[go: up one dir, main page]

JP2008251180A - Catalyst carrying carbon particle and its manufacturing method - Google Patents

Catalyst carrying carbon particle and its manufacturing method Download PDF

Info

Publication number
JP2008251180A
JP2008251180A JP2007087066A JP2007087066A JP2008251180A JP 2008251180 A JP2008251180 A JP 2008251180A JP 2007087066 A JP2007087066 A JP 2007087066A JP 2007087066 A JP2007087066 A JP 2007087066A JP 2008251180 A JP2008251180 A JP 2008251180A
Authority
JP
Japan
Prior art keywords
carbon particles
catalyst
weight
catalyst layer
primary particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007087066A
Other languages
Japanese (ja)
Inventor
Yasuki Yoshida
安希 吉田
Rei Hiromitsu
礼 弘光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2007087066A priority Critical patent/JP2008251180A/en
Publication of JP2008251180A publication Critical patent/JP2008251180A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst layer for a solid polymer fuel cell in which occurrence of cracks is suppressed and a problem of crossover can be solved. <P>SOLUTION: The catalyst carrying carbon particles have a metal catalyst carried by carbon particles which contain the carbon particles of the average primary particle size of 50-100 nm and the carbon particles of the average primary particle size of 10-40 nm in a ratio of 1 pts.wt. for the former and 0.2-6 pts.wt. for the latter. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、新規な触媒担持炭素粒子及びその製造方法に関する。   The present invention relates to a novel catalyst-supported carbon particle and a method for producing the same.

固体高分子型燃料電池は、他の燃料電池と比べて、軽量化、高出力密度等を達成できる観点から、特に盛んに研究がなされている。固体高分子型燃料電池は、電解質膜としてイオン伝導性高分子電解質膜を用い、その両面に触媒層及びガス拡散基材(電極基材)を順に積層し、さらにセパレータで挟んだ構造を有している。   Solid polymer fuel cells are particularly actively studied from the viewpoint of achieving weight reduction, high output density, and the like as compared with other fuel cells. The polymer electrolyte fuel cell has a structure in which an ion conductive polymer electrolyte membrane is used as an electrolyte membrane, a catalyst layer and a gas diffusion base material (electrode base material) are sequentially laminated on both sides, and further sandwiched between separators. ing.

この固体高分子型燃料電池に生じる問題の一つに、いわゆるクロスオーバーがある。クロスオーバーとは、燃料(例えば、水素ガス等)は、通常燃料が最初に送り込まれる燃料極で水素イオン(H)へと反応するが、この反応が生じずに、燃料(水素ガス)のまま、電解質膜を通じて反対側の空気極に達してしまう現象である。このクロスオーバーは電池性能を著しく劣化させるため、極力抑制する必要がある。 One of the problems that occur in this polymer electrolyte fuel cell is a so-called crossover. Crossover means that fuel (for example, hydrogen gas) usually reacts to hydrogen ions (H + ) at the fuel electrode where the fuel is first fed, but this reaction does not occur and the fuel (hydrogen gas) This is a phenomenon that reaches the air electrode on the opposite side through the electrolyte membrane. Since this crossover significantly deteriorates the battery performance, it is necessary to suppress it as much as possible.

特に、固体高分子型燃料電池の一種である直接メタノール形燃料電池(DMFC)は、燃料として、液体であるメタノールを用いる。そのため、水素ガス等の気体よりもクロスオーバーが比較的生じやすく、DMFCではクロスオーバーを抑制することが重要である。   In particular, a direct methanol fuel cell (DMFC), which is a kind of polymer electrolyte fuel cell, uses liquid methanol as a fuel. Therefore, a crossover is more likely to occur than a gas such as hydrogen gas, and it is important to suppress the crossover in the DMFC.

このクロスオーバーの原因の一つとして、触媒層に存在するひび割れ(クラック)が挙げられる。そこで、クロスオーバーの問題を解決する一つの対策として、例えば、触媒層上に生じたクラックに、粒子径の小さい触媒担持炭素粒子を含有するペースト組成物をスプレーで吹き付けることにより、クラックを埋める方法が提案されている(特許文献1)。   One cause of this crossover is a crack present in the catalyst layer. Therefore, as one countermeasure for solving the problem of crossover, for example, a method of filling a crack by spraying a paste composition containing catalyst-carrying carbon particles having a small particle diameter onto a crack generated on the catalyst layer. Has been proposed (Patent Document 1).

しかしながら、特許文献1で得られる触媒層は、スプレーで吹き付けられていない他方面の触媒層(電解膜と接触する面)が緻密でなく、クロスオーバーの問題は、十分に解決されてはいない。
特開2006−286477号公報
However, the catalyst layer obtained in Patent Document 1 is not dense on the other side of the catalyst layer that is not sprayed (surface that contacts the electrolytic membrane), and the problem of crossover has not been sufficiently solved.
JP 2006-286477 A

従って、本発明は、クラックの発生が抑制され、クロスオーバー問題を解決できる固体高分子型燃料電池用の触媒層の提供を目的とする。   Therefore, an object of the present invention is to provide a catalyst layer for a polymer electrolyte fuel cell in which the occurrence of cracks is suppressed and the crossover problem can be solved.

本発明者らは上記従来技術に鑑み、鋭意研究を重ねた結果、触媒層中に特定の触媒担持炭素粒子を含有させることにより、上記問題を解決できることを見出した。すなわち、本発明は下記の触媒担持炭素粒子及びその製造方法、並びに当該触媒担持炭素粒子を含有する触媒層等にかかる。   As a result of intensive studies in view of the above-described conventional techniques, the present inventors have found that the above problem can be solved by including specific catalyst-supporting carbon particles in the catalyst layer. That is, the present invention relates to the following catalyst-carrying carbon particles, a method for producing the same, a catalyst layer containing the catalyst-carrying carbon particles, and the like.

項1.一次粒子径の平均が50〜100nmである炭素粒子と一次粒子径の平均が10〜40nmである炭素粒子とを前者1重量部に対して後者が0.2〜6重量部の割合で含む炭素粒子に、金属触媒が担持されてなる、触媒担持炭素粒子。   Item 1. Carbon including carbon particles having an average primary particle diameter of 50 to 100 nm and carbon particles having an average primary particle diameter of 10 to 40 nm in a ratio of 0.2 to 6 parts by weight with respect to 1 part by weight of the former. Catalyst-supported carbon particles, in which a metal catalyst is supported on the particles.

項2.前者1重量部に対して後者が0.3〜3重量部含む、項1に記載の触媒担持炭素粒子。   Item 2. Item 2. The catalyst-supported carbon particles according to Item 1, wherein the latter contains 0.3 to 3 parts by weight with respect to 1 part by weight of the former.

項3.項1又は2に記載の触媒担持炭素粒子及び水素イオン伝導性高分子電解質を含む、固体高分子型燃料電池用触媒層。   Item 3. Item 3. A solid polymer fuel cell catalyst layer comprising the catalyst-supporting carbon particles according to Item 1 or 2 and a hydrogen ion conductive polymer electrolyte.

項4.項3に記載の触媒層を具備する、固体高分子型燃料電池。   Item 4. Item 6. A polymer electrolyte fuel cell comprising the catalyst layer according to Item 3.

項5.一次粒子径の平均が50〜100nmである炭素粒子と一次粒子径の平均が10〜30nmである炭素粒子とを前者1重量部に対して後者が0.2〜6重量部の割合で混合する第一工程、及び第一工程で得られた炭素粒子に金属触媒を担持させる第二工程、を備えた触媒担持炭素粒子の製造方法。   Item 5. Carbon particles having an average primary particle diameter of 50 to 100 nm and carbon particles having an average primary particle diameter of 10 to 30 nm are mixed at a ratio of 0.2 to 6 parts by weight with respect to 1 part by weight of the former. The manufacturing method of the catalyst carrying | support carbon particle provided with the 2nd process of carrying | supporting a metal catalyst on the carbon particle obtained at the 1st process and the 1st process.

触媒担持炭素粒子
本発明の触媒担持炭素粒子は、一次粒子径の平均が50〜100nmである炭素粒子と一次粒子径の平均が10〜40nmである炭素粒子とが前者1重量部に対して後者が0.2〜6重量部の割合で含む炭素粒子に、金属触媒が担持されてなる。
Catalyst-supported carbon particles The catalyst-supported carbon particles of the present invention are composed of carbon particles having an average primary particle diameter of 50 to 100 nm and carbon particles having an average primary particle diameter of 10 to 40 nm with respect to 1 part by weight of the former. Is formed by supporting a metal catalyst on carbon particles containing 0.2 to 6 parts by weight.

炭素粒子は特に制限されず、例えば、チャンネルブラック、ファーネスブラック、ケッチェンブラック、アセチレンブラック、ランプブラックなどのカーボンブラック、黒鉛、活性炭、カーボンナノチューブ、カーボンナノワイヤー等が挙げられる。これらは1種単独又は2種以上で用いることができる。これらのうち、特にケッチェンブラック等が好ましい。   The carbon particles are not particularly limited, and examples thereof include carbon black such as channel black, furnace black, ketjen black, acetylene black, and lamp black, graphite, activated carbon, carbon nanotube, and carbon nanowire. These can be used alone or in combination of two or more. Of these, ketjen black is particularly preferable.

本発明では、上記炭素粒子について、一次粒子径の平均が50〜100nm(特に60〜85nm)の炭素粒子と一次粒子径10〜40nmの平均が(特に20〜40nm)の炭素粒子とが前者1重量部に対して後者が0.2〜6重量部の割合で含むことを必須とする。好ましくは、前者1重量部に対して後者が0.3〜3重量部含む。より好ましくは、炭素粒子が実質的に、一次粒子径の平均が50〜100nmの炭素粒子及び一次粒子径の平均が10〜30nmの炭素粒子からなり、且つ、当該炭素粒子の割合が前者1重量部に対して後者が0.2〜6重量部(特に好ましくは前者1重量部に対して後者が0.3〜3重量部)である。このような炭素粒子を用いて触媒層を構成すると、緻密に形成されるため、製造される触媒層のクラックを低減でき、固体高分子型燃料電池のクロスオーバー、特に直接メタノール型燃料電池(DMFC)におけるメタノールクロスオーバーを効果的に抑制することができる。なお、このように緻密に形成されるのは、平均一次粒子径50〜100nmの炭素粒子から得られる触媒担持炭素粒子がコアとなり、その隙間を埋めるように、平均一次粒子径10〜40nmの持炭素粒子から得られる触媒担持炭素粒子が配置されている構造をとるためと推察される。   In the present invention, for the carbon particles, carbon particles having an average primary particle diameter of 50 to 100 nm (particularly 60 to 85 nm) and carbon particles having an average primary particle diameter of 10 to 40 nm (particularly 20 to 40 nm) are the former 1. It is essential that the latter is contained at a ratio of 0.2 to 6 parts by weight with respect to parts by weight. Preferably, the latter contains 0.3 to 3 parts by weight with respect to 1 part by weight of the former. More preferably, the carbon particles are substantially composed of carbon particles having an average primary particle diameter of 50 to 100 nm and carbon particles having an average primary particle diameter of 10 to 30 nm, and the proportion of the carbon particles is 1 weight by weight. The latter is 0.2 to 6 parts by weight with respect to parts (particularly preferably, the latter is 0.3 to 3 parts by weight with respect to 1 part by weight of the former). When a catalyst layer is formed using such carbon particles, the catalyst layer is densely formed, so that cracks in the produced catalyst layer can be reduced, and crossover of a polymer electrolyte fuel cell, particularly a direct methanol fuel cell (DMFC) ) Methanol crossover can be effectively suppressed. The densely formed particles having the average primary particle diameter of 10 to 40 nm are formed so that the catalyst-carrying carbon particles obtained from the carbon particles having an average primary particle diameter of 50 to 100 nm serve as the core and fill the gap. It is assumed that the catalyst-supporting carbon particles obtained from the carbon particles have a structure arranged.

本発明において、炭素粒子の一次粒子径の平均は、任意に選んだ炭素粒子100個を走査型電子顕微鏡(日本電子データム社製)で観察して各炭素粒子の粒子径を測定した場合の平均値をいう。   In the present invention, the average primary particle diameter of carbon particles is an average when 100 arbitrarily selected carbon particles are observed with a scanning electron microscope (manufactured by JEOL Datum) and the particle diameter of each carbon particle is measured. Value.

炭素粒子に担持する金属触媒としては、燃料電池の燃料極又は空気極における燃料電池反応を起こさせるものであれば特に限定されない。例えば白金、白金合金、白金化合物等が挙げられる。白金合金としては、例えば、ルテニウム、パラジウム、ニッケル、モリブデン、イリジウム、鉄等からなる群から選ばれる少なくとも1種の金属と白金との合金等が挙げられる。一般的に、カソード触媒層として用いられる場合の触媒材は白金、アノード触媒層として用いられる場合の金属触媒は上述した合金である。   The metal catalyst supported on the carbon particles is not particularly limited as long as it causes a fuel cell reaction in the fuel electrode or air electrode of the fuel cell. For example, platinum, a platinum alloy, a platinum compound, etc. are mentioned. Examples of the platinum alloy include an alloy of platinum and at least one metal selected from the group consisting of ruthenium, palladium, nickel, molybdenum, iridium, iron and the like. Generally, the catalyst material when used as the cathode catalyst layer is platinum, and the metal catalyst when used as the anode catalyst layer is the above-described alloy.

金属触媒の担持量は、触媒担持炭素粒子に対して、好ましくは10〜80重量%程度であり、より好ましくは40〜70重量%程度である。   The supported amount of the metal catalyst is preferably about 10 to 80% by weight, more preferably about 40 to 70% by weight with respect to the catalyst-supported carbon particles.

触媒層
本発明の固体高分子型燃料電池用触媒層は、上記触媒担持炭素粒子及び水素イオン伝導性高分子電解質を含む。
Catalyst Layer The catalyst layer for a polymer electrolyte fuel cell of the present invention contains the catalyst-supporting carbon particles and a hydrogen ion conductive polymer electrolyte.

水素イオン伝導性高分子電解質は、水素イオン伝導性能を有している限り限定的でなく、公知又は市販のものを使用できる。例えば、パーフルオロスルホン酸系のフッ素イオン交換樹脂等、炭化水素系のイオン交換樹脂等が挙げられる。パーフルオロスルホン酸系のフッ素イオン交換樹脂の具体例としては、例えば、テトラフルオロエチレンに基づく重合単位と、スルホン酸基及びカルボン酸基からなる群より選ばれた少なくとも1種の官能基を有するパーフルオロビニルエーテルに基づく重合単位とを含む共重合体等を例示することができる。水素イオン伝導性高分子電解質の具体例としては、例えば、デュポン社製の「Nafion」、旭硝子(株)製の「Flemion」、旭化成(株)製の「Aciplex」、ゴア(Gore)社製の「Gore Select」等が挙げられる。   The hydrogen ion conductive polymer electrolyte is not limited as long as it has hydrogen ion conductivity, and a known or commercially available one can be used. Examples thereof include perfluorosulfonic acid-based fluorine ion exchange resins and hydrocarbon-based ion exchange resins. Specific examples of the perfluorosulfonic acid-based fluorine ion exchange resin include, for example, a polymer unit based on tetrafluoroethylene, and a perfluorosulfonic acid-based perion group having at least one functional group selected from the group consisting of a sulfonic acid group and a carboxylic acid group. Examples thereof include copolymers containing polymer units based on fluorovinyl ether. Specific examples of the hydrogen ion conductive polymer electrolyte include, for example, “Nafion” manufactured by DuPont, “Flemion” manufactured by Asahi Glass Co., Ltd., “Aciplex” manufactured by Asahi Kasei Co., Ltd., and Gore manufactured by Gore. For example, “Gore Select”.

触媒層中の水素イオン伝導性高分子電解質の割合は、発電性能等の観点から、触媒層の全重量に対して、通常5〜60重量%程度、好ましくは10〜50重量%程度であり、残りは触媒担持炭素粒子であるが、必要に応じて、公知の各種添加剤を含んでいてもよい。   The proportion of the hydrogen ion conductive polymer electrolyte in the catalyst layer is usually about 5 to 60% by weight, preferably about 10 to 50% by weight, based on the total weight of the catalyst layer, from the viewpoint of power generation performance and the like. The remainder is catalyst-supported carbon particles, but may contain various known additives as necessary.

触媒層の平均膜厚は、通常10〜100μm程度、好ましくは15〜50μm程度である。   The average film thickness of the catalyst layer is usually about 10 to 100 μm, preferably about 15 to 50 μm.

触媒層−電解質膜積層体及び固体高分子型燃料電池
本発明の触媒層−電解質膜積層体は、電解質膜の両面に触媒層がそれぞれ積層されてなるものであって、当該電解質膜の少なくとも一つが本発明の触媒層である。
Catalyst layer-electrolyte membrane laminate and polymer electrolyte fuel cell The catalyst layer-electrolyte membrane laminate of the present invention comprises a catalyst layer laminated on both sides of the electrolyte membrane, and at least one of the electrolyte membranes. One is the catalyst layer of the present invention.

電解質膜は水素イオン伝導性能を有するものであればよく、公知又は市販のものを使用できる。例えばデュポン社製の「Nafion」膜、旭硝子(株)製の「Flemion」膜、旭化成(株)製の「Aciplex」膜等が挙げられる。電解質膜の膜厚は、通常20〜250μm程度、好ましくは20〜80μm程度である。   Any electrolyte membrane may be used as long as it has hydrogen ion conductivity, and a known or commercially available membrane can be used. For example, “Nafion” membrane manufactured by DuPont, “Flemion” membrane manufactured by Asahi Glass Co., Ltd., “Aciplex” membrane manufactured by Asahi Kasei Co., Ltd. and the like can be mentioned. The thickness of the electrolyte membrane is usually about 20 to 250 μm, preferably about 20 to 80 μm.

本発明の固体高分子型燃料電池は、上記触媒層−電解質膜積層体の両面に公知又は市販のガス拡散基材及びセパレータを順次積層してなる。   The polymer electrolyte fuel cell of the present invention is formed by sequentially laminating a known or commercially available gas diffusion base material and a separator on both surfaces of the catalyst layer-electrolyte membrane laminate.

ガス拡散基材としては、例えば、カーボンペーパー、カーボンクロス等が挙げられる。   Examples of the gas diffusion base material include carbon paper and carbon cloth.

触媒層形成用転写シート
本発明の触媒層形成用転写シートは、転写基材の一方面又は両面に本発明の触媒層が積層されてなる。
Transfer sheet for forming a catalyst layer The transfer sheet for forming a catalyst layer of the present invention is formed by laminating the catalyst layer of the present invention on one or both surfaces of a transfer substrate.

転写基材としては公知又は市販のものを使用でき、例えば、ポリイミド、ポリエチレンテレフタレート、ポリパルバン酸アラミド、ポリアミド(ナイロン)、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテル・エーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレート等の高分子フィルムを挙げることができる。   A known or commercially available transfer substrate can be used, for example, polyimide, polyethylene terephthalate, polypalvanic acid aramid, polyamide (nylon), polysulfone, polyethersulfone, polyphenylene sulfide, polyether ether ketone, polyetherimide, Examples thereof include polymer films such as polyarylate and polyethylene naphthalate.

また、エチレンテトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロパーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)等の耐熱性フッ素樹脂を用いることもできる。   Further, heat resistance of ethylene tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroperfluoroalkyl vinyl ether copolymer (PFA), polytetrafluoroethylene (PTFE), etc. Fluorine resin can also be used.

更に、転写基材は、高分子フィルム以外に、アート紙、コート紙、軽量コート紙等の塗工紙、ノート用紙、コピー用紙等の非塗工紙等の紙であってもよい。   Further, in addition to the polymer film, the transfer substrate may be paper such as art paper, coated paper, lightweight coated paper, or other non-coated paper such as notebook paper or copy paper.

これらの中でも、本発明は、安価で入手が容易な高分子フィルムが好ましく、具体的には、ポリエチレンテレフタレート等がより好ましい。   Among these, the present invention is preferably a polymer film that is inexpensive and easily available, and specifically, polyethylene terephthalate or the like is more preferable.

転写基材の平均厚さは、取り扱い性及び経済性の観点から、通常6〜100μm程度、好ましくは10〜50μm程度、より好ましくは15〜30μm程度とすればよい。   The average thickness of the transfer substrate is usually about 6 to 100 μm, preferably about 10 to 50 μm, and more preferably about 15 to 30 μm from the viewpoints of handleability and economy.

触媒担持炭素粒子の製造方法
本発明の触媒担持炭素粒子の製造方法は、一次粒子径の平均が50〜100nm(好ましくは60〜85nm)である炭素粒子と一次粒子径の平均が10〜40nm(好ましくは20〜40nm)である炭素粒子とを前者1重量部に対して後者が0.2〜6重量部の割合であらかじめ混合する第一工程、及び第一工程で得られた混合炭素粒子に金属触媒を担持させる第二工程、を備えることを特徴とする。好ましい混合割合は、前者1重量部に対して後者が0.3〜3重量部である。これにより、優れた電池特性を発揮する触媒層を形成できる触媒担持炭素粒子を簡易に製造することができる。
Method for Producing Catalyst-Supported Carbon Particles The method for producing catalyst-supported carbon particles of the present invention comprises carbon particles having an average primary particle size of 50 to 100 nm (preferably 60 to 85 nm) and an average primary particle size of 10 to 40 nm ( The carbon particles which are preferably 20 to 40 nm) are mixed in advance in a ratio of 0.2 to 6 parts by weight with respect to 1 part by weight of the former, and to the mixed carbon particles obtained in the first step. A second step of supporting the metal catalyst. A preferable mixing ratio is 0.3 to 3 parts by weight of the latter with respect to 1 part by weight of the former. Thereby, the catalyst carrying | support carbon particle which can form the catalyst layer which exhibits the outstanding battery characteristic can be manufactured easily.

炭素粒子に金属触媒を担持させる方法は、常法に従って行えばよく、例えば、(1)第一工程で得られた炭素粒子を、所望の金属触媒が溶解した水溶液と混合及び分散させることにより炭素粒子分散水溶液を得、次いで、(2)得られた炭素粒子分散水溶液に還元剤を混合することにより金属触媒を炭素粒子表面に還元析出する方法が挙げられる。   The method for supporting the metal catalyst on the carbon particles may be carried out according to a conventional method. For example, (1) carbon particles obtained in the first step are mixed and dispersed with an aqueous solution in which a desired metal catalyst is dissolved. Examples thereof include a method in which a particle-dispersed aqueous solution is obtained, and (2) a metal catalyst is reduced and deposited on the surface of the carbon particles by mixing a reducing agent with the obtained carbon particle-dispersed aqueous solution.

金属触媒は、上記で挙げたものと同一のものが挙げられ、当該金属触媒の水溶液中の濃度は、金属触媒の種類等に応じて適宜決定すればよい。例えば、水溶液がヘキサヒドロキソ白金硝酸水溶液の場合は、通常3〜20重量程度、好ましくは5〜10重量%程度とすればよい。   Examples of the metal catalyst include the same ones as described above, and the concentration of the metal catalyst in the aqueous solution may be appropriately determined according to the type of the metal catalyst. For example, when the aqueous solution is a hexahydroxo platinum nitric acid aqueous solution, it is usually about 3 to 20% by weight, preferably about 5 to 10% by weight.

還元剤は、所望の金属触媒を還元及び析出できる物質であれば特に限定されるものではないが、例えば、水素化ホウ素ナトリウム水溶液、炭素数1〜5程度のアルコール、ギ酸、ヒドラジン、水素ガス等を挙げることができる。本発明では特に水素化ホウ素ナトリウム水溶液等が好ましく挙げられる。   The reducing agent is not particularly limited as long as it is a substance that can reduce and deposit a desired metal catalyst. For example, an aqueous sodium borohydride solution, alcohol having about 1 to 5 carbon atoms, formic acid, hydrazine, hydrogen gas, etc. Can be mentioned. In the present invention, an aqueous sodium borohydride solution and the like are particularly preferred.

必要に応じて、アンモニア等の各種添加剤を添加してもよい。   You may add various additives, such as ammonia, as needed.

また、更に必要に応じて、第二工程中及び終了後、得られた触媒担持炭素粒子を洗浄及び濾過してもよい。   Further, if necessary, the obtained catalyst-supporting carbon particles may be washed and filtered during and after the second step.

触媒層の製造方法
本発明の触媒層は、例えば、本発明の触媒担持炭素粒子、水素イオン伝導性高分子電解質及び溶剤を含有する触媒層形成用ペースト組成物をガス拡散基材、転写基材等の基材に塗布し、乾燥することにより得られる。
Method for Producing Catalyst Layer The catalyst layer of the present invention is prepared by, for example, using a catalyst layer forming paste composition containing the catalyst-supporting carbon particles of the present invention, a hydrogen ion conductive polymer electrolyte, and a solvent as a gas diffusion substrate, a transfer substrate. It is obtained by applying to a substrate such as, and drying.

触媒担持炭素粒子及び水素イオン伝導性高分子電解質は上記したものと同様である。   The catalyst-supporting carbon particles and the hydrogen ion conductive polymer electrolyte are the same as those described above.

溶剤は限定的でなく、公知又は市販のものを広く使用できるが、本発明では、特に、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、t−ブタノール、エチレングリコール、プロピレングリコール等の炭素数1〜4程度の1価又は多価のアルコールが好ましい。これらの溶剤は、1種単独で又は2種以上混合して使用できる。   The solvent is not limited, and known or commercially available solvents can be widely used. In the present invention, in particular, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, t-butanol, ethylene glycol are used. Monovalent or polyhydric alcohols having about 1 to 4 carbon atoms such as propylene glycol are preferred. These solvents can be used alone or in combination of two or more.

ペースト組成物の配合割合は限定的でなく、上記触媒層の組成割合となるように適宜決定すればよいが、例えば、触媒担持炭素粒子100重量部に対して、水素イオン伝導性高分子電解質25〜60重量部程度(好ましくは40〜50重量部程度)、溶剤500〜1000重量部程度(好ましくは700〜900重量部程度)とすればよい。   The blending ratio of the paste composition is not limited, and may be appropriately determined so as to be the composition ratio of the catalyst layer. For example, the hydrogen ion conductive polymer electrolyte 25 with respect to 100 parts by weight of the catalyst-supporting carbon particles. About 60 parts by weight (preferably about 40-50 parts by weight) and about 500-1000 parts by weight of solvent (preferably about 700-900 parts by weight) may be used.

上記組成の混合順序は、特に制限されない。例えば、触媒担持炭素粒子、水素イオン伝導性高分子電解質及び溶剤を順次又は同時に混合し、分散させることにより、ペースト組成物を調製できる。また、触媒担持炭素粒子を水に混合し、次いで、水素イオン伝導性高分子電解質及び溶剤を混合することによっても調製できる。混合には、公知の混合手段を広く適用できる。水を混合する場合、水の混合量は、触媒担持炭素粒子100重量部に100〜500重量部程度、好ましくは200〜300重量部程度とすればよい。   The mixing order of the above composition is not particularly limited. For example, the paste composition can be prepared by mixing and dispersing the catalyst-supporting carbon particles, the hydrogen ion conductive polymer electrolyte, and the solvent sequentially or simultaneously. Alternatively, the catalyst-carrying carbon particles can be mixed with water and then mixed with a hydrogen ion conductive polymer electrolyte and a solvent. For mixing, known mixing means can be widely applied. When water is mixed, the amount of water mixed may be about 100 to 500 parts by weight, preferably about 200 to 300 parts by weight per 100 parts by weight of the catalyst-supporting carbon particles.

ペースト組成物の塗布方法としては、特に限定されるものではなく、例えば、ナイフコーター、バーコーター、ブレードコーター、スプレー、ディップコーター、スピンコーター、ロールコーター、ダイコーター、カーテンコーター、スクリーン印刷等の一般的な方法を適用できる。   The method for applying the paste composition is not particularly limited. For example, knife coating, bar coating, blade coating, spraying, dip coating, spin coating, roll coating, die coating, curtain coating, screen printing, etc. Applicable.

上記ペースト組成物を塗布した後、乾燥することにより、本発明の触媒層が形成される。乾燥温度は限定的でないが、通常40〜120℃程度、好ましくは75〜95℃程度である。乾燥時間は乾燥温度等に応じて適宜決定すればよく、通常5分〜2時間程度、好ましくは30分〜1時間程度である。   After applying the paste composition, the catalyst layer of the present invention is formed by drying. The drying temperature is not limited, but is usually about 40 to 120 ° C, preferably about 75 to 95 ° C. What is necessary is just to determine a drying time suitably according to drying temperature etc., Usually, it is about 5 minutes-2 hours, Preferably it is about 30 minutes-1 hour.

転写基材に塗布及び乾燥することにより、本発明の触媒層形成転写シートが得られる。また、当該転写シートを電解質膜の少なくとも一方に常法に従って転写すること等により、本発明の触媒層−電解質膜積層体及び固体燃料型燃料電池が得られる。   The catalyst layer-forming transfer sheet of the present invention is obtained by applying and drying the transfer substrate. Moreover, the catalyst layer-electrolyte membrane laminate and the solid fuel type fuel cell of the present invention can be obtained by transferring the transfer sheet to at least one of the electrolyte membranes according to a conventional method.

本発明の触媒担持炭素粒子によれば、クラックが大幅に低減された触媒層を製造ことができる。よって、固体高分子型燃料電池、特にDMFCにおいてメタノールによるクロスオーバーの問題を実質的に解決でき、優れた電池性能を発揮させることができる。   According to the catalyst-carrying carbon particles of the present invention, a catalyst layer with greatly reduced cracks can be produced. Therefore, the problem of crossover due to methanol can be substantially solved in a polymer electrolyte fuel cell, particularly DMFC, and excellent battery performance can be exhibited.

以下に実施例及び比較例を掲げて、本発明をより一層詳細に説明する。なお、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. In addition, this invention is not limited to a following example.

1.実施例1
(白金触媒担持炭素粒子)
炭素粒子(東海カーボン社製、「シーストFY」、一次粒子径の平均:70nm)0.5g及び炭素粒子(三菱化学社製、「ケッチェンブラックEC」、一次粒子径の平均:30nm)1.5gを純水0.2Lに添加し、炭素粒子含有スラリーを調製した。このスラリーを攪拌した状態で、5wt%ヘキサヒドロキソ白金硝酸水溶液150g及び純水1Lを順次滴下した後に、水溶液中の粉末を濾別した。
1. Example 1
(Platinum catalyst supported carbon particles)
1. 0.5 g of carbon particles (manufactured by Tokai Carbon Co., “Seast FY”, average primary particle size: 70 nm) and carbon particles (manufactured by Mitsubishi Chemical Corporation, “Ketjen Black EC”, average primary particle size: 30 nm) 5 g was added to 0.2 L of pure water to prepare a slurry containing carbon particles. While stirring this slurry, 150 g of 5 wt% hexahydroxoplatinum nitric acid aqueous solution and 1 L of pure water were successively added dropwise, and then the powder in the aqueous solution was separated by filtration.

得られた粉末を1Lの純水中に分散させた後、0.01Nアンモニア溶液を滴下して分散液のpHを9とした。次いで、3wt%水素化ホウ素ナトリウム水溶液を170ml滴下して十分に攪拌した後、分散液中の粉末を濾別した。   After the obtained powder was dispersed in 1 L of pure water, 0.01N ammonia solution was added dropwise to adjust the pH of the dispersion to 9. Next, 170 ml of a 3 wt% sodium borohydride aqueous solution was dropped and stirred sufficiently, and then the powder in the dispersion was filtered off.

得られた粉末を80℃で48時間加熱して乾燥することにより、実施例1の白金触媒担持炭素粒子を製造した。   The obtained powder was heated at 80 ° C. for 48 hours and dried to produce platinum catalyst-supporting carbon particles of Example 1.

白金触媒担持炭素粒子中の白金担持量は60wt%であった。白金担持量の確認は、ICP発光分析(島津製作所製、製品名「ICPE−9000」)により行った。   The amount of platinum supported in the platinum catalyst-supported carbon particles was 60 wt%. The amount of platinum supported was confirmed by ICP emission analysis (manufactured by Shimadzu Corporation, product name “ICPE-9000”).

(アノード触媒層転写シート)
上記で製造した白金触媒担持炭素粒子2gに、1−ブタノール5g、t−ブタノール5g、水素イオン伝導性高分子電解質含有溶液(20wt%ナフィオン溶液、デュポン社製)5g及び水5gを加え、これらを分散機にて攪拌混合することにより、アノード触媒層形成用ペースト組成物を調製した。
(Anode catalyst layer transfer sheet)
To 2 g of the platinum catalyst-supported carbon particles produced above, 5 g of 1-butanol, 5 g of t-butanol, 5 g of a hydrogen ion conductive polymer electrolyte-containing solution (20 wt% Nafion solution, manufactured by DuPont) and 5 g of water are added. A paste composition for forming an anode catalyst layer was prepared by stirring and mixing in a disperser.

次に、調製したペースト組成物をOPPフィルム(パナック製、トレファン、厚さ30μm)に乾燥後の白金重量が3.0mg/cmとなるように塗布及び乾燥することにより、アノード触媒層転写シートを作製した。 Next, the prepared paste composition was applied to an OPP film (manufactured by Panac, Trefan, thickness 30 μm) and dried so that the weight of platinum after drying was 3.0 mg / cm 2 , thereby transferring the anode catalyst layer. A sheet was produced.

得られた転写シート層上の触媒層の膜厚を、マイクロメーター(SONY社製 WPSM−30)用いて測定したところ、平均で40μmであった。   When the film thickness of the catalyst layer on the obtained transfer sheet layer was measured using a micrometer (WPSM-30 manufactured by SONY), it was 40 μm on average.

2.比較例1
(白金触媒担持炭素粒子)
炭素粒子(東海カーボン社製、「シーストFY」、一次粒子径の平均:70nm)0.5g及び炭素粒子(三菱化学社製、「ケッチェンブラックEC」、一次粒子径の平均:30nm)1.5gの代わりに、炭素粒子(三菱化学社製、「ケッチェンブラックEC」、一次粒子径の平均:30nm)2.0gを用いた以外は、実施例1と同様にして、比較例1の白金触媒担持炭素粒子を製造した。白金触媒担持炭素粒子中の白金担持量は60wt%であった。
2. Comparative Example 1
(Platinum catalyst supported carbon particles)
1. 0.5 g of carbon particles (manufactured by Tokai Carbon Co., “Seast FY”, average primary particle size: 70 nm) and carbon particles (manufactured by Mitsubishi Chemical Corporation, “Ketjen Black EC”, average primary particle size: 30 nm) Platinum of Comparative Example 1 was used in the same manner as in Example 1 except that 2.0 g of carbon particles (Mitsubishi Chemical Corporation, “Ketjen Black EC”, average primary particle size: 30 nm) was used instead of 5 g. Catalyst-supported carbon particles were produced. The amount of platinum supported in the platinum catalyst-supported carbon particles was 60 wt%.

(アノード触媒層転写シート)
比較例1の白金触媒担持炭素粒子を用いた以外は実施例1と同様にして、比較例1のアノード触媒層転写シートを作製した。得られた転写シート層上の触媒層の膜厚は平均で75μmであった。
(Anode catalyst layer transfer sheet)
An anode catalyst layer transfer sheet of Comparative Example 1 was produced in the same manner as in Example 1 except that the platinum catalyst-carrying carbon particles of Comparative Example 1 were used. The film thickness of the catalyst layer on the obtained transfer sheet layer was 75 μm on average.

3.クラック評価
実施例1の触媒層転写シート上の触媒層を顕微鏡を用いて観察したところ、クラックはほとんど発生しておらず、さらに緻密に触媒層が形成されていることが確認できた。一方、比較例1の触媒層転写シート上の触媒層では、クラックが多く発生しており、さらに触媒層が緻密に形成されていないことが確認された。
3. Crack Evaluation When the catalyst layer on the catalyst layer transfer sheet of Example 1 was observed using a microscope, almost no cracks were generated, and it was confirmed that the catalyst layer was formed more densely. On the other hand, in the catalyst layer on the catalyst layer transfer sheet of Comparative Example 1, it was confirmed that many cracks occurred and the catalyst layer was not formed densely.

4.燃料電池の作製
(カソード触媒層転写シート)
白金触媒担持炭素粒子(白金担持量:45.7wt%、白金触媒担持炭素粒子の一次粒子径の平均:30nm、田中貴金属工業製、「TEC10E50E」)2gに、1−ブタノール15g、t−ブタノール2.5g、水素イオン伝導性高分子電解質含有溶液(20wt%ナフィオン、デュポン社製)5g及び水5gを加え、これらを分散機にて攪拌混合することによりカソード触媒層形成用ペースト組成物を調製した。
4). Fabrication of fuel cell (cathode catalyst layer transfer sheet)
2 g of platinum catalyst-supported carbon particles (platinum support amount: 45.7 wt%, average primary particle diameter of platinum catalyst-supported carbon particles: 30 nm, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., “TEC10E50E”), 15 g of 1-butanol, t-butanol 2 .5 g, 5 g of a hydrogen ion conductive polymer electrolyte-containing solution (20 wt% Nafion, manufactured by DuPont) and 5 g of water were added, and these were stirred and mixed in a disperser to prepare a paste composition for forming a cathode catalyst layer. .

次に、調製したペースト組成物をポリエステルフィルム(東レ製、「X44」、厚さ25μm)に乾燥後の白金重量が1.0mg/cmとなるように塗布及び乾燥することにより、カソード触媒層転写シートを作製した。 Next, by applying and drying the prepared paste composition on a polyester film (Toray, “X44”, thickness 25 μm) so that the weight of platinum after drying is 1.0 mg / cm 2 , the cathode catalyst layer A transfer sheet was prepared.

(燃料電池)
水素イオン伝導性高分子電解質膜(デュポン社製、「ナフィオン117」、50mm×50mm)の片面に、30×30mmに切断した実施例1又は比較例1で製造したアノード触媒層転写シートを、他面に30×30mmに切断したカソード触媒層転写シートを、各々が対面するように配置し、135℃、2.3MPa、150秒の条件で熱プレスすることにより、実施例1及び比較例1の触媒層−電解質膜積層体を作製した。次いで、作製した実施例1及び比較例1の触媒層−電解質膜積層体を各々燃料電池セルに組み込むことにより、実施例1及び比較例1の固体高分子型燃料電池を製造した。
(Fuel cell)
The anode catalyst layer transfer sheet produced in Example 1 or Comparative Example 1 cut to 30 × 30 mm on one side of a hydrogen ion conductive polymer electrolyte membrane (manufactured by DuPont, “Nafion 117”, 50 mm × 50 mm) The cathode catalyst layer transfer sheets cut into 30 × 30 mm on the surface are arranged so as to face each other, and are hot-pressed under the conditions of 135 ° C., 2.3 MPa, and 150 seconds, whereby Example 1 and Comparative Example 1 A catalyst layer-electrolyte membrane laminate was produced. Next, the polymer layer fuel cells of Example 1 and Comparative Example 1 were manufactured by incorporating the prepared catalyst layer-electrolyte membrane laminates of Example 1 and Comparative Example 1 into fuel cells, respectively.

5.電流電圧測定評価
実施例1及び比較例1の固体高分子型燃料電池について、開回路電圧(OCV)及び最大出力密度(Pmax)を測定した。この時の測定条件は、セル温度70℃、1Mメタノールとした。
5. Current-Voltage Measurement Evaluation Regarding the polymer electrolyte fuel cells of Example 1 and Comparative Example 1, the open circuit voltage (OCV) and the maximum output density (P max ) were measured. The measurement conditions at this time were a cell temperature of 70 ° C. and 1M methanol.

その結果、実施例1の燃料電池セルの開回路電圧(OCV)は0.70Vであり、最大出力密度(Pmax)は50mW/cmであった。一方、比較例1の燃料電池セルの開回路電圧(OCV)は0.63Vであり、最大出力密度(Pmax)は45mW/cmであった。このように、本実施例1の燃料電池セルでは、OCV値の上昇がみられることから、本発明の触媒層を用いるとクロスオーバーの問題が解決されたことが分かる。 As a result, the open circuit voltage (OCV) of the fuel cell of Example 1 was 0.70 V, and the maximum output density (P max ) was 50 mW / cm 2 . On the other hand, the open circuit voltage (OCV) of the fuel cell of Comparative Example 1 was 0.63 V, and the maximum output density (P max ) was 45 mW / cm 2 . As described above, in the fuel cell of Example 1, an increase in the OCV value is seen, so that it is understood that the problem of crossover was solved by using the catalyst layer of the present invention.

Claims (5)

一次粒子径の平均が50〜100nmである炭素粒子と一次粒子径の平均が10〜40nmである炭素粒子とを前者1重量部に対して後者が0.2〜6重量部の割合で含む炭素粒子に、金属触媒が担持されてなる、触媒担持炭素粒子。   Carbon including carbon particles having an average primary particle diameter of 50 to 100 nm and carbon particles having an average primary particle diameter of 10 to 40 nm in a ratio of 0.2 to 6 parts by weight with respect to 1 part by weight of the former. Catalyst-supported carbon particles, in which a metal catalyst is supported on the particles. 前者1重量部に対して後者が0.3〜3重量部含む、請求項1に記載の触媒担持炭素粒子。   The catalyst-supporting carbon particles according to claim 1, wherein the latter contains 0.3 to 3 parts by weight with respect to 1 part by weight of the former. 請求項1又は2に記載の触媒担持炭素粒子及び水素イオン伝導性高分子電解質を含む、固体高分子型燃料電池用触媒層。   A catalyst layer for a polymer electrolyte fuel cell, comprising the catalyst-supported carbon particles according to claim 1 or 2 and a hydrogen ion conductive polymer electrolyte. 請求項3に記載の触媒層を具備する、固体高分子型燃料電池。   A polymer electrolyte fuel cell comprising the catalyst layer according to claim 3. 一次粒子径の平均が50〜100nmである炭素粒子と一次粒子径の平均が10〜30nmである炭素粒子とを前者1重量部に対して後者が0.2〜6重量部の割合で混合する第一工程、及び
第一工程で得られた炭素粒子に金属触媒を担持させる第二工程、
を備えた触媒担持炭素粒子の製造方法。
Carbon particles having an average primary particle diameter of 50 to 100 nm and carbon particles having an average primary particle diameter of 10 to 30 nm are mixed at a ratio of 0.2 to 6 parts by weight with respect to 1 part by weight of the former. A first step, and a second step of supporting a metal catalyst on the carbon particles obtained in the first step,
A method for producing catalyst-supported carbon particles comprising:
JP2007087066A 2007-03-29 2007-03-29 Catalyst carrying carbon particle and its manufacturing method Pending JP2008251180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007087066A JP2008251180A (en) 2007-03-29 2007-03-29 Catalyst carrying carbon particle and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007087066A JP2008251180A (en) 2007-03-29 2007-03-29 Catalyst carrying carbon particle and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008251180A true JP2008251180A (en) 2008-10-16

Family

ID=39975916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007087066A Pending JP2008251180A (en) 2007-03-29 2007-03-29 Catalyst carrying carbon particle and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008251180A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207419A (en) * 2015-04-21 2016-12-08 凸版印刷株式会社 Electrode catalyst layer, membrane electrode assembly and solid polymer fuel cell
KR20180042524A (en) * 2016-10-18 2018-04-26 희성금속 주식회사 PREPARATION METHOD OF Pd/C CATALYST IMPROVING FILTERING TIME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207419A (en) * 2015-04-21 2016-12-08 凸版印刷株式会社 Electrode catalyst layer, membrane electrode assembly and solid polymer fuel cell
KR20180042524A (en) * 2016-10-18 2018-04-26 희성금속 주식회사 PREPARATION METHOD OF Pd/C CATALYST IMPROVING FILTERING TIME

Similar Documents

Publication Publication Date Title
EP2365569B1 (en) A membrane-electrode assembly for a fuel cell
JP5266794B2 (en) Catalyst layer for polymer electrolyte fuel cell and method for producing the same
JP5219350B2 (en) Catalyst layer for polymer electrolyte fuel cell and method for producing the same
JP2004311057A (en) Paste composition for forming catalyst layer, and transfer sheet for manufacturing catalyst layer-electrolyte film laminate
JP6809135B2 (en) Coating composition, separator with coat layer, current collector plate with coat layer and fuel cell
JP2007123253A (en) Paste composition for catalyst layer formation, transfer sheet for manufacturing catalyst layer-electrolyte membrane laminate, and catalyst layer-electrolyte membrane laminate
JP5375898B2 (en) Method for producing catalyst layer-electrolyte membrane laminate
JP5151210B2 (en) Electrode for polymer electrolyte fuel cell
KR102455396B1 (en) Catalyst ink for forming electrode catalyst layer of fuel cell and manufacturing method thereof
JP2010086674A (en) Inkjet ink for forming catalyst layer for fuel cell, catalyst layer for fuel cell and its manufacturing method, and catalyst layer-electrolyte film laminate
JP5207607B2 (en) Paste composition for forming catalyst layer and catalyst layer-electrolyte membrane laminate
JP5082239B2 (en) Catalyst layer-electrolyte membrane laminate and method for producing the same
JP2008251180A (en) Catalyst carrying carbon particle and its manufacturing method
US8481225B2 (en) Membrane electrode assembly, manufacturing method thereof and fuel cell
JP6297939B2 (en) Cathode electrode structure and membrane / electrode assembly
JP2007103089A (en) Electrode catalyst layer, transfer sheet for manufacturing catalyst layer-electrolyte film laminate, and catalyst layer-electrolyte film laminate
JP2010033731A (en) Manufacturing method of catalyst layer for solid polymer fuel cell and catalyst layer-electrolyte film laminate
JP4826190B2 (en) Catalyst layer forming paste composition, catalyst layer-electrolyte membrane laminate transfer sheet, and catalyst layer-electrolyte membrane laminate
JP5266832B2 (en) Catalyst layer for polymer electrolyte fuel cell, catalyst layer transfer sheet, catalyst layer-electrolyte membrane laminate, and polymer electrolyte fuel cell
JP2009048936A (en) Repair method of electrolyte membrane with catalyst layer, and transcription film for repair
JP5422957B2 (en) Ink for inkjet for forming catalyst layer for fuel cell, catalyst layer for fuel cell and method for producing the same, and catalyst layer-electrolyte membrane laminate
JP4888237B2 (en) Catalyst layer for anode electrode and polymer electrolyte fuel cell having the catalyst layer
JP5205730B2 (en) Catalyst transfer film for polymer electrolyte fuel cells
JP2010238513A (en) Catalyst particle containing aggregate body for solid polymer fuel cell
JP5044959B2 (en) Catalyst layer for polymer electrolyte fuel cell and catalyst layer-electrolyte membrane laminate