[go: up one dir, main page]

JP2008254947A - Honeycomb structure - Google Patents

Honeycomb structure Download PDF

Info

Publication number
JP2008254947A
JP2008254947A JP2007096661A JP2007096661A JP2008254947A JP 2008254947 A JP2008254947 A JP 2008254947A JP 2007096661 A JP2007096661 A JP 2007096661A JP 2007096661 A JP2007096661 A JP 2007096661A JP 2008254947 A JP2008254947 A JP 2008254947A
Authority
JP
Japan
Prior art keywords
honeycomb
material layer
outer peripheral
thermal expansion
honeycomb structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007096661A
Other languages
Japanese (ja)
Inventor
Koji Tsuneyoshi
孝治 常吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP2007096661A priority Critical patent/JP2008254947A/en
Publication of JP2008254947A publication Critical patent/JP2008254947A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Ceramic Products (AREA)
  • Catalysts (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a honeycomb structure having excellent thermal shock resistance. <P>SOLUTION: The honeycomb structure 1 comprises: a honeycomb base material 2 composed of a porous ceramics and having a plurality of cells extending to the axial direction; and an outer circumferential material layer 4 composed of a ceramics covering the outer circumferential face in the circumferential direction of the honeycomb base material 2. Provided that the thermal expansion coefficient at 300 to 900°C in the honeycomb base material 2 is denoted as α<SB>I</SB>(ppm/K) and the thermal expansion coefficient at 300 to 900°C in the outer circumferential material layer 4 is denoted as α<SB>II</SB>(ppm/K), the value of α<SB>I</SB>-α<SB>II</SB>is 1.0 to 5.0(ppm/K). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ハニカム構造体に関し、詳しくは、耐熱衝撃性に優れたハニカム構造体に関する。   The present invention relates to a honeycomb structure, and more particularly to a honeycomb structure excellent in thermal shock resistance.

内燃機関、ボイラー、化学反応機器、燃料電池用改質器等の触媒作用を利用する触媒用担体、排ガス中のスス等の微粒子(特にディーゼルエンジンからの排気ガス中の微粒子物質(PM))の捕集フィルタ(以下、DPFという)等には、セラミックス製のハニカム構造体が用いられている。   Catalytic carrier utilizing catalytic action of internal combustion engine, boiler, chemical reaction equipment, fuel cell reformer, etc., particulates such as soot in exhaust gas (particularly particulate matter (PM) in exhaust gas from diesel engine) A ceramic honeycomb structure is used for a collection filter (hereinafter referred to as DPF).

セラミックス製のハニカム構造体は、一般に、多孔質のセラミックスよりなり、流体の流路となる複数のセルを区画するハニカム基材と、ハニカム基材の周方向の外周面を被覆したセラミックスよりなる外周材層と、を有している。そして、ハニカム基材は、端面が市松模様状を呈するように隣接するセルが互いに反対側となる端部を封止するセラミックスよりなる封止部で封止されている。   A honeycomb structure made of a ceramic is generally made of a porous ceramic, and includes a honeycomb base material that defines a plurality of cells serving as fluid flow paths, and an outer periphery made of ceramics that covers the outer peripheral surface in the circumferential direction of the honeycomb base material. And a material layer. And the honeycomb base material is sealed with a sealing portion made of ceramics that seals the end portions where the adjacent cells are opposite to each other so that the end faces have a checkered pattern.

セラミックス製のハニカム構造体よりなるDPFは、隔壁部のセルを区画する隔壁を排気ガスが通過するウォールフロー型の触媒として用いられている。ウォールフロー型の触媒は、セル壁に形成された連続した細孔を排気ガスが通過し、細孔を通過できない排気ガス中のPMを捕集する。すなわち、DPFは、排気ガス中のPMを捕集するために、高温の排気ガスに晒される。   A DPF made of a ceramic honeycomb structure is used as a wall flow type catalyst in which exhaust gas passes through partition walls that partition partition wall cells. The wall flow type catalyst collects PM in the exhaust gas through which the exhaust gas passes through the continuous pores formed in the cell wall and cannot pass through the pores. That is, the DPF is exposed to high-temperature exhaust gas in order to collect PM in the exhaust gas.

また、DPFは、捕集したPMが堆積したままでは目詰まりを起こすため、捕集したPMを除去する必要がある。捕集したPMを除去する方法のひとつに燃焼等によりPMを分解・除去する方法がある。また、DPFに触媒活性を発揮する触媒金属を担持し、この触媒金属でPMを分解する方法もある。   Further, since the DPF is clogged when the collected PM is accumulated, it is necessary to remove the collected PM. One method of removing the collected PM is a method of decomposing and removing PM by combustion or the like. There is also a method in which a catalytic metal exhibiting catalytic activity is supported on the DPF and PM is decomposed with this catalytic metal.

PMを燃焼して除去するときには、ハニカム構造体が加熱され、PMの分解(燃焼)時に生じた熱でさらに燃焼が促進される。つまり、PMの燃焼時にはDPFは急激な温度変化(温度上昇)に晒される。   When PM is burned and removed, the honeycomb structure is heated, and combustion is further promoted by heat generated during decomposition (combustion) of PM. That is, the DPF is exposed to a rapid temperature change (temperature increase) during PM combustion.

高温に晒されたDPFは、急激に冷やされると、外周部(外周材層)に損傷を生じるという問題があった。高温に保持されたDPFを急激に冷却すると、外周部は急激に冷やされて収縮を生じるが、内部(ハニカム基材)は高温のままであるため、外周部の収縮に追従しない。この結果、外周部に引っ張り応力が働き、外周部にヒビや割れが生じる。   When the DPF exposed to high temperature is rapidly cooled, there is a problem in that the outer peripheral portion (outer peripheral material layer) is damaged. When the DPF held at a high temperature is rapidly cooled, the outer peripheral portion is rapidly cooled and contracts, but the inside (honeycomb substrate) remains at a high temperature and does not follow the contraction of the outer peripheral portion. As a result, tensile stress acts on the outer peripheral portion, and cracks and cracks occur on the outer peripheral portion.

本発明は上記実情に鑑みてなされたものであり、耐熱衝撃性にすぐれたハニカム構造体を提供することを課題とする。   This invention is made | formed in view of the said situation, and makes it a subject to provide the honeycomb structure excellent in thermal shock resistance.

上記課題を解決するために本発明者らはセラミックス製のハニカム構造体について検討を重ねた結果、ハニカム体(ハニカム基材,ハニカム分体)の外周部に、ハニカム体よりも300〜900℃での熱膨張係数が1.0〜5.0(ppm/K)低い外周層を配置した構成とすることで上記課題を解決できることを見いだした。   In order to solve the above-mentioned problems, the present inventors have repeatedly studied about a ceramic honeycomb structure, and as a result, the outer periphery of the honeycomb body (honeycomb base material, honeycomb segment) is 300 to 900 ° C. higher than the honeycomb body. It has been found that the above problem can be solved by arranging an outer peripheral layer having a low thermal expansion coefficient of 1.0 to 5.0 (ppm / K).

すなわち、本発明のハニカム構造体は、多孔質のセラミックスよりなり、軸方向にのびる複数のセルをもつハニカム基材と、ハニカム基材の周方向の外周面を被覆したセラミックスよりなる外周材層と、を有するハニカム構造体であって、300〜900℃でのハニカム基材の熱膨張係数をα(ppm/K)、300〜900℃での外周材層の熱膨張係数をαII(ppm/K)としたときに、α−αIIの値が1.0〜5.0(ppm/K)であることを特徴とする。 That is, the honeycomb structure of the present invention is made of porous ceramics and has a honeycomb substrate having a plurality of cells extending in the axial direction, and an outer peripheral material layer made of ceramics covering the outer peripheral surface of the honeycomb substrate in the circumferential direction. The thermal expansion coefficient of the honeycomb substrate at 300 to 900 ° C. is α I (ppm / K), and the thermal expansion coefficient of the outer peripheral material layer at 300 to 900 ° C. is α II (ppm / K), the value of α III is 1.0 to 5.0 (ppm / K).

また、本発明のハニカム構造体は、多孔質のセラミックスよりなる複数のハニカム分体と、複数のハニカム分体同士を接合する接合材層と、をもち、軸方向にのびる複数のセルをもつハニカム基材を有するハニカム構造体であって、300〜900℃でのハニカム分体の熱膨張係数をαIII(ppm/K)、300〜900℃での接合材層の熱膨張係数をαIV(ppm/K)としたときに、αIII−αIVの値が1.0〜5.0(ppm/K)であることを特徴とする。 Further, the honeycomb structure of the present invention has a plurality of honeycomb bodies made of porous ceramics and a bonding material layer for bonding the plurality of honeycomb bodies to each other, and has a plurality of cells extending in the axial direction. A honeycomb structure having a substrate, the thermal expansion coefficient of the honeycomb body at 300 to 900 ° C. being α III (ppm / K), and the thermal expansion coefficient of the bonding material layer at 300 to 900 ° C. being α IV ( when the ppm / K), the value of alpha III-.alpha. IV is characterized in that it is a 1.0~5.0 (ppm / K).

本発明のハニカム構造体は、ハニカム基材の外周にもうけられた外周材層の熱膨張係数をハニカム基材の熱膨張係数よりもわずかに小さくすることで、高温に晒されたときのハニカム基材の熱膨張量を低減させている。この結果、本発明のハニカム構造体は、耐熱衝撃性にすぐれたハニカム構造体となった。   The honeycomb structure of the present invention has a honeycomb substrate when exposed to a high temperature by making the thermal expansion coefficient of the outer peripheral material layer provided on the outer periphery of the honeycomb base material slightly smaller than the thermal expansion coefficient of the honeycomb base material. The amount of thermal expansion of the material is reduced. As a result, the honeycomb structure of the present invention became a honeycomb structure excellent in thermal shock resistance.

また、本発明のハニカム構造体は、外周材層の熱膨張係数をハニカム基材の熱膨張係数よりもわずかに小さくすることで、高温に晒されたときのハニカム分体の熱膨張量を低減させている。この結果、本発明のハニカム構造体は、耐熱衝撃性にすぐれたハニカム構造体となった。   Further, the honeycomb structure of the present invention reduces the thermal expansion amount of the honeycomb body when exposed to high temperatures by making the thermal expansion coefficient of the outer peripheral material layer slightly smaller than the thermal expansion coefficient of the honeycomb base material. I am letting. As a result, the honeycomb structure of the present invention became a honeycomb structure excellent in thermal shock resistance.

(第一発明)
本発明のハニカム構造体は、多孔質のセラミックスよりなり、軸方向にのびる複数のセルをもつハニカム基材と、ハニカム基材の周方向の外周面を被覆したセラミックスよりなる外周材層と、を有するハニカム構造体である。
(First invention)
A honeycomb structure of the present invention comprises a honeycomb substrate having a plurality of cells extending in the axial direction and made of porous ceramics, and an outer peripheral material layer made of ceramics covering the outer circumferential surface of the honeycomb substrate in the circumferential direction. It is a honeycomb structure having.

そして、本発明のハニカム構造体は、300〜900℃でのハニカム基材の熱膨張係数をα(ppm/K)、300〜900℃での外周材層の熱膨張係数をαII(ppm/K)としたときに、α−αIIの値が1.0〜5.0(ppm/K)である。ここで、ハニカム基材の熱膨張係数(α)および外周材層の熱膨張係数(αII)は、それぞれを構成するセラミックスの熱膨張係数である。 The honeycomb structure of the present invention has a thermal expansion coefficient of α I (ppm / K) of the honeycomb base material at 300 to 900 ° C., and a thermal expansion coefficient of the outer peripheral material layer at 300 to 900 ° C. of α II (ppm / K), the value of α III is 1.0 to 5.0 (ppm / K). The thermal expansion coefficient of the honeycomb substrate (alpha I) and the thermal expansion coefficient of the outer peripheral material layer (alpha II) is a thermal expansion coefficient of the ceramic constituting each.

セラミックスは、圧縮応力には強く、引っ張り応力には弱いという特性を有している。本発明のように、外周材層を、ハニカム基材よりも熱膨張係数の小さな材質で形成することで、ハニカム構造体が高温に晒されたときにハニカム基材の熱膨張量を規制することができ、収縮時に外周材層の収縮量を小さくすることができる。この結果、熱衝撃による外周材層へのヒビや割れの発生が抑えられる。   Ceramics have the property of being strong against compressive stress and weak against tensile stress. As in the present invention, the outer peripheral material layer is formed of a material having a smaller coefficient of thermal expansion than that of the honeycomb substrate, thereby regulating the amount of thermal expansion of the honeycomb substrate when the honeycomb structure is exposed to a high temperature. The shrinkage amount of the outer peripheral material layer can be reduced during shrinkage. As a result, the occurrence of cracks and cracks in the outer peripheral material layer due to thermal shock can be suppressed.

より具体的には、本発明のハニカム構造体を昇温させると、ハニカム基材および外周材層のそれぞれが熱膨張を生じる。外周材層がハニカム基材よりも熱膨張係数の小さな材質から形成されており、外周材層がハニカム基材の熱膨張を規制している(ハニカム基材の熱膨張量が減少する)。そして、加熱したハニカム構造体が冷却(急冷)されると、より低い温度に晒される外周材層が冷却され、収縮する。ハニカム基材は、外周材層の熱伝導性の低さから、高温(熱膨張を生じた状態)が維持されている。外周材層が収縮を生じると、ハニカム基材が収縮(圧縮)する方向に応力が働く。しかし、ハニカム基材は熱膨張を生じた状態が維持されており、外周材層には引っ張り応力が働く。本発明は、ハニカム基材の熱膨張が規制されており、外周材層にかかる引っ張り応力が小さくなっている。この結果、外周材層へのヒビや割れの発生が抑えられる。   More specifically, when the temperature of the honeycomb structure of the present invention is raised, each of the honeycomb base material and the outer peripheral material layer undergoes thermal expansion. The outer peripheral material layer is formed of a material having a smaller thermal expansion coefficient than the honeycomb base material, and the outer peripheral material layer regulates the thermal expansion of the honeycomb base material (the amount of thermal expansion of the honeycomb base material is reduced). When the heated honeycomb structure is cooled (rapidly cooled), the outer peripheral material layer exposed to a lower temperature is cooled and contracts. The honeycomb base material is maintained at a high temperature (a state in which thermal expansion occurs) due to the low thermal conductivity of the outer peripheral material layer. When the outer peripheral material layer shrinks, stress acts in the direction in which the honeycomb substrate shrinks (compresses). However, the honeycomb substrate is maintained in a state where thermal expansion has occurred, and tensile stress acts on the outer peripheral material layer. In the present invention, the thermal expansion of the honeycomb substrate is regulated, and the tensile stress applied to the outer peripheral material layer is reduced. As a result, the occurrence of cracks and cracks in the outer peripheral material layer is suppressed.

本発明のハニカム構造体は、α−αIIの値が1.0〜5.0(ppm/K)となることで、外周材層がハニカム基材の熱膨張を規制する効果を発揮する。ここで、αおよびαIIの値は、300〜900℃の間の同じ温度での値である。α−αIIの値が1.0(ppm/K)未満では、ハニカム基材と外周材層の熱膨張係数の差が小さくなりすぎ、外周材層がハニカム基材の熱膨張を規制する効果を発揮できなくなる。α−αIIの値が5.0(ppm/K)を超えると、ハニカム基材と外周材層の熱膨張係数の差が大きくなりすぎ、高温となったときの熱膨張時に外周材層がハニカム基材の熱膨張を規制しすぎて、ハニカム基材や外周材層が損傷を生じるようになる。 The honeycomb structure of the present invention exhibits an effect that the outer peripheral material layer regulates the thermal expansion of the honeycomb base material when the value of α III is 1.0 to 5.0 (ppm / K). . Here, the values of α I and α II are values at the same temperature between 300 ° C. and 900 ° C. If the value of α III is less than 1.0 (ppm / K), the difference in thermal expansion coefficient between the honeycomb base material and the peripheral material layer becomes too small, and the peripheral material layer regulates the thermal expansion of the honeycomb base material. The effect cannot be demonstrated. When the value of α III exceeds 5.0 (ppm / K), the difference in thermal expansion coefficient between the honeycomb base material and the outer peripheral material layer becomes too large, and the outer peripheral material layer during thermal expansion when the temperature becomes high However, the thermal expansion of the honeycomb substrate is excessively restricted, and the honeycomb substrate and the outer peripheral material layer are damaged.

好ましいα−αIIの値は、1.0〜4.0(ppm/K)であり、より好ましいα−αIIの値は、1.0〜3.0(ppm/K)である。 A preferable value of α III is 1.0 to 4.0 (ppm / K), and a more preferable value of α III is 1.0 to 3.0 (ppm / K). .

本発明においては、ハニカム構造体が晒される温度が300〜900℃の温度領域内であるときに、熱膨張係数の差が1.0〜5.0(ppm/K)となる。300℃未満では、ハニカム構造体がほとんど熱膨張を生じない。このため、外周材層によるハニカム基材の熱膨張を規制する効果が十分に発揮できない。また、ほとんど熱膨張を生じないため、熱膨張係数の差が十分に表れない。熱膨張係数の差が所定の範囲内となる温度範囲は、ハニカム構造体が晒される高温の温度域であればよく、300〜800℃が好ましい。   In the present invention, when the temperature at which the honeycomb structure is exposed is in the temperature range of 300 to 900 ° C., the difference in thermal expansion coefficient is 1.0 to 5.0 (ppm / K). Below 300 ° C., the honeycomb structure hardly undergoes thermal expansion. For this reason, the effect which controls the thermal expansion of the honeycomb base material by an outer peripheral material layer cannot fully be exhibited. Further, since the thermal expansion hardly occurs, the difference in thermal expansion coefficient does not appear sufficiently. The temperature range in which the difference in thermal expansion coefficient falls within a predetermined range may be a high temperature range where the honeycomb structure is exposed, and is preferably 300 to 800 ° C.

本発明のハニカム構造体のハニカム基材を形成する多孔質のセラミックスは、その材質が特に限定されるものではなく、従来公知のセラミックスを用いることができる。セラミックスは、チタン酸アルミニウム、炭化珪素、窒化珪素、コーディエライトより選ばれる一種を主成分とすることが好ましい。これらのセラミックスのうち、炭化珪素を主成分とするセラミックスよりなることがより好ましい。   The porous ceramic material forming the honeycomb substrate of the honeycomb structure of the present invention is not particularly limited, and conventionally known ceramics can be used. The ceramic is preferably mainly composed of one kind selected from aluminum titanate, silicon carbide, silicon nitride, and cordierite. Of these ceramics, it is more preferable to be made of ceramics mainly composed of silicon carbide.

本発明のハニカム構造体において、外周材層は、0.5mm以上の厚さを有することが好ましい。外周材層の厚さが0.5mm以上となることで、ハニカム基材の熱膨張を規制する効果を十分に発揮できるようになる。なお、外周材層の厚さが厚くなるほどハニカム基材の熱膨張を外周材層が規制することとなるため、耐熱衝撃性が向上する。一般的に、外周材層は、外周材層を構成するスラリーを調製し、このスラリーをハニカム基材の外周面に塗布して形成することから、外周材層の厚さが厚くなるほどスラリーの塗布厚さが厚くなり、作業性が悪化したりコストが上昇する。このため、外周材層の好ましい厚さは0.5〜5.0mmであり、より好ましい厚さは0.5〜3.0mmであり、さらに好ましい厚さは0.5〜1.0mmである。本発明のハニカム構造体は、外周材層の厚さを薄くしても外周材層の損傷を抑えることができる。ここで、外周材層の厚さとは、ハニカム構造体の径方向での厚さが最も薄い部分を外周材層の厚さとする。外周材層を構成する材質は、従来公知の材質を用いることができる。たとえば、SiC、シリカ系化合物、チタン酸アルミニウムなどのアルミナ系化合物などを用いることができる。   In the honeycomb structure of the present invention, the outer peripheral material layer preferably has a thickness of 0.5 mm or more. When the thickness of the outer peripheral material layer is 0.5 mm or more, the effect of regulating the thermal expansion of the honeycomb substrate can be sufficiently exhibited. In addition, since the outer peripheral material layer regulates the thermal expansion of the honeycomb base material as the thickness of the outer peripheral material layer increases, the thermal shock resistance is improved. Generally, the outer peripheral material layer is formed by preparing a slurry that constitutes the outer peripheral material layer and applying this slurry to the outer peripheral surface of the honeycomb base material. Therefore, as the thickness of the outer peripheral material layer increases, the slurry is applied. Thickness increases, workability deteriorates and costs increase. For this reason, the preferable thickness of the outer peripheral material layer is 0.5 to 5.0 mm, the more preferable thickness is 0.5 to 3.0 mm, and the further preferable thickness is 0.5 to 1.0 mm. . The honeycomb structure of the present invention can suppress damage to the outer peripheral material layer even if the thickness of the outer peripheral material layer is reduced. Here, the thickness of the outer peripheral material layer is defined as the thickness of the outer peripheral material layer at the portion where the thickness in the radial direction of the honeycomb structure is the thinnest. A conventionally known material can be used as the material constituting the outer peripheral material layer. For example, SiC, silica compounds, alumina compounds such as aluminum titanate, and the like can be used.

本発明のハニカム構造体において、ハニカム基材の外径は限定されるものではないが、外周材層の厚さが一定であればハニカム基材の外径が小さいほど耐熱衝撃性に優れたものとなる。本発明のハニカム構造体は、ハニカム基材の熱膨張係数よりも外周材層の熱膨張係数がわずかに小さくなっている。この熱膨張係数の差により、ハニカム基材の熱膨張を規制している。ハニカム基材の熱膨張量は、ハニカム基材の外径が大きくなるほど多くなる。つまり、ハニカム基材の外径が大きくなればなるほど、熱膨張時に外周材層にかかる応力が大きくなる。外周材層の厚さが同じであれば、ハニカム基材の熱膨張を規制する応力が相対的に低くなり、ハニカム基材の熱膨張を規制できなくなる。この結果、ハニカム構造体が損傷を生じるようになっていた。対して、ハニカム基材の外径が小さくなると、熱膨張時に外周材層にかかる応力が小さくなり、ハニカム構造体が損傷を生じなくなる。熱膨張量は、ハニカム構造体の加熱温度とも関係しており、加熱温度が高くなるほど熱膨張量が大きくなる。つまり、外周材層の厚さが同じであれば、ハニカム基材の外径が小さいほど、ハニカム構造体がより高い温度に晒されても損傷を生じなくなる。   In the honeycomb structure of the present invention, the outer diameter of the honeycomb base material is not limited. However, if the outer peripheral material layer has a constant thickness, the smaller the outer diameter of the honeycomb base material, the better the thermal shock resistance. It becomes. In the honeycomb structure of the present invention, the thermal expansion coefficient of the outer peripheral material layer is slightly smaller than the thermal expansion coefficient of the honeycomb base material. The difference in thermal expansion coefficient regulates the thermal expansion of the honeycomb substrate. The amount of thermal expansion of the honeycomb substrate increases as the outer diameter of the honeycomb substrate increases. That is, the greater the outer diameter of the honeycomb substrate, the greater the stress applied to the outer peripheral material layer during thermal expansion. If the thickness of the outer peripheral material layer is the same, the stress that regulates the thermal expansion of the honeycomb substrate is relatively low, and the thermal expansion of the honeycomb substrate cannot be regulated. As a result, the honeycomb structure is damaged. On the other hand, when the outer diameter of the honeycomb substrate is reduced, the stress applied to the outer peripheral material layer during thermal expansion is reduced, and the honeycomb structure is not damaged. The amount of thermal expansion is also related to the heating temperature of the honeycomb structure, and the amount of thermal expansion increases as the heating temperature increases. That is, if the thickness of the outer peripheral material layer is the same, the smaller the outer diameter of the honeycomb base material, the more the honeycomb structure is not damaged even when exposed to a higher temperature.

(第二発明)
本発明のハニカム構造体は、多孔質のセラミックスよりなる複数のハニカム分体と、複数のハニカム分体同士を接合する接合材層と、をもち、軸方向にのびる複数のセルをもつハニカム基材を有するハニカム構造体である。
(Second invention)
The honeycomb structure of the present invention has a plurality of honeycomb bodies made of porous ceramics and a bonding material layer for bonding the plurality of honeycomb bodies to each other, and has a plurality of cells extending in the axial direction. Is a honeycomb structure.

そして、本発明のハニカム構造体は、300〜900℃でのハニカム分体の熱膨張係数をαIII(ppm/K)、300〜900℃での接合材層の熱膨張係数をαIV(ppm/K)としたときに、αIII−αIVの値が1.0〜5.0(ppm/K)である。ここで、ハニカム分体の熱膨張係数(αIII)および接合材層の熱膨張係数(αIV)は、それぞれを構成するセラミックスの熱膨張係数である。ここで、αIIIおよびαIVの値は、300〜900℃の間の同じ温度での値である。αIII−αIVの値が1.0〜5.0(ppm/K)となることで、接合材がハニカム分体の熱膨張を規制する効果を発揮する。αIII−αIVの値が1.0(ppm/K)未満では、ハニカム分体と接合材の熱膨張係数の差が小さくなりすぎ、接合材がハニカム分体の熱膨張を規制する効果を発揮できなくなる。αIII−αIVの値が5.0(ppm/K)を超えると、ハニカム分体と接合材の熱膨張係数の差が大きくなりすぎ、高温となって熱膨張を生じた時に接合材とハニカム分体の界面で剥離を生じたり、ハニカム基材や接合材層が損傷を生じるようになる。 The honeycomb structure of the present invention has a thermal expansion coefficient of α III (ppm / K) at 300 to 900 ° C. and an α IV (ppm) thermal expansion coefficient of the bonding material layer at 300 to 900 ° C. / K), the value of α IIIIV is 1.0 to 5.0 (ppm / K). The thermal expansion coefficient of the honeycomb chromatid (alpha III) and the thermal expansion coefficient of the bonding material layer (alpha IV) is a thermal expansion coefficient of the ceramic constituting each. Here, the values of α III and α IV are values at the same temperature between 300 and 900 ° C. When the value of α IIIIV is 1.0 to 5.0 (ppm / K), the bonding material exerts an effect of regulating the thermal expansion of the honeycomb segment. If the value of α IIIIV is less than 1.0 (ppm / K), the difference between the thermal expansion coefficients of the honeycomb segment and the bonding material becomes too small, and the bonding material has the effect of regulating the thermal expansion of the honeycomb segment. Cannot be demonstrated. If the value of α IIIIV exceeds 5.0 (ppm / K), the difference between the thermal expansion coefficients of the honeycomb segment and the bonding material becomes too large, and when the thermal expansion occurs at a high temperature, Peeling occurs at the interface of the honeycomb body, and the honeycomb base material and the bonding material layer are damaged.

好ましいαIII−αIVの値は、1.0〜4.0(ppm/K)であり、より好ましいαIII−αIVの値は、1.0〜3.0(ppm/K)である。 A preferable α IIIIV value is 1.0 to 4.0 (ppm / K), and a more preferable α IIIIV value is 1.0 to 3.0 (ppm / K). .

本発明においては、ハニカム構造体が晒される温度が300〜900℃の温度領域内であるときに、熱膨張係数の差が1.0〜5.0(ppm/K)であることが好ましい。300℃未満では、ハニカム構造体がほとんど熱膨張を生じない。このため、接合材層によるハニカム基材の熱膨張を規制する効果が十分に発揮できない。また、ほとんど熱膨張を生じないため、熱膨張係数の差が十分に表れない。熱膨張係数の差が所定の範囲内となる温度範囲は、ハニカム構造体が晒される高温の温度域であればよく、300〜800℃が好ましい。   In the present invention, when the temperature at which the honeycomb structure is exposed is in the temperature range of 300 to 900 ° C., the difference in thermal expansion coefficient is preferably 1.0 to 5.0 (ppm / K). Below 300 ° C., the honeycomb structure hardly undergoes thermal expansion. For this reason, the effect which controls the thermal expansion of the honeycomb base material by a joining material layer cannot fully be exhibited. Further, since the thermal expansion hardly occurs, the difference in thermal expansion coefficient does not appear sufficiently. The temperature range in which the difference in thermal expansion coefficient falls within a predetermined range may be a high temperature range where the honeycomb structure is exposed, and is preferably 300 to 800 ° C.

本発明のハニカム構造体のハニカム分体を形成する多孔質のセラミックスは、その材質が特に限定されるものではなく、従来公知のセラミックスを用いることができる。セラミックスは、チタン酸アルミニウム、炭化珪素、窒化珪素、コーディエライトより選ばれる一種を主成分とすることが好ましい。これらのセラミックスのうち、炭化珪素を主成分とするセラミックスよりなることがより好ましい。   The material of the porous ceramic forming the honeycomb segment of the honeycomb structure of the present invention is not particularly limited, and conventionally known ceramics can be used. The ceramic is preferably mainly composed of one kind selected from aluminum titanate, silicon carbide, silicon nitride, and cordierite. Of these ceramics, it is more preferable to be made of ceramics mainly composed of silicon carbide.

セラミックス分体を接合する接合材についても、従来公知の接合材を用いることができる。この接合材としては、例えば、SiC系接合材を用いることができる。セラミックス分体を接合材で接合したときにセラミックス分体の間に形成される接合材層は、0.5〜5.0mmの厚さで形成することが好ましい。   A conventionally known bonding material can also be used as the bonding material for bonding the ceramic body. As this bonding material, for example, a SiC-based bonding material can be used. The bonding material layer formed between the ceramic bodies when the ceramic bodies are joined with the joining material is preferably formed with a thickness of 0.5 to 5.0 mm.

ここで、本発明のハニカム構造体が複数部の分体が接合されてなるときに、ハニカム構造体の隔壁の厚さ方向における接合材層の厚さが非常に小さい場合には、接合材層の影響を無視してもよい。   Here, when the honeycomb structure of the present invention is formed by joining a plurality of segments, if the thickness of the bonding material layer in the thickness direction of the partition walls of the honeycomb structure is very small, the bonding material layer You can ignore the effects of.

本発明のハニカム構造体において、ハニカム分体の外径は限定されるものではないが、接合材層の厚さが一定であればハニカム分体の外径が小さいほど耐熱衝撃性に優れたものとなる。本発明のハニカム構造体は、ハニカム分体材の熱膨張係数よりも接合材層の熱膨張係数がわずかに小さくなっている。この熱膨張係数の差により、ハニカム分体の熱膨張を規制している。ハニカム分体の熱膨張量は、ハニカム分体の外径が大きくなるほど多くなる。つまり、ハニカム分体の外径が大きくなればなるほど、熱膨張時に接合材層にかかる応力が大きくなる。接合材層の厚さが同じであれば、ハニカム分体の熱膨張を規制する応力が相対的に低くなり、ハニカム分体の熱膨張を規制できなくなる。この結果、ハニカム構造体が損傷を生じるようになっていた。対して、ハニカム分体の外径が小さくなると、熱膨張時に接合材層にかかる応力が小さくなり、ハニカム構造体が損傷を生じなくなる。熱膨張量は、ハニカム構造体の加熱温度とも関係しており、加熱温度が高くなるほど熱膨張量が大きくなる。つまり、接合材層の厚さが同じであれば、ハニカム分体の外径が小さいほど、ハニカム構造体がより高い温度に晒されても損傷を生じなくなる。   In the honeycomb structure of the present invention, the outer diameter of the honeycomb body is not limited, but if the thickness of the bonding material layer is constant, the smaller the outer diameter of the honeycomb body, the better the thermal shock resistance. It becomes. In the honeycomb structure of the present invention, the thermal expansion coefficient of the bonding material layer is slightly smaller than the thermal expansion coefficient of the honeycomb divided material. The difference in thermal expansion coefficient regulates the thermal expansion of the honeycomb segment. The amount of thermal expansion of the honeycomb body increases as the outer diameter of the honeycomb body increases. That is, the larger the outer diameter of the honeycomb segment, the greater the stress applied to the bonding material layer during thermal expansion. If the thickness of the bonding material layer is the same, the stress that regulates the thermal expansion of the honeycomb segment is relatively low, and the thermal expansion of the honeycomb segment cannot be regulated. As a result, the honeycomb structure is damaged. On the other hand, when the outer diameter of the honeycomb segment is reduced, the stress applied to the bonding material layer during thermal expansion is reduced, and the honeycomb structure is not damaged. The amount of thermal expansion is also related to the heating temperature of the honeycomb structure, and the amount of thermal expansion increases as the heating temperature increases. That is, as long as the thickness of the bonding material layer is the same, the smaller the outer diameter of the honeycomb segment, the less the honeycomb structure is damaged even when exposed to a higher temperature.

本発明のハニカム構造体は、周方向の外周面上に、0.5mm以上の厚さの外周材層を有することが好ましい。外周材層をもつことで、ハニカム構造体をDPFなどに使用したときに生じる形状変化が抑えられる。具体的には、ハニカム構造体をDPFなどの用途に使用したときに、ハニカム構造体は高熱にさらされる。そして、ハニカム構造体は、熱膨張を生じる。外周材層をもつことでこの熱膨張を抑えることができる。外周材層を構成する材質は、従来公知の材質を用いることができる。たとえば、SiC、シリカ系化合物、チタン酸アルミニウムなどのアルミナ系化合物などを用いることができる。   The honeycomb structure of the present invention preferably has an outer peripheral material layer having a thickness of 0.5 mm or more on the outer peripheral surface in the circumferential direction. By having the outer peripheral material layer, the shape change that occurs when the honeycomb structure is used for a DPF or the like can be suppressed. Specifically, when the honeycomb structure is used for applications such as DPF, the honeycomb structure is exposed to high heat. The honeycomb structure undergoes thermal expansion. This thermal expansion can be suppressed by having the outer peripheral material layer. A conventionally known material can be used as the material constituting the outer peripheral material layer. For example, SiC, silica compounds, alumina compounds such as aluminum titanate, and the like can be used.

また、外周材層は、ハニカム構造体の形状により異なるため、その厚さが一概に決定できるものではないが、たとえば、0.5mm以上の厚さで形成することが好ましい。なお、外周材層の厚さが厚くなるほど、外周材層が緩和することができるハニカム分体の熱膨張による変形量が増加することにより、ハニカム構造体の耐熱衝撃性が向上する。一般的に、外周材層は、外周材層を構成するスラリーを調製し、このスラリーをハニカム基材の外周面に塗布して形成することから、外周材層の厚さが厚くなるほどスラリーの塗布厚さが厚くなり、作業性が悪化したりコストが上昇する。このため、外周材層の好ましい厚さは0.5〜5.0mmであり、より好ましい厚さは0.5〜3.0mmであり、さらに好ましい厚さは0.5〜1.0mmである。   In addition, since the thickness of the outer peripheral material layer varies depending on the shape of the honeycomb structure, the thickness thereof cannot be determined unconditionally. Note that as the thickness of the outer peripheral material layer increases, the amount of deformation due to thermal expansion of the honeycomb body that can be relaxed by the outer peripheral material layer increases, thereby improving the thermal shock resistance of the honeycomb structure. Generally, the outer peripheral material layer is formed by preparing a slurry that constitutes the outer peripheral material layer and applying this slurry to the outer peripheral surface of the honeycomb base material. Therefore, as the thickness of the outer peripheral material layer increases, the slurry is applied. Thickness increases, workability deteriorates and costs increase. For this reason, the preferable thickness of the outer peripheral material layer is 0.5 to 5.0 mm, the more preferable thickness is 0.5 to 3.0 mm, and the further preferable thickness is 0.5 to 1.0 mm. .

本発明のハニカム構造体において、300〜900℃での外周材層の熱膨張係数をαII(ppm/K)としたときに、αIII−αIIの値が1.0〜5.0(ppm/K)であることが好ましい。αIII−αIIの値が所定の範囲内となることで、外周材層がハニカム基材の熱膨張量を規制することができ、収縮時に外周材層の収縮量を小さくすることができる。この結果、熱衝撃による外周材層へのヒビや割れの発生が抑えられる。 In the honeycomb structure of the present invention, when the thermal expansion coefficient of the outer peripheral material layer at 300 to 900 ° C. is α II (ppm / K), the value of α IIIII is 1.0 to 5.0 ( ppm / K). When the value of α IIIII falls within a predetermined range, the outer peripheral material layer can regulate the amount of thermal expansion of the honeycomb substrate, and the amount of contraction of the outer peripheral material layer can be reduced during contraction. As a result, the occurrence of cracks and cracks in the outer peripheral material layer due to thermal shock can be suppressed.

本発明の第一〜第二のハニカム構造体において、セルの形状(断面形状)は、特に限定されるものではなく、従来公知の断面形状とすることができる。従来公知のセル形状のうち、正方形状であることがより好ましい。さらに、ハニカム構造体が複数のセラミックス分体が接合材層を介して接合されてなるときに、それぞれのセラミックス分体に形成されたセルの大きさ(セル形状)は、同じであっても、異なっていても、いずれでもよい。それぞれのセラミックス分体のセルの大きさ(セル形状)は、同じであることが好ましい。   In the first to second honeycomb structures of the present invention, the cell shape (cross-sectional shape) is not particularly limited, and may be a conventionally known cross-sectional shape. Of the conventionally known cell shapes, a square shape is more preferable. Furthermore, when the honeycomb structure is formed by bonding a plurality of ceramic segments through the bonding material layer, the size of the cells (cell shape) formed in each ceramic segment is the same, It may be different or any. The size (cell shape) of each ceramic segment cell is preferably the same.

本発明の第一〜第二のハニカム構造体は、多数のセルの一方の端部または他方の端部がセラミックスよりなる封止材に封止されていることが好ましい。セルの一方の端部または他方の端部が封止材で封止されることで、ウォールフロー型のハニカム構造体を形成できる。封止材を構成するセラミックスは、その材質が特に限定されるものではなく、ハニカム構造体を構成する多孔質のセラミックスと同じ材質であっても、異なる材質であっても、いずれでもよい。より好ましくは、多孔質のセラミックスを主成分としてなるセラミックスである。   In the first to second honeycomb structures of the present invention, one end or the other end of many cells is preferably sealed with a sealing material made of ceramics. A wall flow type honeycomb structure can be formed by sealing one end or the other end of the cell with a sealing material. The material of the ceramic constituting the sealing material is not particularly limited, and may be the same as or different from the porous ceramic constituting the honeycomb structure. More preferably, the ceramic is mainly composed of porous ceramics.

本発明の第一〜第二のハニカム構造体は、DPFに用いることが好ましい。本発明のハニカム構造体は、セルを区画する隔壁を排気ガス(気体)が通過するウォールフロー型のフィルタ触媒として用いることができ、このようなフィルタ触媒のうち特に、DPFとして用いることが好ましい。   The first to second honeycomb structures of the present invention are preferably used for DPF. The honeycomb structure of the present invention can be used as a wall flow type filter catalyst in which exhaust gas (gas) passes through partition walls that partition cells, and among these filter catalysts, it is particularly preferable to use as a DPF.

本発明の第一〜第二のハニカム構造体をDPFとして用いるときに、少なくとも隔壁部の細孔表面に、アルミナ等よりなる多孔質酸化物、Pt,Pd,Rh等の触媒金属の少なくともひとつを担持したことが好ましい。これらの物質を担持したことで、DPFとしてパティキュレートなどの浄化性能が向上する。   When the first to second honeycomb structures of the present invention are used as a DPF, at least one of a porous oxide made of alumina or the like, or a catalyst metal such as Pt, Pd, or Rh is formed on at least the pore surfaces of the partition walls. It is preferably supported. By carrying these substances, purification performance such as particulates as DPF is improved.

本発明の第一〜第二のハニカム構造体は、その外周形状が特に限定されるものではなく、従来公知の形状とすることができる。たとえば、断面が真円や楕円の略円柱状、断面が方形や多角形の角柱状とすることができ、より好ましくは円柱形状である。   The outer peripheral shape of the first to second honeycomb structures of the present invention is not particularly limited, and can be a conventionally known shape. For example, the cross section may be a substantially circular or elliptical cylinder, and the cross section may be a square or polygonal prism, and more preferably a cylinder.

以下、実施例を用いて本発明を説明する。   Hereinafter, the present invention will be described using examples.

本発明の実施例として、DPF用ハニカム構造体を製造した。   As an example of the present invention, a honeycomb structure for DPF was manufactured.

(実施例1)
実施例のDPF用ハニカム構造体の製造方法を以下に示す。
Example 1
The manufacturing method of the honeycomb structure for DPF of an Example is shown below.

まず、SiCを主成分とするハニカム体2のセラミックスの原料を秤量し、この原料を十分に混合(混練)した後に、軸方向に多数のセルが形成された柱状のSiCよりなる成形体を従来公知の製造方法である押出成形で製造した。この成形体は、断面が正方形状に区画されたセルをもつ。ここで、この成形体の外周形状(見かけの形状)は、本実施例のように角柱状だけでなく、ハニカム構造体を形成したときの外周形状と略一致する外周形状に形成することができる。   First, a ceramic body of the honeycomb body 2 containing SiC as a main component is weighed, and after thoroughly mixing (kneading) the raw material, a molded body made of columnar SiC having a large number of cells formed in the axial direction is conventionally obtained. It was manufactured by extrusion molding, which is a known manufacturing method. This molded body has cells having a square section. Here, the outer peripheral shape (apparent shape) of the formed body can be formed not only in the shape of a prism as in the present embodiment, but also in the outer peripheral shape that substantially matches the outer peripheral shape when the honeycomb structure is formed. .

つづいて、固形分がほぼSiC粒子よりなるスラリーを調製した。なお、このスラリーは、粘度調整材等の添加剤を含む。そして、このスラリーを、乾燥させた成形体の両端の端部から所定のセルに注入し、80℃で乾燥させた。ここで、所定のセルとは、スラリーが注入されたセルが市松模様状をなすようにもうけられている。また、セルの一方の端部または他方の端部のみにスラリーが注入された。   Subsequently, a slurry having a solid content substantially composed of SiC particles was prepared. In addition, this slurry contains additives, such as a viscosity modifier. And this slurry was inject | poured into the predetermined | prescribed cell from the edge part of the both ends of the dried molded object, and was dried at 80 degreeC. Here, the predetermined cell is provided so that the cell into which the slurry is injected has a checkered pattern. In addition, the slurry was injected only into one end or the other end of the cell.

そして、その後の工程で成形したときに、ハニカム構造体1の外周面を区画するセルには、その両端にスラリーを注入した。   And when it shape | molded at the subsequent process, the slurry was inject | poured into the cell which divides the outer peripheral surface of the honeycomb structure 1 into the both ends.

その後、2300℃でセルにスラリーが注入された成形体を熱処理して成形体を焼成するとともにスラリーを固化させて封止材3とし、封止材3で封止されたセル(封止部)をもつハニカム体2を形成した。セルの軸方向における封止材3の長さはそれぞれ3.0mmであった。封止部が形成された状態を図1に模式的に示した。   Thereafter, the molded body in which the slurry is injected into the cell at 2300 ° C. is heat-treated to fire the molded body, and the slurry is solidified to form the sealing material 3, and the cell sealed with the sealing material 3 (sealing part) A honeycomb body 2 having the structure was formed. The length of the sealing material 3 in the axial direction of the cell was 3.0 mm. The state in which the sealing part is formed is schematically shown in FIG.

そして、このハニカム体2を電動ノコギリを用いて切削して外周形状を成形した。電動ノコギリによる切削は、図1において破線で示された線に沿って、両端部に封止材が形成されたセルが外周面を形成するφ60mmの略円柱状をなすようになされた。成形後のハニカム体2(切削体)を図2に模式的に示した。   The honeycomb body 2 was cut using an electric saw to form an outer peripheral shape. The cutting with the electric saw was made to form a substantially cylindrical shape of φ60 mm in which the cells having the sealing material formed at both ends formed the outer peripheral surface along the line indicated by the broken line in FIG. FIG. 2 schematically shows the honeycomb body 2 (cut body) after being formed.

そして、平均粒径(D50)が30μmのSiC粉末(信濃電気製錬製、商品名:GP−#400)75.50g,平均粒径(D50)が7μmの球状シリカ(電気化学工業製、商品名:FB−8S)60.40g,平均粒径(D50)が1.2μmの球状シリカ(信越石英製、商品名:SO−C5)18.12g,1.26wt%でカルボキシルメチルセルロース(CMC)を含むバインダ溶液(ダイセル化学工業製、商品名:CMCダイセル)18.12g,コロイダルシリカ(日産化学工業製、商品名:スノーテックス30)18.12g,分散材(ユニケマ製、商品名:KD−2)0.50gを秤量し、十分に混合してスラリーを調製した。調製されたスラリーは、きめ細やかな粒子をもつスラリーであり、ムースのような状態であった。このため、取り扱いを簡単に行うことができた。   And 75.50 g of SiC powder having an average particle diameter (D50) of 30 μm (manufactured by Shinano Denki Smelting Co., Ltd., trade name: GP- # 400) and spherical silica having an average particle diameter (D50) of 7 μm (commercially available from Denki Kagaku Kogyo Co. Name: FB-8S) 60.40 g, average particle diameter (D50) spherical silica (1.2 μm) (Shin-Etsu quartz, product name: SO-C5) 18.12 g, 1.26 wt% carboxymethyl cellulose (CMC) Containing binder solution (Daicel Chemical Industries, trade name: CMC Daicel) 18.12 g, colloidal silica (Nissan Chemical Industries, trade name: Snowtex 30) 18.12 g, Dispersant (Uniqema, trade name: KD-2) ) 0.50 g was weighed and mixed well to prepare a slurry. The prepared slurry was a slurry having fine particles and was in a mousse-like state. For this reason, it was easy to handle.

そして、調製されたスラリーを、切削体の外周面に最も薄い部分の厚さが1.0mmとなるように塗布し、80℃で乾燥した後に850℃で加熱してスラリーを固化させた。これにより、外周面上に外周材層4が形成できた。また、調製されたスラリーの塗布を簡単に行うことができた。   And the prepared slurry was apply | coated so that the thickness of the thinnest part might be set to 1.0 mm on the outer peripheral surface of a cutting body, and it dried at 80 degreeC, Then, it heated at 850 degreeC and solidified the slurry. Thereby, the outer peripheral material layer 4 was able to be formed on the outer peripheral surface. Moreover, the prepared slurry could be easily applied.

以上により、本実施例のハニカム構造体1を製造することができた。本実施例のハニカム構造体を図3〜5に示した。なお、図3はハニカム構造体1の端面を、図4はハニカム構造体1の端面の周縁部近傍を、図5はハニカム構造体1の軸方向での断面を、それぞれ示した。   As described above, the honeycomb structure 1 of this example could be manufactured. The honeycomb structure of the present example is shown in FIGS. 3 shows the end face of the honeycomb structure 1, FIG. 4 shows the vicinity of the peripheral edge of the end face of the honeycomb structure 1, and FIG. 5 shows the cross section of the honeycomb structure 1 in the axial direction.

図に示したように、本実施例のハニカム構造体1は、軸方向にのびる多数のセルを備えた多孔質のSiCセラミックスよりなるハニカム基材2と、多数のセルのうち所定のセルの一方の端部または他方の端部に充填された封止材3と、隔壁部の周方向の外周面上に形成された外周材層4と、を備えた構成を有している。なお、本実施例のハニカム構造体1のハニカム体2は、外径:61.0mm、軸方向長さ:150mmの略円柱状に形成されている。   As shown in the figure, a honeycomb structure 1 of the present example includes a honeycomb substrate 2 made of porous SiC ceramics having a large number of cells extending in the axial direction, and one of predetermined cells among the large number of cells. The sealing material 3 filled in one end portion or the other end portion and the outer peripheral material layer 4 formed on the outer peripheral surface in the circumferential direction of the partition wall portion are provided. Note that the honeycomb body 2 of the honeycomb structure 1 of the present example is formed in a substantially cylindrical shape having an outer diameter of 61.0 mm and an axial length of 150 mm.

(比較例1)
外周材層4を形成するためのスラリーを、SiCを主成分とするスラリー(テルニック工業株式会社製、商品名:BETACK1566)とした以外は、実施例1と同様にしてハニカム構造体を製造した。
(Comparative Example 1)
A honeycomb structure was manufactured in the same manner as in Example 1, except that the slurry for forming the outer peripheral material layer 4 was a slurry containing SiC as a main component (trade name: BETACK 1566, manufactured by Telnic Industry Co., Ltd.).

(比較例2)
外周材層4を形成するためのスラリーを、平均粒径(D50)が20μmのSiC粉末(上記の商品名:GP−#400)75.50g,平均粒径(D50)が7μmの球状シリカ(上記の商品名:FB−8S)60.40g,平均粒径(D50)が1.2μmの球状シリカ(上記の商品名:SO−C5)18.12g,平均粒径(D50)が30μmのフェノール樹脂(群栄化学工業製、商品名:マリリン MC−043)9.54g,1.26wt%でCMCを含むバインダ溶液(上記の商品名:CMCダイセル)18.12g,コロイダルシリカ(上記の商品名:スノーテックスN)18.12g,分散材(サンノプコ製、商品名:SNディスパーサント5468)0.50gを秤量し、10.00gの水に混合して調製されたスラリーとした以外は、実施例1と同様にしてハニカム構造体を製造した。
(Comparative Example 2)
The slurry for forming the outer peripheral material layer 4 is 75.50 g of SiC powder (the above-mentioned trade name: GP- # 400) having an average particle diameter (D50) of 20 μm and spherical silica having an average particle diameter (D50) of 7 μm ( The above-mentioned product name: FB-8S) 60.40 g, the average particle size (D50) is 1.2 μm spherical silica (the above-mentioned product name: SO-C5) 18.12 g, the average particle size (D50) phenol is 30 μm Resin (manufactured by Gunei Chemical Industry Co., Ltd., trade name: Marilyn MC-043) 9.54 g, binder solution containing CMC at 1.26 wt% (above trade name: CMC Daicel) 18.12 g, colloidal silica (above trade name : Snowtex N) 18.12 g, 0.50 g of a dispersion material (manufactured by San Nopco, trade name: SN Dispersant 5468), and a slurry prepared by mixing with 10.00 g of water Other than the can, to manufacture a honeycomb structure in the same manner as in Example 1.

本比較例のハニカム構造体は、外周材層4の表面に粉立ちが確認できた。   In the honeycomb structure of this comparative example, powdering was confirmed on the surface of the outer peripheral material layer 4.

(評価)
実施例1および比較例1〜2のハニカム構造体1の評価として、それぞれのハニカム構造体にヒートショック試験を施した。具体的な試験方法を以下に示す。
(Evaluation)
As an evaluation of the honeycomb structures 1 of Example 1 and Comparative Examples 1 and 2, each honeycomb structure was subjected to a heat shock test. Specific test methods are shown below.

まず、内部の温度を調節できる加熱炉を準備し、炉内温度を600〜950℃の範囲内の所定の温度(50℃ごとの温度)に加熱し保持する。炉内温度が所定の温度に保持されたことが確認できたら、試験が施されるハニカム構造体を炉内に配置し、20分間保持する。   First, a heating furnace capable of adjusting the internal temperature is prepared, and the furnace temperature is heated to a predetermined temperature within the range of 600 to 950 ° C. (temperature every 50 ° C.) and held. When it is confirmed that the furnace temperature is maintained at a predetermined temperature, the honeycomb structure to be tested is placed in the furnace and held for 20 minutes.

20分間保持した後に、炉内からハニカム構造体を取り出し、室温下で保持して急冷した。   After holding for 20 minutes, the honeycomb structure was taken out from the furnace, held at room temperature, and rapidly cooled.

放熱(急冷)時には、ハニカム構造体の温度が十分に低下するまでその外周を観察した。観察結果を表1に示した。表1においては、外周材層4にひび割れが確認できない場合には○で、外周材層4にひび割れが確認できた場合には×で示した。   At the time of heat dissipation (rapid cooling), the outer periphery was observed until the temperature of the honeycomb structure was sufficiently lowered. The observation results are shown in Table 1. In Table 1, when the crack was not confirmed in the outer peripheral material layer 4, it was indicated by ◯, and when the crack was confirmed in the outer peripheral material layer 4, it was indicated by ×.

また、ハニカム構造体1のそれぞれの加熱温度でハニカム基材2と外周材層の熱膨張係数を測定し、測定結果を図6に示した。図6においては、ハニカム基材2の熱膨張係数と、実施例及び比較例のそれぞれの外周材層の熱膨張係数を示した。   Further, the thermal expansion coefficients of the honeycomb substrate 2 and the outer peripheral material layer were measured at the respective heating temperatures of the honeycomb structure 1, and the measurement results are shown in FIG. In FIG. 6, the thermal expansion coefficient of the honeycomb base material 2 and the thermal expansion coefficients of the respective outer peripheral material layers of the example and the comparative example are shown.

Figure 2008254947
Figure 2008254947

表1に示したように、各比較例のハニカム構造体は、800℃まで加熱したときに外周材層にひび割れが発生していた。各比較例のハニカム構造体は、図6に示したように、外周材層の熱膨張係数がハニカム基材の熱膨張係数と同等以上である。このため、ハニカム構造体が加熱されてハニカム基材及び外周材層が熱膨張を生じるときには、大きな熱膨張量で膨張する。そして、冷却時に収縮するときには収縮量が大きくなっており、外周材層にかかる引っ張り応力が大きくなる。この結果、外周材層にひび割れが発生する。   As shown in Table 1, the honeycomb structure of each comparative example had cracks in the outer peripheral material layer when heated to 800 ° C. As shown in FIG. 6, the honeycomb structure of each comparative example has a thermal expansion coefficient of the outer peripheral material layer equal to or higher than that of the honeycomb base material. For this reason, when the honeycomb structure is heated to cause thermal expansion of the honeycomb base material and the outer peripheral material layer, the honeycomb structure expands with a large thermal expansion amount. And when shrinking at the time of cooling, the amount of shrinkage becomes large, and the tensile stress concerning an outer peripheral material layer becomes large. As a result, cracks occur in the outer peripheral material layer.

これに対し、実施例1のハニカム構造体は、800℃まで加熱しても外周材層にひび割れが発生しなかった。実施例1のハニカム構造体は、図6に示したように、300〜900℃でのハニカム基材2の熱膨張係数(α)と外周材層4の熱膨張係数(αII)の差の値(α−αIIの値)がおよそ1.0〜2.5(ppm/K)の範囲内であるため、外周材層4によりハニカム基材2の熱膨張が規制され、この結果、収縮時に外周材層4が収縮する量が小さくなり、外周材層4に加わる引っ張り応力が小さくなり、外周材層4のひび割れが生じなくなった。 On the other hand, the honeycomb structure of Example 1 was not cracked in the outer peripheral material layer even when heated to 800 ° C. The honeycomb structure of Example 1, as shown in FIG. 6, the difference in the thermal expansion coefficient of the honeycomb substrate 2 at 300~900 ℃ (α I) between the thermal expansion coefficient of the outer peripheral material layer 4 (alpha II) Value (value of α III ) is in the range of about 1.0 to 2.5 (ppm / K), and therefore, the thermal expansion of the honeycomb base material 2 is regulated by the outer peripheral material layer 4. The amount of contraction of the outer peripheral material layer 4 at the time of contraction was reduced, the tensile stress applied to the outer peripheral material layer 4 was reduced, and the outer peripheral material layer 4 was not cracked.

上記したように、実施例1のハニカム構造体は、比較例のハニカム構造体よりも耐熱衝撃性に優れたハニカム構造体となっている。すなわち、ハニカム構造体1を構成するハニカム基材2と外周材層4の熱膨張係数を調節することで、耐熱衝撃性に優れたハニカム構造体となることがわかる。   As described above, the honeycomb structure of Example 1 is a honeycomb structure having better thermal shock resistance than the honeycomb structure of the comparative example. That is, it can be seen that by adjusting the thermal expansion coefficients of the honeycomb substrate 2 and the outer peripheral material layer 4 constituting the honeycomb structure 1, a honeycomb structure having excellent thermal shock resistance can be obtained.

また、本実施例においては、外周材層4の厚さを1.0mmとしているが、この外周材層4の厚さを1.0mmより厚くすると、800℃以上に加熱しても外周材層にひび割れが発生しにくくなる。   In this embodiment, the thickness of the outer peripheral material layer 4 is 1.0 mm. However, if the thickness of the outer peripheral material layer 4 is greater than 1.0 mm, the outer peripheral material layer 4 is heated to 800 ° C. or higher. Cracks are less likely to occur.

(実施例2)
ハニカム体2をφ40mmの略円柱状とした以外は、実施例1と同様にしてハニカム構造体を製造した。
(Example 2)
A honeycomb structure was manufactured in the same manner as in Example 1 except that the honeycomb body 2 was substantially cylindrical with a diameter of 40 mm.

(実施例3)
外周材層4の厚さを5mmとした以外は、実施例1と同様にしてハニカム構造体を製造した。
(Example 3)
A honeycomb structure was manufactured in the same manner as in Example 1 except that the thickness of the outer peripheral material layer 4 was changed to 5 mm.

(評価)
実施例2〜3のハニカム構造体に実施例1の時と同様なヒートショック試験を施した。試験結果を表1に併せて示した。
(Evaluation)
A heat shock test similar to that in Example 1 was performed on the honeycomb structures of Examples 2 to 3. The test results are also shown in Table 1.

表1に示したように、実施例2のハニカム構造体は、850℃に加熱しても外周材層にひび割れが確認されなかった。実施例2のハニカム構造体はハニカム体の外径が小さいため、加熱されたときのハニカム体の熱膨張量が小さくなっている。ハニカム体の熱膨張量が小さいうちは、外周材層がハニカム体の熱膨張を規制できる。加熱温度が過剰に大きくなると(850℃を超えると)、ハニカム体の熱膨張量が過剰に大きくなり、外周材層がハニカム体の熱膨張を規制できなくなる。つまり、本実施例のハニカム構造体のように、ハニカム体の外径が小さくなると、耐熱衝撃性が高くなることがわかる。   As shown in Table 1, the honeycomb structure of Example 2 was not cracked in the outer peripheral material layer even when heated to 850 ° C. Since the honeycomb structure of Example 2 has a small outer diameter, the amount of thermal expansion of the honeycomb body when heated is small. While the amount of thermal expansion of the honeycomb body is small, the outer peripheral material layer can regulate the thermal expansion of the honeycomb body. When the heating temperature becomes excessively large (above 850 ° C.), the amount of thermal expansion of the honeycomb body becomes excessively large, and the outer peripheral material layer cannot regulate the thermal expansion of the honeycomb body. That is, it can be seen that the thermal shock resistance increases as the outer diameter of the honeycomb body decreases as in the honeycomb structure of the present example.

実施例3のハニカム構造体は、950℃に加熱しても外周材層にひび割れが確認されなかった。実施例3のハニカム構造体は、5mmとかなり厚い外周材層を有しており、ハニカム体の熱膨張から受ける応力に対する能力が高くなっている。つまり、外周材層の厚さが十分に厚く形成されたことで、ハニカム体の熱膨張量がかなり大きくなってもその熱膨張を規制できる。本実施例のハニカム構造体は、ハニカム体の熱膨張量がかなり大きくなる高温(ハニカム体をDPFなどに使用したときに晒される温度域よりも高い温度域)においても、ハニカムの熱膨張を抑えることができたことから、耐熱衝撃性に優れたことがわかる。   The honeycomb structure of Example 3 was not cracked in the outer peripheral material layer even when heated to 950 ° C. The honeycomb structure of Example 3 has a considerably thick outer peripheral material layer of 5 mm, and has a high ability to the stress received from the thermal expansion of the honeycomb body. That is, by forming the outer peripheral material layer sufficiently thick, the thermal expansion can be regulated even if the thermal expansion amount of the honeycomb body becomes considerably large. The honeycomb structure of the present example suppresses the thermal expansion of the honeycomb even at a high temperature (a temperature range higher than a temperature range exposed when the honeycomb body is used for a DPF or the like) at which the amount of thermal expansion of the honeycomb body becomes considerably large. It was found that the thermal shock resistance was excellent.

(実施例4)
実施例4のDPF用ハニカム構造体の製造方法を以下に示す。
Example 4
A method for manufacturing the DPF honeycomb structure of Example 4 will be described below.

まず、実施例1のハニカム体の製造と同様の方法でハニカム分体5を製造した。このハニカム分体5は、接合材層6により軸方向に垂直な断面での断面積が実施例1のハニカム体よりも小さい(区画されたセル数が少ない)こと以外は、実施例1のハニカム体2と同様な構成である。製造されたハニカム分体5は、セル中に封止材3よりなる封止部が形成されている。ハニカム分体5を図6に示した。なお、図7においては、封止材3は省略した。   First, the honeycomb segment 5 was manufactured by the same method as that for manufacturing the honeycomb body of Example 1. The honeycomb segment 5 is the honeycomb of Example 1 except that the bonding material layer 6 has a smaller cross-sectional area in the cross section perpendicular to the axial direction than the honeycomb body of Example 1 (the number of partitioned cells is small). The configuration is the same as that of the body 2. In the manufactured honeycomb body 5, a sealing portion made of the sealing material 3 is formed in a cell. The honeycomb segment 5 is shown in FIG. In FIG. 7, the sealing material 3 is omitted.

そして、実施例1において外周材層を形成するために調製したスラリーと同様のスラリーを調製した。調製されたスラリーを接合材として用いて、ハニカム分体5同士を接合した。接合材による接合は、厚さが1.0±0.5mmとなるように接合材をハニカム分体5の外周面に塗布した後、別のハニカム分体5をこの面にすりあわせて接合した。この接合を繰り返して、断面が正方形をなすように16個のハニカム分体5を接合し、80℃で乾燥した。ハニカム分体5の接合体の端面を図8に示した。   And the slurry similar to the slurry prepared in order to form an outer periphery material layer in Example 1 was prepared. Using the prepared slurry as a bonding material, the honeycomb bodies 5 were bonded to each other. In the bonding with the bonding material, the bonding material was applied to the outer peripheral surface of the honeycomb body 5 so as to have a thickness of 1.0 ± 0.5 mm, and then another honeycomb body 5 was bonded to the surface. . This joining was repeated, and the 16 honeycomb bodies 5 were joined so that the cross section was a square, and dried at 80 ° C. The end face of the joined body of the honeycomb body 5 is shown in FIG.

そして、この接合体を電動ノコギリを用いて切削して外周形状を成形した。電動ノコギリによる切削は、両端部に封止材が形成されたセルが外周面を形成する略円柱状をなすようになされた。この切削時に、封止材のセルからの剥離がみられなかった。   Then, this joined body was cut using an electric saw to form an outer peripheral shape. Cutting with an electric saw was made so that a cell having a sealing material formed at both ends formed a substantially cylindrical shape forming an outer peripheral surface. During this cutting, no peeling of the sealing material from the cell was observed.

そして、実施例1の時と同様なスラリーを調製し、成形体の外周面に0.5mmの厚さで塗布し、80℃で乾燥した後に850℃で加熱して接合材およびスラリーを固化させた。これにより、外周面上に外周材層4が形成できた。   Then, a slurry similar to that in Example 1 was prepared, applied to the outer peripheral surface of the molded body with a thickness of 0.5 mm, dried at 80 ° C., and then heated at 850 ° C. to solidify the bonding material and the slurry. It was. Thereby, the outer peripheral material layer 4 was able to be formed on the outer peripheral surface.

以上により、本実施例のハニカム構造体1を製造することができた。本実施例のハニカム構造体をその端面で図9に示した。本実施例のハニカム構造体の製造において調製されたスラリーの取り扱いは上記したように容易に行うことができる、本実施例のハニカム構造体の製造は簡単に行うことができた。   As described above, the honeycomb structure 1 of this example could be manufactured. The honeycomb structure of the present example is shown in FIG. The handling of the slurry prepared in the manufacture of the honeycomb structure of the present example can be easily performed as described above, and the manufacture of the honeycomb structure of the present example can be easily performed.

図に示したように、本実施例のハニカム構造体1は、複数の多孔質のSiCセラミックスよりなるハニカム分体5が接合材層6を介して接合されてなるハニカム構造体と、多数のセルのうち所定のセルの一方の端部または他方の端部に充填された封止材3と、隔壁部の周方向の外周面上に形成された外周材層4と、を備えた構成を有している。   As shown in the figure, the honeycomb structure 1 of the present example is composed of a honeycomb structure in which a plurality of honeycomb bodies 5 made of porous SiC ceramics are bonded via a bonding material layer 6, and a large number of cells. And a sealing material 3 filled in one end or the other end of a predetermined cell, and an outer peripheral material layer 4 formed on the outer peripheral surface in the circumferential direction of the partition wall. is doing.

(比較例3)
外周材層4および接合材層6を形成するためのスラリーを、比較例1の外周材層4を形成するためのスラリーと同じスラリーとした以外は、実施例2と同様にしてハニカム構造体を製造した。
(Comparative Example 3)
A honeycomb structure was prepared in the same manner as in Example 2 except that the slurry for forming the outer peripheral material layer 4 and the bonding material layer 6 was the same as the slurry for forming the outer peripheral material layer 4 of Comparative Example 1. Manufactured.

(比較例4)
外周材層4および接合材層6を形成するためのスラリーを、比較例2の外周材層4を形成するためのスラリーと同じスラリーとした以外は、実施例2と同様にしてハニカム構造体を製造した。
(Comparative Example 4)
The honeycomb structure was formed in the same manner as in Example 2 except that the slurry for forming the outer peripheral material layer 4 and the bonding material layer 6 was the same as the slurry for forming the outer peripheral material layer 4 of Comparative Example 2. Manufactured.

(評価)
実施例4および比較例3〜4のハニカム構造体1の評価として、実施例1の時と同様なヒートショック試験を施した。なお、ヒートショック試験は、600〜850℃の範囲内の所定の温度に加熱して行われた。試験結果を表2に示した。
(Evaluation)
As an evaluation of the honeycomb structures 1 of Example 4 and Comparative Examples 3 to 4, the same heat shock test as that of Example 1 was performed. The heat shock test was performed by heating to a predetermined temperature within a range of 600 to 850 ° C. The test results are shown in Table 2.

Figure 2008254947
Figure 2008254947

表2に示したように、比較例3〜4のハニカム構造体は、750℃まで加熱したときに外周材層にひび割れが発生していた。各比較例のハニカム構造体は、外周材層の熱膨張係数がハニカム分体の熱膨張係数と同等以上である。実施例4および比較例3〜4に用いたハニカム分体5および接合材層6を構成する材質は実施例1および比較例1〜2と同じ材質であることから、それぞれは図6に示した熱膨張係数をもつことが明らかである。   As shown in Table 2, the honeycomb structures of Comparative Examples 3 to 4 were cracked in the outer peripheral material layer when heated to 750 ° C. In each of the honeycomb structures of the comparative examples, the thermal expansion coefficient of the outer peripheral material layer is equal to or greater than the thermal expansion coefficient of the honeycomb segment. Since the materials constituting the honeycomb segment 5 and the bonding material layer 6 used in Example 4 and Comparative Examples 3 to 4 are the same as those in Example 1 and Comparative Examples 1 and 2, each is shown in FIG. It is clear that it has a thermal expansion coefficient.

そして、比較例3〜4のハニカム構造体は、ハニカム構造体1が加熱されてハニカム分体5及び接合材層6が熱膨張を生じるときには、大きな熱膨張量で膨張する。そして、冷却時に収縮するときには収縮量が大きくなっており、外周材層にかかる引っ張り応力が大きくなる。この結果、外周材層にひび割れが発生する。   The honeycomb structures of Comparative Examples 3 to 4 expand with a large amount of thermal expansion when the honeycomb structure 1 is heated and the honeycomb segment 5 and the bonding material layer 6 cause thermal expansion. And when shrinking at the time of cooling, the amount of shrinkage becomes large, and the tensile stress concerning an outer peripheral material layer becomes large. As a result, cracks occur in the outer peripheral material layer.

これに対し、実施例4のハニカム構造体は、750℃まで加熱しても外周材層にひび割れが発生しなかった。実施例2のハニカム構造体は、図6に示したように、300〜900℃でのハニカム分体5の熱膨張係数(αIII)と接合材層6の熱膨張係数(αIV)の差の値(αIII−αIVの値)がおよそ1.0〜2.5(ppm/K)の範囲内であるため、接合材層6によりハニカム分体5の熱膨張が規制されており、ハニカム構造体1全体の熱膨張量が小さくなっている。つまり、熱膨張時に外周材層4の熱膨張量が抑えられており、収縮時に外周材層4が収縮する量が小さくなり、外周材層4に加わる引っ張り応力が小さくなり、外周材層4のひび割れが生じなくなった。 On the other hand, the honeycomb structure of Example 4 was not cracked in the outer peripheral material layer even when heated to 750 ° C. The honeycomb structure of Example 2, as shown in FIG. 6, the difference in the thermal expansion coefficient of the honeycomb chromatid 5 at 300~900 ℃ (α III) and the thermal expansion coefficient of the bonding material layer 6 (alpha IV) for the value (the value of α IIIIV) is in the range of approximately 1.0 to 2.5 (ppm / K), the thermal expansion of the honeycomb chromatid 5 are restricted by the bonding material layer 6, The amount of thermal expansion of the entire honeycomb structure 1 is small. That is, the amount of thermal expansion of the outer peripheral material layer 4 during thermal expansion is suppressed, the amount of contraction of the outer peripheral material layer 4 during contraction is reduced, the tensile stress applied to the outer peripheral material layer 4 is reduced, and the outer peripheral material layer 4 No more cracks.

上記したように、実施例4のハニカム構造体は、比較例3〜4のハニカム構造体よりも耐熱衝撃性に優れたハニカム構造体となっている。すなわち、ハニカム構造体1を構成するハニカム分体5と接合材層6の熱膨張係数を調節することで、耐熱衝撃性に優れたハニカム構造体となることがわかる。   As described above, the honeycomb structure of Example 4 is a honeycomb structure having better thermal shock resistance than the honeycomb structures of Comparative Examples 3 to 4. That is, it can be seen that the honeycomb structure having excellent thermal shock resistance can be obtained by adjusting the thermal expansion coefficients of the honeycomb segment 5 and the bonding material layer 6 constituting the honeycomb structure 1.

また、本実施例においては、接合材層6の厚さを1.0mmとしているが、この接合材層6の厚さを1.0mmより厚くすると、700℃以上に加熱しても外周材層にひび割れが発生しにくくなる。   In this embodiment, the thickness of the bonding material layer 6 is 1.0 mm. However, if the thickness of the bonding material layer 6 is greater than 1.0 mm, the outer peripheral material layer is heated even when heated to 700 ° C. or higher. Cracks are less likely to occur.

実施例1のハニカム構造体に用いられるハニカム体を示した図である。1 is a view showing a honeycomb body used for a honeycomb structure of Example 1. FIG. 実施例1のハニカム体の切削体を示した図である。1 is a view showing a cut body of a honeycomb body of Example 1. FIG. 実施例1のハニカム構造体の端面を示した図である。3 is a view showing an end face of a honeycomb structure of Example 1. FIG. 実施例1のハニカム構造体の端面の周縁部近傍を示した図である。3 is a view showing the vicinity of the peripheral edge portion of the end face of the honeycomb structure of Example 1. FIG. 実施例1のハニカム構造体の軸方向の断面を示した図である。3 is a view showing a cross section in the axial direction of a honeycomb structure of Example 1. FIG. 実施例1および比較例1〜2のハニカム構造体の熱膨張係数の差(α−αII)を示した図である。It is the figure which showed the difference ((alpha) I- (alpha) II ) of the thermal expansion coefficient of the honeycomb structure of Example 1 and Comparative Examples 1-2. 実施例4のハニカム構造体に用いられるハニカム分体を示した図である。FIG. 6 is a view showing a honeycomb segment used in the honeycomb structure of Example 4. 実施例4のハニカム分体の接合体の端面を示した図である。6 is a view showing an end face of a joined body of honeycomb bodies of Example 4. FIG. 実施例4のハニカム構造体の端面を示した図である。6 is a view showing an end face of a honeycomb structure of Example 4. FIG.

符号の説明Explanation of symbols

1:ハニカム構造体
2:ハニカム体
3:封止材
4:外周材層
5:ハニカム分体
6:接合材層
1: Honeycomb structure 2: Honeycomb body 3: Sealing material 4: Peripheral material layer 5: Honeycomb segment 6: Bonding material layer

Claims (4)

多孔質のセラミックスよりなり、軸方向にのびる複数のセルをもつハニカム基材と、
該ハニカム基材の周方向の外周面を被覆したセラミックスよりなる外周材層と、
を有するハニカム構造体であって、
300〜900℃での該ハニカム基材の熱膨張係数をα(ppm/K)、300〜900℃での該外周材層の熱膨張係数をαII(ppm/K)としたときに、α−αIIの値が1.0〜5.0(ppm/K)であることを特徴とするハニカム構造体。
A honeycomb substrate made of porous ceramics and having a plurality of cells extending in the axial direction;
An outer peripheral material layer made of ceramics covering the outer peripheral surface of the honeycomb substrate in the circumferential direction;
A honeycomb structure having
When the thermal expansion coefficient of the honeycomb substrate at 300 to 900 ° C. is α I (ppm / K) and the thermal expansion coefficient of the outer peripheral material layer at 300 to 900 ° C. is α II (ppm / K), A honeycomb structure having a value of α III of 1.0 to 5.0 (ppm / K).
前記多孔質のセラミックスは、炭化珪素を主成分とする請求項1記載のハニカム構造体。   The honeycomb structure according to claim 1, wherein the porous ceramic is mainly composed of silicon carbide. 多孔質のセラミックスよりなる複数のハニカム分体と、
複数の該ハニカム分体同士を接合する接合材層と、
をもち、軸方向にのびる複数のセルをもつハニカム基材を有するハニカム構造体であって、
300〜900℃での該ハニカム分体の熱膨張係数をαIII(ppm/K)、300〜900℃での該接合材層の熱膨張係数をαIV(ppm/K)としたときに、αIII−αIVの値が1.0〜5.0(ppm/K)であることを特徴とするハニカム構造体。
A plurality of honeycomb bodies made of porous ceramics;
A bonding material layer for bonding the honeycomb bodies to each other;
A honeycomb structure having a honeycomb substrate having a plurality of cells extending in the axial direction,
When the thermal expansion coefficient of the honeycomb segment at 300 to 900 ° C. is α III (ppm / K) and the thermal expansion coefficient of the bonding material layer at 300 to 900 ° C. is α IV (ppm / K), A honeycomb structure having a value of α IIIIV of 1.0 to 5.0 (ppm / K).
前記多孔質のセラミックスは、炭化珪素を主成分とする請求項3記載のハニカム構造体。   The honeycomb structure according to claim 3, wherein the porous ceramic is mainly composed of silicon carbide.
JP2007096661A 2007-04-02 2007-04-02 Honeycomb structure Pending JP2008254947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007096661A JP2008254947A (en) 2007-04-02 2007-04-02 Honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007096661A JP2008254947A (en) 2007-04-02 2007-04-02 Honeycomb structure

Publications (1)

Publication Number Publication Date
JP2008254947A true JP2008254947A (en) 2008-10-23

Family

ID=39978902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007096661A Pending JP2008254947A (en) 2007-04-02 2007-04-02 Honeycomb structure

Country Status (1)

Country Link
JP (1) JP2008254947A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048594A (en) * 2016-09-21 2018-03-29 いすゞ自動車株式会社 Particulate filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129044A (en) * 1980-03-14 1981-10-08 Ngk Insulators Ltd Thermal shock resistant ceramic honeycomb structure
WO2003067041A1 (en) * 2002-02-05 2003-08-14 Ibiden Co., Ltd. Honeycomb filter for exhaust gas decontamination, adhesive, coating material and process for producing honeycomb filter for exhaust gas decontamination

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129044A (en) * 1980-03-14 1981-10-08 Ngk Insulators Ltd Thermal shock resistant ceramic honeycomb structure
WO2003067041A1 (en) * 2002-02-05 2003-08-14 Ibiden Co., Ltd. Honeycomb filter for exhaust gas decontamination, adhesive, coating material and process for producing honeycomb filter for exhaust gas decontamination

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048594A (en) * 2016-09-21 2018-03-29 いすゞ自動車株式会社 Particulate filter

Similar Documents

Publication Publication Date Title
KR100595769B1 (en) Honeycomb Structure
JP4870559B2 (en) Honeycomb structure
JP5805039B2 (en) Honeycomb structure
WO2003084640A1 (en) Honeycomb filter for clarification of exhaust gas
WO2005026074A1 (en) Sintered ceramic compact and ceramic filter
JP2005154202A (en) Honeycomb structure, its production method, and joining material
JP5469337B2 (en) Honeycomb structure
JP5103378B2 (en) Honeycomb structure
JP2017200673A (en) Mesh sealing honeycomb structure, and method for forming mesh sealing honeycomb structure
CN107489493A (en) Amplifier case
JP4997064B2 (en) Bonding material composition and method for producing the same, joined body and method for producing the same
JP2008179526A (en) Joined article and method for manufacturing the same
JP2008043852A (en) Ceramics filter
JP4402732B1 (en) Honeycomb structure
JP5149032B2 (en) Honeycomb structure
JP5190878B2 (en) Honeycomb structure
JP2008043850A (en) Honeycomb structure
JP2008100408A (en) Ceramic honeycomb structure
JP2008254947A (en) Honeycomb structure
JP5690046B2 (en) Ceramic honeycomb structure
JP2008137872A (en) Honeycomb structure
JP6358617B2 (en) Honeycomb structure
JP2008136981A (en) Honeycomb structure
JP2013144640A (en) Honeycomb structure
JP5260133B2 (en) Manufacturing method of SiC ceramics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120920