[go: up one dir, main page]

JP2008251321A - Inorganic electroluminescent element, and illumination device equipped with this - Google Patents

Inorganic electroluminescent element, and illumination device equipped with this Download PDF

Info

Publication number
JP2008251321A
JP2008251321A JP2007090530A JP2007090530A JP2008251321A JP 2008251321 A JP2008251321 A JP 2008251321A JP 2007090530 A JP2007090530 A JP 2007090530A JP 2007090530 A JP2007090530 A JP 2007090530A JP 2008251321 A JP2008251321 A JP 2008251321A
Authority
JP
Japan
Prior art keywords
insulating layer
inorganic
dielectric
organic binder
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007090530A
Other languages
Japanese (ja)
Inventor
Mikiya Matsuura
幹也 松浦
Isamu Okamoto
勇 岡本
Kazuhiko Maekawa
一彦 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Luminas Co Ltd
Original Assignee
Kuraray Luminas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Luminas Co Ltd filed Critical Kuraray Luminas Co Ltd
Priority to JP2007090530A priority Critical patent/JP2008251321A/en
Publication of JP2008251321A publication Critical patent/JP2008251321A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inorganic EL element having high productivity, capable of easily forming a film and enhancing light emission brightness, and also provide an illumination device equipped with this inorganic EL element useful for many uses and having high illumination quality. <P>SOLUTION: By providing a high dielectric buffer layer (second insulating layer) between an insulating layer and a light-emitting layer, adhesiveness between the insulating layer and the light-emitting layer can be enhanced largely, and the light emission brightness can be elevated. In other words, the EL element has the rear electrode, the insulating layer, the light-emitting layer, and a transparent electrode sequentially laminated. The insulating layer includes a first insulating layer not containing an organic binder and the second insulating layer containing the organic binder, and the light-emitting layer is laminated on the second insulating layer, thus the inorganic EL element is provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、無機EL素子と、これを備えることを特徴とする照明装置に関する。   The present invention relates to an inorganic EL element and a lighting device including the inorganic EL element.

無機EL素子は、高精細、高コントラスト、応答速度が速いといった特徴から液晶ディスプレイ用バックライト、各種インテリア用照明、車載用表示装置等への応用が期待されている。無機EL素子には素子を蒸着等の手段で通常数μmの厚さに形成する薄膜型EL素子と、スクリーン印刷等の手段で通常数10 μmの厚さに形成する分散型EL素子がある。   Inorganic EL elements are expected to be applied to backlights for liquid crystal displays, various interior lighting, in-vehicle display devices and the like because of their high definition, high contrast, and high response speed. Inorganic EL elements include a thin film type EL element in which the element is usually formed to a thickness of several μm by means such as vapor deposition, and a distributed EL element in which the element is usually formed to a thickness of several tens of μm by means of screen printing or the like.

薄膜型EL素子として1974年に猪口らによって2重絶縁構造の素子が提案された。本素子は、高い輝度と長寿命を持つことが示され、車載用ディスプレイ等へと実用化された。また、2重絶縁構造を構成する一方の絶縁層に厚膜誘電体層を用いた無機ELが知られている(例えば特許文献1)。この無機EL素子では、製造工程のコンタミ等によって形成されるピンホールに起因した駆動時の絶縁破壊を減らすことができる。また、厚膜誘電体層を用いることで絶縁層の誘電率を高め、これにより絶縁層への印加電圧の分割分を少なくすることができ、駆動電圧を低下させると共に発光輝度を高めることができる。   In 1974, Higuchi et al. Proposed a double-insulated device as a thin-film EL device. This element has been shown to have high brightness and long life, and has been put to practical use as an in-vehicle display. In addition, an inorganic EL using a thick dielectric layer as one insulating layer constituting a double insulating structure is known (for example, Patent Document 1). In this inorganic EL element, it is possible to reduce dielectric breakdown during driving caused by a pinhole formed due to contamination in the manufacturing process. Further, by using a thick dielectric layer, the dielectric constant of the insulating layer can be increased, thereby reducing the division of the voltage applied to the insulating layer, reducing the drive voltage and increasing the light emission luminance. .

一方、分散型無機EL素子は、通常PET(ポリエチレンテレフタレート)等からなる基材の片面に、ITO(酸化インジウム)等からなる透明導電層を形成した透明電極と、有機バインダー中に蛍光体微粒子を分散してなる発光層と、有機バインダー中に誘電体微粒子を分散してなる絶縁層と、アルミニウムや銀等からなる背面電極を順次積層して構成されており、さらに防湿、耐久性向上を目的とした表面保護層が設けられている。近年、分散型EL素子の絶縁層として厚膜誘電体層を用いた報告がなされている(例えば特許文献2)。図1において、具体的には、PbNbOやBaTiO、SrTiO、PbTiO、(Sr,Ca)TiOなどのペーストを用い、背面電極2の上にスクリーン印刷にて絶縁層3として形成、焼成する焼成セラミックス材料が用いられ、その絶縁層3上に分散型発光層4をスクリーン印刷法にて形成、乾燥させるものである。
特開昭61-230296号公報 特開2005-317251号公報
On the other hand, a dispersion-type inorganic EL element usually has a transparent electrode in which a transparent conductive layer made of ITO (indium oxide) or the like is formed on one side of a substrate made of PET (polyethylene terephthalate) or the like, and phosphor fine particles in an organic binder. It consists of a light emitting layer that is dispersed, an insulating layer in which dielectric fine particles are dispersed in an organic binder, and a back electrode made of aluminum, silver, or the like, which are stacked in order to further improve moisture resistance and durability. A surface protective layer is provided. In recent years, there has been a report using a thick dielectric layer as an insulating layer of a distributed EL element (for example, Patent Document 2). In FIG. 1, specifically, a paste such as PbNbO 3 , BaTiO 3 , SrTiO 3 , PbTiO 3 , (Sr, Ca) TiO 3 is used to form the insulating layer 3 on the back electrode 2 by screen printing. A fired ceramic material to be fired is used, and the dispersed light emitting layer 4 is formed on the insulating layer 3 by a screen printing method and dried.
JP-A-61-230296 JP 2005-317251 A

焼成セラミックス材料で構成された絶縁層に、スパッタリング法や真空蒸着法を用いて発光層を作製した薄膜型無機EL素子では、発光層の膜厚は1μm程度であり、この薄膜発光層を欠陥無く製膜するためには下層の平滑性が重要である。このため通常は絶縁層の研磨処理、絶縁層の複層化等の対策が必要になり、生産性は低いものとなっている。   In a thin-film inorganic EL device in which a light-emitting layer is fabricated using a sputtering method or vacuum deposition method on an insulating layer made of a fired ceramic material, the light-emitting layer has a thickness of about 1 μm. In order to form a film, the smoothness of the lower layer is important. For this reason, usually, measures such as polishing of the insulating layer and multilayering of the insulating layer are required, and the productivity is low.

一方で、上述の通り焼成セラミックス材料を絶縁層として用い、この絶縁層の上に蛍光体を有機バインダー中に分散させたペーストをスクリーン印刷することで、EL素子を作製する方法では、生産性の向上に関しては一定の解決を得たが、発光輝度を十分上げることができなかった。   On the other hand, as described above, by using a sintered ceramic material as an insulating layer and screen-printing a paste in which a phosphor is dispersed in an organic binder on the insulating layer, a method for producing an EL element is effective. Although a certain solution was obtained with respect to the improvement, the emission luminance could not be sufficiently increased.

本発明は上記事情に鑑みてなされたもので、生産性が高く、容易に製膜ができ、発光輝度を高めた無機EL素子を提供すると共に、このEL素子を備える、多くの用途に有用な照明品位の高い照明装置を提供することである。   The present invention has been made in view of the above circumstances, and provides an inorganic EL element with high productivity, easy film formation, and enhanced emission luminance, and useful for many applications including this EL element. It is to provide a lighting device with high lighting quality.

本発明の目的は下記手段によって達成される。
[1] 背面電極、絶縁層、発光層、透明電極が順に積層されているEL素子であって、前記絶縁層は有機バインダーを含まない第1の絶縁層と、有機バインダーを含む第2の絶縁層とを含み、前記第2の絶縁層上に発光層が積層されていることを特徴とする無機EL素子。
[2] 前記第1の絶縁層がセラミックス材料であることを特徴とする[1]記載の無機EL素子。
[3] 前記第1の絶縁層がチタン酸バリウム、チタン酸ジルコン酸バリウム、チタン酸ジルコン酸鉛、及びこれらを組み合わせたものからなる群から選ばれる誘電体であることを特徴とする[1]又は[2]記載の無機EL素子。
[4] 前記第1の絶縁層の膜厚が、5〜200μmの範囲内であることを特徴とする[1]〜[3]のいずれか1項に記載の無機EL素子。
[5] 前記第2の絶縁層が少なくとも誘電体微粒子と有機バインダーを含み、前記誘電体微粒子と有機バインダーは重量比で1:2〜49:1の割合で含まれることを特徴とする[1]〜[4]のいずれか1項に記載の無機EL素子
[6] 前記第2の絶縁層に含まれる前記誘電体微粒子の平均粒径が50〜500nmであることを特徴とする[5]に記載の無機EL素子。
[7] [1]〜[6]のいずれか1項に記載の無機EL素子を備えることを特徴とする照明装置。
The object of the present invention is achieved by the following means.
[1] An EL device in which a back electrode, an insulating layer, a light emitting layer, and a transparent electrode are sequentially laminated, wherein the insulating layer includes a first insulating layer containing no organic binder and a second insulating containing an organic binder. An inorganic EL element, wherein a light emitting layer is laminated on the second insulating layer.
[2] The inorganic EL element according to [1], wherein the first insulating layer is a ceramic material.
[3] The first insulating layer is a dielectric selected from the group consisting of barium titanate, barium zirconate titanate, lead zirconate titanate, and combinations thereof [1] Or the inorganic EL element of [2].
[4] The inorganic EL element according to any one of [1] to [3], wherein the thickness of the first insulating layer is in a range of 5 to 200 μm.
[5] The second insulating layer includes at least dielectric fine particles and an organic binder, and the dielectric fine particles and the organic binder are included in a weight ratio of 1: 2 to 49: 1. ] To [4] Inorganic EL device according to any one of
[6] The inorganic EL device according to [5], wherein the dielectric fine particles contained in the second insulating layer have an average particle size of 50 to 500 nm.
[7] An illumination device comprising the inorganic EL element according to any one of [1] to [6].

上記[1]に記載の発明で、絶縁層は有機バインダーを含まない第1の絶縁層と、有機バインダーを含む第2の絶縁層とを含み、前記第2の絶縁層上に発光層が積層されていることで、絶縁層の誘電率を高めた状態で発光層との密着性を高めることができる。   In the invention described in [1] above, the insulating layer includes a first insulating layer that does not contain an organic binder and a second insulating layer that contains an organic binder, and a light emitting layer is stacked on the second insulating layer. As a result, the adhesion to the light emitting layer can be enhanced while the dielectric constant of the insulating layer is increased.

上記[2]に記載の発明で、前記第1の絶縁層がセラミックス材料であることで、ピンホールに起因した駆動時の絶縁破壊を減らすことができる。
上記[3]に記載の発明で、前記第1の絶縁層がチタン酸バリウム、チタン酸ジルコン酸バリウム、チタン酸ジルコン酸鉛、及びこれらを組み合わせたものからなる群から選ばれる誘電体であることで、絶縁層の誘電率が高まり、無機EL素子の発光輝度が向上する。
In the invention described in [2] above, since the first insulating layer is made of a ceramic material, it is possible to reduce dielectric breakdown during driving caused by a pinhole.
In the invention described in [3] above, the first insulating layer is a dielectric selected from the group consisting of barium titanate, barium zirconate titanate, lead zirconate titanate, and combinations thereof. Thus, the dielectric constant of the insulating layer is increased, and the light emission luminance of the inorganic EL element is improved.

上記[4]に記載の発明で、前記第1の絶縁層の膜厚が、5〜200μmの範囲内であることで、駆動時の絶縁破壊を減らすことができ、デバイスを安定駆動することができる。
上記[5]に記載の発明で、第2の絶縁層が少なくとも誘電体微粒子と有機バインダーを含み、前記誘電体微粒子と有機バインダーは重量比で1:2〜49:1の割合で含まれることで、生産性を向上させることができる。
In the invention described in [4] above, when the film thickness of the first insulating layer is in the range of 5 to 200 μm, dielectric breakdown during driving can be reduced, and the device can be driven stably. it can.
In the invention described in [5] above, the second insulating layer contains at least dielectric fine particles and an organic binder, and the dielectric fine particles and the organic binder are contained in a weight ratio of 1: 2 to 49: 1. Thus, productivity can be improved.

上記[6]に記載の発明で、第2の絶縁層に含まれる前記誘電体微粒子の平均粒径が50〜500nmであることで、絶縁層の誘電率が高まり、無機EL素子の発光輝度が向上する。
上記[7]に記載の発明は、本発明の無機EL素子を備えることで、輝度が均一で明るく、照明品位の高い照明装置を得ることができる。
In the invention described in [6] above, when the average particle diameter of the dielectric fine particles contained in the second insulating layer is 50 to 500 nm, the dielectric constant of the insulating layer is increased, and the emission luminance of the inorganic EL element is increased. improves.
The invention described in [7] above can provide an illumination device with uniform and bright luminance and high illumination quality by including the inorganic EL element of the present invention.

本発明の実施の一形態について図面を参照して説明する。図2は本発明の無機EL素子の一例を示す概略断面図である。本発明の無機EL素子は、背面基板11の上に、背面電極12と、有機バインダーを含まない第1の絶縁層13と、有機バインダーを含む第2の絶縁層14と、有機バインダーに無機蛍光体粒子が分散した発光層15と、透明電極16と、カバー層17とが順に積層されており、後述のEL表示装置における発光部を形成する。   An embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a schematic sectional view showing an example of the inorganic EL element of the present invention. The inorganic EL device of the present invention includes a back electrode 12, a first insulating layer 13 that does not contain an organic binder, a second insulating layer 14 that contains an organic binder, and an inorganic fluorescent material on the organic binder. A light emitting layer 15 in which body particles are dispersed, a transparent electrode 16, and a cover layer 17 are laminated in this order to form a light emitting portion in an EL display device described later.

<背面基板>
背面基板11は、その上部に設ける第1の絶縁層13の製膜時における焼成温度に耐えうるものでなければならない。焼成温度が600℃程度以下であればガラス基板を用いることができる。また、焼成温度が600℃を超え、1,000℃以下であれば石英基板やセラミックス基板等を用いることができる。さらに、焼成温度が1,000℃を超えた場合アルミナ、ジルコニア等のセラミックス基板、シリコンウェハを用いることができる。
<Back substrate>
The back substrate 11 must be able to withstand the firing temperature when the first insulating layer 13 provided on the back substrate 11 is formed. A glass substrate can be used if the firing temperature is about 600 ° C. or lower. Further, a quartz substrate, a ceramic substrate, or the like can be used if the firing temperature exceeds 600 ° C. and is 1,000 ° C. or less. Furthermore, when the firing temperature exceeds 1,000 ° C., a ceramic substrate such as alumina or zirconia, or a silicon wafer can be used.

<背面電極>
光を取り出さない側の背面電極12は、上層の絶縁層形成時の加熱焼成後も導電性を保つ材料であることが必要とされる。この背面電極12には、例えばAuやPd、Ptのような貴金属や、Cr、W、Mo、Ni等の金属、またはこれらの合金を用いることができる。これらの材料は焼成温度、焼成雰囲気、導電性によって選ばれる。
<Back electrode>
The back electrode 12 on the side from which light is not extracted is required to be a material that retains conductivity even after heating and baking at the time of forming the upper insulating layer. For the back electrode 12, for example, a noble metal such as Au, Pd, or Pt, a metal such as Cr, W, Mo, or Ni, or an alloy thereof can be used. These materials are selected depending on the firing temperature, firing atmosphere, and conductivity.

<絶縁層>
第1の絶縁層13は有機バインダーを含まないことを特徴とし、好ましくは強誘電体材料からなる。強誘電体材料を用いることで、絶縁層の静電容量を充分大きくすることができ、絶縁層への印加電圧の分割分を低下させることが可能となる。第1の絶縁層13の比誘電率は、好ましくは500〜25000であり、より好ましくは1000〜10000である。基本となる誘電体は、高誘電率を得るためにペロブスカイト構造を有するセラミック材料が好ましく、例えばPbNbO3、BaTiO3、BaTixZr1-xO3、SrTiO3、PbTiO3、(Sr, Ca)TiO3、PbZr1-xTixO3などが挙げられる。より好ましくはBaTiO3、BaTixZr1-xO3、PbZr1-xTixO3、及びこれらを組み合わせたものからなる群から選ばれる誘電体である。
<Insulating layer>
The first insulating layer 13 does not contain an organic binder and is preferably made of a ferroelectric material. By using the ferroelectric material, the capacitance of the insulating layer can be sufficiently increased, and the division of the voltage applied to the insulating layer can be reduced. The relative dielectric constant of the first insulating layer 13 is preferably 500 to 25000, and more preferably 1000 to 10,000. The basic dielectric is preferably a ceramic material having a perovskite structure in order to obtain a high dielectric constant. For example, PbNbO 3 , BaTiO 3 , BaTi x Zr 1-x O 3 , SrTiO 3 , PbTiO 3 , (Sr, Ca) Examples thereof include TiO 3 and PbZr 1-x Ti x O 3 . More preferably, the dielectric is selected from the group consisting of BaTiO 3 , BaTi x Zr 1-x O 3 , PbZr 1-x Ti x O 3 , and combinations thereof.

第1の絶縁層13の膜厚は、厚くするほうが絶縁破壊に対する信頼性が向上するが、厚くすることで静電容量が減少するため、その膜厚は200μm以下が好ましい。一方、膜厚を薄くした場合は、膜厚減少による絶縁破壊の信頼性が低下するため、5μm以上の膜厚が好ましい。この第1の絶縁層13は、誘電体材料粉末と有機バインダーと混合・撹拌し、塗布により製膜した後、加熱焼成する方法、誘電体材料粉末と有機バインダーを混合しキャスティングによりグリーンシートを作製し、電極と積層圧着した後、焼成する方法などの手法により作製することができる。製膜はキャスティング、ドクターブレード、スクリーン印刷等の周知の厚膜技術で形成される。製膜後、所定の温度で上記誘電体材料の前駆体を焼成して、誘電体からなる第1の絶縁層13を形成する。また、所定の膜厚を得るために複数回製膜しても良い。   As the thickness of the first insulating layer 13 is increased, the reliability against dielectric breakdown is improved. However, since the capacitance is reduced by increasing the thickness, the thickness is preferably 200 μm or less. On the other hand, when the film thickness is reduced, the reliability of dielectric breakdown due to the decrease in the film thickness decreases, and therefore a film thickness of 5 μm or more is preferable. This first insulating layer 13 is a method in which a dielectric material powder and an organic binder are mixed and stirred, formed into a film by coating, and then heated and fired. A dielectric material powder and an organic binder are mixed, and a green sheet is produced by casting. In addition, it can be manufactured by a technique such as a method of firing after being laminated and pressure-bonded to the electrode. The film formation is formed by a known thick film technique such as casting, doctor blade, or screen printing. After the film formation, the precursor of the dielectric material is baked at a predetermined temperature to form the first insulating layer 13 made of a dielectric. Further, the film may be formed a plurality of times in order to obtain a predetermined film thickness.

第2の絶縁層14は、少なくとも誘電体微粒子と有機バインダーを含む。誘電体微粒子としては、誘電率と絶縁性が高く、且つ高い誘電破壊電圧を有する材料であれば任意のものが用いられる。これらは金属酸化物、窒化物から選択され、例えばTiO2、BaTiO3、SrTiO3、PbTiO3、KNbO3、PbNbO3、Ta2O5、BaTa2O6、LiTaO3、Y2O3、Al2O3、ZrO2、AlON、ZnSなどが用いられる。絶縁層全体の静電容量を低下させないためには、BaTiO3、BaTixZr1-xO3、PbZr1-xTixO3等の強誘電体材料を用いることがより好ましい。誘電体微粒子の粒径は、小さいほうが第2の絶縁層の膜厚を減少でき静電容量を向上させることができるが、一般的に誘電体微粒子の粒径は小さくなるとその誘電率は低下するという相反する関係にある。また、誘電体微粒子の粒径が小さすぎると粒子の凝集が強く、スクリーン印刷などに適したペーストの調製が困難になる傾向がある。従って、本発明で用いられる誘電体微粒子の粒径は、50〜500nmの範囲内であるのが好ましい。 The second insulating layer 14 includes at least dielectric fine particles and an organic binder. As the dielectric fine particles, any material can be used as long as it is a material having a high dielectric constant and insulation and a high dielectric breakdown voltage. These metal oxides are selected from nitrides, for example TiO 2, BaTiO 3, SrTiO 3 , PbTiO 3, KNbO 3, PbNbO 3, Ta 2 O 5, BaTa 2 O 6, LiTaO 3, Y 2 O 3, Al 2 O 3 , ZrO 2 , AlON, ZnS, etc. are used. In order not to reduce the capacitance of the entire insulating layer, it is more preferable to use a ferroelectric material such as BaTiO 3 , BaTi x Zr 1-x O 3 , PbZr 1-x Ti x O 3 . The smaller the particle size of the dielectric fine particles, the smaller the film thickness of the second insulating layer and the higher the capacitance. In general, the smaller the particle size of the dielectric fine particles, the lower the dielectric constant. There is a conflicting relationship. Moreover, when the particle size of the dielectric fine particles is too small, the particles are strongly aggregated, and it tends to be difficult to prepare a paste suitable for screen printing. Accordingly, the particle diameter of the dielectric fine particles used in the present invention is preferably in the range of 50 to 500 nm.

有機バインダーとしては、シアノエチルセルロース系樹脂のように、比較的誘電率の高いポリマーや、ポリエチレン、ポリプロピレン、ポリスチレン系樹脂、シリコーン樹脂、エポキシ樹脂、フッ化ビニリデンなどの樹脂を用いることができる。分散方法としては、ホモジナイザー、遊星型混練機、ロール混練機、超音波分散機などを用いることができる。   As the organic binder, a polymer having a relatively high dielectric constant such as a cyanoethyl cellulose resin, or a resin such as polyethylene, polypropylene, polystyrene resin, silicone resin, epoxy resin, or vinylidene fluoride can be used. As a dispersion method, a homogenizer, a planetary kneader, a roll kneader, an ultrasonic disperser, or the like can be used.

本発明で用いる第2の絶縁層14の誘電率は、静電容量を減少させないために高いほうがより好ましい。第2の絶縁層の比誘電率は好ましくは300以下である。第2の絶縁層の誘電率を向上させるためには有機バインダーの添加量を減少させる必要があるが、有機バインダー量を減少させると均質な製膜が困難になる、発光層との密着性が低下するなどの問題が生じ、逆に発光輝度の低下を招く。従って、誘電体微粒子と有機バインダーは重量比で1:2〜49:1の割合で含まれるほうが好ましく、特に好ましいのは1:1〜9:1である。   The dielectric constant of the second insulating layer 14 used in the present invention is preferably higher in order not to reduce the capacitance. The relative dielectric constant of the second insulating layer is preferably 300 or less. In order to improve the dielectric constant of the second insulating layer, it is necessary to reduce the amount of the organic binder added. However, if the amount of the organic binder is decreased, it becomes difficult to form a uniform film, and the adhesion to the light emitting layer is improved. A problem such as a decrease occurs, and conversely, the emission luminance decreases. Accordingly, the dielectric fine particles and the organic binder are preferably contained in a weight ratio of 1: 2 to 49: 1, and particularly preferably 1: 1 to 9: 1.

第2の絶縁層14は、スピンコート法、ディップコート法、バーコート法、あるいはスプレー塗布法などを用いて塗布することが好ましい。特に、スクリーン印刷法のような印刷面を選ばない方法やスライドコート法のような連続塗布が可能な方法を用いることが好ましい。例えば、スクリーン印刷法は、誘電体の微粒子を高誘電率のポリマー溶液に分散した分散液を、スクリーンメッシュを通して塗布する。メッシュ数、乳剤膜厚、印刷速度、スキージの硬さ、塗布回数を選択することにより膜厚を制御できる。本発明における第2の絶縁層14の膜厚を厚くした場合には、均質な膜が作製しやすく膜、発光層との密着性も充分得られるが、その一方で第1の絶縁層13の膜厚を厚くした場合同様に、静電容量が減少するため、駆動電圧の上昇といった課題が生じる。そのため、第2の絶縁層14の膜厚は0.1〜50μmが好ましく、0.5〜10μmがより好ましい。   The second insulating layer 14 is preferably applied using a spin coating method, a dip coating method, a bar coating method, a spray coating method, or the like. In particular, it is preferable to use a method that does not select a printing surface, such as a screen printing method, or a method that allows continuous application, such as a slide coating method. For example, in the screen printing method, a dispersion liquid in which fine particles of dielectric are dispersed in a polymer solution having a high dielectric constant is applied through a screen mesh. The film thickness can be controlled by selecting the number of meshes, emulsion film thickness, printing speed, squeegee hardness, and number of coatings. When the thickness of the second insulating layer 14 in the present invention is increased, it is easy to produce a homogeneous film, and sufficient adhesion to the film and the light emitting layer can be obtained. Similarly to the case where the film thickness is increased, the capacitance is reduced, which causes a problem of an increase in driving voltage. Therefore, the film thickness of the second insulating layer 14 is preferably 0.1 to 50 μm, and more preferably 0.5 to 10 μm.

<発光層>
発光層15は、蛍光体粒子を有機バインダーに分散したものを用いる。有機バインダーとしては、第2の絶縁層と同様に、シアノエチルセルロース系樹脂のように、比較的誘電率の高いポリマーや、ポリエチレン、ポリプロピレン、ポリスチレン系樹脂、シリコーン樹脂、エポキシ樹脂、フッ化ビニリデンなどの樹脂を用いることができる。これらの樹脂に、BaTiO3やSrTiO3などの高誘電率の微粒子を適度に混合して誘電率を調整することもできる。分散方法としては、ホモジナイザー、遊星型混練機、ロール混練機、超音波分散機などを用いることができる。本発明で用いる蛍光体粒子と有機バインダーは重量比で4.2:1〜20:1が好ましく、特に好ましいのは4.5:1〜10:1である。
<Light emitting layer>
As the light emitting layer 15, a phosphor particle dispersed in an organic binder is used. As the organic binder, like the second insulating layer, a polymer having a relatively high dielectric constant, such as cyanoethyl cellulose resin, polyethylene, polypropylene, polystyrene resin, silicone resin, epoxy resin, vinylidene fluoride, etc. Resin can be used. The dielectric constant can also be adjusted by appropriately mixing fine particles of high dielectric constant such as BaTiO 3 and SrTiO 3 with these resins. As a dispersion method, a homogenizer, a planetary kneader, a roll kneader, an ultrasonic disperser, or the like can be used. The phosphor particles and the organic binder used in the present invention are preferably in a weight ratio of 4.2: 1 to 20: 1, particularly preferably 4.5: 1 to 10: 1.

発光層15は、スピンコート法、ディップコート法、バーコート法、あるいはスプレー塗布法などを用いて塗布することが好ましい。特に、スクリーン印刷法のような印刷面を選ばない方法やスライドコート法のような連続塗布が可能な方法を用いることが好ましい。本発明で用いる発光層15の膜厚は100μm以下が好ましく、1〜50μmがより好ましい。   The light emitting layer 15 is preferably applied using a spin coating method, a dip coating method, a bar coating method, a spray coating method, or the like. In particular, it is preferable to use a method that does not select a printing surface, such as a screen printing method, or a method that allows continuous application, such as a slide coating method. The film thickness of the light emitting layer 15 used in the present invention is preferably 100 μm or less, more preferably 1 to 50 μm.

<蛍光体微粒子>
本発明に用いる蛍光体微粒子の製造方法は、特に限定されないが焼成法、尿素溶融法、噴霧熱分解法、水熱合成法などを用いることができる。
<Phosphor particles>
The method for producing phosphor fine particles used in the present invention is not particularly limited, and a firing method, a urea melting method, a spray pyrolysis method, a hydrothermal synthesis method, and the like can be used.

本発明に利用可能な蛍光体粒子を、硫化亜鉛を母体として、固相法で形成する場合、先ず液相法で10〜50nmの微粒子粉末を作製し、これを一次粒子として用い、これに付活剤と呼ばれる不純物を混入させて融剤とともに坩堝にて900〜1300℃の高温で30分〜10時間、第1の焼成を行い、粒子を得る。   When the phosphor particles usable in the present invention are formed by a solid phase method using zinc sulfide as a base material, first, a 10-50 nm fine particle powder is prepared by a liquid phase method, and this is used as a primary particle. Impurities called activators are mixed, and the first firing is performed at a high temperature of 900 to 1300 ° C. for 30 minutes to 10 hours in a crucible together with the flux to obtain particles.

第1の焼成によって得られる中間蛍光体粉末をイオン交換水で繰り返し洗浄してアルカリ金属ないしアルカリ土類金属及び過剰の付活剤、共付活剤を除去する。
次いで、得られた中間体粉末に第2の焼成を施す。第2の焼成は、第1の焼成より低温の500〜800℃で、また短時間の30分〜3時間の加熱をする。
The intermediate phosphor powder obtained by the first firing is repeatedly washed with ion exchange water to remove alkali metal or alkaline earth metal, excess activator and coactivator.
Next, the obtained intermediate powder is subjected to second baking. In the second baking, heating is performed at a temperature lower than that of the first baking at 500 to 800 ° C. and for a short time of 30 minutes to 3 hours.

これらの焼成により蛍光体粒子内には多くの積層欠陥が発生するが、微粒子で且つより多くの積層欠陥が蛍光体粒子内に含まれるように、第1の焼成と第2の焼成の条件を適宜選択することが好ましい。   These firings cause many stacking faults in the phosphor particles, but the conditions of the first firing and the second firing are set so that fine particles and more stacking faults are included in the phosphor particles. It is preferable to select appropriately.

また、第1の焼成物に、ある範囲の大きさの衝撃力を加えることにより、粒子を破壊することなく、積層欠陥の密度を大幅に増加させることができる。衝撃力を加える方法としては、中間蛍光体粒子同士を接触混合させる方法、アルミナ等の球体を混ぜて混合させる(ボールミル)方法、粒子を加速させて衝突させる方法、超音波を照射する方法などを好ましく用いることができる。これらの方法により、5nm以下の間隔で10層以上の積層欠陥を有する粒子を形成することができる。   Further, by applying an impact force in a certain range to the first fired product, the density of stacking faults can be greatly increased without destroying the particles. As a method of applying impact force, a method of contacting and mixing intermediate phosphor particles, a method of mixing and mixing spheres such as alumina (ball mill), a method of accelerating particles to collide, a method of irradiating ultrasonic waves, etc. It can be preferably used. By these methods, particles having 10 or more stacking faults can be formed at intervals of 5 nm or less.

その後、該中間蛍光体を、HCl等の酸でエッチングして表面に付着している金属酸化物を除去し、さらに表面に付着した硫化銅を、KCNで洗浄して除去する。続いて該中間蛍光体を乾燥してEL蛍光体を得る。   Thereafter, the intermediate phosphor is etched with an acid such as HCl to remove the metal oxide adhering to the surface, and the copper sulfide adhering to the surface is removed by washing with KCN. Subsequently, the intermediate phosphor is dried to obtain an EL phosphor.

また、硫化亜鉛の場合などは、蛍光体結晶中に多重双晶構造を導入するため、蛍光体の粒子形成方法として、水熱合成法を用いることも好ましい。水熱合成法では、粒子は、よく撹拌された水溶媒に分散されており、且つ粒子成長を起こす亜鉛イオン及び/又は硫黄イオンは、反応容器外から、水溶液で制御された流量で、決められた時間で添加する。従って、この系では粒子は水溶媒中で自由に動くことができ、かつ添加されたイオンは水中を拡散して粒子成長を均一に起こすことができるため、粒子内部における付活剤若しくは共付活剤の濃度分布を変化させることが可能で、サイズ分布の狭い単分散な硫化亜鉛粒子を得ることが可能となる。核形成過程と成長過程の間に、オストワルド熟成工程を入れることが粒子サイズの調節及び、多重双晶の実現のために好ましい。   In addition, in the case of zinc sulfide or the like, it is also preferable to use a hydrothermal synthesis method as a method of forming phosphor particles because a multiple twin structure is introduced into the phosphor crystal. In the hydrothermal synthesis method, particles are dispersed in a well-stirred aqueous solvent, and zinc ions and / or sulfur ions that cause particle growth are determined from outside the reaction vessel at a flow rate controlled by an aqueous solution. Add for a long time. Therefore, in this system, the particles can move freely in an aqueous solvent, and the added ions can diffuse in water and cause particle growth uniformly. The concentration distribution of the agent can be changed, and monodispersed zinc sulfide particles having a narrow size distribution can be obtained. It is preferable to insert an Ostwald ripening step between the nucleation process and the growth process in order to adjust the grain size and realize multiple twins.

また、本発明に利用可能な蛍光体の形成方法として、尿素溶融法を用いることも好ましい。尿素溶融法は、蛍光体を合成する媒体として溶融した尿素を用いる方法である。尿素を融点以上の温度に維持して溶融状態にした液中に、蛍光体母体や付活剤を形成する元素を含む物質を溶解する。必要に応じて、反応剤を添加する。例えば、硫化物蛍光体を合成する場合は、硫酸アンモニウム、チオ尿素、チオアセトアミドなどの硫黄源を添加して沈殿反応を起こさせる。その融液を450℃程度まで徐々に昇温すると、蛍光体粒子や蛍光体中間体が、尿素由来の樹脂中に均一分散した固体が得られる。この固体を微粉砕した後、電気炉中で樹脂を熱分解させながら焼成する。焼成雰囲気として、不活性雰囲気、酸化性雰囲気、還元性雰囲気、アンモニア雰囲気、真空雰囲気を選択することで、酸化物、硫化物、窒化物を母体として蛍光体粒子が合成できる。   It is also preferable to use a urea melting method as a method for forming a phosphor usable in the present invention. The urea melting method is a method using molten urea as a medium for synthesizing a phosphor. A substance containing an element that forms a phosphor matrix or an activator is dissolved in a liquid in which urea is maintained at a temperature equal to or higher than the melting point to be in a molten state. Add reactants as needed. For example, when a sulfide phosphor is synthesized, a sulfur source such as ammonium sulfate, thiourea or thioacetamide is added to cause a precipitation reaction. When the temperature of the melt is gradually raised to about 450 ° C., a solid in which phosphor particles and phosphor intermediates are uniformly dispersed in a resin derived from urea is obtained. After this solid is finely pulverized, it is fired while thermally decomposing the resin in an electric furnace. By selecting an inert atmosphere, an oxidizing atmosphere, a reducing atmosphere, an ammonia atmosphere, or a vacuum atmosphere as the firing atmosphere, phosphor particles can be synthesized using oxide, sulfide, or nitride as a base material.

また、本発明に利用可能な蛍光体の形成方法として、噴霧熱分解法を用いることも好ましい。蛍光体の前駆体溶液を、霧化器を用いて微小液滴化して、液滴内での凝縮や化学反応または液滴周囲の雰囲気ガスとの化学反応により、蛍光体粒子または蛍光体中間生成物を合成できる。液滴化の条件を好適にすることで、微粒子化、微量不純物の均一化、球形化、狭粒子サイズ分布化した粒子を得ることができる。微小液滴を生成する霧化器としては、2流体ノズル、超音波霧化器、静電霧化器を用いることが好ましい。霧化器によって生成した微小液滴を、キャリアガスで電気炉などに導入し、加熱することで、脱水・縮合し、さらに液滴内物質同士の化学反応や焼結、または雰囲気ガスとの化学反応により目的とする蛍光体粒子または蛍光体中間生成物を得る。得られた粒子を、必要に応じて追加焼成する。例えば、硫化亜鉛蛍光体を合成する場合は、硝酸亜鉛とチオ尿素の混合液を霧化し、800℃程度で、不活性ガス(例えば窒素)中で熱分解して、球形の硫化亜鉛蛍光体を得る。出発溶液の混合溶液中に、Mn、Cu及び希土類などの微量不純物を溶解させておけば、これらの不純物は発光中心として作用する。   Further, it is also preferable to use a spray pyrolysis method as a method for forming a phosphor usable in the present invention. Phosphor precursor solution is made into fine droplets using an atomizer, and phosphor particles or phosphor intermediates are generated by condensation within the droplets, chemical reaction, or chemical reaction with the ambient gas surrounding the droplet. You can synthesize things. By making the conditions for droplet formation suitable, particles having a fine particle size, a uniform amount of impurities, a sphere shape, and a narrow particle size distribution can be obtained. As an atomizer that generates fine droplets, it is preferable to use a two-fluid nozzle, an ultrasonic atomizer, or an electrostatic atomizer. The fine droplets generated by the atomizer are introduced into an electric furnace with a carrier gas and heated to dehydrate and condense, and the chemical reaction and sintering of the substances in the droplets, or the chemistry with the atmosphere gas The target phosphor particles or phosphor intermediate product is obtained by the reaction. The obtained particles are additionally fired as necessary. For example, when synthesizing a zinc sulfide phosphor, a mixture of zinc nitrate and thiourea is atomized and pyrolyzed in an inert gas (eg, nitrogen) at about 800 ° C. to form a spherical zinc sulfide phosphor. obtain. If trace impurities such as Mn, Cu and rare earth are dissolved in the mixed solution of the starting solution, these impurities act as luminescence centers.

蛍光体粒子の付活剤として銅、マンガン、銀、金及び希土類元素から選択された少なくとも一種のイオンを好ましく用いることができる。
共付活剤が塩素、臭素、ヨウ素、及びアルミニウムから選択された少なくとも一種のイオンを好ましく用いることができる。
As an activator of the phosphor particles, at least one ion selected from copper, manganese, silver, gold and rare earth elements can be preferably used.
As the coactivator, at least one ion selected from chlorine, bromine, iodine, and aluminum can be preferably used.

<透明電極>
本発明のEL素子においては、透明電極は一般的に用いられている任意の透明電極材料が用いられる。例えば、錫ドープ酸化インジウム、フッ素ドープ酸化錫、アンチモンドープ酸化錫、アルミニウムドープ酸化亜鉛、ガリウムドープ酸化亜鉛などの酸化物及びそれらの微粒子と有機バインダーからなる導電性ペースト、銀の薄膜を高屈折率層で挟んだ多層構造、ポリアニリン、ポリピロールなどのπ共役系高分子などが挙げられる。透明電極の表面抵抗は、0.1Ω/□〜200Ω/□の範囲が好ましい。
<Transparent electrode>
In the EL device of the present invention, any transparent electrode material that is generally used is used as the transparent electrode. For example, conductive oxides such as tin-doped indium oxide, fluorine-doped tin oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, etc., fine particles and organic binders, and silver thin films with a high refractive index. Examples include multilayer structures sandwiched between layers, and π-conjugated polymers such as polyaniline and polypyrrole. The surface resistance of the transparent electrode is preferably in the range of 0.1Ω / □ to 200Ω / □.

<EL表示装置>
本発明の無機EL素子を用いて無機EL表示装置が得られる。無機EL表示素子には無機EL素子自体の発光を用いて表示する場合と、別途無機EL素子の発光方向に表示素子を設ける場合が挙げられる。無機EL素子自体の発光を用いて表示する場合、例えば素子の発光を制御して情報を表示する場合、特に複数の素子の発光を制御する場合、更に異なる色の複数の素子の発光を制御する場合、などが挙げられる。例えば緑、青、赤の発光をする無機EL素子を周期的に複数配列し、これらの発光を制御することがカラー画像などを得ることができる。一方、表示素子を別途設ける場合は、例えばLCDパネルなどの透過型表示素子を発光方向に配置することでLCD表示装置のような透過型表示装置となる。なおここで述べる表示装置とはこれら表示能を有するデバイス、これらデバイスに情報処理装置、チューナー、スピーカーなど種々の部材を追加したテレビ受像機、モニター装置、ノートパソコンなどを含む。
<EL display device>
An inorganic EL display device can be obtained using the inorganic EL element of the present invention. The inorganic EL display element includes a case where display is performed using the light emission of the inorganic EL element itself and a case where a display element is separately provided in the light emission direction of the inorganic EL element. When displaying using the light emission of the inorganic EL element itself, for example, when displaying information by controlling the light emission of the element, particularly when controlling the light emission of a plurality of elements, the light emission of a plurality of elements of different colors is further controlled. And so on. For example, it is possible to obtain a color image or the like by periodically arranging a plurality of inorganic EL elements that emit green, blue, and red light and controlling the light emission. On the other hand, when a display element is provided separately, a transmissive display device such as an LCD display device is obtained by arranging a transmissive display element such as an LCD panel in the light emitting direction. Note that the display device described here includes a device having these display capabilities, a television receiver in which various members such as an information processing device, a tuner, and a speaker are added to these devices, a monitor device, and a laptop computer.

以下に、本発明について更に詳細に説明する。なお、本発明はここに説明する実施例に限定されるものではない。
(実施例1)
背面基板にはジルコニア(日本ファインセラミックス製:3Yジルコニア、0.5mm厚)を用いた。この上にPtペースト(田中貴金属製:TR7091)をスクリーン印刷し、1400℃で1時間焼成して背面電極を形成した。第1の絶縁層は、誘電体材料としてBaTiO3(平均粒径500nm)6g、有機ビヒクル(エチルセルロース)0.12g、溶媒(テルピネオール)1.7gからなるペーストを調製し、背面電極の上にスクリーン印刷し、1400℃で1時間焼成を行った。このプロセスを3回繰り返し、膜厚が約30μmの誘電体厚膜Aを形成した。これにAu電極を作製しLCRメーター(Agilent製:E4980A)にて測定した比誘電率は2000であった。
Hereinafter, the present invention will be described in more detail. In addition, this invention is not limited to the Example demonstrated here.
(Example 1)
Zirconia (Nihon Fine Ceramics: 3Y zirconia, 0.5 mm thickness) was used for the back substrate. A Pt paste (Tanaka Kikinzoku: TR7091) was screen-printed thereon and baked at 1400 ° C. for 1 hour to form a back electrode. For the first insulating layer, a paste made of 6 g of BaTiO 3 (average particle size 500 nm), 0.12 g of organic vehicle (ethyl cellulose) and 1.7 g of solvent (terpineol) is prepared as a dielectric material, and screen printed on the back electrode. And calcination at 1400 ° C. for 1 hour. This process was repeated three times to form a thick dielectric film A having a thickness of about 30 μm. An Au electrode was prepared on this, and the relative dielectric constant measured by an LCR meter (Agilent: E4980A) was 2000.

第2の絶縁層は、誘電体微粒子としてBaTiO3(平均粒径500nm)および有機バインダーとしてシアノレジン(信越化学社製:CR-V)を下記の組成比でジメチルホルムアミド(DMF)に添加し、遊星型撹拌脱泡機(シンキー社製:AR-250)にて分散させ、スクリーン印刷に適切な粘度に調整した。 For the second insulating layer, BaTiO 3 (average particle size: 500 nm) as dielectric fine particles and cyanoresin (manufactured by Shin-Etsu Chemical Co., Ltd .: CR-V) as organic binders are added to dimethylformamide (DMF) at the following composition ratio, and planets are added. The mixture was dispersed with a mold stirring and deaerator (AR-250, manufactured by Shinky Corporation), and adjusted to a viscosity suitable for screen printing.

チタン酸バリウム・・・・・・・・90重量部
シアノレジン・・・・・・・・・・30重量部
スクリーン印刷を用いて上記誘電体ペーストを乾燥塗膜の膜厚が5μmになるように誘電体厚膜A上に印刷した。印刷後、120℃で乾燥して誘電体厚膜積層体Bを得た。別途、本誘電体ペーストをPt電極を備えたジルコニア基板上に製膜し、Au電極を取り付けLCRメーター(Agilent製:E4980A)にて測定した比誘電率は90であった。
Barium titanate: 90 parts by weight Cyanoresin: 30 parts by weight Use the screen printing to apply the above dielectric paste to a dry film thickness of 5 μm. Printing was performed on the dielectric thick film A. After printing, it was dried at 120 ° C. to obtain a dielectric thick film laminate B. Separately, this dielectric paste was formed on a zirconia substrate equipped with a Pt electrode, an Au electrode was attached, and the relative dielectric constant measured by an LCR meter (Agilent: E4980A) was 90.

蛍光体ペーストの調製は以下のようにして行った。蛍光体粒子(オスラムシルバニア製 GG45)と有機バインダーとしてシアノレジン(信越化学社製:CR-V)を下記の組成比でDMF有機溶媒中に添加し、遊星型撹拌脱泡機にて分散させ、スクリーン印刷に適切な粘度に調整した。   The phosphor paste was prepared as follows. Phosphor particles (GG45 manufactured by Osram Sylvania) and cyanoresin (manufactured by Shin-Etsu Chemical Co., Ltd .: CR-V) as an organic binder are added to a DMF organic solvent at the following composition ratio, and dispersed with a planetary stirring deaerator. The viscosity was adjusted to be appropriate for printing.

蛍光体粒子・・・・・・・・・・・60重量部
シアノレジン・・・・・・・・・・10重量部
スクリーン印刷を用いて上記蛍光体ペーストを乾燥塗膜の膜厚が30μmになるように誘電体厚膜積層体B上に印刷した。印刷後、120℃で乾燥して積層体を得た。
Phosphor particles: 60 parts by weight Cyanoresin: 10 parts by weight Using phosphor to paste the above phosphor paste to a dry film thickness of 30 μm It printed on the dielectric thick film laminated body B so that it might become. After printing, the laminate was obtained by drying at 120 ° C.

透明電極は、ITOゾルペースト(住友金属鉱山製:SC120)を用い、スクリーン印刷にて印刷後、120℃で乾燥し、EL素子を得た。
上記のように作製された無機EL素子の透明電極一端に接続した電圧印加用リード線と、背面電極の一端に接続した電圧印加用リード線との間に100V、400Hzの電圧を印加し、EL素子を発光させ、その輝度を色彩輝度計(トプコン社製 BM7)にて測定したところ、その発光輝度は136cd/m2であった。
As the transparent electrode, an ITO sol paste (manufactured by Sumitomo Metal Mining: SC120) was used, printed by screen printing, and then dried at 120 ° C. to obtain an EL device.
A voltage of 100 V and 400 Hz is applied between the voltage application lead wire connected to one end of the transparent electrode of the inorganic EL element fabricated as described above and the voltage application lead wire connected to one end of the back electrode, and the EL The device was allowed to emit light, and its luminance was measured with a color luminance meter (BM7 manufactured by Topcon Corporation). As a result, the luminance was 136 cd / m 2 .

(実施例2)
第1の絶縁層の誘電体材料としてBaTixZr1-xO3(平均粒径500nm)6g、有機ビヒクル(エチルセルロース)0.12g、溶媒(テルピネオール)1.7gからなるペーストを用いた以外は実施例1と同様の方法にて無機EL素子を作成した。このとき実施例1と同様の方法で評価した第1の絶縁層の比誘電率は2300であり、EL素子の発光輝度は145cd/m2であった。
(Example 2)
Example except that a paste composed of 6 g of BaTi x Zr 1-x O 3 (average particle size 500 nm), 0.12 g of organic vehicle (ethylcellulose), and 1.7 g of solvent (terpineol) was used as the dielectric material of the first insulating layer 1 was used to prepare an inorganic EL element. At this time, the relative dielectric constant of the first insulating layer evaluated by the same method as in Example 1 was 2300, and the light emission luminance of the EL element was 145 cd / m 2 .

(実施例3)
BaTiO3(平均粒径100nm)10g、有機ビヒクル(エチルセルロース)1g、可塑剤としてジブチルフタレート0.5g、溶媒(テルピネオール)4.5gからなるペーストをボールミルで48時間混練して、セラミックスグリーンシート用のスラリーを得た。
(Example 3)
A paste made of 10 g BaTiO 3 (average particle size 100 nm), 1 g organic vehicle (ethyl cellulose), 0.5 g dibutyl phthalate as plasticizer and 4.5 g solvent (terpineol) is kneaded for 48 hours in a ball mill to produce a slurry for ceramic green sheets. Obtained.

前記のスラリーを離型処理したポリエステルフィルム上に流延し、常温で30分間風乾した後、熱風乾燥機を用いて約80℃で1時間乾燥し、セラミック基体となるグリーンシートを作製した。このグリーンシート上にスクリーン印刷によりNiペーストを印刷し、電極を作製した。前記のスラリーを用いて第1の絶縁層用のグリーンシートを別途キャスティング製膜し、前記Ni電極積層したグリーンシート上に積層圧着し、端部の不要部分を切断した後、1300℃で焼成し、積層セラミック構造体を作製した。焼成後、第1の絶縁層の膜厚は200μmであった。これにAu電極を作製し測定した誘電率は3000であった。   The slurry was cast on a release-treated polyester film, air-dried at room temperature for 30 minutes, and then dried at about 80 ° C. for 1 hour using a hot air dryer to produce a green sheet serving as a ceramic substrate. An Ni paste was printed on the green sheet by screen printing to produce an electrode. A green sheet for the first insulating layer is separately formed by casting using the slurry, and is laminated and pressure-bonded onto the green sheet on which the Ni electrode is laminated. A multilayer ceramic structure was produced. After firing, the thickness of the first insulating layer was 200 μm. A dielectric constant measured by preparing an Au electrode on this was 3000.

前記積層セラミック構造体を第1の絶縁層として用いた以外は実施例1と同様な方法にて、無機EL素子を作製し、発光輝度の測定を実施したところ104cd/m2であった。
(実施例4)
第1の絶縁層の誘電体材料としてPbZr1-xTixO3(平均粒径500nm)6g、有機ビヒクル(エチルセルロース)0.12g、溶媒(テルピネオール)1.7gからなるペーストを用いた以外は、実施例1と同様にして無機EL素子を作製した。このとき実施例1と同様にして評価した第1の絶縁層の誘電率は1450であり、EL素子の発光輝度は121cd/m2であった。
An inorganic EL element was produced in the same manner as in Example 1 except that the multilayer ceramic structure was used as the first insulating layer, and the luminance measured was 104 cd / m 2 .
(Example 4)
Except for using the first insulating layer of dielectric material as PbZr 1-x Ti x O 3 ( average particle diameter 500 nm) 6 g, an organic vehicle (ethyl cellulose) 0.12 g, solvent (terpineol) consisting 1.7g paste, carried An inorganic EL device was produced in the same manner as in Example 1. At this time, the dielectric constant of the first insulating layer evaluated in the same manner as in Example 1 was 1450, and the light emission luminance of the EL element was 121 cd / m 2 .

(実施例5)
第1の絶縁層の膜厚が300μmである以外は、実施例1と同様にして作製した無機EL素子の透明電極の一端に接続した電圧印加用リード線と、背面電極の一端に接続した電圧印加用リード線との間に100V、400Hzの電圧を印加し、EL素子を発光させ、その輝度を色彩輝度計(トプコン社製 BM7)にて測定したところ、その発光輝度は95cd/m2であった。
(Example 5)
A voltage application lead wire connected to one end of the transparent electrode of the inorganic EL element produced in the same manner as in Example 1 and a voltage connected to one end of the back electrode, except that the thickness of the first insulating layer was 300 μm. A voltage of 100V and 400Hz was applied between the lead wires for application, the EL element was allowed to emit light, and the luminance was measured with a color luminance meter (BM7 manufactured by Topcon). The emission luminance was 95 cd / m 2 . there were.

(実施例6)
第2の絶縁層の誘電体粒子と有機バインダーの重量比を1:3にして誘電体ペーストを調製した以外は、実施例1と同様にして作製した無機EL素子の透明電極の一端に接続した電圧印加用リード線と、背面電極の一端に接続した電圧印加用リード線との間に100V、400Hzの電圧を印加し、EL素子を発光させ、その輝度を色彩輝度計(トプコン社製 BM7)にて測定したところ、その発光輝度は103cd/m2であった。
(Example 6)
It was connected to one end of a transparent electrode of an inorganic EL device produced in the same manner as in Example 1 except that the dielectric paste was prepared with a weight ratio of the dielectric particles of the second insulating layer and the organic binder of 1: 3. A voltage of 100V, 400Hz is applied between the voltage application lead wire and the voltage application lead wire connected to one end of the back electrode to cause the EL element to emit light, and the luminance is measured by a color luminance meter (BM7 manufactured by Topcon). As a result, the emission luminance was 103 cd / m 2 .

(比較例1)
第2の絶縁層を備えない以外は、実施例1と同様にして作製した無機EL素子の透明電極一端に接続した電圧印加用リード線と、背面電極の一端に接続した電圧印加用リード線との間に100V、400Hzの電圧を印加し、EL素子を発光させ、その輝度を色彩輝度計(トプコン社製 BM7)にて測定したところ、その発光輝度は82cd/m2であった。
(Comparative Example 1)
A voltage applying lead wire connected to one end of the transparent electrode of the inorganic EL element produced in the same manner as in Example 1 except that the second insulating layer is not provided, and a voltage applying lead wire connected to one end of the back electrode In the meantime, a voltage of 100 V and 400 Hz was applied to cause the EL element to emit light, and the luminance was measured with a color luminance meter (BM7 manufactured by Topcon Corp.). The emission luminance was 82 cd / m 2 .

(比較例2)
第2の絶縁層を備えない以外は、実施例3と同様にして作製した無機EL素子の透明電極一端に接続した電圧印加用リード線と、背面電極の一端に接続した電圧印加用リード線との間に100V、400Hzの電圧を印加し、EL素子を発光させ、その輝度を色彩輝度計(トプコン社製 BM7)にて測定したところ、その発光輝度は62cd/m2であった。
(Comparative Example 2)
A voltage application lead wire connected to one end of the transparent electrode of the inorganic EL element produced in the same manner as in Example 3 except that the second insulating layer is not provided, and a voltage application lead wire connected to one end of the back electrode In the meantime, a voltage of 100 V and 400 Hz was applied to cause the EL element to emit light, and the luminance was measured with a color luminance meter (BM7 manufactured by Topcon Corporation), and the emission luminance was 62 cd / m 2 .

図1は従来の無機EL素子断面の概略図である。FIG. 1 is a schematic view of a cross section of a conventional inorganic EL element. 図2は本発明の無機EL素子断面の概略図である。FIG. 2 is a schematic view of a cross section of the inorganic EL element of the present invention.

符号の説明Explanation of symbols

1.背面基板
2.背面電極
3.絶縁層
4.発光層
5.透明電極
6.カバー層
11.背面基板
12.背面電極
13.第1の絶縁層
14.第2の絶縁層
15.発光層
16.透明電極
17.カバー層
1. Back substrate
2. Back electrode
3. Insulation layer
Four. Luminescent layer
Five. Transparent electrode
6. Cover layer
11. Back substrate
12. Back electrode
13. First insulating layer
14. Second insulating layer
15. Luminescent layer
16. Transparent electrode
17. Cover layer

Claims (7)

背面電極、絶縁層、発光層、透明電極が順に積層されているEL素子であって、前記絶縁層は有機バインダーを含まない第1の絶縁層と、有機バインダーを含む第2の絶縁層とを含み、前記第2の絶縁層上に発光層が積層されていることを特徴とする無機EL素子。   An EL element in which a back electrode, an insulating layer, a light emitting layer, and a transparent electrode are sequentially laminated, and the insulating layer includes a first insulating layer containing no organic binder and a second insulating layer containing an organic binder. And an inorganic EL element, wherein a light emitting layer is laminated on the second insulating layer. 前記第1の絶縁層がセラミックス材料であることを特徴とする請求項1記載の無機EL素子。   2. The inorganic EL element according to claim 1, wherein the first insulating layer is a ceramic material. 前記第1の絶縁層がチタン酸バリウム、チタン酸ジルコン酸バリウム、チタン酸ジルコン酸鉛、及びこれらを組み合わせたものからなる群から選ばれる誘電体であることを特徴とする請求項1又は2記載の無機EL素子。   3. The dielectric according to claim 1, wherein the first insulating layer is a dielectric selected from the group consisting of barium titanate, barium zirconate titanate, lead zirconate titanate, and combinations thereof. Inorganic EL element. 前記第1の絶縁層の膜厚が、5〜200μmの範囲内であることを特徴とする請求項1〜3のいずれか1項に記載の無機EL素子。   4. The inorganic EL element according to claim 1, wherein the film thickness of the first insulating layer is in a range of 5 to 200 μm. 前記第2の絶縁層が少なくとも誘電体微粒子と有機バインダーを含み、前記誘電体微粒子と有機バインダーは重量比で1:2〜49:1の割合で含まれることを特徴とする請求項1〜4のいずれか1項に記載の無機EL素子。   5. The second insulating layer includes at least dielectric fine particles and an organic binder, and the dielectric fine particles and the organic binder are included in a weight ratio of 1: 2 to 49: 1. The inorganic EL device according to any one of the above. 前記第2の絶縁層に含まれる前記誘電体微粒子の平均粒径が50〜500nmであることを特徴とする請求項5に記載の無機EL素子。   6. The inorganic EL element according to claim 5, wherein the dielectric fine particles contained in the second insulating layer have an average particle size of 50 to 500 nm. 請求項1〜6のいずれか1項に記載の無機EL素子を備えることを特徴とする照明装置。   An illumination device comprising the inorganic EL element according to any one of claims 1 to 6.
JP2007090530A 2007-03-30 2007-03-30 Inorganic electroluminescent element, and illumination device equipped with this Pending JP2008251321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007090530A JP2008251321A (en) 2007-03-30 2007-03-30 Inorganic electroluminescent element, and illumination device equipped with this

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007090530A JP2008251321A (en) 2007-03-30 2007-03-30 Inorganic electroluminescent element, and illumination device equipped with this

Publications (1)

Publication Number Publication Date
JP2008251321A true JP2008251321A (en) 2008-10-16

Family

ID=39976029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007090530A Pending JP2008251321A (en) 2007-03-30 2007-03-30 Inorganic electroluminescent element, and illumination device equipped with this

Country Status (1)

Country Link
JP (1) JP2008251321A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096452A1 (en) 2008-01-31 2009-08-06 Fujifilm Corporation Resin, pigment dispersion liquid, coloring curable composition, color filter produced by using the composition, and method for producing the color filter
JP2012243695A (en) * 2011-05-24 2012-12-10 Tatsumo Kk Dispersion type el element and method for manufacturing the same
KR101222896B1 (en) * 2012-07-12 2013-01-21 (주)천지 Electroluminescence device emitting high brightness light and method for fabricating the same
JP2013542548A (en) * 2010-03-31 2013-11-21 スリーエム イノベイティブ プロパティズ カンパニー Electronic article for display and manufacturing method thereof
CN109716865A (en) * 2016-09-02 2019-05-03 倍耐克有限公司 Inorganic thin-film electrofluorescence display element and manufacture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171697A (en) * 1990-11-02 1992-06-18 Fuji Electric Co Ltd electroluminescent display panel
JP2003347062A (en) * 2002-05-24 2003-12-05 Tdk Corp Manufacturing method for el element and el element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171697A (en) * 1990-11-02 1992-06-18 Fuji Electric Co Ltd electroluminescent display panel
JP2003347062A (en) * 2002-05-24 2003-12-05 Tdk Corp Manufacturing method for el element and el element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096452A1 (en) 2008-01-31 2009-08-06 Fujifilm Corporation Resin, pigment dispersion liquid, coloring curable composition, color filter produced by using the composition, and method for producing the color filter
JP2013542548A (en) * 2010-03-31 2013-11-21 スリーエム イノベイティブ プロパティズ カンパニー Electronic article for display and manufacturing method thereof
JP2012243695A (en) * 2011-05-24 2012-12-10 Tatsumo Kk Dispersion type el element and method for manufacturing the same
KR101222896B1 (en) * 2012-07-12 2013-01-21 (주)천지 Electroluminescence device emitting high brightness light and method for fabricating the same
CN109716865A (en) * 2016-09-02 2019-05-03 倍耐克有限公司 Inorganic thin-film electrofluorescence display element and manufacture
US11464087B2 (en) 2016-09-02 2022-10-04 Lumineq Oy Inorganic TFEL display element and manufacturing

Similar Documents

Publication Publication Date Title
JP2005302508A (en) Transparent conductive sheet and electroluminescence device using the same
JP2008251321A (en) Inorganic electroluminescent element, and illumination device equipped with this
JP2006233134A (en) Electroluminescent phosphor, its manufacturing method and device using the same
JP4867055B2 (en) Dispersive electroluminescence device
CN1177016C (en) EL phosphor bulk layer film and EL element
WO2006093095A1 (en) Dispersion-type electroluminescent element
JP2007299606A (en) Distributed electroluminescence
JP2005197234A (en) Electroluminescent element
JP2008123780A (en) Dispersed type inorganic electroluminescent element and lighting system equipped with it
JPWO2006008863A1 (en) Inorganic dispersion type electroluminescence device
JP2008251313A (en) Inorganic el element having insulating layer formed by sol-gel method, and illumination device equipped with this
JP2006120555A (en) Dispersion type electroluminescent element
JP2006032100A (en) Inorganic dispersion type electroluminescent element
JP2001303049A (en) Fluorescent thin film and method for producing the same and el panel
JP2006232920A (en) Method for producing core/shell particle
JP2006008806A (en) Phosphor precursor, electroluminescent phosphor, their production methods and dispersed electroluminescence element
JP4330475B2 (en) Method for producing electroluminescent phosphor
JP5672940B2 (en) Phosphor powder for inorganic electroluminescence, method for producing the same, and dispersed inorganic electroluminescence element
JP2005281451A (en) Electroluminescent element and production method of phosphor particulate
JP2005283911A (en) Electroluminescence display panel
JP2005228693A (en) Distributed electroluminescent device and its manufacturing method
JP2006073410A (en) Dispersion type electroluminescent element
JP2005174923A (en) Electroluminescent element
JP5824944B2 (en) Dispersion type inorganic electroluminescence device
JP2005325217A (en) Distributed electroluminescence element and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100304

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120201