[go: up one dir, main page]

JP2008258357A - Rigid flexible board and manufacturing method thereof - Google Patents

Rigid flexible board and manufacturing method thereof Download PDF

Info

Publication number
JP2008258357A
JP2008258357A JP2007098205A JP2007098205A JP2008258357A JP 2008258357 A JP2008258357 A JP 2008258357A JP 2007098205 A JP2007098205 A JP 2007098205A JP 2007098205 A JP2007098205 A JP 2007098205A JP 2008258357 A JP2008258357 A JP 2008258357A
Authority
JP
Japan
Prior art keywords
flexible
rigid
hole
copper
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007098205A
Other languages
Japanese (ja)
Inventor
Makoto Takami
良 高見
Tomohito Kitada
智史 北田
Hiroki Maruo
弘樹 圓尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2007098205A priority Critical patent/JP2008258357A/en
Publication of JP2008258357A publication Critical patent/JP2008258357A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Combinations Of Printed Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a rigid flexible board, capable of simplifying a process after press stacking, forming an interlayer conduction portion without using a plating step and improving layout efficiency by separately manufacturing the rigid portion and the flexible portion. <P>SOLUTION: The manufacturing method for obtaining a rigid flexible substrate stacks at least one or more rigid wiring boards, one or more flexible printed boards and one or more flexible insulating materials. This manufacturing method has a step of drilling through holes on the flexible insulating materials, a step of putting copper balls into the through holes, and a step of sandwiching the flexible insulating material between the rigid wiring board and the flexible printed circuit board and heating/pressurizing it to integrate the rigid wiring board and the flexible printed board by metal bonding of coppers and forming an interlayer conduction portion. Thus, the rigid flexible board can be obtained. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リジッド部とフレキシブル部(以下、フレキ部と記す。)とを有するリジッドフレキ基板およびその製造方法に関し、さらに詳しくは、リジッド部を担うリジッド配線板とフレキ部を担うフレキシブルプリント基板を別々に作製し、その基板間を銅ボールで接続するリジッドフレキ基板の製造方法に関する。   The present invention relates to a rigid flexible substrate having a rigid portion and a flexible portion (hereinafter referred to as a flexible portion) and a method for manufacturing the same, and more specifically, a rigid wiring board that bears the rigid portion and a flexible printed board that bears the flexible portion. The present invention relates to a method of manufacturing a rigid-flex board that is separately manufactured and connected between the boards with copper balls.

電子機器の小型化、軽量化、高機能化の要求に伴い、製品内部のわずかなスペースに複数の基板を三次元的に組み込む必要がある。そのためには基板間の電気信号の接続を小スペースで行わなければならないが、高機能化が進めば基板間の電気信号の種類も多くなる。それに伴って接続スペースも大きくなり、小型化、軽量化の妨げとなる。   With the demand for downsizing, weight reduction, and high functionality of electronic devices, it is necessary to incorporate a plurality of substrates three-dimensionally in a small space inside the product. For this purpose, electrical signals must be connected between substrates in a small space. However, as the functionality increases, the types of electrical signals between substrates will increase. As a result, the connection space also increases, which hinders downsizing and weight reduction.

近年、リジッド配線板と可撓性を有するフレキシブルプリント基板を一体化させたリジッドフレキ基板が、折りたたみ式携帯電話やデジタルカメラ等に使用されている。リジッドフレキ基板1は、図1に示すように、フレキシブルプリント基板2が一部分を打ち抜かれた層間接着剤3,4を介して、一部分を打ち抜かれた2枚のリジッド配線板5,6によって挟み込まれ、柔軟性をもたないリジッド部7,8と柔軟性を有するフレキ部9とを備えた構成になっている。このような該リジッドフレキ基板1では、リジッド部7にスルーホール10が穿設され、スルーホール10の内壁に導体層11が形成されることによって、表層回路12,13と内装回路14,15とが互いに導通される。   In recent years, a rigid flexible board in which a rigid wiring board and a flexible flexible printed board are integrated is used in a folding mobile phone, a digital camera, and the like. As shown in FIG. 1, the rigid-flexible substrate 1 is sandwiched between two rigid wiring boards 5 and 6 that are partially punched through interlayer adhesives 3 and 4 that are partially punched. The rigid parts 7 and 8 having no flexibility and the flexible part 9 having flexibility are provided. In such a rigid flexible substrate 1, the through hole 10 is formed in the rigid portion 7, and the conductor layer 11 is formed on the inner wall of the through hole 10, whereby the surface layer circuits 12 and 13 and the interior circuits 14 and 15 are formed. Are conducted to each other.

リジッドフレキ基板の作製工程は、図2に示すように行われる。リジッド配線板16,17と回路形成されたフレキシブルプリント基板18,さらに層間接着材19,20を治具や画像認識装置等を用いて重ね合わせて仮積層する(図2(a)参照)。なお、リジッド配線板16,17には、リジッドフレキ基板のフレキ部21となる位置に打ち抜き用のスリット22,23があらかじめ設けられている。また、層間接着材19,20にはフレキ部21の上部にあたる部分は打ち抜かれており、フレキシブルプリント基板18にはフレキ部21の位置にカバーレイ24,25があらかじめ積層されている。次に、このようにリジッド配線板16,17、層間接着材9,20,フレキシブルプリント基板18が仮積層された状態でプレス機を用いて加熱・加圧する(図2(b)参照)。これにより、リジッド配線板16,17、層間接着材9,20,フレキシブルプリント基板18が一体化され、リジッドフレキ基板が作製される。次に、一体化されたリジッドフレキ基板にスルーホール26を穿設し、スルーホールめっき27を施し、その後、最外層の回路を形成し(図2(c)参照)、次に、スルーホール26の内部に絶縁樹脂28を充填し、最外層のカバーレイ29,30を貼り付ける(図2(d)参照)。次に、フレキ部21の上部にあるリジッド配線板16,17のスリット22,23に沿って切り込みを入れるとともに、リジッドフレキ基板16,17を外形に沿って打ち抜く。これにより、フレキ部21の上部にあるリジッド配線板16,17が除去されるとともにリジッドフレキ基板が個片に切り取られ、図2(e)に示すリジッドフレキ基板が得られる。
特開平5−90756号公報 特開2004−186235号公報
The manufacturing process of the rigid flexible substrate is performed as shown in FIG. Rigid wiring boards 16 and 17, flexible printed circuit board 18 formed with a circuit, and interlayer adhesives 19 and 20 are overlapped and temporarily stacked using a jig or an image recognition device (see FIG. 2A). The rigid wiring boards 16 and 17 are previously provided with slits 22 and 23 for punching at positions where the flexible flexible substrate 21 becomes the flexible portion 21. Further, the upper part of the flexible part 21 is punched in the interlayer adhesives 19 and 20, and the cover lays 24 and 25 are laminated in advance on the flexible printed circuit board 18 at the position of the flexible part 21. Next, the rigid wiring boards 16 and 17, the interlayer adhesives 9 and 20, and the flexible printed board 18 are heated and pressurized using a press machine in a state of being temporarily laminated (see FIG. 2B). Thereby, the rigid wiring boards 16 and 17, the interlayer adhesives 9 and 20, and the flexible printed circuit board 18 are integrated to produce a rigid flexible circuit board. Next, a through-hole 26 is formed in the integrated rigid-flex board, through-hole plating 27 is performed, and then an outermost layer circuit is formed (see FIG. 2C). Is filled with insulating resin 28, and outermost cover lays 29 and 30 are attached (see FIG. 2D). Next, incisions are made along the slits 22 and 23 of the rigid wiring boards 16 and 17 at the upper part of the flexible portion 21, and the rigid flexible substrates 16 and 17 are punched out along the outer shape. As a result, the rigid wiring boards 16 and 17 on the upper portion of the flexible portion 21 are removed and the rigid flexible substrate is cut into individual pieces, thereby obtaining the rigid flexible substrate shown in FIG.
Japanese Patent Application Laid-Open No. 5-90756 JP 2004-186235 A

しかし、前記した従来のリジッドフレキ基板の製造方法では、プレス積層後の工程として、全層貫通スルーホール穴明け、全層スルーホールめっき、最外層の回路保護用カバーレイ積層、フレキ部の上にあるリジッド配線板の打ち抜き除去、が必要となり、積層後の工程が複雑で長くなるという問題があった。
また全層貫通スルーホール穴明けは、その厚さのためドリルで行わざるを得ず、材料の異なった層が積み重なっているため、バリが生じずドリルが折れにくいような穴明け条件の選定が難しくなる。
また、スルーホールめっきと回路形成は液もの工程であるため、内層に薬液が侵入する恐れがある。さらに、リジッド配線板のスリットに沿って切り込みを入れる工程では、厚さ方向に対する位置の正確性が要求される困難さが伴う。
However, in the above-described conventional rigid-flex board manufacturing method, as a process after press lamination, all-layer through-hole drilling, all-layer through-hole plating, outermost circuit protection coverlay lamination, on the flexible part There is a problem that a certain rigid wiring board needs to be removed by punching, and the process after lamination becomes complicated and long.
In addition, drilling through-holes in all layers is unavoidable with a drill due to its thickness, and since layers of different materials are stacked, it is necessary to select drilling conditions that do not cause burrs and break the drill. It becomes difficult.
Further, since through-hole plating and circuit formation are liquid processes, there is a risk that the chemical solution may enter the inner layer. Furthermore, in the step of cutting along the slits of the rigid wiring board, there is a difficulty in requiring accuracy of the position in the thickness direction.

これに対し、特許文献2に開示された従来技術では、各層の積層前に、あらかじめフレキ部の上部にあたる部分が打ちぬかれたリジッド配線板およびフレキシブルプリント基板に回路が形成され、リジッド配線板とフレキシブルプリント基板の層間導通部が銅めっきによってめっきアップされフィルドビアとなっている。このリジッド配線板とフレキシブルプリント基板を一体化させる際に、リジッド配線板の層導通部を上下に重ね、導通するように一体化されている。これにより、積層後に貫通穴の形成や表層の回路形成や表層の回路形成を行う必要がなくなり、積層後の製造工程が簡略化されるとしている。なお、このリジット配線板およびフレキシブルプリント基板の絶縁層には、層間接着剤が塗布されている。   On the other hand, in the prior art disclosed in Patent Document 2, a circuit is formed on a rigid printed circuit board and a flexible printed circuit board in which a portion corresponding to the upper portion of the flexible part is previously punched before each layer is laminated. The interlayer conductive portion of the flexible printed circuit board is plated up by copper plating to form a filled via. When the rigid wiring board and the flexible printed circuit board are integrated, the layer conductive portions of the rigid wiring board are stacked one above the other so as to be conductive. This eliminates the need for forming through holes, forming a surface layer circuit, and forming a surface layer circuit after stacking, and simplifies the manufacturing process after stacking. An interlayer adhesive is applied to the insulating layers of the rigid wiring board and the flexible printed board.

しかしながら、この方法では、リジッド配線板およびフレキシブルプリント基板の層間導通部が電解銅めっきによって形成されるため、例えば、片面フレキシブルプリント基板において絶縁層にビアホールをあけて電解銅めっきで層間導通部を形成すると、表層銅箔にも電解銅めっきが施されて表層が厚くなり、狭ピッチな回路基板の作製が困難になる。 仮に表層にめっきレジスト等を形成して銅箔が厚くなるのを防ぐとしても、レジストの形成・剥離という工程が追加され、リードタイムの増加と材料コストの増加に繋がってしてしまう。
また、電解銅めっきは液もの工程であるため、大量の薬液の維持・調整・管理・廃液処理が必要となり、コストの点では非常に不利である。
さらに、全層積層するまでリジッド部とフレキ部を個片にせず同時に作製するため、シート内における基板の面付け効率が非常に悪く材料の無駄が多くなる。
However, in this method, the interlayer conductive part of the rigid wiring board and the flexible printed board is formed by electrolytic copper plating. For example, a via hole is formed in the insulating layer in the single-sided flexible printed board and the interlayer conductive part is formed by electrolytic copper plating. Then, electrolytic copper plating is also applied to the surface layer copper foil, and the surface layer becomes thick, making it difficult to produce a circuit board with a narrow pitch. Even if a plating resist or the like is formed on the surface layer to prevent the copper foil from becoming thick, a step of resist formation and peeling is added, leading to an increase in lead time and material cost.
Moreover, since electrolytic copper plating is a liquid process, it requires maintenance, adjustment, management, and waste liquid treatment of a large amount of chemical solution, which is very disadvantageous in terms of cost.
Further, since the rigid portion and the flexible portion are simultaneously manufactured without being separated into individual layers until all the layers are laminated, the substrate imposition efficiency in the sheet is very poor, and the material is wasted.

本発明は、前記事情に鑑みてなされ、プレス積層後の工程を簡略化でき、めっき工程を用いずに層間導通部を形成でき、さらにリジッド部とフレキ部とを別々に作製して面付け効率の向上を図り得るリジッドフレキ基板の製造方法の提供を目的とする。   The present invention has been made in view of the above circumstances, can simplify the process after the press lamination, can form the interlayer conductive part without using the plating process, and further produce the rigid part and the flexible part separately to improve the imposition efficiency. It is an object of the present invention to provide a method of manufacturing a rigid flexible substrate that can improve the above.

前記目的を達成するため、本発明は、少なくとも一つ以上のリジッド配線板と、一つ以上のフレキシブルプリント基板と、一つ以上の可撓性絶縁材とを互いに積層させることによってリジッドフレキ基板を得る製造方法であって、
可撓性絶縁材にスルーホールを穿設し、該スルーホール内に銅ボールを入れ、次いで該可撓性絶縁材をリジッド配線板とフレキシブルプリント基板の回路間に位置するように挟んで加熱・加圧することでリジッド配線板とフレキシブルプリント基板を銅同士の金属結合によって一体化させて層間導通部を形成し、リジッドフレキ基板を得ることを特徴とするリジッドフレキ基板の製造方法を提供する。
In order to achieve the above object, the present invention provides a rigid flexible substrate by laminating at least one or more rigid wiring boards, one or more flexible printed boards, and one or more flexible insulating materials. A manufacturing method to obtain,
Drill a through hole in the flexible insulating material, put a copper ball in the through hole, and then sandwich the flexible insulating material so that it is located between the circuit of the rigid wiring board and the flexible printed circuit board. Provided is a method for manufacturing a rigid flexible board, characterized in that a rigid wiring board and a flexible printed board are integrated by metal bonding between copper by pressurization to form an interlayer conductive portion to obtain a rigid flexible board.

本発明のリジッドフレキ基板の製造方法において、リジッド配線板、フレキシブルプリント基板及び可撓性絶縁材をそれぞれ別々のシートに形成して個片に打ち抜いた後、可撓性絶縁材に埋め込んだ銅ボールによってリジッド配線板とフレキシブルプリント基板とを銅同士の金属結合で基板間接続させることが好ましい。   In the method for manufacturing a rigid flexible substrate according to the present invention, a rigid wiring board, a flexible printed circuit board, and a flexible insulating material are formed on separate sheets, punched into individual pieces, and then embedded in the flexible insulating material. It is preferable that the rigid wiring board and the flexible printed circuit board are connected to each other by a metal bond between copper.

本発明のリジッドフレキ基板の製造方法において、絶縁層にスルーホールを穿設し、該スルーホールに銅ボールを押し込み、絶縁層の両側から二枚の銅箔で挟み込んで加熱・加圧することによって銅ボールが潰されてスルーホール内を埋め込み、二枚の銅箔間を銅同士の結合によって導通した層間導通部を形成してリジッド配線板を製造する工程を含むことが好ましい。   In the method of manufacturing a rigid flexible substrate of the present invention, a through hole is formed in an insulating layer, a copper ball is pushed into the through hole, and sandwiched between two copper foils from both sides of the insulating layer to be heated and pressed. It is preferable to include a step of manufacturing a rigid wiring board by forming an interlayer conductive portion in which the ball is crushed and embedded in the through hole, and the two copper foils are electrically connected by bonding of copper.

本発明のリジッドフレキ基板の製造方法において、可撓性絶縁層にスルーホールを穿設し、該スルーホールに銅ボールを押し込み、可撓性絶縁層の両側から二枚の銅箔で挟み込んで加熱・加圧することによって銅ボールが潰されてスルーホール内を埋め込み、二枚の銅箔間を銅同士の結合によって導通した層間導通部を形成してフレキシブルプリント基板を製造する工程を含むことが好ましい。   In the method for manufacturing a rigid flexible substrate according to the present invention, a through hole is formed in a flexible insulating layer, a copper ball is pushed into the through hole, and sandwiched between two copper foils from both sides of the flexible insulating layer is heated. It is preferable to include a step of manufacturing a flexible printed circuit board by forming an interlayer conductive portion in which a copper ball is crushed by pressurization and embedded in the through hole, and the two copper foils are electrically connected by bonding of copper to each other. .

本発明のリジッドフレキ基板の製造方法において、可撓性絶縁材、リジッド配線板の絶縁層及びフレキシブルプリント基板の可撓性絶縁層にスルーホールを穿設する工程を、ドリル加工又はレーザ加工により行うことが好ましい。   In the method for manufacturing a rigid flexible substrate of the present invention, the step of drilling a through hole in the flexible insulating material, the insulating layer of the rigid wiring board, and the flexible insulating layer of the flexible printed board is performed by drilling or laser processing. It is preferable.

本発明のリジッドフレキ基板の製造方法において、スルーホールの直径を銅ボールの直径よりも小さくし、銅ボールをスルーホール内に挟み込む構造とすることが好ましい。   In the method for manufacturing a rigid flexible substrate of the present invention, it is preferable that the diameter of the through hole is smaller than the diameter of the copper ball so that the copper ball is sandwiched in the through hole.

本発明のリジッドフレキ基板の製造方法において、スルーホールの容積を銅ボールの体積よりも小さくすることが好ましい。   In the method for manufacturing a rigid flexible substrate of the present invention, it is preferable that the volume of the through hole is smaller than the volume of the copper ball.

また本発明は、前述した本発明に係るリジッドフレキ基板の製造方法により得られたリジッドフレキ基板を提供する。   The present invention also provides a rigid flexible substrate obtained by the above-described method for producing a rigid flexible substrate according to the present invention.

本発明のリジッドフレキ基板の製造方法によれば、あらかじめリジッド部を担うリジッド配線板と、フレキ部を担うフレキシブルプリント基板と、その両基板間を接続する可撓性絶縁材とをそれぞれ別々に作製した後、リジッド配線板とフレキシブルプリント基板間に可撓性絶縁材を挟んでプレスすることによって、可撓性絶縁材のスルーホール内の銅ボールを潰してリジッド配線板とフレキシブルプリント基板との層間導通部を形成してリジッドフレキ基板を得ることにより、プレス積層後の工程が複雑にならず、めっきによる液もの工程を経ず、さらにリジッド部と該フレキ部を別々にして作製して面付け効率の上昇が可能となる。   According to the method of manufacturing a rigid flexible board of the present invention, a rigid wiring board that bears a rigid part, a flexible printed board that bears a flexible part, and a flexible insulating material that connects the two boards are separately prepared. After that, by pressing a flexible insulating material between the rigid wiring board and the flexible printed circuit board, the copper ball in the through hole of the flexible insulating material is crushed and the interlayer between the rigid wiring board and the flexible printed circuit board is crushed. By forming a conductive part to obtain a rigid flexible substrate, the process after press lamination is not complicated, and the liquid part process by plating is not performed, and the rigid part and the flexible part are separately manufactured and impositioned. Efficiency can be increased.

本発明のリジッドフレキ基板の製造方法は、あらかじめリジッド部を担うリジッド配線板と、フレキ部を担うフレキシブルプリント基板と、その両基板間を接続する可撓性絶縁材とをそれぞれ別々に作製した後、リジッド配線板とフレキシブルプリント基板間に可撓性絶縁材を挟んでプレスすることによって、可撓性絶縁材のスルーホール内の銅ボールを潰してリジッド配線板とフレキシブルプリント基板との層間導通部を形成してリジッドフレキ基板を得ることを特徴としている。なお、銅ボールによる層間導通部の形成は、CBIC(Copper Ball Interconnection Co-laminated)の技術を用いて行っている。   The manufacturing method of the rigid-flexible board of the present invention includes a rigid wiring board that bears the rigid part, a flexible printed board that bears the flexible part, and a flexible insulating material that connects the two boards separately. By pressing the flexible insulating material between the rigid wiring board and the flexible printed circuit board, the copper ball in the through hole of the flexible insulating material is crushed and the interlayer conductive portion between the rigid wiring board and the flexible printed circuit board is crushed. Forming a rigid flexible substrate. In addition, the formation of the interlayer conductive portion by the copper ball is performed using a CBIC (Copper Ball Interconnection Co-laminated) technique.

図3は、CBICの技術を用いた、両面リジッド配線板の製造プロセスを示している。まず、両面に熱可塑剤もしくは接着剤が塗布された絶縁層31にドリルやYAGレーザ、COレーザ等の穴明け加工手段を用い、銅ボール32を嵌め込むためのスルーホール33を形成する(図3(a)参照)。次に、絶縁層31の片側面からエア吸引しつつ、その反対側面からスルーホール33に銅ボール32を嵌め込む(図3(b)参照)。その後、絶縁層31を銅箔34,35で挟み(図3(c)参照)、真空プレスにて加熱・加圧する。これにより、絶縁層31のスルーホール33内は銅ボール32で埋め込まれ、銅ボール32と銅箔34,35は金属結合で接続される(図3(d)参照)。 FIG. 3 shows a manufacturing process of a double-sided rigid wiring board using CBIC technology. First, a through-hole 33 for fitting a copper ball 32 is formed on the insulating layer 31 having a thermoplastic or adhesive applied on both sides by using a drilling means such as a drill, YAG laser, CO 2 laser or the like ( (See FIG. 3 (a)). Next, while sucking air from one side of the insulating layer 31, the copper ball 32 is fitted into the through hole 33 from the opposite side (see FIG. 3B). Thereafter, the insulating layer 31 is sandwiched between the copper foils 34 and 35 (see FIG. 3C), and heated and pressurized with a vacuum press. Thus, the through hole 33 of the insulating layer 31 is filled with the copper ball 32, and the copper ball 32 and the copper foils 34 and 35 are connected by metal bonding (see FIG. 3D).

図4は、CBICの技術を用いて、熱可塑性樹脂からなる可撓性絶縁材36に、層間導通部として銅ボール37を嵌め込むプロセスを示す図である。まず、図4(a)に示す可撓性絶縁材36に、ドリルやYAGレーザ、COレーザ等の穴明け加工手段を用い、銅ボール37を嵌め込むためのスルーホール38を形成する(図4(b)参照)。次に、スルーホール38を穿設した可撓性絶縁材36の片側面からエア吸引しつつ、その反対側面からスルーホール38に銅ボール37を嵌め込む(図4(c)参照)。この状態で他の基板を積層する際に、真空プレス等で加熱・加圧することによって、可撓性絶縁材36のスルーホール38は銅ボール37で埋め込まれる。 FIG. 4 is a diagram showing a process of fitting a copper ball 37 as an interlayer conductive portion into a flexible insulating material 36 made of a thermoplastic resin using the CBIC technique. First, a through-hole 38 for fitting a copper ball 37 is formed in the flexible insulating material 36 shown in FIG. 4A using a drilling means such as a drill, YAG laser, CO 2 laser or the like (FIG. 4). 4 (b)). Next, air is sucked from one side of the flexible insulating material 36 having the through hole 38 formed therein, and the copper ball 37 is fitted into the through hole 38 from the opposite side (see FIG. 4C). When another substrate is laminated in this state, the through hole 38 of the flexible insulating material 36 is filled with the copper ball 37 by heating and pressing with a vacuum press or the like.

図5は、本発明によるCBIC技術を用いたリジッドフレキ基板の製造方法の第1例を示す図であり、リジッド配線板とフレキシブルプリント基板と可撓性絶縁材との積層前(図5(a))と積層後(図5(b))の状態を示している。
本例では、リジッドフレキ基板のリジッド部を担う両面のリジッド配線板39,40に、あらかじめ銅ボールにてフィルドビアの層間導通部41,42を形成するとともに、表面に銅箔回路43,44を形成しており、銅箔回路43,44上には可撓性絶縁樹脂によるカバーレイ45,46が可撓性絶縁材47と重なる部分を除いて積層されている。
また、あらかじめリジッドフレキ基板のフレキ部を担う片面のフレキシブルプリント基板48には、銅箔回路49が形成されており、銅箔回路49可撓性絶縁樹脂によるカバーレイ50が可撓性絶縁材47と重なる部分を除いて積層されている。
FIG. 5 is a view showing a first example of a method for manufacturing a rigid flexible board using the CBIC technique according to the present invention, before lamination of a rigid wiring board, a flexible printed board, and a flexible insulating material (FIG. )) And after lamination (FIG. 5B).
In this example, filled via interlayer conductive portions 41 and 42 are previously formed with copper balls on both sides of the rigid wiring boards 39 and 40 that bear the rigid portion of the rigid flexible substrate, and copper foil circuits 43 and 44 are formed on the surface. On the copper foil circuits 43 and 44, cover lays 45 and 46 made of a flexible insulating resin are laminated except for a portion overlapping the flexible insulating material 47.
Further, a copper foil circuit 49 is formed in advance on a single-sided flexible printed circuit board 48 that bears the flexible portion of the rigid flexible board, and the coverlay 50 made of the copper foil circuit 49 flexible insulating resin is formed by the flexible insulating material 47. It is laminated except for the overlapping part.

さらに、あらかじめ熱可塑性樹脂からなる可撓性絶縁材47にはドリルやYAGレーザ等で形成されたスルーホールに銅ボール51が嵌め込まれている。それぞれ別々に作製したこれらのリジッド配線板39,40とフレキシブルプリント基板48の導通がCu‐Cu金属結合によって確保される。   Further, a copper ball 51 is fitted into a through hole formed in advance by a drill, a YAG laser or the like in a flexible insulating material 47 made of a thermoplastic resin. The conduction between the rigid wiring boards 39, 40 and the flexible printed circuit board 48, which are separately manufactured, is ensured by Cu-Cu metal bonding.

これにより層間導通部は、すべてCBICの技術を用いた銅ボールで形成されるため、銅めっきで形成される場合と比較して、表層銅箔が厚くなることもなく狭ピッチなファイン回路基板の作製が容易になる。また、液もの工程を経ずに層間導通部を形成できるため、大量の薬液の維持・調整・管理・廃液処理を必要とせず、コストを抑えることができる。さらに、リジッド部を担うリジッド配線板とフレキ部を担うフレキシブルプリント基板とその基板間を可撓性絶縁材は個片に切り出した後の接続時に位置合わせを行うため、シート内の面付け効率を上げて基板を作製することができ、廃棄材料の削減、コストの低減が可能になる。   As a result, all the interlayer conductive portions are formed of copper balls using the CBIC technology, and therefore, compared with the case of forming by copper plating, the surface layer copper foil does not become thick and the fine pitch circuit board has a narrow pitch. Easy to manufacture. In addition, since the interlayer conductive portion can be formed without going through the liquid process, maintenance, adjustment, management, and waste liquid treatment of a large amount of chemical solution is not required, and cost can be reduced. In addition, the rigid wiring board that bears the rigid part and the flexible printed board that bears the flexible part and the flexible insulating material between the boards are aligned at the time of connection after cutting into individual pieces, so the imposition efficiency in the sheet is improved It is possible to manufacture a substrate by raising it, and it becomes possible to reduce waste materials and costs.

本発明の製造方法において、可撓性絶縁材、リジッド配線板の絶縁層、フレキシブルプリント基板の可撓性絶縁層に穿設するスルーホールの直径は、銅ボールの直径よりも若干小さくし、銅ボールをスルーホール内に挟み込む構造とすることが好ましい。これにより、可撓性絶縁材などの移動時等に、スルーホールから銅ボールが抜け落ちることが防止でき、生産効率を向上することができる。   In the manufacturing method of the present invention, the diameter of the through hole formed in the flexible insulating material, the insulating layer of the rigid wiring board, and the flexible insulating layer of the flexible printed circuit board is slightly smaller than the diameter of the copper ball. A structure in which the ball is sandwiched in the through hole is preferable. Thereby, it is possible to prevent the copper ball from falling out of the through hole when the flexible insulating material is moved, and to improve the production efficiency.

また、本発明のリジッドフレキ基板の製造方法において、スルーホールの容積を銅ボールの体積よりも小さくすることが好ましい。スルーホールの容積を銅ボールの体積よりも小さくすることで、各部を重ね合わせてプレスする際に、銅ボールが潰れてスルーホールを埋め、スルーホール内に隙間ができることが無くなり、且つスルーホールの両側を挟んだ銅箔との金属結合を確実に形成することができる。   In the method for manufacturing a rigid flexible substrate of the present invention, it is preferable that the volume of the through hole is smaller than the volume of the copper ball. By making the volume of the through hole smaller than the volume of the copper ball, when the parts are overlapped and pressed, the copper ball is crushed to fill the through hole, and there is no gap in the through hole. A metal bond with the copper foil sandwiching both sides can be reliably formed.

図5に示す3層リジッドフレキ基板を作製した。
リジッドフレキ基板のリジッド部となるリジッド配線板39,40は、表面に熱可塑剤が塗布された厚さ100μmのガラスエポキシ樹脂基材を用い、このガラスエポキシ樹脂基材にドリル、YAGレーザ、COレーザ等の穴明け加工手段によって、直径145μmのスルーホールを形成した。エア吸引を行いながら、これに直径150μmの銅ボールを嵌め込み、両面から厚さ18μmの銅箔で挟み込んで真空プレスで加熱・加圧した。これにより、スルーホール内部が銅ボールで満たされるとともに銅ボールと銅箔が金属結合し、フィルドビアの層間導通部41、42を形成した。作製された両面リジッド配線板39,40の回路形成を行った後、回路43,44上に可撓性絶縁材と重なる部分を除いて50μmのカバーレイ45,46をラミネートした。
A three-layer rigid flexible substrate shown in FIG. 5 was produced.
The rigid wiring boards 39 and 40, which are rigid portions of the rigid flexible substrate, use a glass epoxy resin base material having a thickness of 100 μm and a surface coated with a thermoplastic agent. The glass epoxy resin base material is drilled, YAG laser, CO A through-hole having a diameter of 145 μm was formed by a drilling means such as 2 laser. While performing air suction, a copper ball having a diameter of 150 μm was fitted therein, sandwiched between both sides by a copper foil having a thickness of 18 μm, and heated and pressurized with a vacuum press. Thereby, the inside of the through hole was filled with the copper ball, and the copper ball and the copper foil were metal-bonded to form the interlayer via portions 41 and 42 of the filled via. After the circuit formation of the produced double-sided rigid wiring boards 39 and 40 was performed, 50 μm coverlays 45 and 46 were laminated on the circuits 43 and 44 except for portions overlapping the flexible insulating material.

リジッド配線板39,40とフレキシブルプリント基板48との基板間を接続する可撓性絶縁材47は、厚さ50μmの可塑性ポリイミド樹脂基材にドリル、YAGレーザ、COレーザ等の穴明け加工手段によって、直径95μmのスルーホールを形成し、このスルーホールにエア吸引を行いながら直径100μmの銅ボール51を嵌め込んだ。 A flexible insulating material 47 for connecting between the rigid wiring boards 39 and 40 and the flexible printed circuit board 48 is made of a drilling means such as a drill, YAG laser, CO 2 laser, etc. on a plastic polyimide resin substrate having a thickness of 50 μm. Thus, a through hole having a diameter of 95 μm was formed, and a copper ball 51 having a diameter of 100 μm was fitted into the through hole while performing air suction.

次に、これらを画像認識によってリジッド配線板−可撓性絶縁材−フレキシブルプリント基板の順に位置合わせをして重ね合わせ、コンスタントヒータで加熱・加圧することで、可撓性絶縁材47のスルーホール内部を銅ボール51で満たすとともに銅ボール51とリジッド配線板39,40およびフレキシブルプリント基板48の銅箔44,49が金属結合し、全層でフィルドビアの層間導通が確保され、図5(b)に示す3層リジッドフレキ基板を作製した。   Next, these are aligned and arranged in the order of rigid wiring board-flexible insulating material-flexible printed circuit board by image recognition, and heated and pressurized with a constant heater, so that a through hole of the flexible insulating material 47 is obtained. The inside is filled with the copper ball 51, and the copper ball 51, the rigid wiring boards 39 and 40, and the copper foils 44 and 49 of the flexible printed circuit board 48 are metal-bonded to ensure interlayer conduction of filled vias in all layers, as shown in FIG. A three-layer rigid flexible substrate shown in FIG.

本発明のリジッドフレキ基板の製造方法の第2例として、図6に示す4層リジッドフレキ基板を作製した。
リジッドフレキ基板のリジッド部となるリジッド配線板39,40は、表面に熱可塑剤が塗布された厚さ100μmのガラスエピキシ樹脂基材を用い、このガラスエポキシ樹脂基材にドリル、YAGレーザ、COレーザ等の穴明け加工手段によって、直径145μmのスルーホールを形成した。エア吸引を行いながらこれに直径150μmの銅ボールを嵌め込み、両面から厚さ18μmの銅箔で挟み込んで真空プレスで加熱・加圧した。これにより、スルーホール内部が銅ボールで満たされるとともに銅ボールと銅箔が金属結合し、フィルドビアの層間導通部41,42を形成した。作製した両面リジッド配線板39,40の回路形成を行った後、回路43,44上に、可撓性絶縁材47と重なる部分を除いて50μmのカバーレイ45,46をラミネートした。
As a second example of the method for producing a rigid flexible substrate of the present invention, a four-layer rigid flexible substrate shown in FIG. 6 was produced.
The rigid wiring boards 39 and 40 to be the rigid portion of the rigid flexible substrate use a glass epixy resin base material having a thickness of 100 μm and a surface coated with a thermoplastic agent. The glass epoxy resin base material is drilled, YAG laser, CO 2. A through hole having a diameter of 145 μm was formed by a drilling means such as a laser. A copper ball having a diameter of 150 μm was fitted into this while performing air suction, and sandwiched with copper foil having a thickness of 18 μm from both sides and heated and pressurized with a vacuum press. Thereby, the inside of the through hole was filled with the copper ball, and the copper ball and the copper foil were metal-bonded to form the interlayer via portions 41 and 42 of the filled via. After the circuit formation of the produced double-sided rigid wiring boards 39 and 40 was performed, 50 μm coverlays 45 and 46 were laminated on the circuits 43 and 44 except for portions overlapping the flexible insulating material 47.

リジッドフレキ基板のフレキ部となるフレキシブルプリント基板48は、厚さ50μmの熱可塑性ポリイミド樹脂基材を用い、このポリイミド樹脂基材にドリル、YAGレーザ、COレーザ等の穴明け加工手段によって、直径95μmのスルーホールを形成した。エア吸引を行いながら、スルーホール内に直径100μmの銅ボールを嵌め込み、両面から厚さ18μmの銅箔で挟み込んで真空プレスで加熱・加圧した。これにより、スルーホール内部が銅ボールで満たされるとともに銅ボールと銅箔が金属結合し、フィルドビアの層間導通部を形成した。作製された両面フレキシブルプリント基板48の回路形成を行った後、回路49上に可撓性絶縁材と重なる部分を除いて50μmのカバーレイ50をラミネートした。 The flexible printed circuit board 48 which is a flexible part of the rigid flexible circuit board uses a thermoplastic polyimide resin base material having a thickness of 50 μm, and the polyimide resin base material has a diameter by drilling means such as a drill, YAG laser, CO 2 laser, etc. A through hole of 95 μm was formed. While carrying out air suction, a copper ball having a diameter of 100 μm was fitted into the through hole, sandwiched between both sides by a copper foil having a thickness of 18 μm, and heated and pressurized with a vacuum press. Thereby, the inside of the through hole was filled with the copper ball, and the copper ball and the copper foil were metal-bonded to form an interlayer conductive portion of the filled via. After forming the circuit of the produced double-sided flexible printed circuit board 48, a coverlay 50 of 50 μm was laminated on the circuit 49 except for a portion overlapping the flexible insulating material.

リジッド配線板39,40とフレキシブルプリント基板48との基板間を接続する可撓性絶縁材47は、厚さ50μmの熱可塑性ポリイミド樹脂基材にドリル、YAGレーザ、COレーザ等の穴明け加工手段によって、直径95μmのスルーホールを形成し、このスルーホールにエア吸引を行いながら直径100μmの銅ボール51を嵌め込んだ。 A flexible insulating material 47 for connecting the rigid wiring boards 39 and 40 and the flexible printed circuit board 48 is formed on a thermoplastic polyimide resin base material having a thickness of 50 μm by drilling, YAG laser, CO 2 laser or the like. By means, a through hole having a diameter of 95 μm was formed, and a copper ball 51 having a diameter of 100 μm was fitted into the through hole while air was sucked.

次に、これらを画像認識によってリジッド配線板−可撓性絶縁材−フレキシブルプリント基板の順に位置合わせして重ね合わせ、コンスタントヒーターで加熱・加圧することで、可撓性絶縁材47のスルーホール内部を銅ボール51で満たすとともに銅ボール51とリジッド配線板39,40およびフレキシブルプリント基板48の銅箔が金属結合し、全層でフィルドビアの層間導通が確保され、図6(b)に示す4層リジッドフレキ基板を作製した。   Next, these are positioned and overlapped in the order of rigid wiring board-flexible insulating material-flexible printed circuit board by image recognition, and heated and pressurized with a constant heater, so that the inside of the through hole of the flexible insulating material 47 Is filled with the copper ball 51, and the copper ball 51, the rigid wiring boards 39 and 40, and the copper foil of the flexible printed circuit board 48 are metal-bonded, and the interlayer conduction of filled vias is secured in all layers, and the four layers shown in FIG. A rigid flexible substrate was prepared.

本発明のリジッドフレキ基板の製造方法の第3例として、図7に示すように、両面に接続部を有するリジッド配線板を含んだ4層リジッドフレキ基板を作製した。
リジッドフレキ基板のリジッド部となるリジッド配線板39,40は、表面に熱可塑剤が塗布された厚さ100μmのガラスエポキシ樹脂基材を用い、このガラスエポキシ樹脂基材にドリル、YAGレーザ、COレーザ等の穴明け加工手段によって、直径145μmのスルーホールを形成した。エア吸引を行いながら、スルーホールに直径150μmの銅ボールを嵌め込み、両面から厚さ18μmの銅箔で挟み込んで真空プレスで加熱・加圧した。これにより、スルーホール内部が銅ボールで満たされるとともに銅ボールと銅箔が金属結合し、フィルドビアの層間導通部を形成した。作製した両面リジッド配線板39,40の回路形成を行った後、回路上に可撓性絶縁材と重なる部分を除いて50μmのカバーレイ45,46をラミネートし、片面にのみ接続部を有するリジッド配線板39,40を作製した。
As a third example of the method for producing a rigid flexible substrate of the present invention, as shown in FIG. 7, a four-layer rigid flexible substrate including a rigid wiring board having connection portions on both sides was produced.
The rigid wiring boards 39 and 40, which are rigid portions of the rigid flexible substrate, use a glass epoxy resin base material having a thickness of 100 μm and a surface coated with a thermoplastic agent. The glass epoxy resin base material is drilled, YAG laser, CO A through-hole having a diameter of 145 μm was formed by a drilling means such as 2 laser. While performing air suction, a copper ball having a diameter of 150 μm was fitted into the through hole, sandwiched between both sides by a copper foil having a thickness of 18 μm, and heated and pressurized with a vacuum press. Thereby, the inside of the through hole was filled with the copper ball, and the copper ball and the copper foil were metal-bonded to form an interlayer conductive portion of the filled via. After the circuit formation of the produced double-sided rigid wiring boards 39 and 40 is performed, 50 μm coverlays 45 and 46 are laminated on the circuit except for a portion overlapping the flexible insulating material, and a rigid having a connection portion only on one side. Wiring boards 39 and 40 were produced.

リジッドフレキ基板のフレキ部となるフレキシブルプリント基板48は、銅箔厚さ18μm、熱硬化性ポリイミド厚さ25μmの片面CCLを用い、回路形成を行った後、回路49上に可撓性絶縁材47と重なる部分を除いて50μmのカバーレイ50をラミネートした。本例では、このフレキシブルプリント基板48を2枚作製した。   A flexible printed circuit board 48, which is a flexible part of the rigid flexible circuit board, uses a single-sided CCL with a copper foil thickness of 18 μm and a thermosetting polyimide thickness of 25 μm to form a circuit. A coverlay 50 having a thickness of 50 μm was laminated except for a portion overlapping with the substrate. In this example, two flexible printed boards 48 were produced.

リジッド配線板39,40とフレキシブルプリント基板48の基板間を接続する可撓性絶縁材47は、厚さ50μmの熱可塑性ポリイミド樹脂基材にドリル、YAGレーザ、COレーザ等の穴明け加工手段によって、直径95μmのスルーホールを形成し、このスルーホールにエア吸引を行いながら直径100μmの銅ボール51を嵌め込んだ。 A flexible insulating material 47 for connecting between the rigid wiring boards 39 and 40 and the flexible printed circuit board 48 is formed on a thermoplastic polyimide resin base material having a thickness of 50 μm by drilling means such as a drill, YAG laser, CO 2 laser, etc. Thus, a through hole having a diameter of 95 μm was formed, and a copper ball 51 having a diameter of 100 μm was fitted into the through hole while performing air suction.

次に、これらを画像認識によってフレキシブルプリント基板−可撓性絶縁材−リジッド配線板−可撓性絶縁材−フレキシブルプリント基板の順に位置合わせして重ね合わせ、コンスタントヒータで加熱・加圧することで、可撓性絶縁材47のスルーホール内部を銅ボール51で満たすとともに銅ボール51とリジッド配線板39,40およびフレキシブルプリント基板48の銅箔が金属結合し、全層でフィルドビアの層間導通部が確保され、図7(b)に示すように、両面に接続部を有するリジッド配線板を含んだ4層リジッドフレキ基板を作製した。   Next, by aligning these in order of flexible printed circuit board-flexible insulating material-rigid wiring board-flexible insulating material-flexible printed circuit board by image recognition, by heating and pressing with a constant heater, The inside of the through hole of the flexible insulating material 47 is filled with the copper ball 51, and the copper ball 51, the rigid wiring boards 39 and 40, and the copper foil of the flexible printed circuit board 48 are metal-bonded, and the interlayer conductive portion of the filled via is secured in all layers. Then, as shown in FIG. 7B, a four-layer rigid flexible substrate including a rigid wiring board having connection portions on both sides was produced.

以上、実施例について説明してきたが、本発明のリジッドフレキ基板は、前述した各実施例にのみ限定されるものでなく、種々の変更や修正が可能である。例えば、可撓性絶縁材は、熱硬化性の可撓性絶縁材に熱可塑剤が塗布された樹脂で構成されていてもよい。   Although the embodiments have been described above, the rigid flexible substrate of the present invention is not limited to the above-described embodiments, and various changes and modifications can be made. For example, the flexible insulating material may be made of a resin in which a thermoplastic agent is applied to a thermosetting flexible insulating material.

さらに、リジッド配線板とフレキシブルプリント基板と可撓性絶縁材とは、それぞれ個片に打ち抜かれているため、リジッド配線板とフレキシブルプリント基板との接続部は、それぞれの基板の端に限定する必要はなく、図8に示すようにリジッド配線板39,40の中央部に接続部を設けた構成としてもよい。図8に示すリジッドフレキ基板は、リジッド配線板39,40の中央部と、フレキシブルプリント基板48の両端にそれぞれ設けられた回路を、可撓性絶縁材に嵌め込んだ銅ボール51とリジッド配線板39,40およびフレキシブルプリント基板48の銅箔とを金属結合させて、全層でフィルドビアの層間導通部を確保している。   Furthermore, since the rigid wiring board, the flexible printed circuit board, and the flexible insulating material are each punched into individual pieces, the connecting portion between the rigid wiring board and the flexible printed circuit board must be limited to the end of each board. Instead, as shown in FIG. 8, a connection portion may be provided in the center of the rigid wiring boards 39 and 40. The rigid flexible board shown in FIG. 8 includes a copper ball 51 and a rigid wiring board in which circuits provided at the center portions of the rigid wiring boards 39 and 40 and both ends of the flexible printed board 48 are fitted in a flexible insulating material. 39 and 40 and the copper foil of the flexible printed circuit board 48 are metal-bonded to ensure an interlayer conductive portion of filled vias in all layers.

また、両面リジッド配線板および両面フレキシブルプリント基板は、銅箔が片面に貼り付けられた基材を出発材料としてもよい。例として、図9にCBICを用いた片面フレキシブルプリント基板の可撓性絶縁層52に、層間導通部として銅ボール3を嵌め込むプロセスを示す。   Further, the double-sided rigid wiring board and the double-sided flexible printed board may use a base material having a copper foil attached to one side as a starting material. As an example, FIG. 9 shows a process of fitting a copper ball 3 as an interlayer conductive portion in a flexible insulating layer 52 of a single-sided flexible printed board using CBIC.

まず、可撓性絶縁層52にYAGレーザ、COレーザ等の穴明け加工手段によって、銅ボール53を嵌め込むためのビアホール54を形成する(図9(a)参照)。
次に、ビアホール54のビア底の銅箔55にビアホール54よりも小径の小穴56を、YAGレーザ、COレーザ等の穴明け加工手段によって穿設する(図9(b)参照)。
次に、小穴56の穿設された銅箔55側からエア吸引しつつ、ビアホール54に銅ボール53を嵌め込む(図9(c)参照)。
この状態で、銅ボール53を嵌め込んだ側から銅箔57を積層し(図9(d)参照)、真空プレス等で加熱・加圧することによって、図9(e)に示すように、可撓性絶縁層52のビアホール54および小穴56内が銅ボール53で埋め込まれ、銅ボール53と銅箔55,57が金属結合で接続された両面リジッド配線板および両面フレキシブルプリント基板が得られる。
First, via holes 54 for fitting the copper balls 53 are formed in the flexible insulating layer 52 by drilling means such as YAG laser or CO 2 laser (see FIG. 9A).
Next, a small hole 56 having a diameter smaller than that of the via hole 54 is formed in the copper foil 55 at the via bottom of the via hole 54 by a drilling means such as a YAG laser or a CO 2 laser (see FIG. 9B).
Next, the copper ball 53 is fitted into the via hole 54 while sucking air from the copper foil 55 side where the small hole 56 is formed (see FIG. 9C).
In this state, a copper foil 57 is laminated from the side on which the copper ball 53 is fitted (see FIG. 9D), and heated and pressed by a vacuum press or the like, as shown in FIG. 9E. A double-sided rigid wiring board and a double-sided flexible printed board in which the via holes 54 and the small holes 56 of the flexible insulating layer 52 are filled with copper balls 53 and the copper balls 53 and the copper foils 55 and 57 are connected by metal bonding are obtained.

リジッドフレキ基板の構造を例示する断面図である。It is sectional drawing which illustrates the structure of a rigid flexible substrate. 従来のリジッドフレキ基板の製造方法の一例を工程順に示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the conventional rigid flexible substrate in order of a process. CBIC技術による両面リジッド配線板の製造プロセスを示す断面図である。It is sectional drawing which shows the manufacturing process of the double-sided rigid wiring board by CBIC technique. CBIC技術による可撓性絶縁材への銅ボール嵌め込み工程を示す断面図である。It is sectional drawing which shows the copper ball fitting process to the flexible insulating material by CBIC technique. 本発明のリジッドフレキ基板の製造方法の第1例を示す断面図である。It is sectional drawing which shows the 1st example of the manufacturing method of the rigid flexible substrate of this invention. 本発明のリジッドフレキ基板の製造方法の第2例を示す断面図である。It is sectional drawing which shows the 2nd example of the manufacturing method of the rigid flexible substrate of this invention. 本発明のリジッドフレキ基板の製造方法の第3例を示す断面図である。It is sectional drawing which shows the 3rd example of the manufacturing method of the rigid flexible substrate of this invention. 本発明のリジッドフレキ基板の別な構造を示す断面図である。It is sectional drawing which shows another structure of the rigid flexible substrate of this invention. CBICを用いたフレキシブルプリント基板の製造プロセスを示す断面図である。It is sectional drawing which shows the manufacturing process of the flexible printed circuit board using CBIC.

符号の説明Explanation of symbols

1…リジッドフレキ基板、2…フレキシブルプリント基板、3,4…層間接着剤、5,6…リジッド配線板、7,8…リジッド部、9…フレキ部、10…スルーホール、11…導体層、12,13…表層回路、14,15…内層回路、16,17…リジッド配線板、18…フレキシブルプリント基板、19,20…層間接着剤、21…フレキ部、22,23…スリット、24,25…カバーレイ、26…スルーホール、27…スルーホールめっき、28…絶縁樹脂、29,30…カバーレイ、31…絶縁層、32…銅ボール、33…スルーホール、34,35…銅箔、36…可撓性絶縁層、37…銅ボール、38…スルーホール、39,40…両面リジッド配線板、41,42…層間導通部、43,44…銅箔回路、45,46…カバーレイ、47…可撓性絶縁材、48…フレキシブルプリント基板、49…銅箔回路、50…カバーレイ、51…銅ボール、52…可撓性絶縁層、53…銅ボール、54…ビアホール、55…銅箔、56…小穴、57…銅箔。   DESCRIPTION OF SYMBOLS 1 ... Rigid flexible substrate, 2 ... Flexible printed circuit board, 3, 4 ... Interlayer adhesive, 5, 6 ... Rigid wiring board, 7, 8 ... Rigid part, 9 ... Flexible part, 10 ... Through hole, 11 ... Conductor layer, DESCRIPTION OF SYMBOLS 12,13 ... Surface layer circuit, 14,15 ... Inner layer circuit, 16, 17 ... Rigid wiring board, 18 ... Flexible printed circuit board, 19, 20 ... Interlayer adhesive, 21 ... Flexible part, 22, 23 ... Slit, 24, 25 ... Coverlay, 26 ... Through hole, 27 ... Through hole plating, 28 ... Insulating resin, 29, 30 ... Coverlay, 31 ... Insulating layer, 32 ... Copper ball, 33 ... Through hole, 34, 35 ... Copper foil, 36 ... Flexible insulating layer, 37 ... Copper ball, 38 ... Through hole, 39, 40 ... Double-sided rigid wiring board, 41, 42 ... Interlayer conduction part, 43, 44 ... Copper foil circuit, 45, 46 ... Coverlay 47 ... flexible insulating material, 48 ... flexible printed circuit board, 49 ... copper foil circuit, 50 ... cover lay, 51 ... copper ball, 52 ... flexible insulating layer, 53 ... copper ball, 54 ... via hole, 55 ... copper Foil, 56 ... small hole, 57 ... copper foil.

Claims (8)

少なくとも一つ以上のリジッド配線板と、一つ以上のフレキシブルプリント基板と、一つ以上の可撓性絶縁材とを互いに積層させることによってリジッドフレキ基板を得る製造方法であって、
可撓性絶縁材にスルーホールを穿設し、該スルーホール内に銅ボールを入れ、次いで該可撓性絶縁材をリジッド配線板とフレキシブルプリント基板の回路間に位置するように挟んで加熱・加圧することでリジッド配線板とフレキシブルプリント基板を銅同士の金属結合によって一体化させて層間導通部を形成し、リジッドフレキ基板を得ることを特徴とするリジッドフレキ基板の製造方法。
A manufacturing method for obtaining a rigid flexible board by laminating at least one or more rigid wiring boards, one or more flexible printed boards, and one or more flexible insulating materials,
Drill a through hole in the flexible insulating material, put a copper ball in the through hole, and then sandwich the flexible insulating material so that it is located between the circuit of the rigid wiring board and the flexible printed circuit board. A method for producing a rigid flexible substrate, comprising: forming an interlayer conductive portion by applying pressure to integrate a rigid wiring board and a flexible printed circuit board by metal bonding between coppers to obtain a rigid flexible substrate.
リジッド配線板、フレキシブルプリント基板及び可撓性絶縁材をそれぞれ別々のシートに形成して個片に打ち抜いた後、可撓性絶縁材に埋め込んだ銅ボールによってリジッド配線板とフレキシブルプリント基板とを銅同士の金属結合で基板間接続させることを特徴とする請求項1に記載のリジッドフレキ基板の製造方法。   A rigid wiring board, a flexible printed circuit board, and a flexible insulating material are formed on separate sheets and punched into individual pieces, and then the rigid wiring board and the flexible printed circuit board are connected to each other by copper balls embedded in the flexible insulating material. The method for manufacturing a rigid-flexible substrate according to claim 1, wherein the substrates are connected to each other by metal bonding. 絶縁層にスルーホールを穿設し、該スルーホールに銅ボールを押し込み、絶縁層の両側から二枚の銅箔で挟み込んで加熱・加圧することによって銅ボールが潰されてスルーホール内を埋め込み、二枚の銅箔間を銅同士の結合によって導通した層間導通部を形成してリジッド配線板を製造する工程を含むことを特徴とする請求項1又は2に記載のリジッドフレキ基板の製造方法。   A through-hole is drilled in the insulating layer, a copper ball is pushed into the through-hole, the copper ball is crushed by being sandwiched between two copper foils from both sides of the insulating layer and heated and pressed, and the inside of the through-hole is embedded, 3. The method for manufacturing a rigid flexible substrate according to claim 1, further comprising a step of manufacturing a rigid wiring board by forming an interlayer conductive portion that is conductive between two copper foils by bonding between copper. 可撓性絶縁層にスルーホールを穿設し、該スルーホールに銅ボールを押し込み、可撓性絶縁層の両側から二枚の銅箔で挟み込んで加熱・加圧することによって銅ボールが潰されてスルーホール内を埋め込み、二枚の銅箔間を銅同士の結合によって導通した層間導通部を形成してフレキシブルプリント基板を製造する工程を含むことを特徴とする請求項1〜3のいずれかに記載のリジッドフレキ基板の製造方法。   A through hole is formed in the flexible insulating layer, a copper ball is pushed into the through hole, and the copper ball is crushed by being sandwiched between two copper foils from both sides of the flexible insulating layer and heated and pressed. 4. The method according to claim 1, further comprising a step of manufacturing a flexible printed circuit board by forming an interlayer conductive portion that is embedded in a through hole and is electrically connected between two copper foils by bonding between copper. The manufacturing method of the rigid-flexible board | substrate of description. 可撓性絶縁材、リジッド配線板の絶縁層及びフレキシブルプリント基板の可撓性絶縁層にスルーホールを穿設する工程を、ドリル加工又はレーザ加工により行うことを特徴とする請求項1〜4のいずれかに記載のリジッドフレキ基板の製造方法。   5. The step of drilling a through hole in a flexible insulating material, an insulating layer of a rigid wiring board, and a flexible insulating layer of a flexible printed board is performed by drilling or laser processing. The manufacturing method of the rigid flexible substrate in any one. スルーホールの直径を銅ボールの直径よりも小さくし、銅ボールをスルーホール内に挟み込む構造とすることを特徴とする請求項1〜5のいずれかに記載のリジッドフレキ基板の製造方法。   6. The method of manufacturing a rigid flexible substrate according to claim 1, wherein a diameter of the through hole is made smaller than a diameter of the copper ball, and the copper ball is sandwiched in the through hole. スルーホールの容積を銅ボールの体積よりも小さくすることを特徴とする請求項1〜6のいずれかに記載のリジッドフレキ基板の製造方法。   The method for manufacturing a rigid flexible substrate according to claim 1, wherein the volume of the through hole is made smaller than the volume of the copper ball. 請求項1〜7のいずれかに記載のリジッドフレキ基板の製造方法により得られたリジッドフレキ基板。   A rigid-flexible substrate obtained by the method for producing a rigid-flexible substrate according to claim 1.
JP2007098205A 2007-04-04 2007-04-04 Rigid flexible board and manufacturing method thereof Pending JP2008258357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007098205A JP2008258357A (en) 2007-04-04 2007-04-04 Rigid flexible board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007098205A JP2008258357A (en) 2007-04-04 2007-04-04 Rigid flexible board and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2008258357A true JP2008258357A (en) 2008-10-23

Family

ID=39981639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007098205A Pending JP2008258357A (en) 2007-04-04 2007-04-04 Rigid flexible board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2008258357A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102256438A (en) * 2011-05-09 2011-11-23 厦门市英诺尔电子科技有限公司 Novel rigid-flexible PCB (printed circuit board) and manufacturing method thereof
CN102264193A (en) * 2010-05-24 2011-11-30 健鼎(无锡)电子有限公司 Method for manufacturing rigid-flex circuit board
CN102548247A (en) * 2012-01-16 2012-07-04 惠州市蓝微电子有限公司 Method for manufacturing soft and hard combined board
JP5002718B1 (en) * 2011-06-29 2012-08-15 株式会社東芝 Method for manufacturing flexible printed wiring board, flexible printed wiring board, and electronic device
CN105263257A (en) * 2015-10-31 2016-01-20 张南国 Foldable circuit board for luminescent lamp
WO2016129705A1 (en) * 2015-02-13 2016-08-18 パイクリスタル株式会社 Method for forming laminated circuit board, and laminated circuit board formed using same
US9960512B2 (en) 2013-05-13 2018-05-01 Murata Manufacturing Co., Ltd. Flexible circuit board and device
JP7455247B1 (en) 2022-09-06 2024-03-25 トライポッド (ウーシー) エレクトロニック カンパニー リミテッド Semi-flex printed circuit board with open lid opening

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104545A (en) * 1992-09-22 1994-04-15 Matsushita Electric Ind Co Ltd Double-sided printed circuit board and manufacturing method thereof
JP2003110240A (en) * 2001-10-01 2003-04-11 Sumitomo Metal Mining Co Ltd Composite wiring board and manufacturing method thereof
JP2005260012A (en) * 2004-03-12 2005-09-22 Sony Chem Corp Method for manufacturing double-sided wiring board and multilayer wiring board
JP2006179833A (en) * 2004-12-24 2006-07-06 Fujikura Ltd Wiring board and its manufacture
JP2006237230A (en) * 2005-02-24 2006-09-07 Ngk Spark Plug Co Ltd Compound wiring board structure and its production process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104545A (en) * 1992-09-22 1994-04-15 Matsushita Electric Ind Co Ltd Double-sided printed circuit board and manufacturing method thereof
JP2003110240A (en) * 2001-10-01 2003-04-11 Sumitomo Metal Mining Co Ltd Composite wiring board and manufacturing method thereof
JP2005260012A (en) * 2004-03-12 2005-09-22 Sony Chem Corp Method for manufacturing double-sided wiring board and multilayer wiring board
JP2006179833A (en) * 2004-12-24 2006-07-06 Fujikura Ltd Wiring board and its manufacture
JP2006237230A (en) * 2005-02-24 2006-09-07 Ngk Spark Plug Co Ltd Compound wiring board structure and its production process

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102264193A (en) * 2010-05-24 2011-11-30 健鼎(无锡)电子有限公司 Method for manufacturing rigid-flex circuit board
CN102869204A (en) * 2010-05-24 2013-01-09 健鼎(无锡)电子有限公司 Manufacture method of rigid-flex board
CN102256438A (en) * 2011-05-09 2011-11-23 厦门市英诺尔电子科技有限公司 Novel rigid-flexible PCB (printed circuit board) and manufacturing method thereof
JP5002718B1 (en) * 2011-06-29 2012-08-15 株式会社東芝 Method for manufacturing flexible printed wiring board, flexible printed wiring board, and electronic device
US8742264B2 (en) 2011-06-29 2014-06-03 Kabushiki Kaisha Toshiba Electronic apparatus
CN102548247A (en) * 2012-01-16 2012-07-04 惠州市蓝微电子有限公司 Method for manufacturing soft and hard combined board
US9960512B2 (en) 2013-05-13 2018-05-01 Murata Manufacturing Co., Ltd. Flexible circuit board and device
US11122693B2 (en) 2015-02-13 2021-09-14 Pi-Crystal Incorporation Method for forming laminated circuit board
WO2016129705A1 (en) * 2015-02-13 2016-08-18 パイクリスタル株式会社 Method for forming laminated circuit board, and laminated circuit board formed using same
US11985768B2 (en) 2015-02-13 2024-05-14 Pi-Crystal Incorporation Laminated circuit board
CN105263257A (en) * 2015-10-31 2016-01-20 张南国 Foldable circuit board for luminescent lamp
JP7455247B1 (en) 2022-09-06 2024-03-25 トライポッド (ウーシー) エレクトロニック カンパニー リミテッド Semi-flex printed circuit board with open lid opening
JP2024044972A (en) * 2022-09-06 2024-04-02 トライポッド (ウーシー) エレクトロニック カンパニー リミテッド Semi-flex printed circuit board with open lid opening

Similar Documents

Publication Publication Date Title
JP2008258357A (en) Rigid flexible board and manufacturing method thereof
CN104717839B (en) Heavy copper circuit board and preparation method thereof
JP4768059B2 (en) Multilayer flexible printed wiring board
CN106332438A (en) Rigid-flex circuit board and manufacturing method thereof
TW201410097A (en) Multilayer flexible printed circuit board and method for manufacturing same
CN102387672A (en) Method for manufacturing multilayer circuit board
TWI536888B (en) Method for manufacturing rigid-flexible printed circuit board
JP2004140018A (en) Process for producing multilayer board, multilayer board, and mobile apparatus using it
TWI444116B (en) Printed circuit board and method for manufacturing same
JP2011091312A (en) Rigid flex circuit board, method of manufacturing the same, and electronic device
JP2010016338A (en) Multilayer flexible printed wiring board and display element module using the same, and method of manufacturing the same
JP2008258358A (en) Rigid flexible board and manufacturing method thereof
JP2014204088A (en) Multilayer wiring board and method of manufacturing the same
JP6387226B2 (en) Composite board
JP5057653B2 (en) Flex-rigid wiring board and manufacturing method thereof
JP4538513B2 (en) Manufacturing method of multilayer wiring board
JP5293692B2 (en) Flex-rigid wiring board and manufacturing method thereof
JP4602783B2 (en) Manufacturing method of rigid flex buildup wiring board
JP2014068047A (en) Method for manufacturing multilayer printed wiring board
JP4728054B2 (en) Multilayer wiring substrate, multilayer wiring substrate manufacturing method, and multilayer wiring board
KR101887754B1 (en) Rigid flexible circuit board manufacturing method
JP4653402B2 (en) Flex-rigid wiring board and manufacturing method thereof
JP2005064357A (en) Multilayer wiring board and method for manufacturing the same
JP2006253328A (en) Manufacturing method of multilayer wiring board
JP2005109299A (en) Multilayer wiring board and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20091126

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110902

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A02 Decision of refusal

Effective date: 20120306

Free format text: JAPANESE INTERMEDIATE CODE: A02