[go: up one dir, main page]

JP2008248291A - Manufacturing method of thick steel plate with excellent low temperature toughness of base metal and weld heat affected zone - Google Patents

Manufacturing method of thick steel plate with excellent low temperature toughness of base metal and weld heat affected zone Download PDF

Info

Publication number
JP2008248291A
JP2008248291A JP2007089749A JP2007089749A JP2008248291A JP 2008248291 A JP2008248291 A JP 2008248291A JP 2007089749 A JP2007089749 A JP 2007089749A JP 2007089749 A JP2007089749 A JP 2007089749A JP 2008248291 A JP2008248291 A JP 2008248291A
Authority
JP
Japan
Prior art keywords
cooling
steel plate
water
thick steel
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007089749A
Other languages
Japanese (ja)
Other versions
JP5058652B2 (en
Inventor
Kazutoshi Ichikawa
和利 市川
Masanori Minagawa
昌紀 皆川
Kiyotaka Nakajima
清孝 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007089749A priority Critical patent/JP5058652B2/en
Publication of JP2008248291A publication Critical patent/JP2008248291A/en
Application granted granted Critical
Publication of JP5058652B2 publication Critical patent/JP5058652B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

【課題】厚鋼板の降伏強度を制御できる冷却方法により、降伏比80%以下の低降伏比で引張強度500MPa級の板厚10〜30mmを有する母材および溶接熱影響部の低温靭性に優れた厚鋼板を製造する方法を提供する。
【解決手段】所定の組成の鋳造スラブを圧延し、その後、圧延方向に独立して水量密度を調整できる複数の水冷ゾーンを有する水冷装置により冷却を行って厚鋼板を製造する際に、初期水量密度(Wi)、最終水量密度(Wf)、さらに水冷開始温度(Tcs)と水冷停止温度(Tcf)、および通板速度(R)を下記の製造条件とし、水冷開始後3〜15sの後5〜20s間の空冷を行なうことを特徴とする。Wi=0.2〜1.5(m−2min−1)、Wf=0.5〜2.0(m−2min−1)、Tcs=700〜790(℃)、Tcf≦450(℃)、R=10〜60(m/min)
【選択図】 図1
A cooling method capable of controlling the yield strength of a thick steel plate is excellent in low-temperature toughness of a base metal having a low yield ratio of 80% or less and a tensile strength of 500 MPa class and a thickness of 10 to 30 mm and a weld heat affected zone. A method for producing a thick steel plate is provided.
When a thick steel plate is produced by rolling a cast slab having a predetermined composition and then cooling it with a water cooling device having a plurality of water cooling zones capable of independently adjusting the water density in the rolling direction. Density (Wi), final water density (Wf), water cooling start temperature (Tcs) and water cooling stop temperature (Tcf), and plate passing speed (R) are set as the following production conditions, and after 3 to 15 seconds after starting water cooling. It is characterized by performing air cooling for ˜20 s. Wi = 0.2 to 1.5 (m 3 m −2 min −1 ), Wf = 0.5 to 2.0 (m 3 m −2 min −1 ), Tcs = 700 to 790 (° C.), Tcf ≦ 450 (° C.), R = 10 to 60 (m / min)
[Selection] Figure 1

Description

本発明は、降伏比YR≦80%、引張強度TS≧500MPaを有し、かつ、母材および溶接熱影響部の靭性に優れた板厚10〜30mmの厚鋼板の製造方法に関し、特に熱延厚鋼板の冷却条件を制御して降伏比80%以下の低降伏比で500MPa級の引張強度を有する母材および溶接熱影響部の低温靭性に優れた板厚10〜30mmの厚鋼板の製造方法に関するものである。   The present invention relates to a method for producing a thick steel plate having a yield ratio YR ≦ 80%, a tensile strength TS ≧ 500 MPa, and excellent in toughness of a base material and a weld heat-affected zone, and particularly having a thickness of 10 to 30 mm. A method of manufacturing a thick steel plate having a thickness of 10 to 30 mm excellent in low temperature toughness of a base metal having a tensile strength of 500 MPa class with a low yield ratio of 80% or less and a yield ratio of 80% or less by controlling cooling conditions of the thick steel plate It is about.

中高層ビルなどの大型建築構造物では最近の耐震性確保の要求から、建築用鋼材には降伏比(YR)が低いことが要求されていて、このような建築構造物に対しては80%以下の低降伏比の建築用鋼材が求められている。また近年の高まるエネルギー需要から需要の大きいLPG船用の鋼材としては低温用鋼材が要求されている。LPG船にはアンモニアが混載される場合があり、その際の応力腐食割れ防止の観点から、鋼材の降伏強度の上限が厳しく制約されている。このように近年では、降伏比や降伏強度の上下限の規制が厳しくなる構造物の需要が増加しつつある。   Large-scale building structures such as medium- and high-rise buildings are required to have a low yield ratio (YR) for steel for construction due to recent demands for seismic resistance, and 80% or less for such building structures. There is a need for low yield ratio building steel. Further, due to the increasing energy demand in recent years, low-temperature steel materials are required as steel materials for LPG ships, which are in great demand. In some cases, ammonia is mixedly loaded on the LPG ship, and the upper limit of the yield strength of the steel material is severely restricted from the viewpoint of preventing stress corrosion cracking. Thus, in recent years, there is an increasing demand for structures in which the upper and lower limits of the yield ratio and yield strength are stricter.

そこで、中高層ビルなどの大型建築構造物に使用される建築用鋼材として、低降伏比特性並びに超大入熱溶接継ぎ手靭性に優れた600Mpa級鋼の発明が提案されていて(例えば、特許文献1参照)、この発明では、目的とするYR(降伏強度/引張強度)≦80%及びTS≧590MPaを達成するためには、熱延終了後の冷却速度を4〜7.5℃/sec、好ましくは5〜6.5℃/secとして、鋼のミクロ組織がフェライトとベイナイトとの二相でフェライト分率25〜75%とすることが必要であることが記載されている。しかし、この方法では熱延終了後の冷却速度の規定(4〜7.5℃/sec、好ましくは5〜6.5℃/sec)により、鋼のミクロ組織がフェライトとベイナイトとの二相でフェライト分率25〜75%とすることが必要であると記載されているが、各温度域での冷却速度の詳細な記述はない。   Then, the invention of 600 Mpa class steel excellent in the low yield ratio characteristic and super-high heat input welding joint toughness is proposed as a construction steel material used for large-sized building structures such as middle-high-rise buildings (for example, see Patent Document 1). In this invention, in order to achieve the target YR (yield strength / tensile strength) ≦ 80% and TS ≧ 590 MPa, the cooling rate after the hot rolling is finished is 4 to 7.5 ° C./sec, preferably It is described that the microstructure of the steel is required to be a ferrite fraction of 25 to 75% in two phases of ferrite and bainite as 5 to 6.5 ° C./sec. However, in this method, the microstructure of the steel is composed of two phases of ferrite and bainite according to the regulation of the cooling rate after completion of hot rolling (4 to 7.5 ° C./sec, preferably 5 to 6.5 ° C./sec). Although it is described that the ferrite fraction needs to be 25 to 75%, there is no detailed description of the cooling rate in each temperature range.

同様にB等の化学成分の規定とベイナイト分率の規定などにより、低YRが得られることが示されている(例えば、特許文献2参照)。しかし、この発明では本質的に合金元素としてBの添加を必要としており、ある程度のHAZ靭性の劣化は避けがたく、合金元素によらない厚鋼板の製造方法の確立が求められている。   Similarly, it is shown that low YR can be obtained by the definition of chemical components such as B and the specification of the bainite fraction (see, for example, Patent Document 2). However, this invention essentially requires the addition of B as an alloy element, and a certain degree of HAZ toughness deterioration is unavoidable, and there is a need to establish a method for producing a thick steel plate that does not depend on the alloy element.

また、熱間圧延終了後、Ar3温度以上から水冷焼入れを行い、その後フェライト+オーステナイトの二相域温度に再加熱して再度急冷を行う方法を用いることにより、室温でフェライト+ベイナイトの二相組織を得て低降伏比を達成する方法が記載されている(例えば、非特許文献1参照)。この方法のように、熱間圧延終了後、Ar3温度以上から水冷焼入れを行い、その後フェライト+オーステナイトの二相域温度に再加熱して再度急冷を行う方法を用いれば、室温でフェライト+ベイナイトの二相組織を得て低降伏比を達成し、板厚70mm以上の鋼板でも低降伏比、高張力、継手靭性を満足する鋼を製造することが可能である。しかし、熱間圧延後に再加熱・焼き戻しを行うために生産性が悪化し、製造コストの上昇が避け得ないという問題がある。   Moreover, after the hot rolling is completed, a two-phase structure of ferrite and bainite is used at room temperature by using a method in which water-quenching is performed from the Ar3 temperature or higher, and then re-heating to a ferrite + austenite two-phase region temperature and quenching again. To achieve a low yield ratio (see, for example, Non-Patent Document 1). As in this method, after the hot rolling is completed, water-cooled quenching is performed from the Ar3 temperature or higher, and then reheating to the ferrite + austenite two-phase region temperature and quenching again is performed. It is possible to obtain a low yield ratio by obtaining a two-phase structure, and to produce a steel that satisfies a low yield ratio, high tension, and joint toughness even with a steel plate having a thickness of 70 mm or more. However, since reheating and tempering are performed after hot rolling, there is a problem that productivity deteriorates and an increase in manufacturing cost cannot be avoided.

さらに、厚鋼板の表面−中心間の硬度差の発生を小さく抑えた低降伏比厚鋼板の制御冷却方法として、厚板圧延機の出側にそれぞれ独立して制御可能な緩冷却帯および急冷却帯を順に設けてなる厚鋼板の制御冷却装置を用い、板厚がt(mm)の鋼板に対して該緩冷却帯において238/t1.2℃/s以上713/t1.2℃/s以下の冷却速度で冷却し、しかる後、前記急冷却帯において1425/t1.2℃/s以上の冷却速度で冷却することを特徴とする厚鋼板の制御冷却方法の発明が提案されている(例えば、特許文献3参照)。しかし、厚鋼板の場合は冷却速度を規定しただけでは所定の低降伏比を制御することは困難であるという問題がある。 Furthermore, as a controlled cooling method for low yield ratio thick steel plates that suppresses the occurrence of a hardness difference between the surface and center of the thick steel plate, a slow cooling zone and a rapid cooling that can be controlled independently on the exit side of the thick plate rolling mill. Using a steel plate controlled cooling device in which strips are provided in order, 238 / t 1.2 ° C./s or more and 713 / t 1.2 ° C./s in the slow cooling zone for a steel plate having a thickness of t (mm). An invention of a controlled cooling method for a thick steel sheet is proposed in which cooling is performed at a cooling rate of s or less and then cooling is performed at a cooling rate of 1425 / t 1.2 ° C./s or more in the rapid cooling zone. (For example, see Patent Document 3). However, in the case of a thick steel plate, there is a problem that it is difficult to control a predetermined low yield ratio simply by defining the cooling rate.

特開2002−256377号公報JP 2002-256377 A 特開2005−336541号公報JP 2005-336541 A 特開2005−313223号公報JP 2005-313223 A 富田幸男ら著「建築用HT60の降伏点に及ぼす各種プロセスの影響」、CAMP−ISIJ、vol.1(1988)、第88頁Yukio Tomita et al., “Effects of various processes on the yield point of architectural HT60”, CAMP-ISIJ, vol. 1 (1988), p. 88

これまで圧延終了後の冷却は加速冷却として、積極的に材質の制御に用いられてきてはいるが、厚鋼板の冷却制御については冷却途上での各温度域での冷却特性までは細かくは検討されておらず、冷却過程全体を代表する値しか示されていなく、厚鋼板の降伏強度を制御できる効果的な冷却方法はいまだ提供されていない。本発明はこのような実情に鑑み、厚鋼板を冷却する際に冷却速度を指標とすることなしに厚鋼板の降伏強度を制御できる冷却方法により、降伏比80%以下の低降伏比で引張強度500Mpa級を有し、かつ、母材および溶接熱影響部の靭性に優れた板厚10〜30mmの厚鋼板を製造する方法を提供することを課題とするものである。   Until now, cooling after rolling has been actively used to control the material as accelerated cooling, but for cooling control of thick steel plates, the cooling characteristics in each temperature range during cooling are studied in detail. However, only a value representative of the entire cooling process is shown, and an effective cooling method capable of controlling the yield strength of the thick steel plate has not yet been provided. In view of such a situation, the present invention is a cooling method that can control the yield strength of a thick steel plate without using the cooling rate as an index when cooling the thick steel plate, and the tensile strength at a low yield ratio of 80% or less. It is an object of the present invention to provide a method for producing a thick steel plate having a thickness of 10 to 30 mm, which has a 500 Mpa class and is excellent in toughness of a base material and a weld heat affected zone.

本発明者らは特に圧延終了後の冷却過程を適正に制御することにより組織を調製し、板厚10〜30mmを有する厚鋼板の降伏比を80%以下にする製造方法について鋭意研究し、厚鋼板を製造する工程において、鋼板圧延方向に独立して水量密度を調整できる複数の水冷ゾーンを有する水冷装置により冷却を行い、冷却時の水量密度を水冷開始時の水量密度Wi(以下、初期水量密度という)から水冷終了時の水量密度Wf(最終水量密度という)にまで増加して低温冷却停止し、さらに、その間に水冷開始後3〜15sの後5〜20s間の空冷を行なうことで、鋼材の降伏強度の制御が可能であることを見出した。さらに本発明者は鋼板の化学成分に関しても詳細な検討を重ねた結果、構造用鋼として適正な強度を有しつつ、降伏比80%以下で引張強度500MPa級の母材および溶接熱影響部の靭性に優れた板厚10〜30mmの厚鋼板を得ることのできる条件を見出し、本発明を完成した。   In particular, the inventors of the present invention have prepared a structure by appropriately controlling the cooling process after completion of rolling, and have earnestly studied a manufacturing method for reducing the yield ratio of a thick steel plate having a thickness of 10 to 30 mm to 80% or less. In the process of manufacturing the steel sheet, cooling is performed by a water cooling device having a plurality of water cooling zones that can adjust the water density independently in the rolling direction of the steel sheet, and the water density at the time of cooling is the water density at the start of water cooling Wi (hereinafter, initial water quantity) From the density) to the water density Wf at the end of water cooling (referred to as final water density) to stop the low-temperature cooling, and in the meantime, by performing air cooling for 3 to 15 seconds after the start of water cooling for 5 to 20 seconds, It was found that the yield strength of steel can be controlled. Furthermore, as a result of repeated detailed investigations on the chemical composition of the steel sheet, the present inventor has an appropriate strength as a structural steel, and has a yield ratio of 80% or less and a tensile strength of 500 MPa class base metal and a weld heat affected zone. The present inventors have completed the present invention by finding the conditions under which a thick steel plate having a thickness of 10 to 30 mm excellent in toughness can be obtained.

本発明の要旨は以下の通りである。   The gist of the present invention is as follows.

(1) 質量%で、
C:0.05〜0.12%、
Si:0.05〜0.25%、
Mn:0.4〜2.0%、
P:0.02%以下、
S:0.02%以下、
Nb:0.01〜0.05%,
Al:0.005〜0.04%、
を含有し、残部Feおよび不可避的不純物らなる組成の鋳造スラブを熱間圧延し、その後、圧延方向に独立して水量密度を調整できる複数の水冷ゾーンを有する水冷装置により冷却を行い厚鋼板を製造する方法において、初期水量密度(Wi)、最終水量密度(Wf)、さらに水冷開始温度(Tcs)と水冷停止温度(Tcf)および通板速度(R)を下記の製造条件とし、水冷開始後3〜15sの後5〜20s間の空冷を行なうことを特徴とする、降伏比80%以下で引張強度500MPa級の板厚10〜30mmを有する母材および溶接熱影響部の低温靭性に優れた厚鋼板の製造方法。
Wi=0.2〜1.5(m−2min−1)、Wf=0.5〜2.0(m−2min−1)、Tcs=700〜790(℃)、Tcf≦450(℃)、R=10〜60(m/min)
(1) In mass%,
C: 0.05 to 0.12%,
Si: 0.05 to 0.25%,
Mn: 0.4 to 2.0%,
P: 0.02% or less,
S: 0.02% or less,
Nb: 0.01 to 0.05%,
Al: 0.005 to 0.04%,
A steel slab having a plurality of water-cooling zones each having a plurality of water-cooling zones capable of adjusting the water density independently of the rolling direction. In the manufacturing method, the initial water density (Wi), the final water density (Wf), the water cooling start temperature (Tcs), the water cooling stop temperature (Tcf), and the sheet passing speed (R) are set as the following manufacturing conditions. It is excellent in low temperature toughness of a base metal having a yield ratio of 80% or less and a tensile strength of 500 MPa class and a thickness of 10 to 30 mm and a weld heat affected zone, characterized by performing air cooling for 3 to 15 seconds and after 5 to 20 seconds. Manufacturing method of thick steel plate.
Wi = 0.2 to 1.5 (m 3 m −2 min −1 ), Wf = 0.5 to 2.0 (m 3 m −2 min −1 ), Tcs = 700 to 790 (° C.), Tcf ≦ 450 (° C.), R = 10 to 60 (m / min)

(2) 前記鋳造スラブが、さらに質量%で、
Cu:0.1〜0.23%、
Ni:0.1〜0.45%、
を含有することを特徴とする上記(1)に記載の降伏比80%以下で引張強度500MPa級の板厚10〜30mmを有する母材および溶接熱影響部の低温靭性に優れた厚鋼板の製造方法。
(2) The cast slab is further mass%,
Cu: 0.1 to 0.23%,
Ni: 0.1 to 0.45%,
The base material having a yield ratio of 80% or less and a tensile strength of 500 MPa class and a thickness of 10 to 30 mm as described in (1) above, and a steel plate excellent in low-temperature toughness of the weld heat affected zone Method.

(3) 前記鋳造スラブが、さらに質量%で、
Ti:0.005〜0.03%,
を含有することを特徴とする上記(1)または(2)に記載の降伏比80%以下で引張強度500MPa級の板厚10〜30mmを有する母材および溶接熱影響部の低温靭性に優れた厚鋼板の製造方法。
(3) The cast slab is further mass%,
Ti: 0.005 to 0.03%,
Excellent in the low temperature toughness of the base material having a plate thickness of 10 to 30 mm with a yield strength of 80 MPa or less and a tensile strength of 500 MPa as described in (1) or (2) Manufacturing method of thick steel plate.

(4) 前記鋳造スラブが、さらに質量%で、
Mo:0.01〜0.6%、
Cr:0.01〜0.6%,
B:0.0003〜0.003%
を含有することを特徴とする上記(1)〜(3)のいずれかに記載の降伏比80%以下で引張強度500MPa級の板厚10〜30mmを有する母材および溶接熱影響部の低温靭性に優れた厚鋼板の製造方法。
(4) The cast slab is further mass%,
Mo: 0.01 to 0.6%,
Cr: 0.01 to 0.6%,
B: 0.0003 to 0.003%
Low-temperature toughness of the base material having a plate thickness of 10 to 30 mm with a yield strength of 80% or less and a tensile strength of 500 MPa class according to any one of the above (1) to (3) A method for producing thick steel plates with excellent resistance.

本発明は、母材および溶接熱影響部の靭性に優れ、降伏比YR≦80%、引張強度TS≧500MPaを有する板厚10〜30mmの厚鋼板を提供でき、建築構造物、船舶用低温タンク等の大型建築構造物等の産業分野にもたらす効果は極めて大きく、さらに構造物の安全性の意味から社会に対する貢献も非常に大きい。   INDUSTRIAL APPLICABILITY The present invention can provide a steel plate having a thickness of 10 to 30 mm having excellent base material and weld heat-affected zone toughness, yield ratio YR ≦ 80%, and tensile strength TS ≧ 500 MPa. The effects brought to the industrial field such as large building structures are extremely great, and the contribution to society is also very large in terms of the safety of the structures.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明者らは厚鋼板の圧延終了後の冷却過程を適正に制御することにより組織を調整し、板厚10〜30mmを有する鋼板の降伏比を80%以下にする製造方法、および適切な降伏強度500MPa級の引張強度、靭性を得るための鋼の成分として、適切な合金元素の添加が必要となるが、これらの適正な範囲について検討し、本発明をなした。   The inventors of the present invention adjust the structure by appropriately controlling the cooling process after the end of rolling of the thick steel plate, the manufacturing method for reducing the yield ratio of the steel plate having a plate thickness of 10 to 30 mm to 80% or less, and appropriate yielding. As a steel component for obtaining a tensile strength and toughness of a strength of 500 MPa class, it is necessary to add an appropriate alloy element. The appropriate range of these elements was examined and the present invention was made.

まず、板厚10〜30mmを有する厚鋼板の圧延終了後の冷却過程を適正に制御することにより組織を調整し、鋼厚板の降伏比を80%以下にする方法について説明する。   First, a method of adjusting the structure by appropriately controlling the cooling process after the rolling of the thick steel plate having a thickness of 10 to 30 mm and setting the yield ratio of the steel thick plate to 80% or less will be described.

図1に冷却挙動と連続冷却変態曲線の関係を模試的に示す。   FIG. 1 schematically shows the relationship between the cooling behavior and the continuous cooling transformation curve.

一般に制御冷却により厚鋼板を製造する場合には、圧延終了後に、圧延ラインの後続に設けた水冷装置で水冷を行なうが、その場合の水量密度は冷却開始から終了までほとんど一定の水量密度を使用している。   In general, when producing thick steel plates by controlled cooling, water cooling is performed after the end of rolling by a water cooling device provided after the rolling line. In this case, the water density is almost constant from the start to the end of cooling. is doing.

しかしながら、本発明者らは、冷却開始から終了までほとんど一定の水量密度で水冷を行うことでは降伏比を低下させることはできず、降伏比を低減させるためには、圧延後の冷却で700℃程度の高温でオーステナイトから変態することにより生成する軟質のフェライト(以下「初析フェライト」という。)を適正量得ることが必要である。   However, the present inventors cannot reduce the yield ratio by performing water cooling at an almost constant water density from the start to the end of cooling, and in order to reduce the yield ratio, 700 ° C. is required for cooling after rolling. It is necessary to obtain an appropriate amount of soft ferrite (hereinafter referred to as “pre-deposited ferrite”) generated by transformation from austenite at a high temperature.

図1は、鋼の冷却挙動と連続冷却変態曲線の関係を模試的に示す図である。初析フェライトを適正量得るためには、図1に示すように、初析フェライトの生成する概ね750〜650℃の温度域での冷却速度を緩やかにすることが必要であり、緩冷却(図1の冷却パス1a)後に空冷(図1の冷却パス1b)することで初析フェライト変態により析出する初析フェライト量を増加できる事を見出した。さらに650℃以下での冷却速度を高めて(図1の冷却パス1c)ベイナイト組織を得、この硬質なベイナイト組織により必要な引張強度を得ることが可能になる事を見出した。なお、図1では冷却曲線の空冷部分(1b)が初析フェライト変態開始温度を横切っているが、初析フェライト変態開始後に空冷が始まっても所定の空冷時間が保持されれば効果に問題はない。   FIG. 1 is a diagram schematically showing the relationship between the cooling behavior of steel and the continuous cooling transformation curve. In order to obtain an appropriate amount of pro-eutectoid ferrite, it is necessary to moderate the cooling rate in the temperature range of approximately 750 to 650 ° C. where pro-eutectoid ferrite is generated, as shown in FIG. It was found that the amount of pro-eutectoid ferrite precipitated by the pro-eutectoid ferrite transformation can be increased by air cooling (cooling pass 1b in FIG. 1) after the first cooling pass 1a). Furthermore, the cooling rate at 650 ° C. or lower was increased (cooling pass 1c in FIG. 1) to obtain a bainite structure, and it was found that the required tensile strength can be obtained by this hard bainite structure. In FIG. 1, the air-cooled portion (1b) of the cooling curve crosses the pro-eutectoid ferrite transformation start temperature. However, even if the air-cooling starts after the pro-eutectoid ferrite transformation starts, there is a problem in the effect if the predetermined air-cooling time is maintained. Absent.

これに比べて、冷却パスの取り方が適正ではない場合では、緩冷却パス(図1の冷却パス2a)のように、初析フェライト変態開始がより低温であるとともに初析フェライト変態領域の通過時間が短いので、初析フェライトの形成が充分ではなく、650℃以下での冷却速度を高めて(図1の冷却パス2b)可動転位生成に有効なベイナイト組織を得ても降伏比を低減させることはできない。   In contrast, when the cooling path is not properly taken, the pro-eutectoid ferrite transformation starts at a lower temperature and passes through the pro-eutectoid ferrite transformation region as in the slow cooling path (cooling path 2a in FIG. 1). Since the time is short, the formation of pro-eutectoid ferrite is not sufficient, and the yield rate is reduced even if the cooling rate at 650 ° C. or lower is increased (cooling path 2b in FIG. 1) to obtain a bainite structure effective for generating movable dislocations. It is not possible.

初析フェライトを適正量得ることにより鋼板の降伏比が低減できる理由は、高温で形成された初析フェライトがそもそも軟質であることに加えて、後続して変態したベイナイト変態の変態歪によって、初析フェライト中に可動転位が導入されることにより、この可動転位により降伏点低減の効果をもたらすものであり、また、650℃以下の冷却速度を高めることは単にベイナイト組織を得るために必要ではなく、導入された可動転位の消失を抑制する効果ももたらすものであるからである。   The reason why the yield ratio of the steel sheet can be reduced by obtaining the proper amount of pro-eutectoid ferrite is that the pro-eutectoid ferrite formed at high temperature is soft in the first place, and the transformation strain of the bainite transformation that has been transformed subsequently is the first. By introducing movable dislocations in the precipitated ferrite, the movable dislocations bring about an effect of reducing the yield point, and it is not necessary to obtain a bainite structure simply by increasing the cooling rate below 650 ° C. This is because the effect of suppressing the disappearance of the introduced movable dislocation is also brought about.

このため、例えば、図1の一定の冷却速度の冷却パス(図1の冷却パス3a)のようにベイナイト変態のサブユニット形成後の冷却速度が緩やかであると、仮にベイナイト組織が得られたとしても冷却過程の間に可動転位が減少してしまい、降伏応力低減の効果が小さくなってしまうので、650℃以下でベイナイト変態が進行する温度域の冷却速度を高める必要がある。つまり、初析フェライトを析出させた後は冷却速度を早くしなければ、冷却過程の間に可動転位が減少してしまい、降伏応力低減の効果が小さくなってしまうのである。   For this reason, for example, if the cooling rate after the formation of the subunit of the bainite transformation is moderate as in the cooling path having a constant cooling rate in FIG. 1 (cooling path 3a in FIG. 1), it is assumed that a bainite structure is obtained. However, since the movable dislocations are reduced during the cooling process and the yield stress reduction effect is reduced, it is necessary to increase the cooling rate in the temperature range where the bainite transformation proceeds at 650 ° C. or lower. That is, if the cooling rate is not increased after the pro-eutectoid ferrite is precipitated, the movable dislocations are reduced during the cooling process, and the effect of reducing the yield stress is reduced.

ところが、鋼板の板厚が薄い場合には、鋼板表面と中央部では冷却時に殆んど温度差が生じないが、板厚10〜30mmを有する厚鋼板の冷却の場合は、熱延後の冷却開始時および冷却終了時には鋼板表面と中央部とでは温度差が少ないものの、冷却が進行するに従って冷却途中では鋼板表面と中央部では温度差が生じるので、鋼板表面の温度に基づいて組織制御を行なうと鋼板の表面部と中央部とでは組織が同じとならないので、冷却速度だけでは厚鋼板の組織制御は困難である。   However, when the thickness of the steel plate is thin, there is almost no temperature difference at the time of cooling between the steel plate surface and the central portion. However, in the case of cooling a thick steel plate having a thickness of 10 to 30 mm, the cooling after hot rolling is performed. At the start and at the end of cooling, the temperature difference between the steel plate surface and the central part is small, but as the cooling proceeds, a temperature difference occurs between the steel plate surface and the central part during the cooling, so the structure control is performed based on the temperature of the steel plate surface Since the structure is not the same between the surface part and the center part of the steel sheet, it is difficult to control the structure of the thick steel sheet only with the cooling rate.

そこで、本発明では、降伏強度や引張り強度への影響が大きい冷却時の水量密度パターンに着目し板厚10〜30mmを有する厚鋼板の組織制御を検討した。   Therefore, in the present invention, focusing on the water density pattern during cooling, which has a great influence on the yield strength and tensile strength, the structure control of a thick steel plate having a thickness of 10 to 30 mm was studied.

即ち、圧延ラインの後続に設置した水冷装置の水冷ゾーンを複数に区分し、冷却時に各水冷ゾーン毎の水冷密度を種々変化させた水冷密度パターンにより熱延鋼板の冷却を行って、鋼板の組織制御[初析フェライト+硬質第二相(ベイナイト、マルテンサイト等)]を実施した。その結果、鋼板の降伏強度は水量密度パターン、板厚により変化することを知見し、降伏比80%以下で引張強度500MPa級の板厚10〜30mmを有する厚鋼板が得られる水量密度パターンの条件を見出した。   That is, the water-cooling zone of the water-cooling device installed after the rolling line is divided into a plurality, and the hot-rolled steel sheet is cooled by a water-cooling density pattern in which the water-cooling density for each water-cooling zone is variously changed during cooling. Control [Proeutectoid ferrite + hard second phase (bainite, martensite, etc.)] was carried out. As a result, it was found that the yield strength of the steel sheet varies depending on the water density pattern and the plate thickness, and the condition of the water density pattern for obtaining a thick steel plate having a plate thickness of 10 to 30 mm with a yield strength of 80% or less and a tensile strength of 500 MPa. I found.

なお、本発明では、水冷装置として水量密度を調整できる通常の複数の水冷ゾーンを備えた水冷装置を適用することができる。   In addition, in this invention, the water cooling apparatus provided with the some normal water cooling zone which can adjust a water quantity density as a water cooling apparatus is applicable.

降伏比80%以下で引張強度500MPa級の母材および溶接熱影響部の靭性に優れた板厚10〜30mmを有する厚鋼板を得ることができる製造条件として、本発明で見出した水量密度パターンによる製造条件は、初期水量密度(Wi)、最終水量密度(Wf)、さらに水冷開始温度(Tcs)と水冷停止温度(Tcf)および通板速度(R)を下記の製造条件とし、かつ水冷開始後3〜15sの後5〜20s間の空冷を行なうことである。
Wi=0.2〜1.5(m−2min−1)、Wf=0.5〜2.0(m−2min−1)、Tcs=700〜790(℃)、Tcf≦450(℃)、R=10〜60(m/min)
According to the water density pattern found in the present invention as a production condition capable of obtaining a base material having a yield ratio of 80% or less and a tensile strength of 500 MPa class and a steel plate having a thickness of 10 to 30 mm excellent in the toughness of the weld heat affected zone. The manufacturing conditions are the initial water density (Wi), the final water density (Wf), the water cooling start temperature (Tcs), the water cooling stop temperature (Tcf), and the plate feed speed (R) as the following manufacturing conditions. Air cooling is performed for 5 to 20 seconds after 3 to 15 seconds.
Wi = 0.2 to 1.5 (m 3 m −2 min −1 ), Wf = 0.5 to 2.0 (m 3 m −2 min −1 ), Tcs = 700 to 790 (° C.), Tcf ≦ 450 (° C.), R = 10 to 60 (m / min)

このように、初期水量密度(Wi)、最終水量密度(Wf)さらに水冷開始温度(Tcs)と水冷停止温度(Tcf)および通板速度(R)並びに水冷開始後3〜15sの後5〜20s間の空冷を行なうと限定した理由に関して述べる。   Thus, the initial water density (Wi), the final water density (Wf), the water cooling start temperature (Tcs), the water cooling stop temperature (Tcf), the sheet passing speed (R), and the water cooling start 3-15 s after the start of water cooling 5-20 s. The reason why the air cooling is limited will be described.

初期水量密度(Wi):0.2〜1.5(m−2min−1)、
鋼板の降伏強度を低減させるためには充分な初析フェライトを得ることが必要であり、図1に示すように、初析フェライトが生成する温度域(初析フェライト変態開始〜ベイナイト変態開始域)で鋼板を緩冷して初析フェライトを多く生成させる必要があるので、初期水量密度(Wi)は1.5(m−2min−1)以下にして緩冷する必要がある。しかしながら、初期水量密度(Wi)が0.2(m−2min−1)を下回ると、最終的に後述する適正な水冷停止温度(Tcf)以下に冷却を達成することができないので、0.2(m−2min−1)以上にする必要がある。この緩冷を行なう際の水量密度が初期水量密度である。
Initial water density (Wi): 0.2 to 1.5 (m 3 m −2 min −1 ),
In order to reduce the yield strength of the steel sheet, it is necessary to obtain sufficient pro-eutectoid ferrite, and as shown in FIG. 1, the temperature range in which pro-eutectoid ferrite is generated (pro-eutectoid ferrite transformation start to bainite transformation initiation region). Therefore, it is necessary to slowly cool the steel sheet to produce a large amount of pro-eutectoid ferrite, so that the initial water density (Wi) should be 1.5 (m 3 m −2 min −1 ) or less to cool slowly. However, when the initial water density (Wi) is less than 0.2 (m 3 m −2 min −1 ), it is not possible to achieve cooling below an appropriate water cooling stop temperature (Tcf), which will be described later. It is necessary to be 0.2 (m 3 m −2 min −1 ) or more. The water density at the time of this slow cooling is the initial water density.

最終水量密度(Wf):0.5〜2.0(m−2min−1)、
可動転位の生成に有効なベイナイト組織の形成にためには最終水量密度(Wf)を0.5(m−2min−1)以上にする必要がある。しかしながら、最終水量密度(Wf)が2.0(m−2min−1)を超えるとベイナイト組織の細粒化の効果により降伏強度が過剰となるので、2.0(m−2min−1)以下に制御することが必要である。このベイナイト組織の形成のための冷却を行なう際の水量密度が最終水量密度である。
Final water density (Wf): 0.5 to 2.0 (m 3 m −2 min −1 ),
In order to form a bainite structure effective for the generation of movable dislocations, the final water density (Wf) needs to be 0.5 (m 3 m −2 min −1 ) or more. However, if the final water density (Wf) exceeds 2.0 (m 3 m −2 min −1 ), the yield strength becomes excessive due to the effect of refinement of the bainite structure, so 2.0 (m 3 m − 2 min −1 ) or less is necessary. The water density at the time of cooling for forming this bainite structure is the final water density.

水冷開始後3〜15s(秒)の後5〜20s(秒)間の空冷、
降伏強度を低下させるためには冷却前段の緩冷時間を充分に長く取り降伏強度の低い初析フェライトを充分に生成させる必要がある。水冷開始後3s以上経過すると、図1の冷却パス1aに示すように、空冷中に冷却曲線が初析フェライト変態開始温度を横切るか、最初の水冷の時間中に初析フェライト変態が開始されるので、充分な量の初析フェライトを生成させることができるようになる。水冷開始後3s未満ではこのような場合のような充分な量の初析フェライトを生成することができない。一方、水冷開始後15sを超えると鋼板の冷却が進みすぎて、図1の冷却パス2aまたは3aに示すように、初析フェライト変態開始温度が低下し、初析フェライトを充分に生成させることができなくなる。したがって、本発明では水冷開始後3〜15sとした。また、空冷時間を5〜20sとしたのは、降伏強度を低減させるに必要な初析フェライトを充分に成長させるには、図1の冷却パス1bに示すように、5s以上の空冷時間が必要である。しかしながら、空冷時間が20sを超えると初析フェライトが過剰となって引張強度が低下するので、上限は20sとした。
Air cooling for 5-20 s (seconds) after 3-15 s (seconds) after the start of water cooling,
In order to reduce the yield strength, it is necessary to sufficiently generate a pro-eutectoid ferrite with a low yield strength by taking a sufficiently long cooling time before cooling. When 3 seconds or more have elapsed after the start of water cooling, as shown in the cooling path 1a of FIG. 1, the cooling curve crosses the pro-eutectoid ferrite transformation start temperature during air cooling, or pro-eutectoid ferrite transformation starts during the first water cooling time. Therefore, a sufficient amount of pro-eutectoid ferrite can be generated. If it is less than 3 seconds after the start of water cooling, a sufficient amount of pro-eutectoid ferrite as in such a case cannot be produced. On the other hand, if it exceeds 15 s after the start of water cooling, the steel sheet is cooled too much, and as shown in the cooling path 2a or 3a in FIG. 1, the pro-eutectoid ferrite transformation start temperature is lowered and sufficient pro-eutectoid ferrite is generated. become unable. Therefore, in this invention, it was set as 3-15 s after the water cooling start. In addition, the air cooling time is set to 5 to 20 s. In order to sufficiently grow the pro-eutectoid ferrite necessary for reducing the yield strength, an air cooling time of 5 s or more is required as shown in the cooling path 1b of FIG. It is. However, if the air cooling time exceeds 20 s, proeutectoid ferrite becomes excessive and the tensile strength decreases, so the upper limit was set to 20 s.

水冷開始温度(Tcs):700〜790(℃)、
水冷開始温度(Tcs)が700℃を下回ると水冷開始前に進行するフェライト変態量が大きくなって粗大なフェライトが形成され、強度や靭性を著しく低下させるので、700℃以上とする必要がある。しかしながら、790℃を上回ると、圧延終了温度を高く設定する必要が生じ、母材の靭性を損なうので、上限は790℃とした。
Water cooling start temperature (Tcs): 700 to 790 (° C.)
When the water cooling start temperature (Tcs) is lower than 700 ° C., the ferrite transformation amount that proceeds before the start of water cooling is increased and coarse ferrite is formed, and the strength and toughness are significantly reduced. However, if the temperature exceeds 790 ° C, it is necessary to set the rolling end temperature high, and the toughness of the base material is impaired. Therefore, the upper limit is set to 790 ° C.

水冷停止温度(Tcf):≦450(℃)、
本発明では主としてtc以降の冷却時に生じるベイナイト組織の可動転位を維持することが必要で、そのためには冷却終了後転位の回復が生じないようにTcfは低く押さえる必要があり、その上限は450℃とした。
Water cooling stop temperature (Tcf): ≦ 450 (° C.)
In the present invention, it is necessary to maintain the movable dislocations of the bainite structure that occurs mainly during cooling after tc. For this purpose, it is necessary to keep Tcf low so that dislocation recovery does not occur after the completion of cooling, and the upper limit is 450 ° C. It was.

通板速度(R):R=10〜60(m/min)、
水量密度に応じた適正な冷却時の通板速度(R)を採用しないと、本発明で必要な適正な冷却条件が得られない。Rが10(m/min)を下回ると、鋼材が過剰に冷却され、一方、60(m/min)を超えると後述する水冷停止温度やベイナイト変態に必要な冷却条件が得られないので60(m/min)以下とする必要がある。
Plate passing speed (R): R = 10 to 60 (m / min),
Unless an appropriate sheet feeding speed (R) at the time of cooling according to the water density is adopted, appropriate cooling conditions necessary in the present invention cannot be obtained. If R is less than 10 (m / min), the steel material is excessively cooled. On the other hand, if R exceeds 60 (m / min), the cooling conditions necessary for the water cooling stop temperature and bainite transformation described later cannot be obtained. m / min) or less.

以上述べたように、本発明は、圧延終了後の冷却過程を適正に制御し、冷却前段の冷却時に空冷を行なうことによって初析フェライトを充分に生成させ、後段の急冷によりベイナイト変態をさせた上で低温冷却停止を行うようにしたので、ベイナイト変態により初析フェライトに起因する可動転位が維持されるようになるのである。   As described above, the present invention appropriately controls the cooling process after the end of rolling, sufficiently generates proeutectoid ferrite by performing air cooling at the time of cooling before cooling, and causes bainite transformation by rapid cooling at the latter stage. Since the low-temperature cooling stop is performed above, the movable dislocation due to the pro-eutectoid ferrite is maintained by the bainite transformation.

次に、本発明で用いる鋼板の成分範囲に関して述べる。   Next, the component range of the steel sheet used in the present invention will be described.

Cは鋼の引張強度を向上させる有効な成分であるとともに、変態温度を低下させて可動転位の導入により降伏強度の低減に有効なベイナイトの生成を促進するために必要な成分であり、降伏比80%以下を達成するためには0.05%以上の添加が必要である。また過剰の添加は、鋼材の低温靭性や溶接性、HAZ靭性などを著しく低下させるので、上限を0.12%とした。   C is an effective component for improving the tensile strength of steel, and is a component necessary for lowering the transformation temperature and promoting the formation of bainite effective in reducing the yield strength by introducing movable dislocations. In order to achieve 80% or less, addition of 0.05% or more is necessary. Further, excessive addition significantly lowers the low temperature toughness, weldability, HAZ toughness, etc. of the steel material, so the upper limit was made 0.12%.

Siは母材の引張強度確保、脱酸などに必要な成分であり0.05%以上の添加が必要である。ただしHAZの硬化により靭性が低下するのを防止するため上限を0.25%とした。   Si is a component necessary for securing the tensile strength of the base material, deoxidation, etc., and it is necessary to add 0.05% or more. However, the upper limit was made 0.25% in order to prevent the toughness from being lowered by the hardening of the HAZ.

Mnは母材の強度、相性の確保に有効な成分として0.4%以上の添加が必要であるが、溶接部の靭性、割れ性などの許容できる範囲で上限を2.0%とした。   Mn needs to be added in an amount of 0.4% or more as an effective component for ensuring the strength and compatibility of the base material, but the upper limit is set to 2.0% within an allowable range such as toughness and crackability of the weld.

Pは不可避的に不純物として含有される成分であって、含有量が少ないほど望ましいが、これを工業的に低減させるためには多大なコストがかかることから、0.02%を上限とした。   P is a component inevitably contained as an impurity, and the smaller the content, the better. However, in order to reduce this industrially, it takes a great deal of cost, so 0.02% was made the upper limit.

Sは不可避的に不純物として含有される成分であって、含有量が少ないほど望ましいが、これを工業的に低減させるためには多大なコストがかかることから、0.02%を上限とした。   S is a component inevitably contained as an impurity, and the smaller the content, the better. However, in order to reduce this industrially, it takes a great deal of cost, so 0.02% was made the upper limit.

A1は重要な脱酸元素であり、下限値を0.005%とした。また、A1が多量に存在すると、鋳片の表面品位が劣化するため、上限を0.04%とした。   A1 is an important deoxidizing element, and the lower limit was set to 0.005%. In addition, when A1 is present in a large amount, the surface quality of the slab deteriorates, so the upper limit was made 0.04%.

Cuは鋼材の引張強度を向上させるために有効であり、0.1%以上必要であるが、1.0%を超えるとHAZ靭性を低下させることから、1.0%を上限とした。なお、原料から不純物として鋼中にCuが含有される場合があるが、本発明では不純物としてのCuを0.1%未満含有することを許容できる。   Cu is effective for improving the tensile strength of the steel material and needs to be 0.1% or more. However, if it exceeds 1.0%, the HAZ toughness is lowered, so 1.0% was made the upper limit. In addition, although Cu may be contained in steel as an impurity from a raw material, in this invention, it is permissible to contain less than 0.1% of Cu as an impurity.

Niは鋼材の強度および靭性を向上させるために有効であり、0.1%以上必要であるが、Ni量の増加は製造コストを上昇させるので、1.0%を上限とした。   Ni is effective for improving the strength and toughness of the steel material and needs to be 0.1% or more. However, an increase in the amount of Ni increases the manufacturing cost, so 1.0% was made the upper limit.

TiはNと結合してTi窒化物を形成させるために大入熱溶接時のHAZ靭性を改善するので0.005%以上添加する。しかし、固溶Ti量が増加するとHAZ靭性が低下するため、0.03%を上限とした。   Since Ti combines with N to form Ti nitride, it improves the HAZ toughness during high heat input welding, so 0.005% or more is added. However, since the HAZ toughness decreases as the amount of dissolved Ti increases, the upper limit is set to 0.03%.

Nbは焼人性を向上させることにより鋼の引張強度および靭性を向上させるために有効な元素であり、0.003%以上必要であるが、HAZ部においては過剰な添加は靭性を著しく低下させるため0.05%を上限とした。   Nb is an effective element for improving the tensile strength and toughness of steel by improving the burnability, and is required to be 0.003% or more, but excessive addition in the HAZ part significantly reduces toughness. The upper limit was 0.05%.

Moは焼入れ性を向上させることにより鋼の引張強度及び靭性を向上させるために有効な元素であり、0.01%以上の添加で効果があるが、母材やHAZにおいて過剰な添加は靭性を著しく低下させるため0.6%を上限とした。   Mo is an element effective for improving the tensile strength and toughness of steel by improving the hardenability, and is effective when added in an amount of 0.01% or more, but excessive addition in the base material and HAZ reduces the toughness. In order to reduce significantly, 0.6% was made the upper limit.

CrもMoと同様に焼入れ性を向上させることにより鋼の引張強度および靭性を向上させるに有効な元素であり、0.01%以上の添加で効果があるが、母材やHAZにおいて過剰な添加は靭性を著しく低下させるため0.6%を上限とした。   Cr is an element effective for improving the tensile strength and toughness of steel by improving the hardenability like Mo, and is effective when added in an amount of 0.01% or more, but is excessively added in the base material and HAZ. Has an upper limit of 0.6% in order to significantly reduce toughness.

Bは微量でも焼入れ性を向上させることにより鋼の引張強度および靭性を向上させるに有効な元素であり、0.0003%以上の添加で効果があるが、母材やHAZにおいて過剰な添加は靭性を著しく低下させるため0.003%を上限とした。   B is an element effective in improving the tensile strength and toughness of steel by improving the hardenability even in a small amount, and is effective when added in an amount of 0.0003% or more, but excessive addition in the base material and HAZ is tough. In order to significantly reduce the content, the upper limit was made 0.003%.

以上に述べたように、本発明では鋼材の成分を適正にし、かつ圧延終了後の冷却過程を適正に制御することによって、降伏比80%以下で引張強度500MPa級の母材および溶接熱影響部の靭性に優れた板厚10〜30mmの厚鋼板を製造することができる。   As described above, in the present invention, by appropriately adjusting the components of the steel material and appropriately controlling the cooling process after completion of rolling, the base material having a yield ratio of 80% or less and a tensile strength of 500 MPa class and a weld heat affected zone are obtained. A thick steel plate having a thickness of 10 to 30 mm and excellent in toughness can be produced.

以下実施例に基づいて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail based on examples.

表1に示した製造方法と表2に示した化学成分の試作鋼を用いて500MPa級鋼板を試作した。表1においてNo.1からNo.25は本発明例、No.26からNo.37が比較例である。試作鋼は転炉溶製し、RHに真空脱ガス処理時にて脱酸を行っている。連続鋳造により280mm厚鋳片に鋳造した後、表1に示す加熱温度にて加熱後、最終製品板厚の2倍の板厚まで粗圧延をした後、表1に示す条件で仕上圧延を行った。その後、表1に示す条件にて水冷を行い、鋼板を製造した。   A 500 MPa grade steel plate was manufactured using the manufacturing method shown in Table 1 and the test steel of chemical composition shown in Table 2. In Table 1, no. 1 to No. No. 25 is an example of the present invention, No. 25. 26 to No. Reference numeral 37 is a comparative example. The prototype steel is melted in the converter and deoxidized during the vacuum degassing treatment of RH. After casting into a 280 mm thick slab by continuous casting, after heating at the heating temperature shown in Table 1, rough rolling to a plate thickness twice the final product plate thickness, then finish rolling under the conditions shown in Table 1 It was. Then, water cooling was performed on the conditions shown in Table 1, and the steel plate was manufactured.

鋼板から全厚の引張試験片を採取、引張試験を行うとともに、母材の低温靭性を調べるために、シャルピー衝撃試験片を採取し、試験を行った。引張特性に関しては引張強度500MPa以上かつ降伏比80%以下を合格とし、母材靭性は−68℃で27J以上を合格とした。   A full thickness tensile test piece was collected from the steel sheet, a tensile test was conducted, and a Charpy impact test piece was taken and tested in order to investigate the low temperature toughness of the base material. Regarding tensile properties, a tensile strength of 500 MPa or more and a yield ratio of 80% or less were accepted, and a base material toughness was accepted as 27 J or more at −68 ° C.

また溶接熱影響(HAZ)部の靭性を調査するために溶接は入熱48kJ/cmにて、多層盛サブマージアーク溶接を行い、ボンド部からシャルピー衝撃試験片を採取、試験に供した。試験温度は−68℃とし、27J以上の吸収エネルギーが得られた場合を合格とした。表3には試験結果を示す。   In addition, in order to investigate the toughness of the weld heat-affected (HAZ) part, welding was performed by multi-layered submerged arc welding at a heat input of 48 kJ / cm, and Charpy impact test pieces were collected from the bond part and used for the test. The test temperature was −68 ° C., and the case where an absorption energy of 27 J or more was obtained was regarded as acceptable. Table 3 shows the test results.

表3に示すように、本発明に規定する成分範囲および製造条件範囲を満たす本発明例No.1からNo.25は、いずれも降伏比80%以下、引張強度500MPa以上の性質を備えていて、且つ、母材および溶接熱影響部の靭性も優れているものであった。   As shown in Table 3, Example No. of the present invention satisfying the component range and production condition range defined in the present invention. 1 to No. No. 25 had properties of a yield ratio of 80% or less and a tensile strength of 500 MPa or more, and was excellent in toughness of the base material and the weld heat affected zone.

これに対して、比較例No.26は、表2に示すように本発明で規定する成分範囲を満たしているものの、表1に示すように製造工程での冷却条件が従来のように均一冷却を行なったので、降伏比が80%を超えていた。比較例No.27から比較例No.37は、表2に示すように、いずれも本発明の成分範囲外の鋼種である。   In contrast, Comparative Example No. Although Table 26 satisfies the component range defined in the present invention as shown in Table 2, since the cooling conditions in the manufacturing process were uniformly cooled as in the conventional case as shown in Table 1, the yield ratio was 80 % Exceeded. Comparative Example No. 27 to Comparative Example No. As shown in Table 2, 37 is a steel type outside the component range of the present invention.

これらの鋼種についての性質は、表3に示している。即ち、比較例No.27はC含有量が低く母材強度が不足していた。比較例No.28はC含有量が過剰で母材靭性および溶接部熱影響(HAZ)部靭性が不足していた。比較例No.29はSi含有量が低く、母材の強度と靭性が不足していた。比較例No.30はSi含有量が過剰で、母材の強度と靭性が不足していた。比較例No.31はMn含有量が低く、母材強度が不足していた。比較例No.32はMn含有量が過剰で母材靭性および溶接部熱影響(HAZ)部靭性が不足していた。比較例No.33は不純物元素であるPが過剰で、母材靭性および溶接部熱影響(HAZ)部靭性が不足していた。比較例No.34は不純物元素であるSが過剰で、母材靭性および溶接部熱影響(HAZ)部靭性が不足していた。比較例No.35はNbが過剰で、溶接部熱影響(HAZ)部靭性が不足していた。比較例No.36はAlが過剰で、降伏比が高く、鋳片割れが発生した。比較例No.37はAlが低く、母材靭性が不足していた。   The properties for these steel types are shown in Table 3. That is, Comparative Example No. No. 27 had a low C content and insufficient base material strength. Comparative Example No. In No. 28, the C content was excessive and the base metal toughness and weld zone heat effect (HAZ) toughness were insufficient. Comparative Example No. No. 29 had a low Si content and lacked the strength and toughness of the base material. Comparative Example No. No. 30 had an excessive Si content, and the strength and toughness of the base material were insufficient. Comparative Example No. No. 31 had a low Mn content, and the base material strength was insufficient. Comparative Example No. In No. 32, the Mn content was excessive and the base metal toughness and weld zone heat effect (HAZ) toughness were insufficient. Comparative Example No. No. 33 had an excessive amount of impurity element P, and the base metal toughness and weld zone heat effect (HAZ) toughness were insufficient. Comparative Example No. No. 34 had an excess of impurity element S, and the base metal toughness and weld zone heat effect (HAZ) toughness were insufficient. Comparative Example No. No. 35 had an excess of Nb, and the weld zone heat effect (HAZ) toughness was insufficient. Comparative Example No. In No. 36, Al was excessive, the yield ratio was high, and slab cracking occurred. Comparative Example No. No. 37 had low Al and lacked the base material toughness.

以上の本発明例及び比較例から明らかなように、本発明によれば、母材および溶接熱影響部の靭性に優れ、降伏比YR≦80%、引張強度TS≧500MPaを有する板厚10〜30mmの厚鋼板が得られることが分かる。   As is clear from the above examples of the present invention and comparative examples, according to the present invention, the plate thickness of 10 to 10 excellent in the toughness of the base metal and the weld heat affected zone, yield ratio YR ≦ 80%, and tensile strength TS ≧ 500 MPa. It turns out that a 30 mm thick steel plate is obtained.

Figure 2008248291
Figure 2008248291

Figure 2008248291
Figure 2008248291

Figure 2008248291
Figure 2008248291

鋼の冷却挙動と連続冷却変態曲線の関係を模試的に示す図である。It is a figure which shows typically the relationship between the cooling behavior of steel, and a continuous cooling transformation curve.

Claims (4)

質量%で、
C:0.05〜0.12%、
Si:0.05〜0.25%、
Mn:0.4〜2.0%、
P:0.02%以下、
S:0.02%以下、
Nb:0.01〜0.05%、
Al:0.005〜0.04%、
を含有し、残部Feおよび不可避的不純物らなる組成の鋳造スラブを熱間圧延し、その後、圧延方向に独立して水量密度を調整できる複数の水冷ゾーンを有する水冷装置により冷却を行い厚鋼板を製造する方法において、初期水量密度(Wi)、最終水量密度(Wf)、さらに水冷開始温度(Tcs)と水冷停止温度(Tcf)および通板速度(R)を下記の製造条件とし、水冷開始後3〜15sの後5〜20s間の空冷を行なうことを特徴とする、降伏比80%以下で引張強度500MPa級の板厚10〜30mmを有する母材および溶接熱影響部の低温靭性に優れた厚鋼板の製造方法。
Wi=0.2〜1.5(m−2min−1)、Wf=0.5〜2.0(m−2min−1)、Tcs=700〜790(℃)、Tcf≦450(℃)、R=10〜60(m/min)
% By mass
C: 0.05 to 0.12%,
Si: 0.05 to 0.25%,
Mn: 0.4 to 2.0%,
P: 0.02% or less,
S: 0.02% or less,
Nb: 0.01-0.05%
Al: 0.005 to 0.04%,
A steel slab having a plurality of water-cooling zones each having a plurality of water-cooling zones capable of adjusting the water density independently of the rolling direction. In the manufacturing method, the initial water density (Wi), the final water density (Wf), the water cooling start temperature (Tcs), the water cooling stop temperature (Tcf), and the sheet passing speed (R) are set as the following manufacturing conditions. It is excellent in low temperature toughness of a base metal having a yield ratio of 80% or less and a tensile strength of 500 MPa class and a thickness of 10 to 30 mm and a weld heat affected zone, characterized by performing air cooling for 3 to 15 seconds and after 5 to 20 seconds. Manufacturing method of thick steel plate.
Wi = 0.2 to 1.5 (m 3 m −2 min −1 ), Wf = 0.5 to 2.0 (m 3 m −2 min −1 ), Tcs = 700 to 790 (° C.), Tcf ≦ 450 (° C.), R = 10 to 60 (m / min)
前記鋳造スラブが、さらに質量%で、
Cu:0.1〜0.23%、
Ni:0.1〜0.45%、
を含有することを特徴とする請求項1に記載の降伏比80%以下で引張強度500MPa級の板厚10〜30mmを有する母材および溶接熱影響部の低温靭性に優れた厚鋼板の製造方法。
The casting slab is further in mass%,
Cu: 0.1 to 0.23%,
Ni: 0.1 to 0.45%,
A base material having a yield ratio of 80% or less and a tensile strength of 500 MPa class and a thickness of 10 to 30 mm according to claim 1, and a method for producing a thick steel plate excellent in low-temperature toughness of the weld heat affected zone .
前記鋳造スラブが、さらに質量%で、
Ti:0.005〜0.03%,
を含有することを特徴とする請求項1または2に記載の降伏比80%以下で引張強度500MPa級の板厚10〜30mmを有する母材および溶接熱影響部の低温靭性に優れた厚鋼板の製造方法。
The casting slab is further in mass%,
Ti: 0.005 to 0.03%,
The base material having a yield ratio of 80% or less and a tensile strength of 500 MPa class and a thickness of 10 to 30 mm according to claim 1 or 2, wherein the steel plate is excellent in low temperature toughness of the weld heat affected zone. Production method.
前記鋳造スラブが、さらに質量%で、
Mo:0.01〜0.6%、
Cr:0.01〜0.6%、
B:0.0003〜0.003%
を含有することを特徴とする請求項1〜3のいずれかに記載の降伏比80%以下で引張強度500MPa級の板厚10〜30mmを有する母材および溶接熱影響部の低温靭性に優れた厚鋼板の製造方法。
The casting slab is further in mass%,
Mo: 0.01 to 0.6%,
Cr: 0.01 to 0.6%,
B: 0.0003 to 0.003%
The base material having a plate thickness of 10 to 30 mm with a yield strength of 80 MPa or less and a tensile strength of 500 MPa as described in any one of claims 1 to 3 and excellent in low temperature toughness of a weld heat affected zone Manufacturing method of thick steel plate.
JP2007089749A 2007-03-29 2007-03-29 Manufacturing method of thick steel plate with excellent low temperature toughness of base metal and weld heat affected zone Expired - Fee Related JP5058652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007089749A JP5058652B2 (en) 2007-03-29 2007-03-29 Manufacturing method of thick steel plate with excellent low temperature toughness of base metal and weld heat affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007089749A JP5058652B2 (en) 2007-03-29 2007-03-29 Manufacturing method of thick steel plate with excellent low temperature toughness of base metal and weld heat affected zone

Publications (2)

Publication Number Publication Date
JP2008248291A true JP2008248291A (en) 2008-10-16
JP5058652B2 JP5058652B2 (en) 2012-10-24

Family

ID=39973587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007089749A Expired - Fee Related JP5058652B2 (en) 2007-03-29 2007-03-29 Manufacturing method of thick steel plate with excellent low temperature toughness of base metal and weld heat affected zone

Country Status (1)

Country Link
JP (1) JP5058652B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261000A (en) * 2007-04-11 2008-10-30 Nippon Steel Corp Method for producing a thick steel plate having a low yield ratio
WO2010052927A1 (en) * 2008-11-06 2010-05-14 新日本製鐵株式会社 Method for manufacturing steel plate and steel pipe for ultrahigh-strength line pipe
JP2011025282A (en) * 2009-07-27 2011-02-10 Jfe Steel Corp Equipment and method for cooling thick steel plate
JP2017131922A (en) * 2016-01-27 2017-08-03 Jfeスチール株式会社 Production line for hot-rolled steel strip and method for producing hot-rolled steel strip
JP2017131906A (en) * 2016-01-26 2017-08-03 Jfeスチール株式会社 Production line for hot-rolled steel strip and method for producing hot-rolled steel strip

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07284836A (en) * 1994-04-18 1995-10-31 Nippon Steel Corp Cooling method for high temperature steel sheet
JP2000084612A (en) * 1998-09-08 2000-03-28 Nkk Corp Controlled cooling method for hot rolled steel sheet
JP2005021984A (en) * 2003-06-13 2005-01-27 Jfe Steel Kk Method and apparatus for controlling cooling of thick steel plate
JP2005240176A (en) * 2004-01-30 2005-09-08 Jfe Steel Kk Manufacturing method of steel with excellent strength uniformity in the thickness direction and fatigue crack propagation characteristics
JP2005313223A (en) * 2003-06-13 2005-11-10 Jfe Steel Kk Controlled cooling apparatus and controlled cooling method for thick steel plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07284836A (en) * 1994-04-18 1995-10-31 Nippon Steel Corp Cooling method for high temperature steel sheet
JP2000084612A (en) * 1998-09-08 2000-03-28 Nkk Corp Controlled cooling method for hot rolled steel sheet
JP2005021984A (en) * 2003-06-13 2005-01-27 Jfe Steel Kk Method and apparatus for controlling cooling of thick steel plate
JP2005313223A (en) * 2003-06-13 2005-11-10 Jfe Steel Kk Controlled cooling apparatus and controlled cooling method for thick steel plate
JP2005240176A (en) * 2004-01-30 2005-09-08 Jfe Steel Kk Manufacturing method of steel with excellent strength uniformity in the thickness direction and fatigue crack propagation characteristics

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261000A (en) * 2007-04-11 2008-10-30 Nippon Steel Corp Method for producing a thick steel plate having a low yield ratio
WO2010052927A1 (en) * 2008-11-06 2010-05-14 新日本製鐵株式会社 Method for manufacturing steel plate and steel pipe for ultrahigh-strength line pipe
CN102203302A (en) * 2008-11-06 2011-09-28 新日本制铁株式会社 Method for manufacturing steel plate and steel pipe for ultrahigh-strength line pipe
JP4837789B2 (en) * 2008-11-06 2011-12-14 新日本製鐵株式会社 Steel sheet for ultra-high strength line pipe and method for manufacturing steel pipe
JP2011025282A (en) * 2009-07-27 2011-02-10 Jfe Steel Corp Equipment and method for cooling thick steel plate
JP2017131906A (en) * 2016-01-26 2017-08-03 Jfeスチール株式会社 Production line for hot-rolled steel strip and method for producing hot-rolled steel strip
KR20180097725A (en) * 2016-01-26 2018-08-31 제이에프이 스틸 가부시키가이샤 Manufacturing method of hot-rolled steel strip and manufacturing method of hot-rolled steel strip
KR102103368B1 (en) * 2016-01-26 2020-04-22 제이에프이 스틸 가부시키가이샤 Production equipment line for hot-rolled steel strip and production method for hot-rolled steel strip
US11007556B2 (en) 2016-01-26 2021-05-18 Jfe Steel Corporation Production equipment line for hot-rolled steel strip and production method for hot-rolled steel strip
JP2017131922A (en) * 2016-01-27 2017-08-03 Jfeスチール株式会社 Production line for hot-rolled steel strip and method for producing hot-rolled steel strip
KR20180097724A (en) * 2016-01-27 2018-08-31 제이에프이 스틸 가부시키가이샤 Manufacturing method of hot-rolled steel strip and manufacturing method of hot-rolled steel strip
KR102103367B1 (en) * 2016-01-27 2020-04-22 제이에프이 스틸 가부시키가이샤 Production equipment line for hot-rolled steel strip and production method for hot-rolled steel strip
US11020780B2 (en) 2016-01-27 2021-06-01 Jfe Steel Corporation Production equipment line for hot-rolled steel strip and production method for hot-rolled steel strip

Also Published As

Publication number Publication date
JP5058652B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP5522084B2 (en) Thick steel plate manufacturing method
KR101580749B1 (en) High-strength cold-rolled steel sheet with excellent stretch flangeability and precision punchability, and process for producing same
JP4874434B1 (en) Thick steel plate manufacturing method
JP4897127B2 (en) Manufacturing method of high strength steel sheet for welded structure
KR100868423B1 (en) Hot-rolled high strength API-90 grade steel and manufacturing method for spiral steel pipe
JP6047037B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent steel plate shape
JP7411072B2 (en) High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same
JP6923103B1 (en) Manufacturing method of thick steel plate and thick steel plate
WO2011148754A1 (en) Process for production of thick steel sheet
JP5521444B2 (en) High-strength cold-rolled steel sheet with excellent workability and method for producing the same
JP6641875B2 (en) Low yield ratio steel sheet and method of manufacturing the same
JP6771047B2 (en) High-strength steel sheet with low yield ratio characteristics and excellent low-temperature toughness and its manufacturing method
JP6847225B2 (en) Low yield ratio steel sheet with excellent low temperature toughness and its manufacturing method
JP5058652B2 (en) Manufacturing method of thick steel plate with excellent low temperature toughness of base metal and weld heat affected zone
JP2017197787A (en) High tensile strength thick steel sheet excellent in ductility and manufacturing method therefor
JP2005139517A (en) Manufacturing method of high strength and high toughness thick steel plate
KR102010081B1 (en) Hot-rolled steel sheet having high-strength and high-toughness and method for producing the same
JP6128276B2 (en) Steel for welding
JP2016180143A (en) Ferritic-martensitic duplex stainless steel and method for producing the same
JP5082500B2 (en) Manufacturing method of high toughness and high strength steel sheet with excellent strength-elongation balance
JP4038166B2 (en) Steel plate excellent in earthquake resistance and weldability and manufacturing method thereof
JP2005226081A (en) Method for producing high-strength hot-rolled steel sheet with uniform mechanical properties
JP5090051B2 (en) Method for producing a thick steel plate having a low yield ratio
JP2005298962A (en) Manufacturing method of high-tensile steel plate with excellent workability
JP6135595B2 (en) High-efficiency manufacturing method for steel plates with excellent impact resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5058652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees