JP2008261303A - Vehicle traction control device - Google Patents
Vehicle traction control device Download PDFInfo
- Publication number
- JP2008261303A JP2008261303A JP2007105779A JP2007105779A JP2008261303A JP 2008261303 A JP2008261303 A JP 2008261303A JP 2007105779 A JP2007105779 A JP 2007105779A JP 2007105779 A JP2007105779 A JP 2007105779A JP 2008261303 A JP2008261303 A JP 2008261303A
- Authority
- JP
- Japan
- Prior art keywords
- vehicle
- driving force
- wheel
- driving
- wheels
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 claims abstract description 9
- 230000001133 acceleration Effects 0.000 claims description 54
- 238000005259 measurement Methods 0.000 claims description 2
- 230000009467 reduction Effects 0.000 abstract description 12
- 230000004044 response Effects 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 16
- 238000011946 reduction process Methods 0.000 description 15
- 238000012545 processing Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Landscapes
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
Abstract
【課題】四輪駆動車などの全輪駆動車両のトラクションコントロールに於いて、全輪スリップ兆候の検出に応答して車両の駆動出力の低減の実行を判断する際、車両の走行する路面状況を識別して、駆動出力の低減の必要性を考慮し、不要な駆動出力の低減の実行を回避すること。
【解決手段】本発明の全輪駆動車両のトラクションコントロール装置は、駆動輪の全輪がスリップ状態にある兆候を検出する全輪スリップ兆候検出手段と、路面の状況を識別するために車両の走行中の駆動力の損失を推定する駆動力損失推定手段と、車両の駆動輪に於ける駆動力を制御する駆動力制御手段とを含み、全輪がスリップ状態にある兆候が検出されたときには、それまでの駆動力の損失が所定値以下であるときに駆動力を低減する。
【選択図】 図3
In traction control of an all-wheel drive vehicle such as a four-wheel drive vehicle, a road surface condition on which the vehicle travels is determined when it is determined to reduce the drive output of the vehicle in response to detection of an all-wheel slip sign. Identify and consider the need for drive output reduction and avoid performing unnecessary drive output reduction.
A traction control device for an all-wheel drive vehicle according to the present invention includes an all-wheel slip sign detecting means for detecting a sign that all of the drive wheels are in a slip state, and a vehicle running for identifying a road surface condition. Including a driving force loss estimating means for estimating the loss of driving force in the vehicle and a driving force control means for controlling the driving force in the driving wheels of the vehicle, and when signs that all the wheels are in a slip state are detected, The driving force is reduced when the driving force loss up to that time is equal to or less than a predetermined value.
[Selection] Figure 3
Description
本発明は、自動車等の車両の駆動力制御装置に係り、より詳細には、車両の駆動輪のスリップが過大になることを回避するトラクションコントロール(TRC)を実行する駆動力制御装置に係る。 The present invention relates to a driving force control device for a vehicle such as an automobile, and more particularly, to a driving force control device that performs traction control (TRC) for avoiding excessive slip of driving wheels of a vehicle.
自動車等の車両の駆動時に於いて、駆動輪のタイヤ力が路面の摩擦係数と接地荷重で決定される限界(最大摩擦円)を越えるほど駆動輪のスリップ率又はスリップ量(以下、「駆動スリップ」とする。)が過大となると、駆動輪は、路面に対するグリップ力を失い、スリップ状態に陥ることとなる(下記の注参照)。そこで、駆動輪がそのようなスリップ状態に陥ることを回避するための走行制御として、駆動スリップを調節するトラクションコントロール(TRC)が実行される場合がある。TRCでは、駆動輪の車輪速が車速(車体速度)に比べて過剰に高くなった場合に、駆動輪がスリップ状態となったと判定して、エンジン又は電動機等の駆動装置から駆動輪に伝達される駆動トルクを低減し或いは制動装置を作動して、駆動輪の回転が低減される。そして、かかる駆動輪の回転の低減により、駆動スリップが抑制され、タイヤのグリップ力が(最大摩擦円を越えないように)保持されることとなる。かかるTRCの作動によれば、よく知られているように、低摩擦係数の(比較的滑り易い)路面、例えば、凍結路面や雪道などの上に於いても、車両が滑ることなく、車両の発進・加速性能が向上され、車両の走行挙動を安定化することが可能となる。また、TRCによって、車輪が無駄に回転することが抑制され、駆動エネルギーが効率的に車両の駆動に利用されることとなるので、エネルギー効率も向上する。
[注]「スリップ状態」とは、車輪が路面上を「滑る」状態を意味し、「駆動スリップ」という場合の車速と車輪速とのずれを意味する“スリップ”とは異なる。
When driving a vehicle such as an automobile, the slip ratio or slip amount of the drive wheel (hereinafter referred to as “drive slip”) exceeds the limit determined by the friction coefficient of the road surface and the contact load (maximum friction circle). ")" Is too large, the drive wheel loses the grip on the road surface and falls into a slip state (see note below). Therefore, traction control (TRC) for adjusting the drive slip may be executed as travel control for avoiding the drive wheel from falling into such a slip state. In TRC, when the wheel speed of the driving wheel becomes excessively higher than the vehicle speed (body speed), it is determined that the driving wheel has slipped and is transmitted from the driving device such as an engine or an electric motor to the driving wheel. The driving torque is reduced or the braking device is operated to reduce the rotation of the driving wheel. Then, by reducing the rotation of the driving wheel, driving slip is suppressed, and the grip force of the tire is maintained (so as not to exceed the maximum friction circle). According to the operation of the TRC, as is well known, the vehicle does not slip even on a road surface having a low coefficient of friction (relatively slippery) such as a frozen road surface or a snowy road. The start / acceleration performance of the vehicle is improved, and the running behavior of the vehicle can be stabilized. Further, the TRC suppresses the unnecessary rotation of the wheel, and the drive energy is efficiently used for driving the vehicle, so that the energy efficiency is also improved.
[Note] The “slip state” means a state where the wheel “slides” on the road surface, and is different from “slip” which means a deviation between the vehicle speed and the wheel speed in the case of “driving slip”.
TRCでは、上記の如く、駆動輪のスリップ状態は、車速に比べて駆動輪の車輪速が過剰に高くなったことを判定することにより検出される。従って、TRCを実行するためには、車速値をリアルタイムに検出又は取得する必要がある。この点に関し、通常の車両では、車速を直接的に検出することのできる対地速度センサが設けられることは多くないので、(駆動スリップの発生していない)従動輪を有する二輪駆動車両の場合には、車速として、従動輪の車輪速が参照される。しかしながら、四輪駆動車などの全輪が駆動輪として作動する車両(全輪駆動車両)の場合、全輪駆動時では、いずれの車輪に於いても駆動スリップが過剰になる可能性があるので、いずれかの車輪速をそのまま車速として参照することができない。そこで、そのような全輪駆動車両に於いて、車両の加速時に(車両の全輪に駆動トルクが与えられている状態で)車速値を取得する際には、例えば、回転速が最低又は二番目に低い車輪の車輪速を車速の近似値として選択したり、Gセンサ(前後加速度センサ)の値又はその値を用いて推定される路面の摩擦係数などに基づいて、車両に於いて発生可能な加速度を算定し、その加速度を参照して現在の車速値を適当に推定する、といったことが行われる(例えば、特許文献1参照)。特に後者の場合、加速度上限値、即ち、現在の路面状況で車両に於いて発生可能な加速度の限界と、直前までの車速とから、現在に於いて発生し得る車速の上限値が、[直前の車速]+[加速度上限値]×[時間]により概算され(直前の車速は、駆動スリップを発生していないときの車輪速から累積的に決定される。)、実際の車速は、前記の車速の上限値より低いはずであるという仮定の下、全車輪のうちから適当な車輪速が、車速(の近似値)として選択される。 In the TRC, as described above, the slip state of the drive wheel is detected by determining that the wheel speed of the drive wheel is excessively higher than the vehicle speed. Therefore, in order to execute TRC, it is necessary to detect or acquire the vehicle speed value in real time. In this regard, ordinary vehicles are not often provided with a ground speed sensor that can directly detect the vehicle speed, so in the case of a two-wheel drive vehicle having driven wheels (where no drive slip occurs). Refers to the wheel speed of the driven wheel as the vehicle speed. However, in the case of a vehicle in which all wheels such as a four-wheel drive vehicle operate as drive wheels (all-wheel drive vehicle), the drive slip may be excessive in any wheel during all-wheel drive. Any wheel speed cannot be referred to as the vehicle speed as it is. Therefore, in such an all-wheel drive vehicle, when the vehicle speed value is acquired at the time of acceleration of the vehicle (in a state where drive torque is applied to all the wheels of the vehicle), for example, the rotational speed is the lowest or two. Can be generated in the vehicle based on the wheel speed of the second lowest wheel as an approximate value of the vehicle speed, or based on the value of the G sensor (longitudinal acceleration sensor) or the friction coefficient of the road surface estimated using that value For example, the current vehicle speed value is appropriately estimated with reference to the acceleration (see, for example, Patent Document 1). Especially in the latter case, the upper limit of acceleration, that is, the upper limit of the vehicle speed that can be generated at the present time, from the limit of acceleration that can be generated in the vehicle under the current road surface condition and the vehicle speed up to immediately before, Vehicle speed] + [acceleration upper limit value] × [time] (the previous vehicle speed is cumulatively determined from the wheel speed when no driving slip occurs), and the actual vehicle speed is Under the assumption that it should be lower than the upper limit value of the vehicle speed, an appropriate wheel speed is selected as the vehicle speed (approximate value) among all the wheels.
前記の如き全輪駆動車両のTRCに於いて、全駆動輪がスリップ状態に陥った場合(全輪スリップ状態)には、現在の車速値を正確に推定することは更に困難となる。しかしながら、既に述べた如き、Gセンサによる前後加速度又は路面摩擦係数に基づいて算定される加速度上限値から車速の上限値を見積もる手法によれば、全駆動輪がスリップ状態に陥ったこと或いは全輪が同時にスリップ状態に陥った可能性があること(全輪がスリップ状態にあるとの兆候、全輪スリップ兆候)を検知することは可能である。即ち、或る駆動輪の車輪速が、上記の如き車速の上限値に比して高ければ、そのときは、実際の車速値自体が正確に分からなくても、その駆動輪が実際の車速に比して過剰に高回転している(空回りしている)ことは推定できる。そして、車両の駆動輪のいずれの車輪速もが車速の上限値に比して前記の如く過大であれば、車両の全輪がスリップ状態にある或いはその可能性があると推定できることとなる。全輪スリップ状態であると推定される場合、換言すれば、全輪スリップ兆候が検出された場合には、駆動装置の出力を低減し、これにより、駆動スリップの増大を抑制して、駆動輪のグリップ力を回復又は保持することができることとなる。
上記の如き、精度よく車速値が検出又は推定できなくても、全輪スリップ兆候の検出が可能な制御手法によれば、凍結路面や雪道など、比較的滑り易く、路面摩擦係数が低く、全輪スリップ状態に陥り易い路面上でも安定且安全な車両の走行を提供することができる。しかしながら、本発明の発明者の研究によれば、前記の如き手法により全輪スリップ兆候が検出された場合であっても、路面状況によっては、駆動装置の出力若しくは駆動輪に与えられる駆動力の低減をする必要性が低い場合があることが見出された。 According to the control method capable of detecting all-wheel slip signs even if the vehicle speed value cannot be accurately detected or estimated as described above, it is relatively slippery, such as a frozen road surface or a snowy road, and the road surface friction coefficient is low. It is possible to provide stable and safe traveling of the vehicle even on a road surface that easily falls into an all-wheel slip state. However, according to the research of the inventor of the present invention, even when the all-wheel slip sign is detected by the above-described method, depending on the road surface condition, the output of the driving device or the driving force applied to the driving wheel can be reduced. It has been found that the need for reduction may be low.
例えば、均一な凍結路面又はぬれた路面など、平滑又は均一であり且路面摩擦係数が低い路面の場合には、車両の走行中に全輪が同時にグリップ状態からスリップ状態に陥ると、車両の加速性は著しく低下するので、全輪スリップ兆候の検出がされ、全輪スリップ状態の可能性が推定される場合には、駆動装置の出力の低減が実行されることが好ましい。しかしながら、雪道、雪と氷が混在する路面、車両が走行する際に雪又は氷が粉砕される路面(ザクザク感のある路面)など、路面摩擦係数自体は低いが不均一な表面を有する路面の場合には、車両に於いて一時的に又は過渡的に全輪スリップ兆候が検出されても、車両は、比較的安定的に加速走行できる場合がある。かかる状況に於いて、全輪スリップ兆候の検出に応答して、駆動力の低減を実行すると、運転者が、「車が走らない」という印象、即ち、車両の加速に不足感を覚える場合がある。そのような場合、駆動力の低減をする必要性は低いといえる。 For example, in the case of a smooth or even road surface with a low coefficient of friction, such as a uniform frozen road surface or a wet road surface, if all the wheels fall into the slip state from the grip state simultaneously while the vehicle is running, the vehicle acceleration Therefore, when the all-wheel slip sign is detected and the possibility of the all-wheel slip state is estimated, it is preferable to reduce the output of the driving device. However, road surfaces with a non-uniform surface with a low coefficient of friction, such as snowy roads, roads where snow and ice are mixed, and roads where snow or ice is crushed when the vehicle travels (roads with a crisp feeling). In this case, even if an all-wheel slip sign is detected temporarily or transiently in the vehicle, the vehicle may be able to accelerate and travel relatively stably. In such a situation, when the driving force is reduced in response to detection of the all-wheel slip sign, the driver may feel that the car does not run, i.e., the vehicle acceleration is insufficient. is there. In such a case, it can be said that the necessity for reducing the driving force is low.
上記のような必要性の低い出力低減処理の実行を防止するため、或いは、車両の加速の不足感を解消するためには、路面の摩擦状態だけでなく、路面状況の更なる違いを識別し、駆動輪に与えられる駆動力若しくは駆動トルク或いは駆動装置の出力の低減の制御態様に反映させる必要があろう。しかしながら、従来のTRCに於いて、上記の如き路面状況の違いを考慮した制御手法は提案されていない。 In order to prevent the low-necessity output reduction processing as described above or to eliminate the lack of acceleration of the vehicle, not only the frictional state of the road surface but also further differences in the road surface condition are identified. It will be necessary to reflect this in the control mode for reducing the driving force or driving torque applied to the driving wheel or the output of the driving device. However, in the conventional TRC, a control method that takes into account the difference in road surface conditions as described above has not been proposed.
本発明によれば、四輪駆動車などの全輪が駆動輪として作動する全輪駆動車両のTRCに於いて、全輪スリップ状態となった可能性、即ち、全輪スリップ兆候が検出されることに応答して駆動力を低減する場合に、新規な手法により車両の走行する路面状況を識別して、駆動力の低減の必要性を考慮し、これにより、よりきめ細やかな走行制御が実行されるよう構成された車両のTRC装置が提供される。 According to the present invention, the possibility of an all-wheel slip state, that is, an all-wheel slip sign is detected in the TRC of an all-wheel drive vehicle in which all wheels such as a four-wheel drive vehicle operate as drive wheels. When the driving force is reduced in response to this, the road surface condition where the vehicle travels is identified by a new method, and the necessity of reducing the driving force is taken into account, thereby executing more detailed driving control. A TRC device for a vehicle configured to be provided is provided.
上記の如き本発明の、全輪が駆動輪である車両のトラクションコントロール装置は、全輪駆動時に駆動輪の全てがスリップ状態にある兆候を検出する全輪スリップ兆候検出手段と、車両の走行中の駆動力の損失を推定する駆動力損失推定手段と、車両の駆動輪に於ける駆動力を制御する駆動力制御手段とを含み、駆動力制御手段は、基本的には、従前の装置と同様に、全輪スリップ状態推定手段により駆動輪の全てがスリップ状態にある兆候が検出されたときには、車両の駆動輪に於ける駆動力を低減するのであるが、かかる駆動力の低減は、全輪スリップ兆候の検出が為された状態で、更に、それまでの駆動力損失推定手段により推定された駆動力の損失が所定値以下であるときに実行されることを特徴とする。なお、ここで、「駆動輪の全てがスリップ状態にある兆候」とは、全輪スリップ状態であるか否かは正確に判定できないが、その可能性がある状態のことを意味する。また、「駆動力の損失」とは、要すれば、車両に与えた駆動力又は駆動出力のうち、車両の加速度に反映されなかった量である。 The traction control device for a vehicle in which all the wheels are drive wheels according to the present invention as described above includes an all-wheel slip sign detecting means for detecting a sign that all the drive wheels are in a slip state when all the wheels are driven, and a vehicle running The driving force loss estimating means for estimating the driving force loss and the driving force control means for controlling the driving force in the driving wheels of the vehicle, the driving force control means is basically composed of a conventional device and Similarly, when the all-wheel slip state estimating means detects that all the drive wheels are in a slip state, the drive force on the drive wheels of the vehicle is reduced. It is executed when the wheel slip sign is detected and when the driving force loss estimated by the driving force loss estimating means is not more than a predetermined value. Here, “a sign that all the driving wheels are in a slip state” means a state in which there is a possibility that it is not possible to accurately determine whether or not all the wheels are in a slip state. Further, the “loss of driving force” is, if necessary, the amount of driving force or driving output applied to the vehicle that is not reflected in the acceleration of the vehicle.
上記の本発明の構成に於いて駆動力の低減を実行するか否かの判断に際して、全輪がスリップ状態にある兆候を検出することに加えて、それまでの駆動力損失推定手段により推定された駆動力の損失を参照するのは、車両の走行する路面の状態を識別するためである。路面の表面が比較的均一である場合、駆動輪の各々がグリップ力を保持している間は、車両の駆動装置から出力される駆動力は、効率良く、車両の駆動に反映されるので、駆動力の損失は小さい。一方、路面の表面が比較的不均一である場合、例えば、雪道、雪と氷が混ざったような道(車両の走行中に運転者がザクザク感を覚えるような道)の場合、駆動輪の各々がグリップ力を保持していたとしても、車両の駆動装置から出力される駆動力から路面への力の伝達効率は低く、駆動力の損失は大きくなる(過渡的に、駆動輪が個別にスリップ状態となり得る。)。従って、駆動力の損失の大小を参照することにより、走行中の路面が、均一路なのか不均一路なのかを識別することが可能となる。そして、路面の表面が比較的不均一である場合、即ち、駆動力の損失が大きい場合には、既に述べた如く、全輪スリップ状態であるとの兆候が検出された状態であっても、車両は比較的安定的に走行することが可能であるので、その場合には、駆動力の低減の必要性は低い。 In determining whether or not to reduce the driving force in the above-described configuration of the present invention, in addition to detecting a sign that all the wheels are in the slip state, the driving force loss estimation means until then is estimated. The loss of driving force is referred to in order to identify the state of the road surface on which the vehicle travels. When the road surface is relatively uniform, the driving force output from the vehicle driving device is efficiently reflected in the driving of the vehicle while each of the driving wheels holds the gripping force. The loss of driving force is small. On the other hand, when the road surface is relatively uneven, for example, on a snowy road or a road where snow and ice are mixed (a road where the driver feels crispy while the vehicle is running) Even if each of them holds the gripping force, the transmission efficiency of the force from the driving force output from the driving device of the vehicle to the road surface is low, and the loss of the driving force increases (transiently, the driving wheels are individually Can slip.) Therefore, by referring to the magnitude of the driving force loss, it is possible to identify whether the running road surface is a uniform road or a non-uniform road. And when the road surface is relatively non-uniform, that is, when the loss of driving force is large, as already mentioned, even if the sign that all wheels slip is detected, Since the vehicle can travel relatively stably, in that case, the necessity for reducing the driving force is low.
従って、上記の本発明の装置の作動に於いては、全輪スリップ兆候が検出されても、それまでの駆動力の損失(全輪スリップ兆候が検出された瞬間の損失ではない。)を参照し、駆動力の損失が大きく、所定値を越えていれば、路面が不均一路であると判定され、この場合には、駆動力の低減は実行せず、そのままの状態が維持される(路面は不均一なので、過渡的に全輪スリップ状態となったとしても、直ぐに全輪スリップ状態から脱する可能性が高い。)。かくして、雪道、雪と氷が混ざったような道の如く、全輪スリップ兆候が検出されても車両が比較的安定に走行できる場合には、駆動力の低減が実行されないので、運転者の「車が走らない」といった加速性の不足感を軽減することが可能となる。他方、全輪スリップ兆候が検出されたときに、駆動力の損失が小さく、所定値以下であれば、路面が均一路であると判定又は推定され、この場合には、駆動力の低減を実行し、これにより、駆動輪に於いてグリップ力が保持されるよう駆動輪に於いて駆動スリップ、即ち、駆動輪の車輪速が制御されることとなる。 Therefore, in the operation of the apparatus of the present invention described above, even if an all-wheel slip sign is detected, the loss of driving force up to that point (not the loss at the moment when the all-wheel slip sign is detected) is referred to. If the loss of the driving force is large and exceeds a predetermined value, it is determined that the road surface is a non-uniform road. In this case, the driving force is not reduced and the state is maintained as it is ( Because the road surface is uneven, even if the all-wheel slip state becomes transient, there is a high possibility that the all-wheel slip state will be immediately released.) Thus, if the vehicle can travel relatively stably even when all-wheel slip signs are detected, such as a snowy road or a road where snow and ice are mixed, the driving force is not reduced. It becomes possible to reduce the lack of acceleration such as “the car does not run”. On the other hand, when the all-wheel slip sign is detected, if the loss of the driving force is small and not more than a predetermined value, it is determined or estimated that the road surface is a uniform road. In this case, the driving force is reduced. As a result, the driving slip, that is, the wheel speed of the driving wheel is controlled in the driving wheel so that the grip force is maintained in the driving wheel.
上記の本発明の装置の構成に於いて、駆動力の損失は、上記の如く、車両の加速度に反映されなかった量である。従って、駆動力の損失を推定する際、駆動力損失推定手段は、好適には、車両の駆動装置が発生した駆動力と車両の前後加速度とに基づいて車両の走行中の駆動力の損失を算定するようになっていてよい。車両の駆動装置が発生した駆動力は、当業者にとって任意の方法で推定又は検出されてよい。特に、ハイブリッド車又は電気自動車の場合には、出力トルクが相当な精度をもって算定されるので、それらの値が有利に用いられる。車両の前後加速度は、Gセンサの出力値が用いられてよい。また、車両の走行中の駆動力の損失には、路面の表面の均一・不均一の程度とは別の要因で損失される成分、即ち、所謂、走行抵抗による損失も含まれる。そこで、更に好適には、駆動力の損失は、車両の駆動装置が発生した駆動力から車両の前後加速度に車両の重量を乗じた値(車体に発生している加速力)と車両の走行抵抗による損失とを差し引いた量であってよい。なお、本発明の装置の制御に於いて駆動力の損失を参照するのは、車両の走行している路面が均一か不均一かを識別するためであるので、全輪スリップ兆候が検出された時の瞬間値ではなく、それよりも前の値が参照される。路面の状態は、少なくともその長さ方向の拡がる範囲に於いて判断されるべきものであるので、駆動力の損失の値は、瞬間値ではなく、或る程度の時間幅に於ける値、例えば、駆動力の損失の一次遅れ量、平均値、積算値、なまし値などが採用される。 In the above-described configuration of the device of the present invention, the driving force loss is an amount that is not reflected in the acceleration of the vehicle as described above. Therefore, when estimating the loss of the driving force, the driving force loss estimation means preferably calculates the loss of the driving force during the traveling of the vehicle based on the driving force generated by the vehicle driving device and the longitudinal acceleration of the vehicle. You may come to calculate. The driving force generated by the vehicle drive device may be estimated or detected by an arbitrary method for those skilled in the art. In particular, in the case of a hybrid vehicle or an electric vehicle, the output torque is calculated with considerable accuracy, and these values are advantageously used. The output value of the G sensor may be used for the longitudinal acceleration of the vehicle. Further, the loss of driving force during traveling of the vehicle includes a component that is lost due to a factor other than the degree of uniformity or nonuniformity of the road surface, that is, a loss due to so-called traveling resistance. Therefore, more preferably, the loss of the driving force is a value obtained by multiplying the longitudinal force of the vehicle by the weight of the vehicle from the driving force generated by the vehicle driving device (acceleration force generated in the vehicle body) and the running resistance of the vehicle. It may be an amount obtained by subtracting the loss due to. In the control of the device of the present invention, the loss of the driving force is referred to to identify whether the road surface on which the vehicle is traveling is uniform or non-uniform, and therefore an all-wheel slip sign is detected. The previous value is referenced, not the instantaneous value of time. Since the condition of the road surface should be judged at least in the range in which the road surface extends, the value of the driving force loss is not an instantaneous value but a value in a certain time width, for example, The primary delay amount of driving force loss, average value, integrated value, smoothed value, etc. are employed.
また、上記の構成の全輪スリップ兆候の検出について、典型的には、全輪スリップ兆候検出手段は、車両の前後加速度値に基づいて車両に於いて発生し得る車速の上限値を推定する車速上限値推定手段を含み、駆動輪の全ての車輪速が車速の上限値よりも所定値以上大きいときに駆動輪の全てがスリップ状態であるとの兆候があると判定するようになっていてよい。即ち、全輪駆動時に現在の車速が正確に計測又は推定されていなくてもよい。また、この場合の車速の上限値は、好適には、現在の車両の前後加速度値に基づいて決定される車両に於いて発生し得る加速度の上限値と前後加速度の計測前の車両の車速とに基づいて決定されるようになっていてよい。従って、車両の車輪のうちの少なくとも一つの、駆動力を与えられていないときの車輪速の値が得られていれば、全輪駆動時の車速の上限値が算定され、従って、全輪スリップ兆候の検出若しくは全輪スリップ状態の推定が可能となる。 In addition, regarding the detection of the all-wheel slip sign having the above-described configuration, typically, the all-wheel slip sign detection means estimates the upper limit value of the vehicle speed that can occur in the vehicle based on the longitudinal acceleration value of the vehicle. An upper limit value estimation means is included, and when all the wheel speeds of the drive wheels are larger than the upper limit value of the vehicle speed by a predetermined value or more, it may be determined that there is an indication that all of the drive wheels are in a slip state. . That is, the current vehicle speed may not be accurately measured or estimated during all-wheel drive. Further, the upper limit value of the vehicle speed in this case is preferably the upper limit value of the acceleration that can be generated in the vehicle determined based on the current longitudinal acceleration value of the vehicle and the vehicle speed of the vehicle before the measurement of the longitudinal acceleration. It may be determined based on. Therefore, if the wheel speed value when no driving force is applied to at least one of the wheels of the vehicle is obtained, the upper limit value of the vehicle speed at the time of all-wheel drive is calculated, and therefore all-wheel slip It is possible to detect signs or estimate the slip condition of all wheels.
上記の本発明の実施の態様に於いて、駆動力制御手段による車両の駆動輪に於ける駆動力の低減処理は、全輪スリップ兆候検出手段により駆動輪の全てがスリップ状態であることの兆候が検出され且それまでの駆動力損失推定手段により推定された駆動力の損失が所定値以下である状態が所定期間継続した後に実行されるようになっていてよい。路面が均一か不均一かは、上記の如く、駆動力の損失により識別できるが、駆動力の損失が小さくても、過渡的に全輪スリップ兆候が検出される場合がある。そのような場合に、全輪スリップ兆候が検出された度に、駆動力の低減を実行してしまうと、やはり、加速性の不足感或いはその後の駆動力の変動に運転者が違和感を覚える可能性がある。また、逆に、全輪スリップ兆候が所定時間続いたとすれば、実際に全輪スリップ状態となっている可能性は高いであろう。従って、駆動力の低減は、全輪スリップ兆候が所定時間続いた後に実行するようにして、不要に駆動出力を絞ってしまうことを防ぐようになっていてよい。 In the above-described embodiment of the present invention, the driving force reduction processing on the driving wheels of the vehicle by the driving force control means is an indication that all of the driving wheels are in the slip state by the all-wheel slip sign detecting means. May be executed after a state in which the loss of the driving force estimated by the driving force loss estimating means until that time is not more than a predetermined value continues for a predetermined period. Whether the road surface is uniform or non-uniform can be identified by the loss of driving force as described above, but even if the loss of driving force is small, an all-wheel slip sign may be detected transiently. In such a case, if the driving force is reduced every time an all-wheel slip sign is detected, the driver may still feel uncomfortable with the lack of acceleration or subsequent fluctuations in the driving force. There is sex. On the other hand, if the all-wheel slip sign continues for a predetermined time, there is a high possibility that the all-wheel slip state is actually set. Therefore, the reduction of the driving force may be performed after the all-wheel slip sign has continued for a predetermined time to prevent unnecessary reduction of the driving output.
また、上記の本発明の装置の構成に於ける駆動力の低減処理に際して、駆動力制御手段は、典型的には、車両の駆動装置の出力を低減することにより、車両の駆動輪に於ける駆動力を低減する。過大な駆動スリップの抑制のために制動装置が用いられてもよいが、その場合には、前記の「駆動力の損失」の推定に於いて制動装置による損失を考慮する必要があり、また、駆動装置の出力エネルギーの利用効率も悪くなる。従って、前記の如く、車両の駆動輪に於ける駆動力の低減は、駆動装置の出力の低減により行われることが好ましい(しかしながら、駆動装置の出力応答が遅い場合には、制動装置が併用されてもよいであろう。)。 In the driving force reduction process in the above-described configuration of the device of the present invention, the driving force control means typically reduces the output of the vehicle driving device, thereby reducing the driving force of the vehicle. Reduce driving force. A brake device may be used to suppress excessive drive slip, but in that case, it is necessary to consider the loss caused by the brake device in the estimation of the “loss of drive force”. The use efficiency of the output energy of the drive device also deteriorates. Therefore, as described above, it is preferable to reduce the driving force in the driving wheels of the vehicle by reducing the output of the driving device (however, when the output response of the driving device is slow, a braking device is used in combination). May be.)
更に、上記の駆動力の低減の実行時に於いて、好適には、車両の駆動輪の駆動力の総和が車両の走行する路面の最大摩擦係数に車両の垂直荷重を乗じた値となるように、車両の駆動輪に於ける駆動力が低減される。車両の駆動のメカニズムを考えれば理解される如く、車両の発進時又は加速時に於いて、車両の加速に寄与する総駆動力の限界値は、各輪のタイヤ力が最大摩擦円に達しているときのタイヤ力の総和である。従って、全輪スリップ兆候が検出され(この場合、運転者は、現在の路面に於いて発生可能な加速度以上の加速度を要求していると想定される。)、駆動力の低減を実行する場合には、各輪のタイヤ力が最大摩擦円に達している状態まで低減すれば、各輪のタイヤがグリップ力を最大限にて保持した状態とすることができる。最大摩擦円の大きさは、路面の最大摩擦係数に各輪の接地荷重を乗じた値で与えられるから、車両の駆動輪の駆動力の総和が路面の最大摩擦係数に車両の垂直荷重を乗じた値とすることにより、車両の加速性が最大限に高い状態に保持されることとなる。 Further, when the above driving force reduction is performed, preferably, the sum of the driving forces of the driving wheels of the vehicle is a value obtained by multiplying the maximum friction coefficient of the road surface on which the vehicle travels by the vertical load of the vehicle. The driving force on the driving wheels of the vehicle is reduced. As understood from the driving mechanism of the vehicle, when starting or accelerating the vehicle, the limit value of the total driving force that contributes to the acceleration of the vehicle is that the tire force of each wheel reaches the maximum friction circle. It is the sum of the tire force at the time. Therefore, an all-wheel slip sign is detected (in this case, it is assumed that the driver is requesting an acceleration higher than the acceleration that can be generated on the current road surface), and the driving force is reduced. If the tire force of each wheel is reduced to a state where it reaches the maximum friction circle, the tire of each wheel can be brought into a state in which the grip force is maintained at the maximum. The size of the maximum friction circle is given by the maximum friction coefficient of the road surface multiplied by the ground contact load of each wheel. Therefore, the sum of the driving forces of the driving wheels of the vehicle multiplies the maximum friction coefficient of the road surface by the vertical load of the vehicle. By setting this value, the acceleration performance of the vehicle is maintained at a maximum level.
本発明は、四輪駆動車など、全車輪に於いて駆動スリップが発生し車速を正確に決定することが困難である全輪駆動車両に於いて、全輪スリップ状態を回避するためのTRCを実行する際に、各輪のタイヤの駆動スリップ又は車輪速を監視するだけでなく、車両の駆動力損失を監視することにより、車両の走行している路面の状況をより詳細に把握して、TRCによる駆動力の低減処理がより的確に行われるようにするものである、ということができる。上記の説明から理解される如く、本発明の制御構成によれば、不要に駆動力の低減を実行する頻度が低減され、比較的安定的に走行できる路面状況に於ける車両の加速性を損なうことが防止される。そして、かかる制御の結果、運転者が「車両が走らない」という感覚を覚える機会が低減され、従って、運転者の操作負担が軽減されることとなる。 The present invention provides a TRC for avoiding an all-wheel slip condition in an all-wheel drive vehicle such as a four-wheel drive vehicle in which drive slip occurs in all wheels and it is difficult to accurately determine the vehicle speed. When performing, in addition to monitoring the driving slip or wheel speed of the tires of each wheel, by monitoring the driving force loss of the vehicle, grasp the situation of the road surface on which the vehicle is traveling in more detail, It can be said that the driving force reduction process by the TRC is performed more accurately. As can be understood from the above description, according to the control configuration of the present invention, the frequency of unnecessarily reducing the driving force is reduced, and the acceleration performance of the vehicle in a road surface state that can travel relatively stably is impaired. It is prevented. As a result of such control, the opportunity for the driver to feel that “the vehicle does not run” is reduced, and therefore the operation burden on the driver is reduced.
上記の本発明の構成に於ける一つの特徴に於いて、路面の状況を判定するために参照される(推定される)駆動力の損失として、全輪スリップ兆候が現れた瞬間の時の駆動力の損失の瞬間値ではなく、全輪スリップ兆候が検出される時よりも以前の駆動力の損失の値が参照されるという点は理解されるべきである。従前のTRCに於いては、基本的には、現在の車輪速値と車速値との関係に基づいて、駆動力の制御が実行される(車速を推定するために、推定時以前の種々の値を参照する場合があるが、現在の車速値を算出するためであって、値が推定時以前のものであることは本質的ではない。)。これに対し、本発明の場合では、路面の均一性又は平滑性の程度という長さ方向に広がりのある要因を制御に反映させようとしているので、駆動力損失の一次遅れ量などの、本質的に推定時以前の駆動力の損失が参照されることとなっている。このような理由で、現在時点以前の値を参照して制御を実行するTRCは、従前に於いて殆ど見られないであろう。 In one aspect of the above-described configuration of the present invention, driving at the moment when an all-wheel slip sign appears as a loss of driving force referred to (estimated) to determine road conditions. It should be understood that reference is made to the value of the driving force loss prior to when the all-wheel slip sign is detected, not the instantaneous value of the power loss. In the conventional TRC, basically, the driving force is controlled based on the relationship between the current wheel speed value and the vehicle speed value (in order to estimate the vehicle speed, The value may be referred to, but it is for calculating the current vehicle speed value, and it is not essential that the value is before the estimation time.) On the other hand, in the case of the present invention, since the factor that spreads in the length direction such as the degree of road surface uniformity or smoothness is to be reflected in the control, the primary delay amount of the driving force loss, etc. In addition, the loss of driving force before the estimation time is referred to. For this reason, TRCs that perform control with reference to values prior to the current time will be rarely seen in the past.
本発明のその他の目的及び利点は、以下の本発明の好ましい実施形態の説明により明らかになるであろう。 Other objects and advantages of the present invention will become apparent from the following description of preferred embodiments of the present invention.
以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施形態について詳細に説明する。図中、同一の符号は、同一の部位を示す。 The present invention will now be described in detail with reference to a few preferred embodiments with reference to the accompanying drawings. In the figure, the same reference numerals indicate the same parts.
装置の構成
図1(A)は、本発明のTRC装置の好ましい実施形態が搭載される四輪駆動車を模式的に示している。同図に於いて、左右前輪12FL、12FRと、左右後輪12RL、12RRを有する車両10には、通常の態様にて、運転者によるアクセルペダル14の踏込みに応じて前後輪に駆動力を発生する駆動装置16が搭載される。駆動装置16に於いて、図示の例では、エンジンと電動機とが差動歯車装置にて連結されてなるハイブリッド式の駆動ユニット18からの駆動トルク或いは回転駆動力は、トランスミッション(変速機)20を経て、センタデフ(又はトランスファ)22へ伝達され、更に、前輪側デフ24及び後輪側デフ26を介して、前輪12FL、12FR及び後輪12RL、12RRへそれぞれ伝達される。なお、駆動ユニット18に代えて、電動機単体、或いは、ガソリン又はディーゼルエンジン単体が用いられてもよい。なお、簡単のため図示していないが、車両10には、通常の車両と同様に各輪に制動力を発生する制動系装置、前輪の舵角を制御するステアリング装置が設けられる。
Configuration of Device FIG. 1A schematically shows a four-wheel drive vehicle on which a preferred embodiment of the TRC device of the present invention is mounted. In the figure, the
車両の駆動装置及び制動装置の作動は、電子制御装置50に於いて制御され、本発明のTRC装置の構成及び作動は、電子制御装置50の一部に於いて実現される。電子制御装置50は、通常の形式の、双方向コモン・バスにより相互に連結されたCPU、ROM、RAM及び入出力ポート装置を有するマイクロコンピュータ及び駆動回路を含んでいてよい。電子制御装置50には、各輪に搭載された車輪速センサ40i(iは、特に断らない限り、FL、FR、RL、RR、即ち、左前輪、右前輪、左後輪、右後輪の値であることを示す。)からの車輪速を表す信号Vwiと、駆動ユニット18の出力状態情報(回転数、トルク等)、アクセルペダル踏込量θa、Gセンサ30により検出される前後加速度α等の信号が入力される。なお、上記以外に、本実施形態の車両に於いて実行されるべき各種制御に必要な種々のパラメータを得るための各種検出信号、例えば、ヨーレートセンサにより検出されるヨーレート、Gセンサにより検出される横加速度、各輪に設けられた荷重センサからの各輪の垂直荷重が入力されてよいことは理解されるべきである。
The operation of the vehicle drive device and the braking device is controlled by the
電子制御装置50に於いて実現されるTRC装置50aは、より詳細には、図1(B)に於いて模式的に示されているように、駆動ユニット18の駆動制御装置50bと、制動装置(図示せず)の作動を制御する制動制御装置50cと通信して、駆動ユニット18の出力又は制動装置の作動を制御する。駆動制御装置50bは、運転者からの駆動要求を反映するべく、アクセルペダルの踏込み量θaに基づいて、公知の任意の態様にて、駆動ユニット18の各部の作動を制御して駆動ユニット18の出力を調節する。一方、制動制御装置50cは、図示の如く、各輪の車輪速センサ40iにより車輪が所定量回転する毎に逐次的に生成されるパルス形式の電気信号から車輪の回転速を算出し、これに車輪半径を乗ずることにより、車輪速値r・ωを算出する。また、制動制御装置50cに於いては、各輪の路面の最大摩擦係数を推定する路面摩擦係数推定部50dが設けられ、推定された各輪の路面の最大摩擦係数μiは、制動制御、或いは、後に詳細に説明される本発明のTRCに於いて利用可能となっている。
More specifically, the TRC device 50a realized in the
そして、本発明のTRC装置50aは、概して述べれば、駆動制御装置50bからの駆動ユニット18の出力値(パワー)、出力トルク値又は発生駆動力値、制動制御装置50cからの各輪に於ける車輪速値r・ωi及び路面の最大摩擦係数μi(推定値)、Gセンサからの車両の前後方向加速度等の信号を用いて、車体速の推定(車体速推定部52)、全輪(四輪)スリップ兆候(全ての車輪が同時にスリップ状態にある兆候)の検出(四輪スリップ兆候検出部54)、駆動力損失の推定(駆動力損失推定部56)を行い、駆動スリップが過大となる場合や全輪スリップ兆候が検出された場合など所定の条件が成立したときに、駆動制御装置50bに対して、駆動ユニット18の駆動力を低減するよう制御指令を与え(駆動力制御部58)、駆動スリップを抑制するTRCを実行する。特に、以下に詳細に説明される如く、駆動力制御部58に於いては、全輪スリップ兆候が検出された場合、車両の走行中の駆動力の損失が小さく、路面が平滑であると推定される場合にのみ、駆動力の低減を指令するよう構成され、これにより、不要に駆動力の低減が実行される頻度が低減されることとなる。なお、駆動制御装置50bと、制動制御装置50cと、TRC装置50aとは、別体であっても一体であってもよい。この分野の当業者にとって、上記の制御装置の構成及び処理作動は、マイクロコンピュータが、組み込まれたプログラムに従って動作することによって実現されることは、理解されるべきである。以下、本発明の装置に於けるTRCの作動について説明する。
The TRC device 50a of the present invention is generally described in the output value (power), output torque value or generated driving force value of the
四輪駆動車に於ける通常時のTRCの作動
この分野に於いてよく知られているように、車両の駆動時の各輪のスリップ率
{(車輪速)−(車速)}/(車速) …(1)
が、タイヤと路面との間の摩擦係数が飽和する値、即ち、路面の最大摩擦係数を与える値、を超えて増大すると、タイヤは、グリップ力を失い、スリップ状態となる。そこで、TRCでは、各輪について、
(車輪速)−(車速) …(1a)
の値を監視し、この値が、所定の制御閾値を越えたときに、車輪速が低減されるよう駆動装置の出力が低減される。(図2(A)参照。なお、かかるTRCの作動は、公知であり、より詳細な説明は、この分野の任意の文献に記載されている。)
Normal TRC operation in a four-wheel drive vehicle As is well known in this field, the slip ratio of each wheel when a vehicle is driven {(wheel speed) − (vehicle speed)} / (vehicle speed) ... (1)
However, if the friction coefficient between the tire and the road surface increases beyond a value that saturates, that is, a value that gives the maximum friction coefficient of the road surface, the tire loses gripping force and enters a slip state. Therefore, in TRC,
(Wheel speed)-(vehicle speed) ... (1a)
And when this value exceeds a predetermined control threshold, the output of the drive device is reduced so that the wheel speed is reduced. (See FIG. 2A. Note that the operation of such a TRC is known, and a more detailed description can be found in any document in this field.)
従って、上記の如きTRCを実行するためには、車速値を知る必要があるが、「背景技術」の欄に於いて記載されている通り、四輪駆動車の全輪駆動時には、全輪に於いて駆動スリップが発生し、いずれの車輪もスリップ状態となり得るため、そのまま車速として利用することのできる車輪速が存在しない。そこで、四輪駆動車の全輪駆動時の場合、車速値の決定に於いては、Gセンサの検出する車両の前後加速度値又は路面の最大摩擦係数の推定値等を用いて算定される走行中の車両に於いて発生可能な加速度の上限値を用いて、発生可能な車速の上限値が算定される。しかる後、かかる車速の上限値と各輪の車輪速とを比較して、適当な車輪速が車速として選択される(車速推定部52)。 Therefore, in order to execute the TRC as described above, it is necessary to know the vehicle speed value. However, as described in the “Background Art” section, when all-wheel drive of a four-wheel drive vehicle is performed, In this case, a drive slip occurs, and any wheel can be in a slip state. Therefore, there is no wheel speed that can be used as it is. Therefore, in the case of all-wheel drive of a four-wheel drive vehicle, the vehicle speed value is determined by using the vehicle longitudinal acceleration value detected by the G sensor or the estimated value of the maximum friction coefficient of the road surface. The upper limit value of the vehicle speed that can be generated is calculated using the upper limit value of the acceleration that can be generated in the vehicle inside. Thereafter, the upper limit value of the vehicle speed is compared with the wheel speed of each wheel, and an appropriate wheel speed is selected as the vehicle speed (vehicle speed estimation unit 52).
具体的には、まず、Gセンサの検出する車両の前後加速度値αを用いて、加速度の上限値αupが
αup=α+Δα …(2)
と与えられる。Δαは、車両に於いて発生可能である加速度の上限値αupが与えられるよう定められる実験的に又は理論的に決定される所定値又は現在の車両の走行条件等を任意の方法により決定される値である。しかる後、車速の上限値Vxupが、加速度値αが取得される前の車速値(前回値)Vxfを用いて、
Vxup=Vxf+αup・Δt …(3)
により与えられる(図2(B)参照)。ここで、Δtは、Vxfが与えられた時点から現時点までの時間である(Vxfは、更に以前の車速値から与えられることは理解されるべきである。かかる車速の推定の最初の演算では、例えば、駆動輪に駆動トルクが与えられていないときの車輪速値が前回値として参照される。)。そして、各輪の車輪速r・ωiとVxupとからなる群のうちの最低値又は二番目に低い値が現在の車速Vxとして設定される。なお、実際の装置に於いては、推定演算の下側のガードとして、車両に於いて発生可能である加速度の下限値αdownが
αdown=α−Δα …(2a)
により設定され、車速の下限値Vxdownが、
Vxdown=Vxf+αdown・Δt …(3a)
により与えられ、車速値Vxは、
Vx=MID{Vxup,r・ωi,Vxdown} …(3b)
により、決定される。MIDは、{}内の値の中間の値を選択する演算子である。
Specifically, first, using the longitudinal acceleration value α of the vehicle detected by the G sensor, the upper limit value αup of the acceleration is αup = α + Δα (2)
And given. Δα is determined by an arbitrary method such as a predetermined value experimentally or theoretically determined to be given an upper limit value αup of acceleration that can be generated in the vehicle or a current running condition of the vehicle. Value. Thereafter, the upper limit value Vxup of the vehicle speed is obtained by using the vehicle speed value (previous value) Vxf before the acceleration value α is acquired,
Vxup = Vxf + αup · Δt (3)
(See FIG. 2B). Here, Δt is the time from the time when Vxf is given to the present time (it should be understood that Vxf is given from the previous vehicle speed value. In the first calculation of the estimation of the vehicle speed, For example, the wheel speed value when no driving torque is applied to the driving wheel is referred to as the previous value.) Then, the lowest value or the second lowest value in the group consisting of the wheel speeds r · ωi and Vxup of each wheel is set as the current vehicle speed Vx. In an actual apparatus, the lower limit value αdown of the acceleration that can be generated in the vehicle is αdown = α−Δα (2a) as a lower guard of the estimation calculation.
The lower limit value Vxdown of the vehicle speed is
Vxdown = Vxf + αdown · Δt (3a)
The vehicle speed value Vx is given by
Vx = MID {Vxup, r · ωi, Vxdown} (3b)
Determined by MID is an operator that selects an intermediate value between the values in {}.
上記の車速の推定演算によれば、駆動輪のいずれかがグリップ力を保持していれば、そのグリップ力を保持している車輪の車輪速のいずれかが車速として選択される。そして、その車速値を用いて、各輪について、式(1a)の(車輪速)−(車速)の値を参照し、いずれかの車輪について、(車輪速)−(車速)の値が制御閾値を越えている場合には、通常のTRCの作動態様に従い、駆動装置の出力が低減される(駆動力制御部58)。 According to the above vehicle speed estimation calculation, if any of the driving wheels holds the gripping force, any of the wheel speeds of the wheels holding the gripping force is selected as the vehicle speed. Then, using the vehicle speed value, the value of (wheel speed) − (vehicle speed) in the formula (1a) is referred to for each wheel, and the value of (wheel speed) − (vehicle speed) is controlled for any wheel. When the threshold value is exceeded, the output of the driving device is reduced according to the normal operation mode of the TRC (driving force control unit 58).
全輪(四輪)スリップ兆候検出時のTRCの作動
上記の車速の推定演算に於いて、各輪の車輪速が車速の上限値Vxupより大きいとき(図2(C)参照)、駆動輪の車輪速の全てが予想される車速の上限値を上回ることとなるので、全輪がスリップ状態となっている可能性が高いということとなる。従って、四輪のうち、車輪速の最小値がVxupより大きいときは、全輪スリップ状態と判定してもよい。しかしながら、この点に関し、車輪が実際にスリップ状態となっているか否かは、(車輪速r・ωi)−(車速Vx)の値が制御閾値を越えているか否かで判定されるところ、各輪の車輪速が車速の上限値Vxupより大きく、車速の上限値が車速として選択される状況では、その選択された車速の信頼性が著しく低いので、(車輪速r・ωi)−(車速Vx)の値が制御閾値を越えているか否かの判定によっては、各輪がスリップ状態にあるか否かを正確には判定できない。従って、全輪の車輪速が車速の上限値Vxupより大きいときは、全輪がスリップ状態となっている可能性がある、即ち、全輪がスリップ状態にある兆候があるということとなる。
Operation of TRC when all-wheel (four-wheel) slip signs are detected When the wheel speed of each wheel is higher than the upper limit value Vxup of the vehicle speed in the above calculation of the vehicle speed (see FIG. 2C), Since all the wheel speeds exceed the upper limit value of the expected vehicle speed, it is highly possible that all the wheels are in the slip state. Therefore, when the minimum value of the wheel speed is greater than Vxup among the four wheels, it may be determined that the all-wheel slip state is present. However, in this regard, whether or not the wheel is actually slipping is determined by whether or not the value of (wheel speed r · ωi) − (vehicle speed Vx) exceeds the control threshold value. In a situation where the wheel speed of the wheel is larger than the upper limit value Vxup of the vehicle speed and the upper limit value of the vehicle speed is selected as the vehicle speed, the reliability of the selected vehicle speed is extremely low, so (wheel speed r · ωi) − (vehicle speed Vx ) Cannot be accurately determined whether or not each wheel is in a slip state. Therefore, when the wheel speeds of all the wheels are larger than the upper limit value Vxup of the vehicle speed, there is a possibility that all the wheels are in a slip state, that is, there is an indication that all the wheels are in a slip state.
全輪がスリップ状態にある場合には、基本的には、直ちに全輪の駆動スリップを低減して、タイヤのグリップ力の回復及び保持を図るべく、駆動ユニット18の出力の低減が指令される。しかしながら、「発明の開示」の欄に於いて既に述べた如く、上記のような全輪がスリップ状態にある兆候が検出される場合、凍結路面のように平滑で均一な路面ではなく、雪道、雪と氷が混在する路面又は車両が走行する際に雪又は氷が粉砕される路面(ザクザク感のある路面)など、路面摩擦係数自体は低いが不均一な表面を有する路面に於いては、車両が比較的安定的に加速走行することが可能であり、その場合、駆動力の低減を実行すると、かえって運転者が加速性の不足を感じることが見出された。また、“車輪速r・ωiが車速上限値Vxupよりも大きい”ということから判断される全輪スリップ兆候は、全輪がスリップ状態となっている可能性が高いことを示すだけであり、全輪がスリップ状態にあるということを確実に示しているわけではない。そこで、本発明による装置の制御処理は、上記の如き路面の状況を識別し、或いは又、全輪スリップ兆候の不確実性を考慮し、車両が比較的安定的に加速走行することが可能な場合には、駆動力の低減が実行されないよう構成される。
When all the wheels are in a slip state, basically, a reduction in the output of the
(i)路面状況の識別
本発明の装置では、既に述べた如く、不要に駆動力の低減処理が実行されないようにするために、凍結路面のように平滑で均一な路面と、雪道、雪と氷が混在する路面又は車両が走行する際に雪又は氷が粉砕される路面(ザクザク感のある路面)などのように不均一な路面との識別が試みられる。かかる路面の特性の識別は、走行中の車両に於ける駆動力の損失、即ち、車両に与えた駆動力のうち車両の加速度に反映されなかった量の大小を参照することにより行われる。
(I) Identification of road surface condition In the apparatus of the present invention, as described above, a smooth and uniform road surface such as a frozen road surface, a snow road, Attempts are made to discriminate from uneven road surfaces such as road surfaces in which snow and ice are mixed, or road surfaces on which snow or ice is crushed when the vehicle travels (road surfaces with a crisp feeling). Such road surface characteristics are identified by referring to the loss of driving force in the traveling vehicle, that is, the magnitude of the amount of driving force applied to the vehicle that is not reflected in the acceleration of the vehicle.
図3(A)に模式的に示されている如く、車両が平滑で均一な路面上を走行している場合、車輪がグリップ状態を保持していれば、車両の駆動装置が駆動輪に与える駆動力又は駆動トルクは、効率的に路面との作用に使用され、車両の加速度に反映される。従って、駆動力の損失は比較的小さい。一方、図3(B)に示されている如く、車両の走行する路面が雪道などの運転者がザクザク感を感じる粗く不均一な表面を有している場合には、車両の駆動装置から駆動輪に与えられる駆動力又は駆動トルクの路面への伝達効率は比較的低く(駆動トルクが雪の変形や氷の粉砕にも費やされる)、車両の加速度の増大は、路面が平滑で均一な場合に比して小さいので、駆動力の損失は相対的に大きくなる。 As schematically shown in FIG. 3 (A), when the vehicle is running on a smooth and uniform road surface, if the wheels are kept in a grip state, the vehicle drive device gives the drive wheels. The driving force or driving torque is efficiently used for the action with the road surface and reflected in the acceleration of the vehicle. Therefore, the loss of driving force is relatively small. On the other hand, as shown in FIG. 3B, when the road surface on which the vehicle travels has a rough and uneven surface on which a driver feels crispy such as a snowy road, The transmission efficiency of the driving force or driving torque applied to the driving wheels to the road surface is relatively low (driving torque is also spent on snow deformation and ice crushing), and the increase in vehicle acceleration increases the smoothness and uniformity of the road surface. Since it is smaller than the case, the loss of driving force becomes relatively large.
上記の駆動力の損失は、車両に与えた駆動力のうち車両の加速度αに反映されなかった量であるから、
(駆動力の損失ΔF)=Fr−M・α−Rr …(4)
により与えられる。ここで、Frは、駆動装置の出力トルクTrを駆動力の単位に換算した値、Mは、車両の重量である。Rrは、路面の特性の違い以外の要因により生ずる駆動力の損失、所謂走行抵抗成分である。走行抵抗成分Rrは、この分野に於いて知られている任意の手法により、例えば、車両の種々の走行条件をパラメータとする予め準備されたマップを用いて決定されてよい。
The loss of the driving force is an amount that is not reflected in the vehicle acceleration α out of the driving force applied to the vehicle.
(Loss of driving force ΔF) = Fr−M · α−Rr (4)
Given by. Here, Fr is a value obtained by converting the output torque Tr of the driving device into a unit of driving force, and M is the weight of the vehicle. Rr is a driving force loss caused by factors other than a difference in road surface characteristics, a so-called running resistance component. The running resistance component Rr may be determined by any method known in this field, for example, using a map prepared in advance with various running conditions of the vehicle as parameters.
ところで、上記の式(4)は、或る時点の若しくは瞬間の、即ち、路面上の或る地点に於ける駆動力の損失を与えるが、識別されるべき路面の状況は、車両の走行方向に広がる区間(長さ)に於ける状態を参照して判断されるべきである。従って、全輪スリップ兆候が検出されたとき又は後で駆動力の低減処理を実行するか否かを判定する際、路面の状況(又は特性)を識別するには、それまでの駆動力の損失の状況又は経緯を参照する必要がある。そこで、本発明の制御処理に於いて駆動力の低減処理を実行するかしないかの判断の際、路面の状況は、例えば、式(4)にて与えられる駆動力の損失の一次遅れ量ΔFrt、
ΔFrt=∫ea(t−τ)・bΔF(τ)・dτ …(5)
の大小を参照して判定される。ここで、a、bは、適宜設定される定数であり、積分区間は、0〜t(現在時間)である。一次遅れの時定数は、実験的に又は理論的に設定されてよい(例えば、1秒〜数秒程度であってよい。)なお、一次遅れ量ΔFrtに代えて、現在時点前の所定区間の平均値、積算値又はなまし平均値等が採用されてもよい。また、本実施形態では、路面状況の識別のために、駆動力の損失を参照しているが、これに代えて、駆動出力(パワー)又は駆動トルクの損失を参照するようになっていてもよいことは理解されるべきである(その場合、式(4)は、適宜、単位の変換が為される。)。
By the way, the above formula (4) gives a loss of driving force at a certain point or moment, that is, at a certain point on the road surface, but the road surface condition to be identified depends on the traveling direction of the vehicle. Judgment should be made with reference to the state in the section (length) that extends to. Therefore, when determining whether or not to execute the driving force reduction process when an all-wheel slip sign is detected or later, in order to identify the road surface condition (or characteristic), the driving force loss until then is determined. Need to refer to the situation or history of Accordingly, when determining whether or not to execute the driving force reduction process in the control process of the present invention, the road surface condition is, for example, the primary delay amount ΔFrt of the driving force loss given by the equation (4). ,
ΔFrt = ∫e a (t−τ) · bΔF (τ) · dτ (5)
It is determined with reference to the size of. Here, a and b are constants set as appropriate, and the integration interval is 0 to t (current time). The time constant of the first-order lag may be set experimentally or theoretically (for example, may be about 1 second to several seconds). In addition, instead of the first-order lag amount ΔFrt, the average of a predetermined interval before the current time point A value, an integrated value, a smoothed average value, or the like may be employed. In the present embodiment, the loss of the driving force is referred to for identifying the road surface condition, but instead, the loss of the driving output (power) or the driving torque may be referred to. It should be understood that (in that case, the unit of Formula (4) is appropriately converted).
上記の駆動力の損失及びその一次遅れ量等は、駆動力損失推定部56に於いて、車両の走行中に常に算出されるようになっていてよい。路面の状況が、粗い不均一路であるか又は平滑な均一路であるかは、駆動力の損失の一次遅れ量等が実験的又は理論的に設定される所定値より大きいか否かにより判定されてよい。
The driving force loss and the first-order delay amount may be always calculated by the driving force
(ii)全輪スリップ兆候検出時の制御処理
図4は、本発明の装置(駆動力制御部58)に於いて、全輪スリップ兆候が検出された場合に上記の駆動力損失(の一次遅れ量)を判定基準の一つとして参照して駆動力の低減処理の実行を決定するための、車両の運転中に所定のサイクル周期にて繰り返し実行される処理過程をフローチャートの形式で表したものである。同図を参照して、制御処理に於いては、まず、全輪スリップ兆候の有無が判定される(ステップ10)。かかる判定に於いては、車輪速の全てが、前記の式(3)により得られる車速の上限値Vxupよりも所定値A以上大きいとき、即ち、全輪について、
r・ωi−Vxup>A …(6)
が成立するとき、全輪スリップ兆候有りと判定されてよい(全輪スリップ兆候検出部54から駆動力制御部58へ情報が渡される。)。所定値Aは、0又は正の定数であってよい。全輪スリップ兆候が検出されると、駆動力損失推定部56にて算出されている、上記の駆動力の損失の一次遅れ量が参照され、その値が所定値より小さいか否かが判定される(ステップ20)。
(ii) Control processing when all-wheel slip sign is detected FIG. 4 shows the above-described driving force loss (primary delay) when the all-wheel slip sign is detected in the apparatus (driving force control unit 58) of the present invention. Is a flowchart showing a process that is repeatedly executed at a predetermined cycle period during driving of the vehicle, with reference to (quantity) as one of the determination criteria. It is. Referring to the figure, in the control process, first, it is determined whether or not there is an all-wheel slip sign (step 10). In this determination, when all the wheel speeds are larger than the upper limit value Vxup of the vehicle speed obtained by the above equation (3) by a predetermined value A or more, that is, for all the wheels,
r · ωi−Vxup> A (6)
Is established, it may be determined that there is an all-wheel slip sign (information is passed from the all-wheel slip sign detection unit 54 to the driving force control unit 58). The predetermined value A may be 0 or a positive constant. When the all-wheel slip sign is detected, the first-order lag amount of the driving force loss calculated by the driving force
ここで、もし駆動力の損失の一次遅れ量が所定値以上であれば、走行中の路面は、雪道、雪と氷が混在する路面、ザクザク感のある路面などの路面摩擦係数自体は低いが不均一な表面を有する路面であると判定され、TRCによる駆動力の低減処理は、実行されず、今回の処理サイクルが終了する。一方、駆動力の損失の一次遅れ量が所定値より小さければ、路面は、平滑又は均一路であると考えられるので、全輪スリップ兆候が発生してから所定時間経過したか否かが判定される(ステップ30)。 Here, if the primary delay amount of the driving force loss is equal to or greater than a predetermined value, the running road surface has a low road surface friction coefficient such as a snowy road, a road surface in which snow and ice are mixed, and a road surface with a crisp feeling. Is determined to be a road surface having a non-uniform surface, the driving force reduction processing by TRC is not executed, and the current processing cycle ends. On the other hand, if the primary delay amount of the driving force loss is smaller than a predetermined value, the road surface is considered to be smooth or uniform, so it is determined whether or not a predetermined time has elapsed since the occurrence of the all-wheel slip sign. (Step 30).
ステップ30に於いて、全輪スリップ兆候が発生してから所定時間経過したか否かが判定されるのは、全輪スリップ状態にある可能性が相当に高いか否かを判定するためである。既に述べた如く、全輪スリップ兆候は、全輪スリップ状態の発生を確実に示すものではない。実際、全輪スリップ兆候は、路面が平滑又は均一路である場合にも、瞬間的に或いは過渡的に検出されることも有り得る。そこで、図示の実施形態では、全輪スリップ兆候が最初に検出されてから、(駆動力の損失が所定値以下である状態で)所定時間経過するまで待って、即ち、全輪スリップ状態にある可能性が相当に高くなるまで待ってから(全輪スリップ兆候の継続時間が長ければ長いほど、全輪スリップ状態である蓋然性は、高くなるであろう。)、駆動力の低減処理が実行されるよう構成される。従って、全輪スリップ兆候が発生してから所定時間経過するまでは、駆動力の低減処理(ステップ40)の実行をせずに、今回の処理サイクルが終了される(リターン)。一方、処理サイクルが繰り返し実行される間に、全輪スリップ兆候が検出され且駆動力損失が所定値を下回る状態が所定時間(例えば、50m秒)経過した場合、全輪スリップ状態であると判定して、駆動力の低減処理が実行される(ステップ40)。
In
駆動力の低減処理に於いては、好適には、駆動装置から駆動輪に伝達される駆動力の総和が、現在の路面の最大摩擦係数に車両の垂直荷重を乗じた値に設定される。通常のTRCであれば、車速が精度よく検出又は推定されているとの前提から、前記の如く、駆動輪の車輪速と車速との差が過剰にならないよう駆動輪の回転が低減される。しかしながら、全輪スリップ兆候が検出されている状況では、選択されている車速は、前記の式(3)により与えられる車速の上限値Vxupとなっているから、その信頼性は低い。一方、全輪スリップ兆候が所定時間継続して検出され、全輪スリップ状態である蓋然性が相当に高い場合にあっては、運転者が要求する又は車両に要求されている駆動力は、現在の車両に於いて発生可能な駆動力、即ち、車両のタイヤのグリップ力の最大限界値(最大摩擦円)を超えていると考えることができる。そこで、本発明の装置では、車両に発生させる駆動力を、車両のタイヤのグリップ力の最大限界値、即ち、路面の最大摩擦係数に車両の垂直荷重を乗じた値となるよう低減し、これにより、現在の車両の走行条件に於いてタイヤのグリップ力が最大限に発揮された状態、即ち、加速性能を最大限に向上することが図られる。 In the driving force reduction process, preferably, the sum of the driving forces transmitted from the driving device to the driving wheels is set to a value obtained by multiplying the current maximum friction coefficient of the road surface by the vertical load of the vehicle. In the case of normal TRC, on the assumption that the vehicle speed is accurately detected or estimated, as described above, the rotation of the drive wheel is reduced so that the difference between the wheel speed of the drive wheel and the vehicle speed does not become excessive. However, in a situation in which an all-wheel slip sign is detected, the selected vehicle speed is the upper limit value Vxup of the vehicle speed given by the above equation (3), and therefore the reliability is low. On the other hand, when the all-wheel slip sign is continuously detected for a predetermined time and the probability that the all-wheel slip state is considerably high, the driving force requested by the driver or the vehicle is It can be considered that the driving force that can be generated in the vehicle, that is, the maximum limit value (maximum friction circle) of the grip force of the vehicle tire is exceeded. Therefore, in the apparatus of the present invention, the driving force generated in the vehicle is reduced to the maximum limit value of the grip force of the vehicle tire, that is, the value obtained by multiplying the maximum friction coefficient of the road surface by the vertical load of the vehicle. Thus, it is possible to maximize the acceleration performance in a state where the grip force of the tire is maximized under the current driving conditions of the vehicle.
具体的には、駆動力の低減処理時に設定される駆動輪に於ける総駆動力は、
(総駆動力)=(路面の最大摩擦係数)×M・g …(7)
に設定される(gは、重力加速度)。なお、ここでの路面の最大摩擦係数は、各輪について求められている路面の最大摩擦係数μiの平均値又は最低値等であってもよい。しかしながら、全輪スリップ状態に於いては、車両は、最大加速度にて走行していると仮定することができるので、式(7)の(路面の最大摩擦係数)×gの値は、そのときのGセンサで検出される前後加速度値であってもよい。かくして、駆動力の低減処理が実行される場合には、TRC装置の駆動力制御部58から駆動制御装置18aへ駆動力低減指令が発せられる。
Specifically, the total driving force in the driving wheel set during the driving force reduction process is
(Total driving force) = (maximum friction coefficient of road surface) × M · g (7)
(G is gravitational acceleration). The maximum friction coefficient of the road surface here may be an average value or a minimum value of the maximum friction coefficient μi of the road surface obtained for each wheel. However, in an all-wheel slip state, it can be assumed that the vehicle is traveling at the maximum acceleration, so the value of (maximum friction coefficient of the road surface) × g in equation (7) is It may be a longitudinal acceleration value detected by the G sensor. Thus, when the drive force reduction process is executed, a drive force reduction command is issued from the drive
上記の如く駆動力の低減処理が実行されると、駆動輪に於いて、タイヤグリップ力が回復又は保持されることとなる。この点に関し、理解されるべきことは、タイヤグリップ力が保持されていれば、駆動力は、路面に効率的に伝達されることとなるので、駆動力の損失は増大しないということである。従って、上記の本発明の装置が、有効に機能していれば、走行路が平滑で均一路の場合、駆動力の損失は、低い値に維持されることとなる(路面が粗く又は不均一である場合、駆動力の低減は実行されないので、駆動力の損失は、大きい状態のままである。)。 When the driving force reduction process is executed as described above, the tire grip force is recovered or maintained in the driving wheel. In this regard, it should be understood that if the tire grip force is maintained, the driving force is efficiently transmitted to the road surface, so that the loss of the driving force does not increase. Therefore, if the above-described apparatus of the present invention is functioning effectively, the driving force loss is maintained at a low value when the running road is smooth and the road is smooth (the road surface is rough or uneven). In this case, since the driving force is not reduced, the driving force loss remains large.)
なお、上記の駆動力の低減処理は、車両の左右輪の接地路面の摩擦状態が実質的に同一の場合にのみ実行されるようになってよい。左右輪の摩擦状態が異なる路面、即ち、またぎ路面の場合には、通常、任意の別の態様の駆動力又は車輪速の低減処理が実行される。そこで、図4の制御処理に於いて、またぎ路面であるか否かの判定処理(ステップ15)が組み込まれていてよく、またぎ路面である場合には、処理サイクルが終了される。またぎ路面であるか否かは、例えば、各輪について推定された路面摩擦係数を参照して、左右輪の路面摩擦係数の差が所定値以上のとき、またぎ路面であると判定される。 The driving force reduction process described above may be executed only when the friction state of the ground road surface of the left and right wheels of the vehicle is substantially the same. In the case of road surfaces in which the left and right wheels have different frictional states, i.e., straddle road surfaces, a driving force or wheel speed reduction process of any other mode is usually executed. Therefore, in the control process of FIG. 4, a determination process (step 15) for determining whether or not the road surface is a straddle road surface may be incorporated, and if it is a straddle road surface, the processing cycle is terminated. Whether or not the road surface is a crossing road surface is determined, for example, by referring to the road surface friction coefficient estimated for each wheel when the difference in the road surface friction coefficient between the left and right wheels is equal to or greater than a predetermined value.
以上の説明は、本発明の実施の形態に関連してなされているが、当業者にとつて多くの修正及び変更が容易に可能であり、本発明は、上記に例示された実施形態のみに限定されるものではなく、本発明の概念から逸脱することなく種々の装置に適用されることは明らかであろう。 Although the above description has been made in relation to the embodiment of the present invention, many modifications and changes can be easily made by those skilled in the art, and the present invention is limited to the embodiment exemplified above. It will be apparent that the invention is not limited and applies to various devices without departing from the inventive concept.
例えば、本発明の原理は、各輪に駆動用モータ(インホイールモータ)が備えられ駆動力が各輪にて制御される場合に適用可能であり、そのような場合も本発明の範囲に属する。また、本発明に於ける駆動力の低減処理の態様、即ち、タイヤ力の総和を路面の最大摩擦係数に車両の荷重を乗じた値の大きさに設定するという手法は、全輪駆動車両に於いてABS制御を実行する場合にも適用することができる(その場合は、駆動力の損失の判定は行われなくもよい。)。 For example, the principle of the present invention is applicable when each wheel is provided with a drive motor (in-wheel motor) and the driving force is controlled by each wheel, and such a case also belongs to the scope of the present invention. . Further, the driving force reduction process according to the present invention, that is, the method of setting the sum of tire forces to a value obtained by multiplying the maximum friction coefficient of the road surface by the vehicle load, is applied to all-wheel drive vehicles. In this case, the present invention can also be applied to the case where ABS control is executed (in this case, it is not necessary to determine the loss of driving force).
10…車体
12FL、FR、RL、RR…車輪
14…アクセルペダル
16…駆動装置
18…駆動ユニット
20…変速機
22…センタデフ
24…前輪デフ
26…後輪デフ
30…Gセンサ
40FL、FR、RL、RR…車輪速センサ
50…電子制御装置
DESCRIPTION OF
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007105779A JP2008261303A (en) | 2007-04-13 | 2007-04-13 | Vehicle traction control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007105779A JP2008261303A (en) | 2007-04-13 | 2007-04-13 | Vehicle traction control device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008261303A true JP2008261303A (en) | 2008-10-30 |
Family
ID=39983959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007105779A Pending JP2008261303A (en) | 2007-04-13 | 2007-04-13 | Vehicle traction control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008261303A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011001003A (en) * | 2009-06-19 | 2011-01-06 | Fuji Heavy Ind Ltd | Tire force control device for four-wheel-drive vehicle |
JP2020007948A (en) * | 2018-07-06 | 2020-01-16 | 株式会社アドヴィックス | Traction control device of vehicle |
CN115431992A (en) * | 2021-06-02 | 2022-12-06 | 丰田自动车株式会社 | Vehicle body speed estimation method and vehicle body speed estimation device |
CN115723588A (en) * | 2022-11-17 | 2023-03-03 | 中车长春轨道客车股份有限公司 | Vehicle control method and related product |
JP7621817B2 (en) | 2021-02-03 | 2025-01-27 | 株式会社ブリヂストン | Vehicle control device and control method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05116612A (en) * | 1991-10-29 | 1993-05-14 | Mazda Motor Corp | Slip control device for vehicle |
JPH11139288A (en) * | 1997-11-05 | 1999-05-25 | Toyota Motor Corp | Traction control device of four-wheel drive vehicle |
JP2002127881A (en) * | 2000-10-30 | 2002-05-09 | Nissan Motor Co Ltd | Car body speed arithmetic device of four-wheel drive car |
JP2005161968A (en) * | 2003-12-02 | 2005-06-23 | Advics:Kk | Wheel slip control device and wheel slip control method |
JP2006177166A (en) * | 2004-12-20 | 2006-07-06 | Toyota Motor Corp | Traction control device |
JP2007022118A (en) * | 2005-07-12 | 2007-02-01 | Nissan Motor Co Ltd | Control unit of hybrid vehicle |
-
2007
- 2007-04-13 JP JP2007105779A patent/JP2008261303A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05116612A (en) * | 1991-10-29 | 1993-05-14 | Mazda Motor Corp | Slip control device for vehicle |
JPH11139288A (en) * | 1997-11-05 | 1999-05-25 | Toyota Motor Corp | Traction control device of four-wheel drive vehicle |
JP2002127881A (en) * | 2000-10-30 | 2002-05-09 | Nissan Motor Co Ltd | Car body speed arithmetic device of four-wheel drive car |
JP2005161968A (en) * | 2003-12-02 | 2005-06-23 | Advics:Kk | Wheel slip control device and wheel slip control method |
JP2006177166A (en) * | 2004-12-20 | 2006-07-06 | Toyota Motor Corp | Traction control device |
JP2007022118A (en) * | 2005-07-12 | 2007-02-01 | Nissan Motor Co Ltd | Control unit of hybrid vehicle |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011001003A (en) * | 2009-06-19 | 2011-01-06 | Fuji Heavy Ind Ltd | Tire force control device for four-wheel-drive vehicle |
JP2020007948A (en) * | 2018-07-06 | 2020-01-16 | 株式会社アドヴィックス | Traction control device of vehicle |
JP7099096B2 (en) | 2018-07-06 | 2022-07-12 | 株式会社アドヴィックス | Vehicle traction control device |
JP7621817B2 (en) | 2021-02-03 | 2025-01-27 | 株式会社ブリヂストン | Vehicle control device and control method |
CN115431992A (en) * | 2021-06-02 | 2022-12-06 | 丰田自动车株式会社 | Vehicle body speed estimation method and vehicle body speed estimation device |
JP7633093B2 (en) | 2021-06-02 | 2025-02-19 | トヨタ自動車株式会社 | Vehicle speed estimation method and vehicle speed estimation device |
CN115723588A (en) * | 2022-11-17 | 2023-03-03 | 中车长春轨道客车股份有限公司 | Vehicle control method and related product |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4413931B2 (en) | Vehicle and vehicle control device | |
CN113246983B (en) | Hill starting assisting method and device, vehicle and storage medium | |
CN109070850B (en) | Braking force control method and braking force control device | |
CN100417557C (en) | Vehicle and vehicle sliding speed control method | |
US20130325232A1 (en) | Motor vehicle with all-wheel drive | |
CN102143869B (en) | Vehicle travel control device | |
CN103732437A (en) | Vehicle braking force control device and method for controlling vehicle braking force | |
CN110775061B (en) | A control method and device for inhibiting front wheel slip of a four-wheel drive vehicle, and a four-wheel drive vehicle | |
US8494702B2 (en) | Method and driveline stability control system for a vehicle | |
KR102575441B1 (en) | regenerative braking control method of vehicle | |
KR20160040667A (en) | Control of regenerative braking in an electric or hybrid vehicle | |
US9162657B2 (en) | Automotive braking system | |
CN201792857U (en) | Self-adaptive roadway torque control system for electric automobile | |
CN100364803C (en) | Apparatus and method for estimating road surface state change, and automobile having same | |
CN101920704B (en) | Road surface self-adaptive torque control system of electric automobile | |
KR20180097899A (en) | System and method for regenerative braking of vehicle | |
JP2008261303A (en) | Vehicle traction control device | |
CN116461495A (en) | Vehicle control method, device, storage medium and vehicle | |
JP2018043656A (en) | Vehicle brake force control device | |
KR102107003B1 (en) | Control of regenerative braking in an electric or hybrid vehicle | |
WO2016092586A1 (en) | Braking/driving force control device and braking/driving force control method | |
JP5287134B2 (en) | Electric vehicle regeneration control device | |
CN104627166B (en) | Braking pressure threshold limiting method of brake traction control system | |
JP5018732B2 (en) | Electric vehicle regeneration control device | |
KR20190115961A (en) | Starting control method for 4wd vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090520 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101207 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110127 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110712 |