしたがい、鋼管の材料コスト低減の要求も強く、輸送管として、厚鋼板を素材とするUOE鋼管に代わり、生産性が高くより安価な、コイル形状の熱延鋼板(熱延鋼帯)を素材とした高強度電縫鋼管あるいはスパイラル鋼管が用いられるようになってきた。   In recent years, oil and natural gas mining and pipeline construction have been actively carried out in extremely cold regions such as the North Sea, Canada and Alaska due to soaring crude oil since the oil crisis and the demand for diversified energy supply sources. It has come to be. Furthermore, in the pipeline, in order to improve the transportation efficiency of natural gas and oil, there is a tendency to perform high-pressure operation with a large diameter. In order to withstand the high-pressure operation of the pipeline, the transport pipe (line pipe) needs to be a thick-walled steel pipe, and a UOE steel pipe made of a thick steel plate has been used. However, recently, in line with the strong demand for further reduction in pipeline construction costs, there is a strong demand for reducing the material cost of steel pipes. Instead of UOE steel pipes made of thick steel plates as transport pipes, productivity is higher. High-strength ERW steel pipes or spiral steel pipes made from inexpensive, coil-shaped hot-rolled steel sheets (hot-rolled steel strips) have come to be used.

これら高強度鋼管には、ラインパイプの破壊を防止する観点から、同時に優れた低温靭性を保持することが要求されている。このような強度と靭性とを兼備した鋼管を製造するために、鋼管素材である鋼板では、熱間圧延後の加速冷却を利用した変態強化や、Nb、V、Ti等の合金元素の析出物を利用した析出強化等による高強度化と、制御圧延等を利用した組織の微細化等による高靭性化が図られてきた。またさらに最近では,極寒地用の鋼管に対しては、パイプラインのバースト破壊を防止する観点から、破壊靭性、とくに優れたCTOD特性、とくに優れたDWTT特性を具備することが要求される場合が多い。   These high-strength steel pipes are required to maintain excellent low-temperature toughness at the same time from the viewpoint of preventing line pipe breakage. In order to produce steel pipes that have both strength and toughness, steel sheets that are steel pipe materials are produced by transformation strengthening using accelerated cooling after hot rolling and precipitation of alloy elements such as Nb, V, and Ti. Increased strength by precipitation strengthening and the like using slag and refinement of structure using controlled rolling and the like have been achieved. More recently, steel pipes for extremely cold regions may be required to have fracture toughness, particularly excellent CTOD characteristics, particularly excellent DWTT characteristics, from the viewpoint of preventing pipeline burst fracture. Many.

このような要求に対し、例えば特許文献1には、C:0.05〜0.12%、Ca:0.0020〜0.0060%を含み、Si、Mn、Al、P、Sを適正量調整して含む連鋳製スラブに、950℃以下で10〜50%の圧下を行い、引続き表面の冷却速度が2℃/s以上で表面温度がAr以下の温度になるまで冷却し、250s未満の復熱後、未再結晶領域にて50%以上の圧延を行い、720〜820℃の範囲で圧延を終了し、引続いて平均冷却速度5〜30℃/sで冷却した後、400〜600℃の範囲で巻取る高靭性耐サワー鋼管用ホットコイルの製造方法が記載されている。特許文献1に記載された技術によれば、耐HIC特性と、低温靭性の両特性に優れたホットコイルが製造でき、寒冷地でのラインパイプの製造が可能となるとしている。 In response to such demands, for example, Patent Document 1 includes C: 0.05 to 0.12%, Ca: 0.0020 to 0.0060%, and includes a continuous cast slab containing Si, Mn, Al, P, and S with appropriate amounts adjusted. In addition, a reduction of 10 to 50% is performed at 950 ° C. or lower, and the cooling is continued until the surface cooling rate is 2 ° C./s or higher and the surface temperature is Ar 3 or lower. Roll at 50% or more in the crystal region, finish rolling in the range of 720 to 820 ° C, subsequently cool at an average cooling rate of 5 to 30 ° C / s, and then wind in the range of 400 to 600 ° C A method of manufacturing a hot coil for high toughness sour steel pipe is described. According to the technique described in Patent Document 1, a hot coil excellent in both HIC resistance and low temperature toughness can be manufactured, and a line pipe can be manufactured in a cold region.

また、特許文献2には、C:0.01〜0.20%を含み、Si、Mn、Al、Nを適正量含有する鋼片を、Ac変態点以上1250℃以下に加熱し、900℃以上の温度での累積圧下率が10〜80%の粗圧延を行ったのち、2〜40℃/sの加速冷却を、該冷却速度における(Ar変態点+50℃)〜(Ar変態点−50℃)まで行って、加速冷却後、累積圧下率30〜90%の仕上げ圧延を650℃以上で終了し、さらに仕上げ圧延終了後、5〜40℃/sの冷却速度で200〜450℃まで再び加速冷却する低温靭性に優れた低降伏比高張力鋼材の製造方法が記載されている。特許文献2に記載された技術によれば、複雑な熱処理工程を必要とすることなく、低降伏比と、優れた低温靭性とを両立させた熱延鋼板を製造することができるとしている。 In Patent Document 2, a steel slab containing C: 0.01 to 0.20% and containing appropriate amounts of Si, Mn, Al, and N is heated to an Ac 3 transformation point or higher and 1250 ° C. or lower, and a temperature of 900 ° C. or higher. After rough rolling at a cumulative rolling reduction of 10 to 80%, accelerated cooling at 2 to 40 ° C./s is performed at (Ar 3 transformation point + 50 ° C.) to (Ar 3 transformation point −50 ° C.) at the cooling rate. ), And after completion of accelerated cooling, finish rolling with a cumulative rolling reduction of 30 to 90% is completed at 650 ° C or higher, and after finishing rolling is further accelerated to 200 to 450 ° C at a cooling rate of 5 to 40 ° C / s. A method for producing a low-yield ratio high-tensile steel material excellent in low-temperature toughness to be cooled is described. According to the technique described in Patent Document 2, a hot-rolled steel sheet having both a low yield ratio and excellent low-temperature toughness can be produced without requiring a complicated heat treatment step.

また、特許文献3には、C:0.01〜0.10%、Nb:0.01〜0.1%を含み、Si、Mn、P、S、Nを適正量含み、かつMn/Si:5〜8を満足するように調整した鋼片に、1100℃以上で行う最初の圧下率:15〜30%、1000℃以上での合計圧下率:60%以上、最終圧延の圧下率:15〜30%の条件下で粗圧延を行い、5℃/s以上の冷却速度で鋼板表層部をAr点以下まで冷却し、復熱または強制加熱により、表層部の温度が(Ar−40℃)〜(Ar+40℃)となった時点で仕上圧延を開始し、950℃以下の合計圧下率:60%以上の条件で仕上圧延を終了し、ついで2s以内に冷却を開始し、10℃/s以上の速度で600℃以下まで冷却し、600〜350℃の範囲で巻き取る低温靭性及び溶接性に優れた高強度電縫鋼管用熱延鋼板の製造方法が記載されている。特許文献3に記載された技術によれば、高価な合金元素を添加することなく、また熱処理する必要もなく、低温靭性および溶接性に優れた高強度電縫鋼管を製造することができるとしている。
特開平7−268467号公報 特開平10−306316号公報 特開2001−207220号公報
Patent Document 3 includes C: 0.01 to 0.10%, Nb: 0.01 to 0.1%, includes appropriate amounts of Si, Mn, P, S, and N, and satisfies Mn / Si: 5 to 8. The first rolling reduction performed at 1100 ° C or higher is 15 to 30%, the total rolling reduction at 1000 ° C or higher is 60% or higher, and the final rolling rolling reduction is 15 to 30%. Rolling is performed, the steel sheet surface layer part is cooled to Ar 3 points or less at a cooling rate of 5 ° C./s or more, and the temperature of the surface layer part is (Ar 3 −40 ° C.) to (Ar 3 + 40 ° C.) by reheating or forced heating. ), Then finish rolling was completed under the condition of a total reduction ratio of 950 ° C or less: 60% or more, then cooling was started within 2 s, and 600 ° C at a rate of 10 ° C / s or more. A method for producing a hot rolled steel sheet for a high-strength ERW steel pipe excellent in low temperature toughness and weldability, which is cooled to below ℃ and wound up in the range of 600 to 350 ℃ is described. According to the technique described in Patent Document 3, a high-strength ERW steel pipe excellent in low-temperature toughness and weldability can be manufactured without adding an expensive alloy element and without heat treatment. .
Japanese Unexamined Patent Publication No. 7-268467 JP-A-10-306316 Japanese Patent Laid-Open No. 2001-207220

しかし、特許文献1に記載された技術で製造された熱延鋼板では、耐HIC特性の向上は顕著であるが、DWTT特性やCTOD特性の向上は顕著ではなく、さらに表面割れが発生する場合があり、問題を残していた。さらに、特許文献1に記載された技術では、未再結晶域圧下量を極めて大きくしなければならず、圧延機に過大な負荷が掛かることや、板厚の厚いものの製造が困難となるなどの問題もあった。また、特許文献2、特許文献3に記載された技術で製造された熱延鋼板では、表面割れが多発する場合があるという問題があった。   However, in the hot-rolled steel sheet manufactured by the technique described in Patent Document 1, the improvement of the HIC resistance is remarkable, but the improvement of the DWTT characteristic and the CTOD characteristic is not remarkable, and surface cracks may occur. There was a problem left. Furthermore, in the technique described in Patent Document 1, the amount of unrecrystallized zone reduction has to be extremely large, an excessive load is applied to the rolling mill, and it is difficult to manufacture a thick plate. There was also a problem. Moreover, in the hot-rolled steel plate manufactured by the technique described in Patent Literature 2 and Patent Literature 3, there is a problem that surface cracks frequently occur.

本発明は、かかる従来技術の問題を解決し、低温大圧下圧延を行っても表面割れ等の表面欠陥の発生がなく表面品質に優れ、しかも低温靭性、とくに延性亀裂伝播特性に優れた熱延鋼板を製造することが可能となる、高張力熱延鋼板の製造方法を提供することを目的とする。なお、ここでいう「鋼板」は、引張強さTSが490MPa以上の鋼板をいうものとする。また、「表面品質に優れた」とは、製品(鋼板)で深さ100μm以上の表面割れが発生しない場合をいうものとする。また、「延性亀裂伝播特性に優れた」とは、CTOD試験で−10℃での限界開口変位量δcが0.25mm以上である場合をいう。   The present invention solves such problems of the prior art, and does not generate surface defects such as surface cracks even when subjected to low temperature and large rolling, and has excellent surface quality, and also has excellent low temperature toughness, particularly ductile crack propagation characteristics. It aims at providing the manufacturing method of the high-tensile-strength hot-rolled steel plate which becomes possible to manufacture a steel plate. The “steel plate” here means a steel plate having a tensile strength TS of 490 MPa or more. Further, “excellent surface quality” refers to a case where a surface crack with a depth of 100 μm or more does not occur in a product (steel plate). Further, “excellent in ductile crack propagation characteristics” means a case where the critical opening displacement amount δc at −10 ° C. is 0.25 mm or more in the CTOD test.

本発明者らは、上記した課題を達成するために、靭性、表面品質に及ぼす各種要因について鋭意研究を重ねた。その結果、本発明者らは、表面割れ等の表面欠陥は、高靭性を確保するために低温圧延を指向したことによる、表層部の過冷却による延性低下、あるいはさらに表層部への過大な圧下による、粒界フェライトの割れにその主因があることを突き止めた。しかし、本発明者らの検討によれば、高靭性熱延鋼板を得るためには、被圧延材の温度を高靭化に有効な温度域に冷却したのち、所定範囲の圧下を施す仕上圧延を行うことが肝要であり、そのために仕上圧延前あるいは仕上圧延中に加速冷却を施し、その後の仕上圧延で所定値以上の有効圧延率を施すことが必須となることを知見した。そして、高靭性と、優れた表面品質とを両立させるためには、表層部が延性の低下するAr変態点を下回らないように、加速冷却を調整するか、あるいはAr変態点を下回るような低温に冷却する場合には、その後に施す仕上圧延における1パス当たりの圧下量を、高温での一様伸び(均一伸び)値と関連する値以下とする圧延を行うことがよいことを知見した。そして、このような処理は、既存の、仕上圧延前の冷却手段、仕上圧延機内の冷却手段を積極的に活用することにより、達成できることを見いだした。 In order to achieve the above-described problems, the present inventors have conducted extensive research on various factors affecting toughness and surface quality. As a result, the present inventors have found that surface defects such as surface cracks are directed to low temperature rolling in order to ensure high toughness, resulting in reduced ductility due to overcooling of the surface layer part, or excessive reduction to the surface layer part. To find out that the main cause of cracks in intergranular ferrite. However, according to the study by the present inventors, in order to obtain a high toughness hot-rolled steel sheet, after the temperature of the material to be rolled is cooled to a temperature range effective for toughening, finish rolling is applied to a predetermined range of reduction. It has been found that it is essential to perform the above-mentioned, and for that purpose, it is essential to perform accelerated cooling before or during finish rolling, and to apply an effective rolling rate of a predetermined value or more in subsequent finish rolling. In order to achieve both high toughness and excellent surface quality, the accelerated cooling is adjusted so that the surface layer does not fall below the Ar 3 transformation point at which the ductility is lowered, or so that it is below the Ar 3 transformation point. When cooling to a very low temperature, we know that it is better to perform rolling so that the rolling reduction per pass in the subsequent finish rolling is less than the value related to the uniform elongation (uniform elongation) value at high temperatures. did. And it discovered that such a process could be achieved by actively utilizing existing cooling means before finish rolling and cooling means in the finish rolling mill.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次の通りである。
(1)質量%で、C:0.02〜0.08%、Si:0.5%以下、Mn:0.8〜1.8%、P:0.025%以下、S:0.005%以下、Al:0.005〜0.10%、N:0.005%以下、Nb:0.03〜0.10%、Ti:0.005〜0.05%を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材に、粗圧延を施しシートバーとする粗圧延工程と、該シートバーに仕上圧延を施し熱延板とする仕上圧延工程と、該熱延板を巻き取る巻取工程とを順次施す熱延鋼板の製造方法において、前記粗圧延工程後で、前記仕上圧延工程前に、前記シートバーに、表層部を50℃/s以上の冷却速度でAr変態点超え930℃以下の温度に達するまで急冷する加速冷却を施したのち、該加速冷却を停止し、しかる後に仕上圧延工程を施すことを特徴とする表面品質および延性亀裂伝播特性に優れる熱延鋼板の製造方法。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.02 to 0.08%, Si: 0.5% or less, Mn: 0.8 to 1.8%, P: 0.025% or less, S: 0.005% or less, Al: 0.005 to 0.10%, N: 0.005% In the following, a rough rolling step in which Nb: 0.03 to 0.10%, Ti: 0.005 to 0.05%, and a steel material having a composition composed of the remaining Fe and inevitable impurities is subjected to rough rolling to form a sheet bar, In the method of manufacturing a hot-rolled steel sheet that sequentially performs a finish-rolling step for performing hot rolling and making a hot-rolled plate, and a winding step for winding the hot-rolled plate, after the rough rolling step, before the finish rolling step, The sheet bar is subjected to accelerated cooling in which the surface layer is rapidly cooled at a cooling rate of 50 ° C./s or more until reaching a temperature exceeding the Ar 3 transformation point and reaching 930 ° C. or less, then the accelerated cooling is stopped, and then finish rolling A method for producing a hot-rolled steel sheet having excellent surface quality and ductile crack propagation characteristics, characterized by performing a process.

(2)質量%で、C:0.02〜0.08%、Si:0.5%以下、Mn:0.8〜1.8%、P:0.025%以下、S:0.005%以下、Al:0.005〜0.10%、N:0.005%以下、Nb:0.03〜0.10%、Ti:0.005〜0.05%を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材に、粗圧延を施しシートバーとする粗圧延工程と、該シートバーに仕上圧延を施し熱延板とする仕上圧延工程と、該熱延板を巻き取る巻取工程とを順次施す熱延鋼板の製造方法において、前記仕上圧延工程で少なくとも1回、圧延パス間で、仕上圧延途中の熱延板に、表層部が50℃/s以上の冷却速度でAr変態点超え930℃以下の温度に達するまで急冷する加速冷却を施したのち、該加速冷却を停止し、さらに仕上圧延を行い所定寸法形状の熱延板とすることを特徴とする表面品質および延性亀裂伝播特性に優れる熱延鋼板の製造方法。 (2) By mass%, C: 0.02 to 0.08%, Si: 0.5% or less, Mn: 0.8 to 1.8%, P: 0.025% or less, S: 0.005% or less, Al: 0.005 to 0.10%, N: 0.005% In the following, a rough rolling step in which Nb: 0.03 to 0.10%, Ti: 0.005 to 0.05%, and a steel material having a composition composed of the remaining Fe and inevitable impurities is subjected to rough rolling to form a sheet bar, In the method of manufacturing a hot-rolled steel sheet that sequentially performs a finish-rolling process for performing hot rolling and making a hot-rolled sheet, and a winding process for winding the hot-rolled sheet, at least once in the finish rolling process, between rolling passes, The hot-rolled sheet in the middle of finish rolling is subjected to accelerated cooling in which the surface layer portion is rapidly cooled at a cooling rate of 50 ° C./s or more until it reaches a temperature exceeding the Ar 3 transformation point and 930 ° C. or less, and then the accelerated cooling is stopped. Furthermore, it is excellent in surface quality and ductile crack propagation characteristics, characterized in that it is finish-rolled to form a hot-rolled sheet of a predetermined size and shape. Method for manufacturing a hot-rolled steel sheet that.

(3)質量%で、C:0.02〜0.08%、Si:0.5%以下、Mn:0.8〜1.8%、P:0.025%以下、S:0.005%以下、Al:0.005〜0.10%、N:0.005%以下、Nb:0.03〜0.10%、Ti:0.005〜0.05%を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材に、粗圧延を施しシートバーとする粗圧延工程と、該シートバーに仕上圧延を施し熱延板とする仕上圧延工程と、該熱延板を巻き取る巻取工程とを順次施す熱延鋼板の製造方法において、前記粗圧延工程後で、前記仕上圧延工程前に、前記シートバーに、表層部が50℃/s以上の冷却速度でAr変態点超え930℃以下の温度に達するまで急冷する加速冷却を施したのち、該加速冷却を停止し、ついで前記仕上圧延工程を施し、さらに該仕上圧延工程で少なくとも1回、圧延パス間で、仕上圧延途中の熱延板に、表層部が50℃/s以上の冷却速度でAr変態点超え930℃以下の温度に達するまで急冷する加速冷却を施したのち、該加速冷却を停止し、さらに仕上圧延を施し所望寸法形状の熱延板とすることを特徴とする表面品質および延性亀裂伝播特性に優れる熱延鋼板の製造方法。 (3) By mass%, C: 0.02 to 0.08%, Si: 0.5% or less, Mn: 0.8 to 1.8%, P: 0.025% or less, S: 0.005% or less, Al: 0.005 to 0.10%, N: 0.005% In the following, a rough rolling step in which Nb: 0.03 to 0.10%, Ti: 0.005 to 0.05%, and a steel material having a composition composed of the remaining Fe and inevitable impurities is subjected to rough rolling to form a sheet bar, In the method of manufacturing a hot-rolled steel sheet that sequentially performs a finish-rolling step for performing hot rolling and making a hot-rolled plate, and a winding step for winding the hot-rolled plate, after the rough rolling step, before the finish rolling step, The sheet bar is subjected to accelerated cooling in which the surface layer portion is rapidly cooled at a cooling rate of 50 ° C./s or more until reaching a temperature of more than 930 ° C. above the Ar 3 transformation point, and then the accelerated cooling is stopped, and then the finish rolling In addition, at least once in the finish rolling step, between the rolling passes, on the hot rolled sheet in the middle of finish rolling, After the part is subjected to accelerated cooling by quenching to reach Ar 3 transformation point exceeding 930 ° C. or less of the temperature cooling rate higher than 50 ° C. / s, stop the pressurized-speed cooling, the heat of the desired size and shape further subjected to finish rolling A method for producing a hot-rolled steel sheet, which is excellent in surface quality and ductile crack propagation characteristics, characterized by being a rolled sheet.

(4)(1)ないし(3)のいずれかにおいて、前記加速冷却を、表層部が50℃/s以上の冷却速度でAr変態点以下の温度に達するまで急冷する冷却とし、前記仕上圧延工程における仕上圧延を、1パス当たりの圧下率が(1.1×一様伸び)%以下(ここで、一様伸び:950℃まで加熱したのちAr3変態点以下まで冷却し、ついで950℃まで再加熱して高温引張試験を行ったときに、得られた応力−歪曲線における一様伸び値(%))であることを特徴とする熱延鋼板の製造方法。 (4) In any one of (1) to (3), the accelerated cooling is performed by rapidly cooling the surface layer portion at a cooling rate of 50 ° C./s or more until reaching a temperature not higher than the Ar 3 transformation point. Finish rolling in the process, the rolling reduction per pass is (1.1 × uniform elongation)% or less (here, uniform elongation: after heating to 950 ° C, cooling to the Ar 3 transformation point or less, and then to 950 ° C again. A method for producing a hot-rolled steel sheet, characterized by having a uniform elongation value (%) in the obtained stress-strain curve when subjected to a high-temperature tensile test by heating.

(5)(1)ないし(4)のいずれかにおいて、前記組成に加えてさらに、質量%で、Cu:0.005〜0.5%、Ni:0.005〜0.5%、Cr:0.005〜0.5%、Mo:0.005〜0.3%、V:0.005〜0.3%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする熱延鋼板の製造方法。
(6)(1)ないし(5)のいずれかにおいて、前記巻取工程における前記熱延板の巻取り温度を350〜700℃とし、巻き取ったのちの冷却速度をコイル中央部で5〜20℃/hとすることを特徴とする熱延鋼板の製造方法。
(5) In any one of (1) to (4), in addition to the above composition, Cu: 0.005-0.5%, Ni: 0.005-0.5%, Cr: 0.005-0.5%, Mo: 0.005 A method for producing a hot-rolled steel sheet, comprising: one or two or more selected from ˜0.3% and V: 0.005 to 0.3%.
(6) In any one of (1) to (5), the winding temperature of the hot-rolled sheet in the winding step is set to 350 to 700 ° C., and the cooling rate after winding is set to 5 to 20 at the coil central portion. The manufacturing method of the hot-rolled steel plate characterized by setting it as (degreeC / h).

(7)質量%で、C:0.02〜0.08%、Si:0.5%以下、Mn:0.8〜1.8%、P:0.025%以下、S:0.005%以下、Al:0.005〜0.10%、N:0.005%以下、Nb:0.03〜0.10%、Ti:0.005〜0.05%を含み、残部Feおよび不可避的不純物からなる組成と、ベイニティックフェライト単相からなる組織とを有し、引張強さTSが490MPa以上であることを特徴とする表面品質および延性亀裂伝播特性に優れた熱延鋼板。   (7) By mass%, C: 0.02 to 0.08%, Si: 0.5% or less, Mn: 0.8 to 1.8%, P: 0.025% or less, S: 0.005% or less, Al: 0.005 to 0.10%, N: 0.005% In the following, Nb: 0.03 to 0.10%, Ti: 0.005 to 0.05%, the composition composed of the balance Fe and inevitable impurities, and the structure composed of a single phase of bainitic ferrite, with a tensile strength TS of 490 MPa or more A hot-rolled steel sheet having excellent surface quality and ductile crack propagation characteristics.

(8)(7)において、前記組成に加えてさらに、質量%で、Cu:0.005〜0.5%、Ni:0.005〜0.5%、Cr:0.005〜0.5%、Mo:0.005〜0.3%、V:0.005〜0.3%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする熱延鋼板。   (8) In (7), in addition to the above composition, Cu: 0.005-0.5%, Ni: 0.005-0.5%, Cr: 0.005-0.5%, Mo: 0.005-0.3%, V: 0.005 A hot-rolled steel sheet characterized by having a composition containing one or more selected from ˜0.3%.

本発明によれば、表面割れ等の表面欠陥の発生がなく表面品質に優れ、しかも低温靭性、とくに延性亀裂伝播特性に優れた高張力熱延鋼板を、容易にかつ生産性高く製造でき、産業上格段の効果を奏する。また、本発明によれば、鋼管の材料コストを低減でき、したがってパイプラインの施工コストの更なる低減が可能となるという効果もある。   According to the present invention, a high-tensile hot-rolled steel sheet having no surface defects such as surface cracks, excellent surface quality, and low-temperature toughness, particularly excellent ductile crack propagation characteristics, can be easily and highly productively manufactured. Has an exceptional effect. In addition, according to the present invention, the material cost of the steel pipe can be reduced, and therefore, there is an effect that the construction cost of the pipeline can be further reduced.

まず、本発明で使用する鋼素材の組成限定理由について説明する。なお、とくに断らないがぎり質量%は単に%と記す。
C:0.02〜0.08%、
Cは、鋼の強度を上昇させる作用を有する元素であり、本発明では所望の高強度を確保するために、0.02%以上の含有を必要とする。一方、0.08%を超える過剰な含有は、パーライト等の第二相の組織分率を増大させ、母材靭性および溶接熱影響部靭性を低下させる。このため、Cは0.02〜0.08%の範囲に限定した。なお、好ましくは0.02〜0.05%である。
First, the reasons for limiting the composition of the steel material used in the present invention will be described. Note that the mass% is simply indicated as%, unless otherwise specified.
C: 0.02 to 0.08%,
C is an element having an action of increasing the strength of steel, and in the present invention, it is necessary to contain 0.02% or more in order to ensure a desired high strength. On the other hand, an excessive content exceeding 0.08% increases the structural fraction of the second phase such as pearlite, and lowers the base metal toughness and the weld heat affected zone toughness. For this reason, C was limited to the range of 0.02 to 0.08%. In addition, Preferably it is 0.02 to 0.05%.

Si:0.5%以下
Siは、固溶強化、焼入れ性の向上を介して、鋼の強度を増加させるが、同時に靭性を低下させる作用を有し、また、Siは電縫溶接時にSiの酸化物を形成し、電縫溶接部の靭性を低下させる。このため、本発明では、Siはできるだけ低減することが望ましいが、0.5%までは許容できることから、Siは0.5%以下に限定した。なお、好ましくは0.3%以下である。
Si: 0.5% or less
Si increases the strength of steel through solid solution strengthening and hardenability improvement, but at the same time has the effect of lowering toughness. Reduces the toughness of the sewn weld. For this reason, in the present invention, it is desirable to reduce Si as much as possible, but up to 0.5% is acceptable, so Si is limited to 0.5% or less. In addition, Preferably it is 0.3% or less.

Mn:0.8〜1.8%
Mnは、焼入性を向上させる作用を有し、焼入性向上を介し鋼板の強度を増加させる。また、Mnは、MnSを形成しSを固定することにより、Sの粒界偏析を防止してスラブ(鋼素材)割れを抑制する。このような効果を得るためには、0.8%以上の含有を必要とする。一方、1.8%を超える含有は、偏析を助長し、セパレーションの発生を増加させる。この偏析を消失させるには、1300℃を超える温度に加熱する必要があり、このような熱処理を工業的規模で実施することは現実的でない。このため、Mnは0.8〜1.8%の範囲に限定した。なお、好ましくは0.9〜1.7%である。
Mn: 0.8-1.8%
Mn has the effect of improving hardenability, and increases the strength of the steel sheet through the improvement of hardenability. Further, Mn forms MnS and fixes S, thereby preventing segregation of S grain boundaries and suppressing slab (steel material) cracking. In order to acquire such an effect, 0.8% or more needs to be contained. On the other hand, a content exceeding 1.8% promotes segregation and increases the occurrence of separation. In order to eliminate this segregation, it is necessary to heat to a temperature exceeding 1300 ° C., and it is not practical to carry out such a heat treatment on an industrial scale. For this reason, Mn was limited to the range of 0.8 to 1.8%. In addition, Preferably it is 0.9 to 1.7%.

P:0.025%以下
Pは、鋼中に不純物として不可避的に含まれるが、鋼の強度を上昇させる作用を有する。しかし、0.025%を超えて過剰に含有すると溶接性が低下する。このため、Pは0.025%以下に限定した。なお、好ましくは0.015%以下である。
S:0.005%以下
Sは、Pと同様に鋼中に不純物として不可避的に含まれるが、0.005%を超えて過剰に含有すると、スラブ割れを生起させるとともに、熱延鋼板においては粗大なMnSを形成し、延性の低下を生じさせる。このため、Sは0.005%以下に限定した。なお、好ましくは0.003%以下である。
P: 0.025% or less P is inevitably contained as an impurity in steel, but has an effect of increasing the strength of steel. However, when it exceeds 0.025% and it contains excessively, weldability will fall. For this reason, P was limited to 0.025% or less. In addition, Preferably it is 0.015% or less.
S: 0.005% or less S is inevitably contained as an impurity in steel like P, but if it exceeds 0.005% and excessively contained, it causes slab cracking and coarse hot MnS in hot-rolled steel sheets. Forming and causing a reduction in ductility. For this reason, S was limited to 0.005% or less. In addition, Preferably it is 0.003% or less.

Al:0.005〜0.10%
Alは、脱酸剤として作用する元素であり、このような効果を得るためには、0.005%以上含有することが望ましい。一方、0.10%を超える含有は、電縫溶接時の、溶接部の清浄性を著しく損なう。このようなことから、Alは0.005〜0.10%に限定した。なお、好ましくは0.005〜0.08%である。
Al: 0.005-0.10%
Al is an element that acts as a deoxidizer, and in order to obtain such an effect, it is desirable to contain 0.005% or more. On the other hand, the content exceeding 0.10% significantly impairs the cleanliness of the welded part during ERW welding. For these reasons, Al is limited to 0.005 to 0.10%. In addition, Preferably it is 0.005-0.08%.

N:0.005%以下
Nは、鋼中に不可避的に含まれる元素であるが、過剰な含有はスラブ鋳造時の割れを多発させる。このため、Nは0.005%以下に限定した。なお、好ましくは0.003%以下である。
Nb:0.03〜0.10%
Nbは、オーステナイト粒の粗大化、再結晶を抑制する作用を有する元素であり、熱間仕上圧延におけるオーステナイト未再結晶温度域圧延を可能にするとともに、炭窒化物として微細析出することにより、溶接性を損なうことなく、少ない含有量で熱延鋼板を高強度化する作用を有する。このような効果を得るためには、0.03%以上の含有を必要とする。一方、0.10%を超える過剰な含有は、熱間仕上圧延中の圧延荷重の増大をもたらし、熱間圧延が困難となる場合がある。このため、Nbは0.03〜0.10%の範囲に限定した。なお、好ましくは0.03〜0.07%である。
N: 0.005% or less N is an element inevitably contained in steel, but excessive inclusion frequently causes cracks during slab casting. For this reason, N was limited to 0.005% or less. In addition, Preferably it is 0.003% or less.
Nb: 0.03-0.10%
Nb is an element that has the effect of suppressing the coarsening and recrystallization of austenite grains, enabling the austenite non-recrystallization temperature range rolling in hot finish rolling, and by precipitating finely as carbonitride, It has the effect | action which makes a hot-rolled steel plate high intensity | strength with little content, without impairing property. In order to obtain such an effect, the content of 0.03% or more is required. On the other hand, an excessive content exceeding 0.10% may cause an increase in rolling load during hot finish rolling, which may make hot rolling difficult. For this reason, Nb was limited to the range of 0.03-0.10%. In addition, Preferably it is 0.03-0.07%.

Ti:0.005〜0.05%
Tiは、窒化物を形成しNを固定しスラブ(鋼素材)割れを防止する効果を有するとともに、炭化物として微細析出することにより、鋼板を高強度化させる。このような効果は、0.005%以上の含有で顕著となるが、0.05%を超える含有は析出強化により降伏点が著しく上昇する。このため、Tiは0.005〜0.05%に限定した。なお、好ましくは0.005〜0.03%である。
Ti: 0.005-0.05%
Ti has the effect of forming nitrides and fixing N to prevent cracking of the slab (steel material), and also makes the steel sheet high in strength by being finely precipitated as carbides. Such an effect becomes remarkable when the content is 0.005% or more, but when the content exceeds 0.05%, the yield point is remarkably increased by precipitation strengthening. For this reason, Ti was limited to 0.005 to 0.05%. In addition, Preferably it is 0.005-0.03%.

上記した成分が基本の組成であるが、この基本の組成に加えてさらに、Cu:0.005〜0.5%、Ni:0.005〜0.5%、Cr:0.005〜0.5%、Mo:0.005〜0.3%、V:0.005〜0.3%のうちから選ばれた1種または2種以上を含有する組成としてもよい。
Cu、Ni、Cr、Mo、Vはいずれも、焼入れ性を向上させ、鋼板の強度を増加させる元素であり、必要に応じて1種または2種以上を選択して含有できる。
The above components are basic compositions. In addition to this basic composition, Cu: 0.005-0.5%, Ni: 0.005-0.5%, Cr: 0.005-0.5%, Mo: 0.005-0.3%, V: It is good also as a composition containing 1 type, or 2 or more types chosen from 0.005-0.3%.
Cu, Ni, Cr, Mo, and V are all elements that improve the hardenability and increase the strength of the steel sheet, and can be selected from one or more as required.

Cuは、焼入れ性を向上させるとともに、固溶強化あるいは析出強化により鋼板の強度を増加させる作用を有する元素である。このような効果を得るためには、0.005%以上含有することが望ましいが、0.5%を超える含有は熱間加工性を低下させる。このため、Cuは0.005〜0.5%に限定することが好ましい。
Niは、焼入れ性を向上させ、鋼板の強度を増加させるとともに、靭性を向上させる作用を有する元素である。このような効果を得るためには、0.005%以上含有することが望ましいが、0.5%を超えて含有しても効果が飽和し含有量に見合う効果が期待できなくなり、経済的に不利となる。このため、Niは0.005〜0.5%に限定することが好ましい。
Cu is an element that has the effect of improving the hardenability and increasing the strength of the steel sheet by solid solution strengthening or precipitation strengthening. In order to acquire such an effect, it is desirable to contain 0.005% or more, but inclusion exceeding 0.5% reduces hot workability. For this reason, it is preferable to limit Cu to 0.005-0.5%.
Ni is an element that has the effect of improving hardenability, increasing the strength of the steel sheet, and improving toughness. In order to acquire such an effect, it is desirable to contain 0.005% or more, but even if it contains more than 0.5%, the effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, Ni is preferably limited to 0.005 to 0.5%.

Crは、焼入性を向上させ、鋼板強度を増加させる作用を有する元素である。このような効果は、0.005%以上の含有で顕著となる。一方、0.5%を超える過剰の含有は、電縫溶接時に溶接欠陥を多発させる傾向となる。このため、Crは0.005以上0.5%以下に限定することが好ましい。なお、より好ましくは0.15〜0.3%である。
Moは、焼入性を向上させるとともに、炭化物を形成して鋼板を高強度化する作用を有する元素であり、このような効果は0.005%以上の含有で顕著となる。一方、0.3%を超える多量の含有は、溶接性を低下させる。このため、Moは0.005〜0.3%に限定することが好ましい。なお、より好ましくは0.1〜0.3%である。
Cr is an element that has the effect of improving hardenability and increasing the strength of the steel sheet. Such an effect becomes remarkable when the content is 0.005% or more. On the other hand, an excessive content exceeding 0.5% tends to cause frequent welding defects during ERW welding. For this reason, it is preferable to limit Cr to 0.005 to 0.5%. In addition, More preferably, it is 0.15-0.3%.
Mo is an element that has an effect of improving hardenability and forming carbides to increase the strength of the steel sheet. Such an effect becomes remarkable when the content is 0.005% or more. On the other hand, a large content exceeding 0.3% reduces weldability. For this reason, it is preferable to limit Mo to 0.005 to 0.3%. More preferably, it is 0.1 to 0.3%.

Vは、焼入性を向上させるとともに、炭窒化物を形成して鋼板を高強度化する作用を有する元素であり、このような効果は0.005%以上の含有で顕著となる。一方、0.3%を超える過剰の含有は、溶接性を劣化させる。このため、Vは0.005〜0.3%とすることが好ましい。なお、より好ましくは0.005〜0.15%である。
上記した成分以外の残部は、Feおよび不可避的不純物からなる。
V is an element that has an effect of improving hardenability and forming carbonitride to increase the strength of the steel sheet. Such an effect becomes remarkable when the content is 0.005% or more. On the other hand, an excessive content exceeding 0.3% deteriorates weldability. For this reason, V is preferably 0.005 to 0.3%. In addition, More preferably, it is 0.005-0.15%.
The balance other than the components described above consists of Fe and inevitable impurities.

上記した組成の鋼素材に、粗圧延を施しシートバーとする粗圧延工程と、該シートバーに仕上圧延を施し熱延板とする仕上圧延工程と、該熱延板を巻き取る巻取工程とを順次施す。なお、鋼素材の製造方法はとくに限定する必要はない。上記した組成の溶鋼を転炉等の通常の溶製法で溶製し、連続鋳造法、造塊−分塊法等の通常の鋳造方法で鋼素材とすることができる。   The steel material having the above composition is subjected to rough rolling to be a sheet bar, to a rolling process, to finish rolling the sheet bar to be a hot rolled sheet, and to wind the hot rolled sheet Are applied sequentially. In addition, the manufacturing method of a steel raw material does not need to be specifically limited. The molten steel having the above composition can be melted by a normal melting method such as a converter and used as a steel material by a normal casting method such as a continuous casting method or an ingot-bundling method.

上記した組成の鋼素材は、加熱され、まず粗圧延工程を施される。加熱温度は、とくに限定されないが、1000〜1250℃の範囲の温度とすることが好ましい。加熱温度が1000℃未満では、変形抵抗が高く、圧延機への負荷が過大となりすぎる。一方、1250℃を超えて高温とすると、結晶粒が粗大化しすぎて熱延板の靭性が低下する。また、スケールロスが多くなり、歩留が低下する。なお、粗圧延工程では、所定寸法のシートバーとすることができればよく、とくに粗圧延条件は限定されない。   The steel material having the above composition is heated and first subjected to a rough rolling process. Although heating temperature is not specifically limited, It is preferable to set it as the temperature of the range of 1000-1250 degreeC. When the heating temperature is less than 1000 ° C., the deformation resistance is high and the load on the rolling mill becomes excessive. On the other hand, when the temperature is higher than 1250 ° C., the crystal grains become too coarse and the toughness of the hot-rolled sheet decreases. In addition, scale loss increases and yield decreases. In the rough rolling process, it is sufficient that the sheet bar has a predetermined size, and the rough rolling conditions are not particularly limited.

粗圧延工程を経て得られたシートバーには、仕上圧延工程を施すが、仕上圧延工程前に、加速冷却を施すことが好ましい。加速冷却は、シートバー等を冷却し、高靭化に有効な温度域に冷却して、その後の仕上圧延により、靭性を有効に向上させるために施す。加速冷却を施すことにより、高靭化に有効な温度域に冷却された板厚方向の領域が拡大でき、仕上圧延による靭性向上の程度を大きくすることができる。なお、仕上圧延工程前の加速冷却は、既存のFSB、ロール抜熱、ストリップクーラント等の冷却手段によって容易に行える。   The sheet bar obtained through the rough rolling process is subjected to a finish rolling process, but it is preferable to perform accelerated cooling before the finish rolling process. The accelerated cooling is performed to cool the sheet bar and the like, cool to a temperature range effective for high toughness, and then effectively improve toughness by finish rolling. By performing accelerated cooling, the region in the plate thickness direction cooled to a temperature range effective for toughening can be expanded, and the degree of improvement in toughness by finish rolling can be increased. The accelerated cooling before the finish rolling process can be easily performed by a cooling means such as an existing FSB, roll heat removal, strip coolant, or the like.

加速冷却は、シートバーの表層部が50℃/s以上の冷却速度で、Ar変態点超え930℃以下の温度に達するまで急冷する冷却とすることが好ましい。これにより、有効圧延率を増大することができる。なお、ここで、「表層部の温度」は、放射温度計により測定される値とする。加速冷却の冷却速度が50℃/s未満では、高靭化に有効な温度域に冷却するまでの時間がかかり、生産性が低下する。 The accelerated cooling is preferably cooling in which the surface layer portion of the sheet bar is rapidly cooled at a cooling rate of 50 ° C./s or more until reaching a temperature of 930 ° C. or more exceeding the Ar 3 transformation point. Thereby, an effective rolling rate can be increased. Here, “surface layer temperature” is a value measured by a radiation thermometer. When the cooling rate of accelerated cooling is less than 50 ° C./s, it takes time to cool to a temperature range effective for toughening, and productivity is lowered.

加速冷却の冷却停止温度が、930℃超えとなる場合には、高靭化に有効な温度域に冷却される範囲が狭く、靭性の向上代が少ない。一方、加速冷却の冷却停止温度がAr変態点以下となると、その後の仕上圧延条件によっては表層部に割れが発生する危険性が高くなる。
また、上記した加速冷却に代えて、表層部が50℃/s以上の冷却速度でAr変態点以下の温度に達するまで急冷する加速冷却としてもよい。これにより、シートバー中心部近傍までを、高靭化に有効な温度域である、930℃以下の温度とすることが容易となる。しかし、この場合には、加速冷却後の仕上圧延の条件を特定範囲の条件とする必要がある。なお、加速冷却の冷却停止温度がAr3変態点以下で350℃未満の場合には、巻取り工程で問題が生じる。
When the cooling stop temperature of accelerated cooling exceeds 930 ° C., the range of cooling to a temperature range effective for high toughness is narrow, and the allowance for improving toughness is small. On the other hand, when the cooling stop temperature for accelerated cooling is below the Ar 3 transformation point, the risk of cracking in the surface layer portion increases depending on the subsequent finish rolling conditions.
Further, instead of the above-described accelerated cooling, it may be accelerated cooling in which the surface layer portion is rapidly cooled at a cooling rate of 50 ° C./s or higher until reaching a temperature not higher than the Ar 3 transformation point. Thereby, it becomes easy to make the temperature up to 930 ° C. or less, which is a temperature range effective for toughening, up to the vicinity of the center portion of the seat bar. However, in this case, the finish rolling conditions after accelerated cooling must be within a specific range. If the cooling stop temperature of accelerated cooling is below the Ar 3 transformation point and less than 350 ° C., a problem occurs in the winding process.

加速冷却を施されたシートバーは、ついで、仕上圧延工程を施す。この仕上圧延工程では、複数の圧延機を直列に並べて、連続的に圧延する。
なお、加速冷却は、上記したように、粗圧延工程後で仕上圧延工程前に施すことに代えて、仕上圧延工程中に行ってもよく、また粗圧延工程後で仕上圧延工程前と、仕上圧延工程中とを合わせ行ってもよい。
The sheet bar subjected to accelerated cooling is then subjected to a finish rolling process. In this finish rolling step, a plurality of rolling mills are arranged in series and continuously rolled.
As described above, accelerated cooling may be performed during the finish rolling process instead of after the rough rolling process and before the finishing rolling process, and after the rough rolling process and before the finishing rolling process. The rolling process may be performed together.

仕上圧延工程中に加速冷却を施す場合には、直列に並んだ圧延機の間で、少なくとも1回、パス間で、仕上圧延途中の熱延板に施すことが好ましい。仕上圧延工程中の加速冷却は、仕上圧延ミル内のクーラントを利用することにより行うことができる。なお、仕上圧延工程中の加速冷却も、仕上圧延工程前の加速冷却と同様に、圧延途中の熱延板の表層部が50℃/s以上の冷却速度でAr変態点超え930℃以下の温度まで急冷、あるいはAr3変態点以下、好ましくは350℃以上の温度まで急冷、する冷却とすることが好ましい。 In the case where accelerated cooling is performed during the finish rolling process, it is preferably applied to the hot-rolled sheet in the middle of finish rolling at least once between the rolling mills arranged in series. Accelerated cooling during the finish rolling process can be performed by using a coolant in the finish rolling mill. In addition, the accelerated cooling during the finish rolling process is similar to the accelerated cooling before the finish rolling process, and the surface layer portion of the hot-rolled sheet in the middle of rolling has an Ar 3 transformation point exceeding 930 ° C. or less at a cooling rate of 50 ° C./s or more. It is preferable that the cooling is rapid cooling to a temperature, or rapid cooling to a temperature not higher than the Ar 3 transformation point, preferably 350 ° C. or higher.

加速冷却を施された熱延板は、仕上圧延工程における所定の圧下を施されて所定寸法の熱延板とされる。なお、本発明では、仕上圧延における有効圧下率は、20%以上とすることが高靭性化の観点から好ましい。有効圧下率とは、高靭化に有効な温度域である、930℃以下の温度域での全圧下量をいう。
加速冷却の停止温度が、Ar変態点超えの場合には、その後に施される仕上圧延工程における仕上圧延の圧延条件はとくに限定されないが、1パス当たりの圧下率は、15〜50%の圧延とすることが好ましい。1パス当たりの圧下率が15%未満では、所望の高靭性化が期待できなくなるうえ、板反りが発生する恐れが増大する。一方、1パス当たりの圧下率が50%を超えると、圧延時に表面割れが発生し、また、圧延機に過大な負荷が掛かり好ましくない。なお、より好ましくは15〜30%である。
The hot-rolled sheet that has been subjected to accelerated cooling is subjected to a predetermined reduction in the finish rolling process to obtain a hot-rolled sheet having a predetermined size. In the present invention, the effective rolling reduction in finish rolling is preferably 20% or more from the viewpoint of increasing toughness. The effective rolling reduction means the total rolling amount in a temperature range of 930 ° C. or lower, which is a temperature range effective for high toughening.
When the stop temperature of accelerated cooling exceeds the Ar 3 transformation point, the rolling conditions of finish rolling in the finish rolling process to be performed thereafter are not particularly limited, but the reduction rate per pass is 15 to 50%. Rolling is preferable. If the rolling reduction per pass is less than 15%, the desired high toughness cannot be expected, and the possibility of warping increases. On the other hand, if the rolling reduction per pass exceeds 50%, surface cracks occur during rolling, and an excessive load is applied to the rolling mill, which is not preferable. More preferably, it is 15 to 30%.

一方、加速冷却の停止温度が、Ar3変態点以下の温度の場合には、表層部の組織がフェライト+オーステナイトの二相となり、表面欠陥の発生を避けるために、本発明では、加速冷却停止後の仕上圧延における1パス当たりの圧下率を、(1.1×一様伸び)%以下に限定することが好ましい。なお、ここでいう「一様伸び」は、950℃まで加熱したのちAr3変態点以下まで冷却し、ついで950℃まで再加熱して高温引張試験を行ったときに、得られた応力−歪曲線における一様伸び値(%)をいう。1パス当たりの圧下率が、(1.1×一様伸び)%を超えて大きくなると、析出したフェライトに歪が集中し、表層に割れを誘発しやすくなる。 On the other hand, when the accelerated cooling stop temperature is lower than the Ar 3 transformation point, the structure of the surface layer portion becomes two phases of ferrite and austenite, and in order to avoid the occurrence of surface defects, the present invention stops accelerated cooling. It is preferable to limit the rolling reduction per pass in the subsequent finish rolling to (1.1 × uniform elongation)% or less. “Uniform elongation” as used herein refers to the stress-strain obtained when heating to 950 ° C., cooling to below the Ar 3 transformation point, and then reheating to 950 ° C. to conduct a high-temperature tensile test. The uniform elongation value (%) in the line. If the rolling reduction per pass exceeds (1.1 × uniform elongation)%, the strain concentrates on the precipitated ferrite, and it is easy to induce cracks in the surface layer.

仕上圧延工程を経て得られた熱延板は、ついで巻取工程でコイル状に巻き取られる。本発明における巻取工程では、巻取り温度は350〜700℃とすることが好ましい。なお、仕上圧延終了後、熱延板に、好ましくは冷却速度:10℃/s以上で、巻取り温度まで冷却することが好ましい。巻取り温度が350℃未満では、鋼板各位置での温度ばらつきが大きくなり、材質ばらつきや形状のばらつきが生じ、さらには、コイラー能カによっては巻き取ることができない場合も生ずる。一方、巻取り温度が700℃を超えると、結晶粒が粗大化し、靭性が低下する。このようなことから、巻取り温度は350〜700℃とすることが好ましい。また、コイル状に巻き取ったのち、コイル中央部の冷却速度で5〜20℃/hで室温まで冷却することが好ましい。コイル状に巻き取ったのちの冷却速度が、5℃/h未満では結晶粒が粗大化し、靭性が低下する。一方、20℃/hを超えると、通常の巻取り設備では冷却が不可能でなり、新たな設備投資が必要となる。また、コイル中央部と外周、内周部との温度差が大きくなり、材質不均一を招きやすい。   The hot-rolled sheet obtained through the finish rolling process is then wound into a coil in the winding process. In the winding process in the present invention, the winding temperature is preferably 350 to 700 ° C. After finishing rolling, it is preferable to cool the hot-rolled sheet to a coiling temperature, preferably at a cooling rate of 10 ° C./s or more. When the coiling temperature is less than 350 ° C., the temperature variation at each position of the steel sheet increases, resulting in material variation and shape variation, and further, it may not be possible to wind depending on the coiler capacity. On the other hand, when the coiling temperature exceeds 700 ° C., the crystal grains become coarse and the toughness decreases. Therefore, the winding temperature is preferably 350 to 700 ° C. Moreover, after winding up in coil shape, it is preferable to cool to room temperature at 5-20 degreeC / h by the cooling rate of the coil center part. If the cooling rate after coiling is less than 5 ° C./h, the crystal grains become coarse and the toughness decreases. On the other hand, when it exceeds 20 ° C./h, it is impossible to cool with a normal winding equipment, and a new capital investment is required. In addition, the temperature difference between the coil central portion and the outer periphery and the inner periphery increases, which tends to cause material nonuniformity.

なお、表面割れは、表層部と板厚中心部との温度差が大きい厚肉鋼板の製造の際に生じやすいため、本発明の効果は厚肉鋼板ほど顕著となる。ここで、「厚肉」とは、WT17.5mm以上、とくにWT19,1mm以上を指す。
上記した製造条件で得られる熱延鋼板は、上記した組成を有し、かつベイニティックフェライト単相からなる組織とを有し、引張強さTSが490MPa以上であり、深さ100μm以上の表面欠陥(表面割れ)の発生がなく表面品質に優れ、CTOD試験における−10℃での限界開口変位量δcが0.25mm以上で延性亀裂伝播特性に優れた鋼板である。なお、ここで、「ベイニティックフェライト」とは、結晶粒内の転位密度が高く、低温で変態した、ラス間にセメンタイトの析出がほとんど見られないベイナイト相をいうものとする。
In addition, since surface cracks are likely to occur during the production of a thick steel plate having a large temperature difference between the surface layer portion and the plate thickness center portion, the effect of the present invention becomes more prominent as the thick steel plate. Here, “thick” means WT17.5 mm or more, particularly WT19,1 mm or more.
A hot-rolled steel sheet obtained under the above-described manufacturing conditions has the above-described composition and a structure composed of a bainitic ferrite single phase, a tensile strength TS of 490 MPa or more, and a depth of 100 μm or more. This steel sheet has no defects (surface cracks) and excellent surface quality, and has excellent ductile crack propagation characteristics with a critical opening displacement amount δc of −0.25 ° C. or more at −10 ° C. in the CTOD test. Here, “bainitic ferrite” refers to a bainite phase that has a high dislocation density in crystal grains and is transformed at a low temperature and hardly shows cementite precipitation between laths.

表1に示す組成を有するスラブ(鋼素材)(肉厚:215mm)を、表2に示す温度に加熱し、表2に示す条件で粗圧延工程、仕上圧延工程、および巻取工程を施し、表2に示す板厚の熱延板とした。なお、加速冷却を、粗圧延工程後で仕上圧延工程前に、および/または、仕上圧延工程中のパス間に、表2に示す条件で施した。仕上圧延工程後の巻取工程では、表2に示す冷却速度で冷却し、表2に示す巻取り温度で巻き取り、コイル状としたのち、表2に示す冷却速度で室温まで冷却した。   A slab (steel material) having the composition shown in Table 1 (wall thickness: 215 mm) is heated to the temperature shown in Table 2, and subjected to a rough rolling process, a finish rolling process, and a winding process under the conditions shown in Table 2. A hot-rolled sheet having a thickness shown in Table 2 was used. In addition, accelerated cooling was performed under the conditions shown in Table 2 after the rough rolling process and before the finish rolling process and / or between passes during the finish rolling process. In the winding process after the finish rolling process, the steel sheet was cooled at the cooling rate shown in Table 2, wound at the winding temperature shown in Table 2, coiled, and then cooled to room temperature at the cooling rate shown in Table 2.

得られた熱延板について、組織観察、表面品質試験、引張試験、衝撃試験、CTOD試験、DWTT試験を実施した。試験方法は次のとおりである。
(1)組織観察
得られた熱延板から、組織観察用試験片を採取し、圧延方向に垂直な断面(C断面)を研磨、腐食して、走査型電子顕微鏡を用いて組織を観察した。
(2)表面品質試験
得られた熱延板について、鋼板の全域にわたり表面を目視または拡大鏡で観察し、割れの有無を調査し、表面品質を評価した。深さ100μm以上の割れ等の表面欠陥が発生した場合を×、発生しなかった場合を○として評価した。
(3)引張試験
得られた熱延板の板厚中央部から、圧延方向に直交する方向(C方向)が長手方向となるように、小型丸棒引張試験片を採取して、引張試験を実施し、引張強さTSを求めた。
(3)衝撃試験
得られた熱延板の板厚中央部から、圧延方向に直交する方向(C方向)が長手方向となるようにVノッチ試験片を採取し、JIS Z 2242の規定に準拠してシャルピー衝撃試験を実施し、試験温度:−80℃での吸収エネルギー(J)を求めた。なお、試験片は3本とし、得られた吸収エネルギー値の算術平均をもとめ、その鋼板の吸収エネルギー値vE−80(J)とした。
(4)CTOD試験
得られた熱延板から、圧延方向に直交する方向(C方向)が長手方向となるようにCTOD試験片を採取し、BS 7448:Part1 1991の規定に準拠して、試験温度:−10℃でCTOD試験を行い、−10℃での限界開口変位量δc(mm)を求め、延性亀裂伝播特性を評価した。
(5)DWTT試験
得られた熱延板から、圧延方向に直交する方向(C方向)が長手方向となるようにDWTT試験片を採取し、ASTM E436の規定に準拠して、DWTT試験を実施し、DWTT温度(℃)(:延性破面率が85%となる温度)を求め、靭性を評価した。
The obtained hot-rolled sheet was subjected to structure observation, surface quality test, tensile test, impact test, CTOD test, and DWTT test. The test method is as follows.
(1) Structure observation From the obtained hot-rolled sheet, a structure observation specimen was collected, the section perpendicular to the rolling direction (C section) was polished and corroded, and the structure was observed using a scanning electron microscope. .
(2) Surface quality test About the obtained hot-rolled sheet, the surface was observed visually or with a magnifying glass over the whole area of the steel sheet, the presence or absence of cracks was investigated, and the surface quality was evaluated. The case where a surface defect such as a crack having a depth of 100 μm or more occurred was evaluated as x, and the case where it did not occur was evaluated as ◯.
(3) Tensile test A small round bar tensile test piece was taken from the central part of the thickness of the obtained hot-rolled sheet so that the direction perpendicular to the rolling direction (C direction) was the longitudinal direction, and the tensile test was performed. The tensile strength TS was determined.
(3) Impact test V-notch test specimens were taken from the center of the thickness of the obtained hot-rolled sheet so that the direction perpendicular to the rolling direction (C direction) was the longitudinal direction, and conformed to the provisions of JIS Z 2242 Then, a Charpy impact test was performed, and the absorbed energy (J) at a test temperature of −80 ° C. was obtained. The number of specimens was three, and the arithmetic average of the obtained absorbed energy values was determined to obtain the absorbed energy value vE- 80 (J) of the steel sheet.
(4) CTOD test From the obtained hot-rolled sheet, a CTOD test piece is taken so that the direction perpendicular to the rolling direction (C direction) is the longitudinal direction, and tested in accordance with the provisions of BS 7448: Part1 1991. Temperature: A CTOD test was conducted at −10 ° C., a critical opening displacement amount Δc (mm) at −10 ° C. was determined, and ductile crack propagation characteristics were evaluated.
(5) DWTT test From the obtained hot-rolled sheet, a DWTT test piece is collected so that the direction perpendicular to the rolling direction (C direction) is the longitudinal direction, and the DWTT test is performed in accordance with the provisions of ASTM E436. Then, the DWTT temperature (° C.) (the temperature at which the ductile fracture surface ratio becomes 85%) was determined and the toughness was evaluated.

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 2008274323
Figure 2008274323

Figure 2008274323
Figure 2008274323

Figure 2008274323
本発明例はいずれも、表面割れの発生もなく、表面品質に優れ、かつCTOD試験における−10℃での限界開口変位量δcが0.25mm以上であり、延性亀裂伝播特性に優れ、高靭性の高張力熱延鋼板となっている。一方、本発明を外れる比較例は、表面割れが発生しているか、延性亀裂伝播特性が低下して、靭性が低下しているか、あるいは表面割れが発生し、かつ延性亀裂伝播特性が低下し靭性が低下している。
Figure 2008274323
Each of the inventive examples has no surface cracking, excellent surface quality, a critical opening displacement amount δc at −10 ° C. in the CTOD test of 0.25 mm or more, excellent ductile crack propagation characteristics, and high toughness. It is a high-tensile hot-rolled steel sheet. On the other hand, the comparative example that departs from the present invention is that surface cracking has occurred, ductile crack propagation characteristics have been reduced, toughness has been reduced, or surface cracks have occurred, and ductile crack propagation characteristics have been reduced toughness Has fallen.

Claims (8)

質量%で、
C:0.02〜0.08%、 Si:0.5%以下、
Mn:0.8〜1.8%、 P:0.025%以下、
S:0.005%以下、 Al:0.005〜0.10%、
N:0.005%以下、 Nb:0.03〜0.10%、
Ti:0.005〜0.05%
を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材に、粗圧延を施しシートバーとする粗圧延工程と、該シートバーに仕上圧延を施し熱延板とする仕上圧延工程と、該熱延板を巻き取る巻取工程とを順次施す熱延鋼板の製造方法において、前記粗圧延工程後で、前記仕上圧延工程前に、前記シートバーに、表層部を50℃/s以上の冷却速度でAr3変態点超え930℃以下の温度に達するまで急冷する加速冷却を施したのち、該加速冷却を停止し、しかる後に仕上圧延工程を施すことを特徴とする表面品質および延性亀裂伝播特性に優れる熱延鋼板の製造方法。
% By mass
C: 0.02 to 0.08%, Si: 0.5% or less,
Mn: 0.8 to 1.8%, P: 0.025% or less,
S: 0.005% or less, Al: 0.005-0.10%,
N: 0.005% or less, Nb: 0.03-0.10%,
Ti: 0.005-0.05%
A steel material having a composition comprising the balance Fe and unavoidable impurities, a rough rolling step for rough rolling to form a sheet bar, a finish rolling step for subjecting the sheet bar to finish rolling to form a hot rolled sheet, In the method for producing a hot-rolled steel sheet, which is sequentially subjected to a winding process for winding the hot-rolled sheet, the surface bar is cooled to 50 ° C./s or more after the rough rolling process and before the finish rolling process. Surface quality and ductile crack propagation characteristics characterized by performing accelerated cooling that rapidly cools until reaching a temperature of 930 ° C or less exceeding the Ar 3 transformation point, and then stopping the accelerated cooling and then performing a finish rolling step The manufacturing method of the hot-rolled steel plate which is excellent in it.
質量%で、
C:0.02〜0.08%、 Si:0.5%以下、
Mn:0.8〜1.8%、 P:0.025%以下、
S:0.005%以下、 Al:0.005〜0.10%、
N:0.005%以下、 Nb:0.03〜0.10%、
Ti:0.005〜0.05%
を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材に、粗圧延を施しシートバーとする粗圧延工程と、該シートバーに仕上圧延を施し熱延板とする仕上圧延工程と、該熱延板を巻き取る巻取工程とを順次施す熱延鋼板の製造方法において、前記仕上圧延工程で少なくとも1回、圧延パス間で、仕上圧延途中の熱延板に、表層部が50℃/s以上の冷却速度でAr3変態点超え930℃以下の温度に達するまで急冷する加速冷却を施したのち、該加速冷却を停止し、さらに仕上圧延を行い所定寸法形状の熱延板とすることを特徴とする表面品質および延性亀裂伝播特性に優れる熱延鋼板の製造方法。
% By mass
C: 0.02 to 0.08%, Si: 0.5% or less,
Mn: 0.8 to 1.8%, P: 0.025% or less,
S: 0.005% or less, Al: 0.005-0.10%,
N: 0.005% or less, Nb: 0.03-0.10%,
Ti: 0.005-0.05%
A steel material having a composition comprising the balance Fe and unavoidable impurities, a rough rolling step for rough rolling to form a sheet bar, a finish rolling step for subjecting the sheet bar to finish rolling to form a hot rolled sheet, In the method for producing a hot-rolled steel sheet, which is sequentially subjected to a winding process for winding the hot-rolled sheet, the surface layer portion is 50 ° C / at least on the hot-rolled sheet in the middle of finish rolling between the rolling passes at least once in the finish rolling process. After accelerating cooling that rapidly cools until reaching a temperature of 930 ° C or more exceeding the Ar 3 transformation point at a cooling rate of s or more, stop the accelerated cooling, and finish rolling to obtain a hot-rolled sheet of a predetermined size and shape A method for producing a hot-rolled steel sheet having excellent surface quality and ductile crack propagation characteristics.
質量%で、
C:0.02〜0.08%、 Si:0.5%以下、
Mn:0.8〜1.8%、 P:0.025%以下、
S:0.005%以下、 Al:0.005〜0.10%、
N:0.005%以下、 Nb:0.03〜0.10%、
Ti:0.005〜0.05%
を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材に、粗圧延を施しシートバーとする粗圧延工程と、該シートバーに仕上圧延を施し熱延板とする仕上圧延工程と、該熱延板を巻き取る巻取工程とを順次施す熱延鋼板の製造方法において、前記粗圧延工程後で、前記仕上圧延工程前に、前記シートバーに、表層部が50℃/s以上の冷却速度でAr3変態点超え930℃以下の温度に達するまで急冷する加速冷却を施したのち、該加速冷却を停止し、ついで前記仕上圧延工程を施し、さらに該仕上圧延工程で少なくとも1回、圧延パス間で、仕上圧延途中の熱延板に、表層部が50℃/s以上の冷却速度でAr3変態点超え930℃以下の温度に達するまで急冷する加速冷却を施したのち、該加速冷却を停止し、さらに仕上圧延を施し所望寸法形状の熱延板とすることを特徴とする表面品質および延性亀裂伝播特性に優れる熱延鋼板の製造方法。
% By mass
C: 0.02 to 0.08%, Si: 0.5% or less,
Mn: 0.8 to 1.8%, P: 0.025% or less,
S: 0.005% or less, Al: 0.005-0.10%,
N: 0.005% or less, Nb: 0.03-0.10%,
Ti: 0.005-0.05%
A steel material having a composition comprising the balance Fe and unavoidable impurities, a rough rolling step for rough rolling to form a sheet bar, a finish rolling step for subjecting the sheet bar to finish rolling to form a hot rolled sheet, In the method for producing a hot-rolled steel sheet, which is sequentially subjected to a winding process for winding the hot-rolled sheet, after the rough rolling process and before the finish rolling process, the surface bar is cooled to 50 ° C./s or more on the sheet bar. Accelerated cooling is performed to rapidly cool until reaching a temperature of 930 ° C. or more exceeding the Ar 3 transformation point, and then the accelerated cooling is stopped, and then the finish rolling step is performed, and rolling is performed at least once in the finish rolling step. Between the passes, hot-rolled sheets in the middle of finish rolling are subjected to accelerated cooling that is rapidly cooled at a cooling rate of 50 ° C./s or more until the temperature reaches a temperature of 930 ° C. or more exceeding the Ar 3 transformation point. And then finish rolling to obtain the desired dimensions Surface quality and manufacturing method of the hot-rolled steel sheet excellent in ductility crack propagation properties characterized by a hot-rolled sheet.
前記加速冷却を、表層部が50℃/s以上の冷却速度でAr3変態点以下の温度に達するまで急冷する冷却とし、前記仕上圧延工程における仕上圧延を、1パス当たりの圧下率が(1.1×一様伸び)%以下(ここで、一様伸び:950℃まで加熱したのちAr3変態点以下まで冷却し、ついで950℃まで再加熱して高温引張試験を行ったときに、得られた応力−歪曲線における一様伸び値(%))であることを特徴とする請求項3に記載の熱延鋼板の製造方法。 The accelerated cooling is cooling in which the surface layer portion is rapidly cooled at a cooling rate of 50 ° C./s or more until the temperature reaches the Ar 3 transformation point or less, and the finish rolling in the finish rolling step is performed at a reduction rate of (1.1 X Uniform elongation)% or less (Here, uniform elongation: obtained when heated to 950 ° C., cooled to below the Ar 3 transformation point, and then reheated to 950 ° C. to conduct a high-temperature tensile test. 4. The method for producing a hot-rolled steel sheet according to claim 3, wherein the uniform elongation value (%) in the stress-strain curve). 前記組成に加えてさらに、質量%で、Cu:0.005〜0.5%、Ni:0.005〜0.5%、Cr:0.005〜0.5%、Mo:0.005〜0.3%、V:0.005〜0.3%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項1ないし4のいずれかに記載の熱延鋼板の製造方法。   In addition to the above composition, Cu is selected from 0.005 to 0.5%, Ni: 0.005 to 0.5%, Cr: 0.005 to 0.5%, Mo: 0.005 to 0.3%, and V: 0.005 to 0.3%. The method for producing a hot-rolled steel sheet according to any one of claims 1 to 4, wherein the composition contains one or more kinds. 前記巻取工程における前記熱延板の巻取り温度を350〜700℃とし、巻き取ったのちの冷却速度をコイル中央部で5〜20℃/hとすることを特徴とする請求項1ないし5のいずれかに記載の熱延鋼板の製造方法。   The winding temperature of the hot-rolled sheet in the winding step is 350 to 700 ° C, and the cooling rate after winding is 5 to 20 ° C / h at the coil central portion. The manufacturing method of the hot-rolled steel plate in any one of. 質量%で、
C:0.02〜0.08%、 Si:0.5%以下、
Mn:0.8〜1.8%、 P:0.025%以下、
S:0.005%以下、 Al:0.005〜0.10%、
N:0.005%以下、 Nb:0.03〜0.10%、
Ti:0.005〜0.05%
を含み、残部Feおよび不可避的不純物からなる組成と、ベイニティックフェライト単相からなる組織とを有し、引張強さTSが490MPa以上であることを特徴とする表面品質および延性亀裂伝播特性に優れた熱延鋼板。
% By mass
C: 0.02 to 0.08%, Si: 0.5% or less,
Mn: 0.8 to 1.8%, P: 0.025% or less,
S: 0.005% or less, Al: 0.005-0.10%,
N: 0.005% or less, Nb: 0.03-0.10%,
Ti: 0.005-0.05%
The surface quality and ductile crack propagation characteristics characterized by having a composition consisting of the balance Fe and inevitable impurities and a structure consisting of a single phase of bainitic ferrite, and a tensile strength TS of 490 MPa or more. Excellent hot-rolled steel sheet.
前記組成に加えてさらに、質量%で、Cu:0.005〜0.5%、Ni:0.005〜0.5%、Cr:0.005〜0.5%、Mo:0.005〜0.3%、V:0.005〜0.3%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項7に記載の熱延鋼板。   In addition to the above composition, Cu is selected from 0.005 to 0.5%, Ni: 0.005 to 0.5%, Cr: 0.005 to 0.5%, Mo: 0.005 to 0.3%, and V: 0.005 to 0.3%. The hot-rolled steel sheet according to claim 7, wherein the hot-rolled steel sheet has a composition containing one or more kinds.
JP2007116477A 2007-04-26 2007-04-26 Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristics and method for producing the same Active JP5151233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007116477A JP5151233B2 (en) 2007-04-26 2007-04-26 Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007116477A JP5151233B2 (en) 2007-04-26 2007-04-26 Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristics and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012224674A Division JP5413496B2 (en) 2012-10-10 2012-10-10 Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008274323A true JP2008274323A (en) 2008-11-13
JP5151233B2 JP5151233B2 (en) 2013-02-27

Family

ID=40052665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007116477A Active JP5151233B2 (en) 2007-04-26 2007-04-26 Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristics and method for producing the same

Country Status (1)

Country Link
JP (1) JP5151233B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087511A1 (en) * 2009-01-30 2010-08-05 Jfeスチール株式会社 Thick high-tensile-strength hot-rolled steel sheet with excellent low-temperature toughness and process for production of same
JP2010196165A (en) * 2009-01-30 2010-09-09 Jfe Steel Corp Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and process for producing the same
JP2010196163A (en) * 2009-01-30 2010-09-09 Jfe Steel Corp Thick, high-tension, hot-rolled steel sheet excellent in low temperature toughness, and manufacturing method therefor
JP2010196164A (en) * 2009-01-30 2010-09-09 Jfe Steel Corp Thick, high-tension, hot-rolled steel sheet excellent in low-temperature toughness, and manufacturing method therefor
JP2012172256A (en) * 2011-02-24 2012-09-10 Jfe Steel Corp Low yield ratio high strength hot rolled steel sheet having excellent low temperature toughness and method for manufacturing the same
KR101461773B1 (en) * 2010-05-11 2014-11-13 제이에프이 스틸 가부시키가이샤 Cold-rolled steel sheet and method for producing same
US9809869B2 (en) 2009-01-30 2017-11-07 Jfe Steel Corporation Thick-walled high-strength hot rolled steel sheet having excellent hydrogen induced cracking resistance and manufacturing method thereof
JP2018095904A (en) * 2016-12-12 2018-06-21 Jfeスチール株式会社 Manufacturing method of hot rolled steel sheet for rectangular steel pipe with low yield ratio and manufacturing method of rectangular steel pipe with low yield ratio
CN113403535A (en) * 2021-05-31 2021-09-17 北京首钢股份有限公司 Hot-rolled strip steel for carriage plate and preparation method thereof
CN114410875A (en) * 2022-03-10 2022-04-29 马鞍山钢铁股份有限公司 Steel with good low-temperature toughness for easily galvanized power transmission tower and manufacturing method thereof
CN115415320A (en) * 2022-08-31 2022-12-02 大冶特殊钢有限公司 Rolling method of 20Cr steel
CN115740034A (en) * 2022-12-08 2023-03-07 石横特钢集团有限公司 Rolling method of weathering resistant steel for stamping top plate of thin-specification container

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148544A (en) * 1991-11-25 1993-06-15 Nippon Steel Corp Manufacturing method of high strength and high toughness steel plate with uniform hardness distribution in the plate thickness direction
JPH10306316A (en) * 1997-04-28 1998-11-17 Nippon Steel Corp Method for producing low yield ratio high strength steel with excellent low temperature toughness
JP2000192143A (en) * 1998-12-25 2000-07-11 Kawasaki Steel Corp Manufacturing method of non-heat treated high strength steel sheet with excellent homogeneity
JP2008240097A (en) * 2007-03-28 2008-10-09 Jfe Steel Kk Method for producing hot-rolled steel sheet having excellent surface quality and ductile crack propagation characteristics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148544A (en) * 1991-11-25 1993-06-15 Nippon Steel Corp Manufacturing method of high strength and high toughness steel plate with uniform hardness distribution in the plate thickness direction
JPH10306316A (en) * 1997-04-28 1998-11-17 Nippon Steel Corp Method for producing low yield ratio high strength steel with excellent low temperature toughness
JP2000192143A (en) * 1998-12-25 2000-07-11 Kawasaki Steel Corp Manufacturing method of non-heat treated high strength steel sheet with excellent homogeneity
JP2008240097A (en) * 2007-03-28 2008-10-09 Jfe Steel Kk Method for producing hot-rolled steel sheet having excellent surface quality and ductile crack propagation characteristics

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9580782B2 (en) 2009-01-30 2017-02-28 Jfe Steel Corporation Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and manufacturing method thereof
JP2010196165A (en) * 2009-01-30 2010-09-09 Jfe Steel Corp Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and process for producing the same
JP2010196163A (en) * 2009-01-30 2010-09-09 Jfe Steel Corp Thick, high-tension, hot-rolled steel sheet excellent in low temperature toughness, and manufacturing method therefor
JP2010196164A (en) * 2009-01-30 2010-09-09 Jfe Steel Corp Thick, high-tension, hot-rolled steel sheet excellent in low-temperature toughness, and manufacturing method therefor
CN102301026A (en) * 2009-01-30 2011-12-28 杰富意钢铁株式会社 Thick high-tensile-strength hot-rolled steel sheet with excellent low-temperature toughness and process for production of same
US9809869B2 (en) 2009-01-30 2017-11-07 Jfe Steel Corporation Thick-walled high-strength hot rolled steel sheet having excellent hydrogen induced cracking resistance and manufacturing method thereof
KR101333854B1 (en) 2009-01-30 2013-11-27 제이에프이 스틸 가부시키가이샤 Thick high-tensile-strength hot-rolled steel sheet with excellent low-temperature toughness and process for production of same
US8784577B2 (en) 2009-01-30 2014-07-22 Jfe Steel Corporation Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and manufacturing method thereof
WO2010087511A1 (en) * 2009-01-30 2010-08-05 Jfeスチール株式会社 Thick high-tensile-strength hot-rolled steel sheet with excellent low-temperature toughness and process for production of same
EP2392682A4 (en) * 2009-01-30 2015-02-25 Jfe Steel Corp THICK HOT ROLLED STEEL PLATE WITH HIGH RESISTANCE TO FRICTION AND EXCELLENT LOW TEMPERATURE RESISTANCE AND MANUFACTURING METHOD THEREFOR
KR101461773B1 (en) * 2010-05-11 2014-11-13 제이에프이 스틸 가부시키가이샤 Cold-rolled steel sheet and method for producing same
JP2012172256A (en) * 2011-02-24 2012-09-10 Jfe Steel Corp Low yield ratio high strength hot rolled steel sheet having excellent low temperature toughness and method for manufacturing the same
JP2018095904A (en) * 2016-12-12 2018-06-21 Jfeスチール株式会社 Manufacturing method of hot rolled steel sheet for rectangular steel pipe with low yield ratio and manufacturing method of rectangular steel pipe with low yield ratio
CN113403535A (en) * 2021-05-31 2021-09-17 北京首钢股份有限公司 Hot-rolled strip steel for carriage plate and preparation method thereof
CN113403535B (en) * 2021-05-31 2022-05-20 北京首钢股份有限公司 Hot-rolled strip steel for carriage plate and preparation method thereof
CN114410875A (en) * 2022-03-10 2022-04-29 马鞍山钢铁股份有限公司 Steel with good low-temperature toughness for easily galvanized power transmission tower and manufacturing method thereof
CN115415320A (en) * 2022-08-31 2022-12-02 大冶特殊钢有限公司 Rolling method of 20Cr steel
CN115415320B (en) * 2022-08-31 2024-06-11 大冶特殊钢有限公司 Rolling method of 20Cr steel
CN115740034A (en) * 2022-12-08 2023-03-07 石横特钢集团有限公司 Rolling method of weathering resistant steel for stamping top plate of thin-specification container

Also Published As

Publication number Publication date
JP5151233B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP5151233B2 (en) Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristics and method for producing the same
JP5195469B2 (en) Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness
JP4905240B2 (en) Manufacturing method of hot-rolled steel sheet with excellent surface quality, fracture toughness and sour resistance
JP5499733B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP5776398B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP5679114B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP5533024B2 (en) Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness
JP5499734B2 (en) Ultra-thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
WO2010087511A1 (en) Thick high-tensile-strength hot-rolled steel sheet with excellent low-temperature toughness and process for production of same
JP5630026B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP5418251B2 (en) Manufacturing method of thick-walled high-tensile hot-rolled steel sheet with excellent HIC resistance
JP5499731B2 (en) Thick high-tensile hot-rolled steel sheet with excellent HIC resistance and method for producing the same
WO2010087512A1 (en) Heavy gauge, high tensile strength, hot rolled steel sheet with excellent hic resistance and manufacturing method therefor
JP5553093B2 (en) Thick high-tensile hot-rolled steel sheet with excellent low-temperature toughness
JP6624103B2 (en) High strength hot rolled steel sheet and method for producing the same
WO2013099192A1 (en) High-tension hot rolled steel sheet and method for manufacturing same
JP5742123B2 (en) High-tensile hot-rolled steel sheet for high-strength welded steel pipe for line pipe and method for producing the same
JP5401863B2 (en) Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness
JP5521482B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP2015190026A (en) Thick high-strength ERW steel pipe for line pipe and manufacturing method thereof
JP5347540B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP2017214618A (en) Production method of low yield ratio high strength hot rolled steel sheet excellent in low temperature toughness
JP5087966B2 (en) Method for producing hot-rolled steel sheet with excellent surface quality and ductile crack propagation characteristics
JP4900260B2 (en) Method for producing hot-rolled steel sheet having excellent ductile crack propagation characteristics and sour resistance
JP2015224374A (en) Low yield ratio high strength electric resistance welded steel pipe for steel pipe pile and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5151233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250