[go: up one dir, main page]

JP2008233024A - Optical sensor, image forming device, and assembling method of image forming device - Google Patents

Optical sensor, image forming device, and assembling method of image forming device Download PDF

Info

Publication number
JP2008233024A
JP2008233024A JP2007076815A JP2007076815A JP2008233024A JP 2008233024 A JP2008233024 A JP 2008233024A JP 2007076815 A JP2007076815 A JP 2007076815A JP 2007076815 A JP2007076815 A JP 2007076815A JP 2008233024 A JP2008233024 A JP 2008233024A
Authority
JP
Japan
Prior art keywords
light
light receiving
reflection light
light emitting
optical sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007076815A
Other languages
Japanese (ja)
Inventor
Yasutomo Ide
康智 井手
Masanobu Yamagata
正信 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2007076815A priority Critical patent/JP2008233024A/en
Publication of JP2008233024A publication Critical patent/JP2008233024A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Or Security For Electrophotography (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical sensor that can secure the measuring accuracy even when diffusion reflected light quantity from an irradiating object (image carrier) is small, and can contribute to simplification of the image density control and the improvement of reliability. <P>SOLUTION: This optical sensor 1A comprises a mounting substrate 2, an LED 3, a photo-transistor 4 for regularly reflected light, a photo-transistor 5 for diffusion reflected light. The LED 3 is arranged between light receiving means. A polarizing filter 8 for irradiation is installed on the optical path between the LED 3 and a transfer belt 18. A polarizing filter 9 for receiving regularly reflected light is installed on the optical path between the photo-transistor 4 for regularly reflected light and the transfer belt 18. A polarizing filter as a reduction factor of the diffusion reflected light quantity is not disposed on the optical path between the transfer belt 18 and photo-transistor 5 for diffusion reflected light. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、照射対象物に対して照射した入射光の反射光を受光する光学センサおよびこの光学センサを用いた複写機、プリンタ、ファクシミリ、プロッタ、これらのうち少なくとも1つを備えた複合機等の画像形成装置、該画像形成装置の組み立て方法に関する。
本発明は、正反射光が反射する物体の表面に付着する粉体や液体の付着量の測定に応用できる。
The present invention relates to an optical sensor that receives reflected light of incident light irradiated on an irradiation object, a copier, a printer, a facsimile, a plotter using the optical sensor, a multifunction machine including at least one of these, and the like. The present invention relates to an image forming apparatus and an assembling method of the image forming apparatus.
The present invention can be applied to the measurement of the amount of powder or liquid adhering to the surface of an object that reflects regular reflection light.

複写機、プリンタ、ファクシミリなどの画像形成装置において、所望の画像濃度を得るために中間転写体などの像担持体表面に濃度検出用のトナーパッチを作成し、そのパッチの濃度を光学センサにより検出するものがある。
画像形成装置はこの光学センサによる検出結果に基づき、潜像形成用の書き込み光強度、帯電バイアス、現像バイアスなどを調節したりするような画像濃度制御(プロセスコントロール)を行う。光学センサとしては、発光手段と受光手段とを備えた反射型光学センサが一般的に用いられる。
発光手段から照射された光は像担持体表面では正反射するのに対し、トナー上ではほとんど正反射しない。したがって、トナー付着量に反比例して受光手段の出力は減少する。前記の光学センサはこれを利用してトナー付着量を測定している。
In an image forming apparatus such as a copying machine, a printer, or a facsimile, a toner patch for density detection is created on the surface of an image carrier such as an intermediate transfer body in order to obtain a desired image density, and the density of the patch is detected by an optical sensor. There is something to do.
The image forming apparatus performs image density control (process control) such as adjusting the writing light intensity for forming a latent image, a charging bias, and a developing bias based on the detection result by the optical sensor. As the optical sensor, a reflection type optical sensor including a light emitting unit and a light receiving unit is generally used.
The light emitted from the light emitting means is specularly reflected on the surface of the image carrier, but hardly specularly reflected on the toner. Therefore, the output of the light receiving means decreases in inverse proportion to the toner adhesion amount. The optical sensor uses this to measure the toner adhesion amount.

しかし、カラートナーにおいてはトナー付着量が増えると拡散反射光が増えるため、あるトナー付着量以上になると受光手段の出力が減少から増加に転じる。図11にその一例を示す。そのため、付着量の測定に誤差が生じる。
この課題に対し、偏光方向が平行である偏光フィルタを発光手段と像担持体との間と、像担持体と受光手段との間に設け、発光と受光との偏光方向を規制することによって、拡散反射光を正反射光用の受光手段で受光することを防ぐということが知られている。(例えば特許文献1、特許文献2)
However, in the color toner, when the toner adhesion amount increases, the diffuse reflection light increases. Therefore, when the toner adhesion amount exceeds a certain amount, the output of the light receiving means starts to decrease and increases. An example is shown in FIG. For this reason, an error occurs in the measurement of the adhesion amount.
For this problem, by providing a polarizing filter having a parallel polarization direction between the light emitting means and the image carrier and between the image carrier and the light receiving means, and regulating the polarization directions of the light emission and the light reception, It is known to prevent the diffusely reflected light from being received by the light receiving means for specularly reflected light. (For example, Patent Document 1 and Patent Document 2)

特開2006−208266号公報JP 2006-208266 A 特開2006−267139号公報JP 2006-267139 A 特開2005−91252号公報JP-A-2005-91252 特開2006−208266号公報JP 2006-208266 A 特開2003−121356号公報JP 2003-121356 A 特開平8−219990号公報Japanese Unexamined Patent Publication No. 8-219990

しかしながら、特許文献1、2においては、正反射光を受光する正反射光受光手段と拡散反射光を受光する拡散反射光受光手段が並んで配置されているため、拡散反射光受光手段に正反射光が入射するのを防ぐべく、照射対象物と拡散反射光受光手段との間の光路上に、発光手段と照射対象物との間の光路上に設けられた照射用偏光フィルタとは垂直の偏光方向となるように拡散反射光用偏光フィルタを配置する必要があった。
しかしこの場合、拡散反射光用偏光フィルタを配置すると、この偏光フィルタによって光量が減衰するため、拡散反射光受光手段に達する光量が少なくなり、照射対象物からの拡散反射光量が少ないときの測定精度が低下するという副作用があった。
However, in Patent Documents 1 and 2, the specular reflection light receiving means for receiving specular reflection light and the diffuse reflection light receiving means for receiving diffuse reflection light are arranged side by side. In order to prevent light from entering, the irradiation polarizing filter provided on the optical path between the light emitting means and the irradiation target is perpendicular to the optical path between the irradiation target and the diffuse reflection light receiving means. It has been necessary to dispose a diffuse reflection light polarizing filter so that the polarization direction is aligned.
However, in this case, if a polarizing filter for diffuse reflection light is arranged, the amount of light is attenuated by this polarizing filter, so that the amount of light reaching the diffuse reflection light receiving means decreases, and the measurement accuracy when the amount of diffuse reflection light from the irradiation object is small Had the side effect of lowering.

本発明は、照射対象物からの拡散反射光量が少ない場合でも測定精度を確保でき、画像濃度制御の簡易化及び信頼性の向上に寄与できる光学センサ、該光学センサを有する画像形成装置の提供を、その目的とする。
また、照射対象物からの拡散反射光量が多すぎて測定精度が低下することもあり得るが、このような場合でも測定精度を確保でき、画像濃度制御の簡易化及び信頼性の向上に寄与できる光学センサ、該光学センサを有する画像形成装置、該画像形成装置の組み立て方法の提供を、その目的とする。
The present invention provides an optical sensor capable of ensuring measurement accuracy even when the amount of diffusely reflected light from an irradiation object is small, contributing to simplification of image density control and improving reliability, and an image forming apparatus having the optical sensor. And its purpose.
Also, the amount of diffusely reflected light from the object to be irradiated may be too high, resulting in a decrease in measurement accuracy. Even in such a case, measurement accuracy can be ensured, and image density control can be simplified and reliability can be improved. An object of the present invention is to provide an optical sensor, an image forming apparatus having the optical sensor, and a method for assembling the image forming apparatus.

上記目的を達成するために、請求項1記載の発明では、実装基板と、該実装基板に実装された発光手段と、該発光手段から照射され照射対象物で反射した正反射光を受光する正反射光受光手段と、前記発光手段から照射され前記照射対象物で反射した拡散反射光を受光する拡散反射光受光手段と、を有する光学センサにおいて、前記発光手段が前記正反射光受光手段と前記拡散反射光受光手段との間に配置され、前記発光手段と前記照射対象物との間の光路上に照射用偏光フィルタが設けられているとともに、前記照射対象物と前記正反射光受光手段との間の光路上に正反射光受光用偏光フィルタが設けられ、前記照射対象物と前記拡散反射光受光手段との間の光路は開放されていることを特徴とする。   In order to achieve the above object, according to the first aspect of the present invention, there is provided a mounting substrate, light emitting means mounted on the mounting substrate, and regular reflection light received from the light emitting means and reflected by an irradiation object. An optical sensor comprising: a reflected light receiving unit; and a diffuse reflected light receiving unit that receives diffuse reflected light that is irradiated from the light emitting unit and reflected by the irradiation object, wherein the light emitting unit includes the regular reflected light receiving unit and the An illuminating polarizing filter is provided on the optical path between the light emitting means and the irradiation object, and the irradiation object and the specular reflection light receiving means. A polarizing filter for receiving regular reflection light is provided on the optical path between the two, and the optical path between the irradiation object and the diffuse reflection light receiving means is open.

請求項2記載の発明では、実装基板と、該実装基板に実装された発光手段と、該発光手段から照射され照射対象物で反射した正反射光を受光する正反射光受光手段と、前記発光手段から照射され前記照射対象物で反射した拡散反射光を受光する拡散反射光受光手段と、を有する光学センサにおいて、前記発光手段が前記正反射光受光手段と前記拡散反射光受光手段との間に配置され、前記発光手段と前記照射対象物との間の光路上に照射用偏光フィルタが設けられているとともに、前記照射対象物と前記正反射光受光手段との間の光路上に正反射光受光用偏光フィルタが設けられ、前記照射対象物と前記拡散反射光受光手段との間の光路上には、前記拡散反射光受光用偏光フィルタを取り付け可能な装着部が設けられていることを特徴とする。   According to a second aspect of the present invention, there is provided a mounting substrate, a light emitting unit mounted on the mounting substrate, a regular reflection light receiving unit that receives specularly reflected light that is irradiated from the light emitting unit and reflected by an irradiation object, and the light emission. A diffuse reflected light receiving means for receiving diffuse reflected light that is irradiated from the means and reflected by the irradiation object, wherein the light emitting means is between the regular reflected light receiving means and the diffuse reflected light receiving means. And an illuminating polarizing filter is provided on the optical path between the light emitting means and the irradiation object, and is regularly reflected on the optical path between the irradiation object and the regular reflection light receiving means. A light receiving polarization filter is provided, and a mounting portion to which the diffuse reflection light receiving polarization filter can be attached is provided on the optical path between the irradiation object and the diffuse reflection light receiving means. Characterize

請求項3記載の発明では、実装基板と、該実装基板に実装された発光手段と、該発光手段から照射され照射対象物で反射した正反射光を受光する正反射光受光手段と、前記発光手段から照射され前記照射対象物で反射した拡散反射光を受光する拡散反射光受光手段と、を有する光学センサにおいて、前記発光手段が前記正反射光受光手段と前記拡散反射光受光手段との間に配置され、前記発光手段と前記照射対象物との間の光路上に照射用偏光フィルタが設けられているとともに、前記照射対象物と前記正反射光受光手段との間の光路上に正反射光受光用偏光フィルタが設けられ、前記照射対象物と前記拡散反射光受光手段との間の光路上には、前記拡散反射光を集光する拡散反射光集光レンズを取り付け可能な装着部が設けられていることを特徴とする。   According to a third aspect of the present invention, there is provided a mounting substrate, a light emitting unit mounted on the mounting substrate, a regular reflection light receiving unit that receives specularly reflected light that is irradiated from the light emitting unit and reflected by an irradiation object, and the light emission. A diffuse reflected light receiving means for receiving diffuse reflected light that is irradiated from the means and reflected by the irradiation object, wherein the light emitting means is between the regular reflected light receiving means and the diffuse reflected light receiving means. And an illuminating polarizing filter is provided on the optical path between the light emitting means and the irradiation object, and is regularly reflected on the optical path between the irradiation object and the regular reflection light receiving means. A light receiving polarization filter is provided, and on the optical path between the irradiation object and the diffuse reflected light receiving means, there is a mounting portion to which a diffuse reflected light condensing lens for condensing the diffuse reflected light can be attached. What is provided And features.

請求項4記載の発明では、実装基板と、該実装基板に実装された発光手段と、該発光手段から照射され照射対象物で反射した正反射光を受光する正反射光受光手段と、前記発光手段から照射され前記照射対象物で反射した拡散反射光を受光する拡散反射光受光手段と、を有する光学センサにおいて、前記発光手段が前記正反射光受光手段と前記拡散反射光受光手段との間に配置され、前記発光手段と前記照射対象物との間の光路上に照射用偏光フィルタが設けられているとともに、前記照射対象物と前記正反射光受光手段との間の光路上に正反射光受光用偏光フィルタが設けられ、前記照射対象物と前記拡散反射光受光手段との間の光路上には、前記拡散反射光を減光する拡散反射光減光フィルタを取り付け可能な装着部が設けられていることを特徴とする。   According to a fourth aspect of the present invention, there is provided a mounting substrate, a light emitting unit mounted on the mounting substrate, a regular reflection light receiving unit that receives specularly reflected light that is irradiated from the light emitting unit and reflected by an irradiation object, and the light emission. A diffuse reflected light receiving means for receiving diffuse reflected light that is irradiated from the means and reflected by the irradiation object, wherein the light emitting means is between the regular reflected light receiving means and the diffuse reflected light receiving means. And an illuminating polarizing filter is provided on the optical path between the light emitting means and the irradiation object, and is regularly reflected on the optical path between the irradiation object and the regular reflection light receiving means. A light receiving polarization filter is provided, and on the optical path between the irradiation object and the diffuse reflected light receiving means, there is a mounting portion to which a diffuse reflected light attenuating filter for reducing the diffuse reflected light can be attached. It is provided The features.

請求項5記載の発明では、実装基板と、該実装基板に実装された発光手段と、該発光手段から照射され照射対象物で反射した正反射光を受光する正反射光受光手段と、前記発光手段から照射され前記照射対象物で反射した拡散反射光を受光する拡散反射光受光手段と、を有する光学センサにおいて、前記発光手段が前記正反射光受光手段と前記拡散反射光受光手段との間に配置され、前記発光手段と前記照射対象物との間の光路上に照射用偏光フィルタが設けられているとともに、前記照射対象物と前記正反射光受光手段との間の光路上に正反射光受光用偏光フィルタが設けられ、前記照射対象物と前記拡散反射光受光手段との間の光路上には、前記拡散反射光受光用偏光フィルタと、拡散反射光を集光する拡散反射光集光レンズと拡散反射光を減光する拡散反射光減光フィルタのうちいずれか一方と、を併せて取り付け可能な装着部が設けられていることを特徴とする。   According to a fifth aspect of the present invention, there is provided a mounting substrate, a light emitting unit mounted on the mounting substrate, a regular reflection light receiving unit that receives specularly reflected light that is irradiated from the light emitting unit and reflected by an irradiation object, and the light emission. A diffuse reflected light receiving means for receiving diffuse reflected light that is irradiated from the means and reflected by the irradiation object, wherein the light emitting means is between the regular reflected light receiving means and the diffuse reflected light receiving means. And an illuminating polarizing filter is provided on the optical path between the light emitting means and the irradiation object, and is regularly reflected on the optical path between the irradiation object and the regular reflection light receiving means. A light receiving polarization filter is provided, and the diffuse reflected light receiving polarizing filter and the diffuse reflected light collecting light that condenses the diffuse reflected light are disposed on an optical path between the irradiation object and the diffuse reflected light receiving means. Light lens and diffuse reflection The together, and either one of the diffuse reflection light ND filter dimming, characterized in that the attachment portion that is attachable is provided.

請求項6記載の発明では、請求項2〜5のいずれか1つに記載の光学センサにおいて、前記装着部が、前記拡散反射光受光用偏光フィルタ、前記拡散反射光集光レンズ、あるいは前記拡散反射光減光フィルタを差し込んで装着可能なスリット状ないし段部構造を有していることを特徴とする。
請求項7記載の発明では、請求項1〜6のいずれか1つに記載の光学センサにおいて、前記発光手段が前記実装基板の実装面に対して略平行に光を発光するように配置されているとともに、前記正反射光受光手段及び前記拡散反射光受光手段が前記実装基板の実装面に対して略平行に光を受光するように配置されていることを特徴とする。
According to a sixth aspect of the present invention, in the optical sensor according to any one of the second to fifth aspects, the mounting portion includes the diffuse reflection light receiving polarization filter, the diffuse reflection light condensing lens, or the diffusion. It has a slit-like or stepped structure that can be fitted with a reflected light attenuation filter.
According to a seventh aspect of the present invention, in the optical sensor according to any one of the first to sixth aspects, the light emitting means is disposed so as to emit light substantially parallel to the mounting surface of the mounting substrate. And the regular reflection light receiving means and the diffuse reflection light receiving means are arranged so as to receive light substantially parallel to the mounting surface of the mounting substrate.

請求項8記載の発明では、請求項1〜7のいずれか1つに記載の光学センサにおいて、前記発光手段と前記照射対象物との間の光路上に、前記発光手段から照射した光を集光する照射光集光レンズが設けられていることを特徴とする。
請求項9記載の発明では、請求項1〜8のいずれか1つに記載の光学センサにおいて、前記正反射光受光手段と前記照射対象物との間の光路上に、前記発光手段から前記照射対象物へ照射された光の正反射光を集光する正反射光集光レンズが設けられていることを特徴とする。
According to an eighth aspect of the present invention, in the optical sensor according to any one of the first to seventh aspects, the light irradiated from the light emitting unit is collected on an optical path between the light emitting unit and the irradiation object. An illumination light condensing lens that emits light is provided.
According to a ninth aspect of the present invention, in the optical sensor according to any one of the first to eighth aspects, the irradiation from the light emitting unit onto the optical path between the regular reflection light receiving unit and the irradiation object. A specular reflection light condensing lens for condensing specular reflection light of the light irradiated to the object is provided.

請求項10記載の発明では、請求項1〜9のいずれか1つに記載の光学センサにおいて、前記照射用偏光フィルタと前記正反射光受光用偏光フィルタが一体に構成されていることを特徴とする。
請求項11記載の発明では、請求項1〜7のいずれか1つに記載の光学センサにおいて、前記照射用偏光フィルタが、前記発光手段から照射された光を集光する機能を有することを特徴とする。
請求項12記載の発明では、請求項1、2、3、4、5、6、7、11のいずれか1つに記載の光学センサにおいて、前記正反射光受光用偏光フィルタが、前記発光手段から前記照射対象物へ照射された光の正反射光を集光する機能を有することを特徴とする。
According to a tenth aspect of the present invention, in the optical sensor according to any one of the first to ninth aspects, the irradiation polarizing filter and the regular reflection light receiving polarizing filter are integrally formed. To do.
According to an eleventh aspect of the present invention, in the optical sensor according to any one of the first to seventh aspects, the irradiation polarizing filter has a function of condensing the light irradiated from the light emitting means. And
According to a twelfth aspect of the present invention, in the optical sensor according to any one of the first, second, third, fourth, fifth, sixth, seventh, and eleventh aspects, the polarizing filter for receiving regular reflection light is the light emitting means. It has a function which condenses the regular reflection light of the light irradiated to the said irradiation target object from.

請求項13記載の発明では、光を正反射させる表面を有する像担持体と、該像担持体上にトナー像を形成するトナー像形成手段と、該トナー像形成手段により前記像担持体上にトナーを付着させたときの該トナーの付着量を検出するための光学センサと、該光学センサの検出結果に基づいて画像濃度制御を行う画像濃度制御手段とを備えた画像形成装置において、前記光学センサとして、請求項1〜12のいずれか1つに記載の光学センサを用いたことを特徴とする。   According to a thirteenth aspect of the present invention, an image carrier having a surface for regularly reflecting light, a toner image forming unit for forming a toner image on the image carrier, and the toner image forming unit on the image carrier. An image forming apparatus comprising: an optical sensor for detecting an amount of toner adhesion when toner is adhered; and an image density control unit that performs image density control based on a detection result of the optical sensor. The optical sensor according to any one of claims 1 to 12 is used as a sensor.

請求項14記載の発明では、実装基板と、該実装基板に実装された発光手段と、該発光手段から照射され像担持体で反射した正反射光を受光する正反射光受光手段と、前記発光手段から照射され前記像担持体で反射した拡散反射光を受光する拡散反射光受光手段とを有し、前記発光手段が前記正反射光受光手段と前記拡散反射光受光手段との間に配置され、前記発光手段と前記照射対象物との間の光路上に照射用偏光フィルタが設けられているとともに、前記像担持体と前記正反射光受光手段との間の光路上に正反射光受光用偏光フィルタが設けられた光学センサを備えた画像形成装置の組み立て方法であって、前記像担持体と前記拡散反射光受光手段との間の光路上に、光学素子を取り付け可能な装着部を設け、前記像担持体からの拡散反射光量の程度により前記装着部に光学素子を装着して拡散反射光量を調整することを特徴とする。   In the invention described in claim 14, the mounting substrate, the light emitting means mounted on the mounting substrate, the specularly reflected light receiving means for receiving the specularly reflected light irradiated from the light emitting means and reflected by the image carrier, and the light emission A diffuse reflected light receiving means for receiving the diffuse reflected light emitted from the means and reflected by the image carrier, and the light emitting means is disposed between the regular reflected light receiving means and the diffuse reflected light receiving means. A polarizing filter for irradiation is provided on the optical path between the light emitting means and the irradiation object, and for receiving the regular reflection light on the optical path between the image carrier and the regular reflection light receiving means. An assembly method of an image forming apparatus including an optical sensor provided with a polarizing filter, wherein a mounting portion to which an optical element can be attached is provided on an optical path between the image carrier and the diffuse reflection light receiving means. Diffusion reaction from the image carrier By mounting an optical element on the mounting part by the degree of light intensity and adjusts the diffuse reflected light.

請求項15記載の発明では、請求項14記載の画像形成装置の組み立て方法において、前記拡散反射光量が所定値を超える場合には前記装着部に前記光学素子として拡散反射光受光用偏光フィルタと拡散反射光を減光する拡散反射光減光フィルタのうち少なくとも一方を装着し、所定値以下の場合には前記装着部に前記拡散反射光受光用偏光フィルタと拡散反射光減光フィルタのいずれも装着しないことを特徴とする。
請求項16記載の発明では、請求項14記載の画像形成装置の組み立て方法において、前記拡散反射光量が所定値以下の場合、前記装着部に前記光学素子として拡散反射光を集光する拡散反射光集光レンズを装着することを特徴とする。
According to a fifteenth aspect of the present invention, in the method for assembling the image forming apparatus according to the fourteenth aspect, when the diffuse reflection light quantity exceeds a predetermined value, a diffused reflected light receiving polarization filter and a diffusion are used as the optical element in the mounting portion. At least one of the diffuse reflection light attenuating filters for reducing the reflected light is attached, and if the value is below a predetermined value, both the diffuse reflection light receiving polarizing filter and the diffuse reflection light attenuation filter are attached to the attachment portion. It is characterized by not.
According to a sixteenth aspect of the present invention, in the method for assembling the image forming apparatus according to the fourteenth aspect, when the amount of diffusely reflected light is a predetermined value or less, the diffusely reflected light that condenses the diffusely reflected light as the optical element on the mounting portion. A condensing lens is attached.

本発明によれば、照射対照物からの拡散反射光量が少ない場合でも光量を減衰することなく拡散反射光受光手段に入射させることが可能となり、測定精度が向上する。
実装基板の実装面に対して発光と受光が略平行となるように発光手段と受光手段を設ける構成としているので、光路に対して平行方向の基板の反りや振動が低減でき、確実に拡散光受光手段への正反射光の入射を防止することが可能となり、更に受光用偏光フィルタへの正反射光の入射角度も変化することなく、安定して精度の高い測定を行うことが可能となる。
According to the present invention, even when the amount of diffusely reflected light from the irradiated control object is small, it is possible to make it incident on the diffusely reflected light receiving means without attenuating the amount of light, and the measurement accuracy is improved.
Since the light emitting means and the light receiving means are provided so that light emission and light reception are substantially parallel to the mounting surface of the mounting substrate, the warpage and vibration of the substrate in the direction parallel to the optical path can be reduced, and the diffused light is reliably It is possible to prevent the regular reflection light from entering the light receiving means, and it is possible to perform stable and accurate measurement without changing the incident angle of the regular reflection light to the light receiving polarizing filter. .

照射光集光レンズにより照射光を集光することで、照射光の像担持体上の大きさと方向を制御することが可能となるため、拡散反射光受光手段への正反射光の入射をより確実に防止することが可能となり、より精度の高いトナー濃度の測定結果を得ることができる。
正反射光集光レンズにより正反射光を集光することで、像担持体上の受光範囲の大きさを制御することが可能となるため、より正確にトナーの濃度を測定することが可能となる。
照射用偏光フィルタと正反射光受光用偏光フィルタを一体の偏光フィルタにしているため、組立作業時間を増加させることなく、照射用と正反射光受光用の偏光フィルタの偏光方向を精度良く同じ方向にすることが可能となる。
Condensing the irradiation light with the irradiation light condensing lens makes it possible to control the size and direction of the irradiation light on the image carrier, so that the regular reflection light is more incident on the diffuse reflection light receiving means. Thus, it is possible to prevent it reliably, and a more accurate measurement result of toner density can be obtained.
By condensing the specularly reflected light by the specularly reflecting light condensing lens, it is possible to control the size of the light receiving range on the image carrier, so that the toner density can be measured more accurately. Become.
Since the polarizing filter for irradiation and the polarizing filter for receiving reflected light are integrated into a single polarizing filter, the polarization direction of the polarizing filter for irradiating and receiving reflected light is precisely the same without increasing assembly time. It becomes possible to.

照射用偏光フィルタが照射光を集光する機能を持つため、組立作業時間を増加させることなく照射光の像担持体上の大きさを制御できる。
正反射光受光用偏光フィルタが正反射光を集光する機能を持つため、組立作業時間を増加させることなく像担持体上の受光範囲の大きさを制御できる。
画像濃度制御の精度を向上させることができ、ひいては高画質化を実現することができる。
Since the irradiation polarizing filter has a function of condensing the irradiation light, the size of the irradiation light on the image carrier can be controlled without increasing the assembling time.
Since the polarization filter for receiving regular reflection light has a function of condensing regular reflection light, the size of the light reception range on the image carrier can be controlled without increasing the assembly work time.
Image density control accuracy can be improved, and as a result, high image quality can be realized.

以下、本発明の第1の実施形態を、図1を参照して説明する。
本実施形態に係る、後述する画像形成装置に搭載されたトナー濃度測定装置の一部としての光学センサ1Aは、該画像形成装置の装置本体に固定される実装基板2と、実装基板2に実装された発光手段としてのLED3と、正反射光受光手段としての正反射光用フォトトランジスタ4と、拡散反射光受光手段としての拡散反射光用フォトトランジスタ5と、これらの発光手段及び受光手段を覆った状態に収容し外乱光の入射を防止するケース6等を有している。
ここでは、黒色の樹脂で成型したケース6を用いている。LED3は正反射光用フォトトランジスタ4と拡散反射光用フォトトランジスタ5との間に配置されており、発光手段と受光手段との間は、ケース6と一体で成型された遮光壁7により遮られている。
発光手段の例としては他にレーザーダイオードなど、受光手段の例としては他にフォトダイオード、フォトダーリントンなどがあげられる。
Hereinafter, a first embodiment of the present invention will be described with reference to FIG.
An optical sensor 1A as a part of a toner concentration measuring device mounted on an image forming apparatus, which will be described later, according to this embodiment is mounted on a mounting substrate 2 fixed to the main body of the image forming device, and mounted on the mounting substrate 2. The LED 3 as the light emitting means, the specular reflected light phototransistor 4 as the regular reflected light receiving means, the diffuse reflected light phototransistor 5 as the diffuse reflected light receiving means, and the light emitting means and the light receiving means are covered. And a case 6 for preventing ambient light from entering.
Here, a case 6 molded with black resin is used. The LED 3 is disposed between the phototransistor 4 for specular reflection light and the phototransistor 5 for diffuse reflection light. The light emitting means and the light receiving means are blocked by a light shielding wall 7 formed integrally with the case 6. ing.
Other examples of the light emitting means include a laser diode, and other examples of the light receiving means include a photodiode and a photo Darlington.

正反射光用フォトトランジスタ4は、LED3から照射され照射対象物で且つ像担持体としての後述する転写ベルト18で反射した正反射光を受光する。拡散反射光用フォトトランジスタ5は、LED3から照射され転写ベルト18で反射した拡散反射光を受光する。
LED3と転写ベルト18との間の光路上には光透過用のスリットS1が、正反射光用フォトトランジスタ4と転写ベルト18との間の光路上には光透過用のスリットS2が、拡散反射光用フォトトランジスタ5と転写ベルト18との間の光路上には光透過用のスリットS3が、それぞれ形成されている。これらのスリットは、ケース6と一体で成型されている。
The regular reflection light phototransistor 4 receives regular reflection light which is irradiated from the LED 3 and is reflected by a transfer belt 18 which will be described later as an image carrier. The diffuse reflected light phototransistor 5 receives the diffuse reflected light that is irradiated from the LED 3 and reflected by the transfer belt 18.
A slit S1 for light transmission is on the optical path between the LED 3 and the transfer belt 18, and a slit S2 for light transmission is diffusely reflected on the optical path between the phototransistor 4 for regular reflection light and the transfer belt 18. On the optical path between the phototransistor 5 for light and the transfer belt 18, a light transmitting slit S3 is formed. These slits are molded integrally with the case 6.

LED3と転写ベルト18間の光路上(ここではスリットS1)には、照射用偏光フィルタ8が設置されており、正反射光用フォトトランジスタ4と転写ベルト18間の光路上(ここではスリットS2)には正反射光受光用偏光フィルタ9が設置されている。
照射用偏光フィルタ8と正反射光受光用偏光フィルタ9の設置手段としてはケース6に接着することや嵌合することがあげられる。
本実施形態では、スリットS1と、スリットS2の転写ベルト18側には、ベルト側からケース6内に向かって順に、フィルタ設置用凹部と後述するレンズを設置するためのレンズ設置用凹部が段階的に形成されている。これらの凹部への嵌合は、ケース6の下側(中間転写ベルト側)からの嵌合でもよく、ケース6を重ね合わせ構造として光路と直交する方向からの差し込み嵌合でもよい。
An irradiation polarizing filter 8 is disposed on the optical path between the LED 3 and the transfer belt 18 (here, slit S1), and on the optical path between the phototransistor 4 for regular reflection light and the transfer belt 18 (here, slit S2). Is provided with a polarizing filter 9 for receiving regular reflection light.
Examples of means for installing the irradiation polarizing filter 8 and the specular reflection light receiving polarizing filter 9 include adhering or fitting to the case 6.
In the present embodiment, a filter installation recess and a lens installation recess for installing a lens to be described later are stepwise on the transfer belt 18 side of the slit S1 and the slit S2 from the belt side toward the inside of the case 6. Is formed. The fitting into these concave portions may be fitting from the lower side of the case 6 (intermediate transfer belt side), or may be insertion fitting from the direction orthogonal to the optical path with the case 6 as an overlapping structure.

照射用偏光フィルタ8により偏光された照射光は転写ベルト18の表面では偏光方向は変わらずに正反射し、トナー上では拡散反射して偏光方向がランダムな光が反射する。正反射光受光用偏光フィルタ9は偏光方向が照射光と平行な反射光以外は透過しないため、正反射光用フォトトランジスタ4はほとんど正反射光しか受光しないことになる。
上記のように、拡散反射光用フォトトランジスタ5は正反射光用フォトトランジスタ4のLED3に対する位置と対局する位置に配置しており、拡散反射光用フォトトランジスタ5には転写ベルト18からの正反射光が達しないため、転写ベルト18と拡散反射光用フォトトランジスタ5との間の光路上(スリットS3)には偏光フィルタは設ける必要がない。すなわち、スリットS3は光学的に開放されている。
Irradiated light polarized by the irradiation polarizing filter 8 is specularly reflected on the surface of the transfer belt 18 without changing the polarization direction, and diffusely reflected on the toner to reflect light having a random polarization direction. Since the regular reflection light receiving polarizing filter 9 transmits only the reflected light whose polarization direction is parallel to the irradiation light, the regular reflection light phototransistor 4 receives almost only the regular reflection light.
As described above, the diffuse reflection light phototransistor 5 is disposed at a position opposite to the position of the regular reflection light phototransistor 4 with respect to the LED 3, and the diffuse reflection light phototransistor 5 is regularly reflected from the transfer belt 18. Since the light does not reach, it is not necessary to provide a polarizing filter on the optical path (slit S3) between the transfer belt 18 and the diffuse reflection light phototransistor 5. That is, the slit S3 is optically opened.

このため、転写ベルト18からの拡散反射光が少量の場合でも、拡散反射光用フォトトランジスタ5への入射光量を偏光フィルタで減衰することがなく、トナー量を高い精度で測定することが可能となる。
また、本実施形態では、照射と受光の光路が実装基板2の実装面に対して略平行となるように、LED3、正反射光用フォトトランジスタ4及び拡散反射光用フォトトランジスタ5を設置している。したがって、実装基板2の実装面は転写ベルト18の面に対して略垂直となっている。
このように実装した場合、照射と受光の光路が実装基板2の実装面に対して略垂直となる場合に比べ、実装基板2の光路と平行な方向の反りや振動が小さい。したがって転写ベルト18の表面への入射角や反射角の変化が少なく、正反射光が拡散反射光用フォトトランジスタ5に入射してしまうことを確実に防止できる。
また、転写ベルト18からの反射光の、正反射光受光用偏光フィルタ9への入射角の変化が少なく、更に転写ベルト18との距離や相対角度の変化も小さいため、正反射光用フォトトランジスタ4の出力の変化が小さくなり、より精度の高いトナー濃度の測定結果を得ることができる。
実際には光学センサ1が転写ベルト18の走行方向と直交する幅方向にトナーの色別に複数配置され、これらにより上記トナー濃度測定装置が構成されている。
For this reason, even when the amount of diffusely reflected light from the transfer belt 18 is small, the amount of light incident on the diffusely reflected light phototransistor 5 is not attenuated by the polarizing filter, and the amount of toner can be measured with high accuracy. Become.
Further, in the present embodiment, the LED 3, the specular reflection light phototransistor 4, and the diffuse reflection light phototransistor 5 are installed so that the irradiation and reception light paths are substantially parallel to the mounting surface of the mounting substrate 2. Yes. Therefore, the mounting surface of the mounting substrate 2 is substantially perpendicular to the surface of the transfer belt 18.
When mounted in this way, warpage and vibration in a direction parallel to the optical path of the mounting substrate 2 are small as compared with the case where the optical path of irradiation and reception is substantially perpendicular to the mounting surface of the mounting substrate 2. Therefore, the change in the incident angle and reflection angle on the surface of the transfer belt 18 is small, and it is possible to reliably prevent the regular reflection light from entering the diffuse reflection light phototransistor 5.
In addition, since the change in the incident angle of the reflected light from the transfer belt 18 to the regular reflection light receiving polarizing filter 9 is small and the change in the distance and relative angle with the transfer belt 18 is also small, the phototransistor for regular reflection light The change in the output of 4 becomes small, and a more accurate measurement result of the toner density can be obtained.
Actually, a plurality of optical sensors 1 are arranged for each color of toner in the width direction orthogonal to the running direction of the transfer belt 18, and the toner density measuring device is constituted by these.

図2に第2の実施形態を示す。なお上記実施形態と同一部分は同一符号で示し、特に必要がない限り既にした構成上及び機能上の説明は省略して要部のみ説明する(以下の他の実施形態において同じ)。
本実施形態に係る光学センサ1Bでは、LED3と転写ベルト18の間の光路上(ここではスリットS1)に、LED3から照射した光を集光する照射光集光レンズ10を配置している。
照射光集光レンズ11により照射光を集光することで、照射光の転写ベルト18上の大きさと方向を制御することが可能となる。これにより、拡散反射光用フォトトランジスタ5への正反射光の入射をより確実に防止することが可能となり、より精度の高いトナー濃度の測定結果を得ることができる。
FIG. 2 shows a second embodiment. In addition, the same part as the said embodiment is shown with the same code | symbol, The description on the structure and function which were already demonstrated is abbreviate | omitted as long as there is no special need, and only the principal part is demonstrated (same in other following embodiment).
In the optical sensor 1B according to the present embodiment, the irradiation light condensing lens 10 that condenses the light emitted from the LED 3 is disposed on the optical path between the LED 3 and the transfer belt 18 (here, the slit S1).
By condensing the irradiation light by the irradiation light condensing lens 11, the size and direction of the irradiation light on the transfer belt 18 can be controlled. Thereby, it is possible to more surely prevent the regular reflection light from entering the diffuse reflection light phototransistor 5 and obtain a more accurate measurement result of the toner density.

本実施形態では、LED3からの出射光は、ケース6に形成されたスリットS1を透過し、照射光集光レンズ10を透過した後に照射用偏光フィルタ8を透過する、という構成となっているが、スリットS1と、照射光集光レンズ10と、照射用偏光フィルタ8の透過の順は変更して配置することも可能である。
この場合には、上記フィルタ設置用凹部とレンズ設置用凹部の形成順位が逆となる。
In the present embodiment, the light emitted from the LED 3 is transmitted through the slit S1 formed in the case 6 and transmitted through the irradiation polarizing filter 8 after passing through the irradiation light collecting lens 10. The transmission order of the slit S1, the irradiation light condensing lens 10, and the irradiation polarizing filter 8 can be changed and arranged.
In this case, the order of formation of the concave portion for filter installation and the concave portion for lens installation is reversed.

図3に第3の実施形態を示す。
本実施形態に係る光学センサ1Cでは、第2の実施形態の構成に加え、正反射光用フォトトランジスタ4と転写ベルト18の間の光路上(ここではスリットS2)に、正反射光用フォトトランジスタ4と転写ベルト18の間の光路上に、LED3から照射した光の正反射光を集光する正反射光集光レンズ11を配置している。
正反射光集光レンズ11により正反射光を集光することで、転写ベルト18上の受光範囲の大きさを制御することが可能となるため、より正確にトナーの濃度を測定することが可能となる。
本実施形態では、転写ベルト18からの反射光は正反射光受光用偏光フィルタ9を透過し、正反射光集光レンズ11を透過した後にケース6に形成されたスリットS2を透過する、という構成となっているが、正反射光受光用偏光フィルタ9と、正反射光集光レンズ11と、スリットS2の透過の順は変更して配置することも可能である。
この場合には、上記フィルタ設置用凹部とレンズ設置用凹部の形成順位が逆となる。
FIG. 3 shows a third embodiment.
In the optical sensor 1C according to the present embodiment, in addition to the configuration of the second embodiment, a phototransistor for specular reflection light is provided on the optical path between the phototransistor 4 for specular reflection light and the transfer belt 18 (here, slit S2). On the optical path between 4 and the transfer belt 18, a regular reflection light condensing lens 11 that collects regular reflection light of light emitted from the LED 3 is disposed.
By condensing the specularly reflected light by the specularly reflecting light condensing lens 11, the size of the light receiving range on the transfer belt 18 can be controlled, so that the toner density can be measured more accurately. It becomes.
In the present embodiment, the reflected light from the transfer belt 18 passes through the regular reflection light receiving polarizing filter 9, passes through the regular reflection light collecting lens 11, and then passes through the slit S <b> 2 formed in the case 6. However, the order of transmission through the regular reflection light receiving polarizing filter 9, the regular reflection light condensing lens 11, and the slit S2 may be changed.
In this case, the order of formation of the concave portion for filter installation and the concave portion for lens installation is reversed.

図4に第4の実施形態を示す。
本実施形態に係る光学センサ1Dでは、上記各実施形態における照射用偏光フィルタ8と正反射光受光用偏光フィルタ9を1枚の連続した偏光フィルタ15で構成している。この一体構成により、簡素で取扱い性に優れ、組立作業時間を増加させることなく、照射用と正反射光受光用の偏光フィルタの偏光方向を同じ方向にすることが可能となる。
FIG. 4 shows a fourth embodiment.
In the optical sensor 1D according to the present embodiment, the irradiation polarizing filter 8 and the regular reflection light receiving polarizing filter 9 in each of the above embodiments are configured by a single continuous polarizing filter 15. With this integrated configuration, it is possible to make the polarization directions of the polarizing filters for irradiation and regular reflection light reception the same without being simple and excellent in handleability and without increasing the assembly work time.

図5に第5の実施形態を示す。
本実施形態に係る光学センサ1Eでは、スリットS1に配置された照射用偏光フィルタ16が、LED3からの照射光を集光する機能を有している。照射用偏光フィルタ16はレンズ設置用凹部に設置されている。
偏光フィルタが照射光を集光する機能を有するようにするには、光学レンズ(集光レンズ)に偏光膜を貼り付けるなどの手段がある。この構成により、偏光フィルタと集光レンズを個別に配置する場合に比べて、組立作業時間を増加させることなく、照射光を集光し照射光の転写ベルト18上の大きさを制御することが可能となる。
FIG. 5 shows a fifth embodiment.
In the optical sensor 1E according to the present embodiment, the irradiation polarizing filter 16 disposed in the slit S1 has a function of condensing the irradiation light from the LED 3. The irradiation polarizing filter 16 is installed in the lens installation recess.
In order for the polarizing filter to have a function of condensing the irradiation light, there is means such as attaching a polarizing film to the optical lens (condensing lens). With this configuration, it is possible to condense the irradiation light and control the size of the irradiation light on the transfer belt 18 without increasing the assembly work time, compared to the case where the polarizing filter and the condensing lens are individually arranged. It becomes possible.

図6に第6の実施形態を示す。
本実施形態に係る光学センサ1Fでは、スリットS1に配置された照射用偏光フィルタ16が、LED3からの照射光を集光する機能を有しているとともに、スリットS2に配置された正反射光受光用偏光フィルタ17が正反射光を集光する機能を有している。正反射光受光用偏光フィルタ17はレンズ設置用凹部に設置されている。
上記と同様に、偏光フィルタが照射光を集光する機能を有するようにするには、光学レンズ(集光レンズ)に偏光膜を貼り付けるなどの手段がある。
この構成により、組立作業時間を一層増加させることなく、正反射光を集光し転写ベルト18上の受光範囲の大きさを制御することが可能となる。
FIG. 6 shows a sixth embodiment.
In the optical sensor 1F according to the present embodiment, the irradiation polarizing filter 16 disposed in the slit S1 has a function of condensing the irradiation light from the LED 3, and receives regular reflection light disposed in the slit S2. The polarizing filter 17 has a function of collecting regular reflection light. The specular reflection light receiving polarizing filter 17 is installed in the concave portion for lens installation.
Similarly to the above, there are means such as attaching a polarizing film to the optical lens (condensing lens) in order to make the polarizing filter have a function of condensing the irradiation light.
With this configuration, the specularly reflected light can be collected and the size of the light receiving range on the transfer belt 18 can be controlled without further increasing the assembly work time.

上記各実施形態では、拡散反射光用フォトトランジスタ5と転写ベルト18の間の光路に拡散反射光受光用偏光フィルタを設けずに開放し、拡散反射光量が少ない場合でも測定精度を確保することを目的としたが、転写ベルト18からの反射光量は多ければ多い程よいというものではなく、センサ特性と像担持体側の反射特性とのバランスが重要である。
したがって、像担持体側の反射特性によっては、スリットS3の開放構成が測定精度の低下要因となり得る。
この課題に対処した第7の実施形態を図7及び図8に基づいて説明する。
In each of the above embodiments, the optical path between the diffuse reflected light phototransistor 5 and the transfer belt 18 is opened without providing the diffuse reflected light receiving polarizing filter, and the measurement accuracy is ensured even when the diffuse reflected light amount is small. Although the purpose is, the greater the amount of light reflected from the transfer belt 18, the better. The balance between the sensor characteristics and the reflection characteristics on the image carrier side is important.
Therefore, depending on the reflection characteristics on the image carrier side, the open configuration of the slit S3 can be a cause of a decrease in measurement accuracy.
A seventh embodiment that addresses this problem will be described with reference to FIGS.

本実施形態に係る光学センサ1Gでは、図7に示すように、拡散反射光用フォトトランジスタ5と転写ベルト18間の光路上(ここではスリットS3)に拡散反射光受光用偏光フィルタを取り付け可能な装着部6aが設けられている。
図8に示すように、装着部6aは光路と直交するコ字状の溝(凹部)として形成されており、拡散反射光受光用偏光フィルタ50を差し込んで嵌合するようになっている。
ケース6は重ね合わせ構造を有しており、ケース6の他方側にも同様の装着部が形成されている。ケース片の一方のみに装着部を形成し、他方片は単に蓋としてもよい。
In the optical sensor 1G according to the present embodiment, as shown in FIG. 7, a diffused / reflected light receiving polarizing filter can be attached on the optical path between the diffused / reflected light phototransistor 5 and the transfer belt 18 (here, slit S3). A mounting portion 6a is provided.
As shown in FIG. 8, the mounting portion 6a is formed as a U-shaped groove (concave portion) orthogonal to the optical path, and a diffused reflected light receiving polarizing filter 50 is inserted and fitted therein.
The case 6 has an overlapping structure, and a similar mounting portion is formed on the other side of the case 6. A mounting portion may be formed on only one of the case pieces, and the other piece may simply be a lid.

また、装着部6aをケース6の外面に開口させ、ケース6の外部から光路と直交する方向に差し込んで設置する方式としてもよい。
画像形成装置の製造工程において、トナー濃度測定装置の検知精度をチェックする場合、拡散反射光量が所定値を超える場合には、スリットS3を開放構成とせずに、光学素子としての拡散反射光受光用偏光フィルタ50を装着部6aに設置して光量を制限する。この場合、拡散反射光受光用偏光フィルタ50に代えて減光フィルタを装着してもよい。
Alternatively, the mounting portion 6a may be opened on the outer surface of the case 6 and inserted from the outside of the case 6 in a direction perpendicular to the optical path.
In the manufacturing process of the image forming apparatus, when checking the detection accuracy of the toner density measuring device, if the amount of diffusely reflected light exceeds a predetermined value, the slit S3 is not opened and the diffused reflected light is received as an optical element. A polarizing filter 50 is installed in the mounting portion 6a to limit the amount of light. In this case, a neutral density filter may be attached instead of the diffuse reflection light receiving polarizing filter 50.

図9に第8の実施形態(装着部の変形例)を示す。
本実施形態では、装着部6に加えて、拡散反射光を集光する拡散反射光集光レンズ51を取り付け可能な装着部6bが連設されている。ここでは、拡散反射光受光用偏光フィルタ50を装着した場合、微妙に拡散反射光量が低下してしまう場合に、これを補うために拡散反射光集光レンズ50を同時に装着する例を示している。
拡散反射光量が所定値以下の場合には、拡散反射光集光レンズ51のみを装着する。この場合、装着部6aには拡散反射光集光レンズ51を保持する保持部材52が装着される。
保持部材52は開口部52aを有し、拡散反射光集光レンズ51を保持するためだけの存在である。
勿論、装着部6aと6bを独立して形成すれば保持部材52は不要である。
FIG. 9 shows an eighth embodiment (modified example of the mounting portion).
In the present embodiment, in addition to the mounting portion 6, a mounting portion 6 b to which a diffuse reflection light condensing lens 51 that collects diffuse reflection light can be attached is continuously provided. Here, an example is shown in which when the diffuse reflection light receiving polarization filter 50 is mounted, the diffuse reflection light collecting lens 50 is simultaneously mounted to compensate for a slight decrease in the amount of diffuse reflection light. .
When the amount of diffusely reflected light is not more than a predetermined value, only the diffusely reflected light collecting lens 51 is attached. In this case, a holding member 52 that holds the diffuse reflection light condensing lens 51 is attached to the attachment portion 6a.
The holding member 52 has an opening 52 a and is only for holding the diffusely reflected light collecting lens 51.
Of course, if the mounting portions 6a and 6b are formed independently, the holding member 52 is unnecessary.

第5、第6の実施形態と同様に、拡散反射光受光用偏光フィルタ50に拡散反射光集光レンズ51の機能を持たせて、1つの光学素子を装着するようにしてもよい。この場合、装着部は1つの光学素子に対応した形状とすることができる。
製造工程における基本的な調整は、画像形成装置が高速機の場合には、拡散反射光量が必然的に低下するので、拡散反射光集光レンズ51を設置し、拡散反射光受光用偏光フィルタ50は設置しない。
低速機の場合には、十分な光量が得られるので、拡散反射光集光レンズ51は設置せず、拡散反射光受光用偏光フィルタ50又は減光フィルタを設置する。
このように、転写ベルト18側の反射特性に応じて、製造段階で適宜拡散反射光量を調整できるようにすれば、拡散反射光受光用偏光フィルタ付きの画像形成装置と標準化を図ることができる。
Similarly to the fifth and sixth embodiments, the diffuse reflection light receiving polarizing filter 50 may be provided with the function of the diffuse reflection light condensing lens 51 and attached with one optical element. In this case, the mounting portion can have a shape corresponding to one optical element.
The basic adjustment in the manufacturing process is that when the image forming apparatus is a high-speed machine, the amount of diffuse reflected light inevitably decreases. Therefore, a diffuse reflected light condensing lens 51 is installed, and the diffuse reflected light receiving polarizing filter 50 is installed. Is not installed.
In the case of a low speed machine, a sufficient amount of light can be obtained, so the diffuse reflection light collecting lens 51 is not installed, but the diffuse reflection light receiving polarizing filter 50 or the neutral density filter is installed.
Thus, if the amount of diffusely reflected light can be appropriately adjusted in the manufacturing stage according to the reflection characteristics on the transfer belt 18 side, standardization with an image forming apparatus having a diffused reflected light receiving polarization filter can be achieved.

次に、上記各実施形態に係るいずれかの光学センサを備え、画像濃度制御の精度を向上させて高画質化を実現できる画像形成装置の実施形態(第9の実施形態)を、図10に基づいて説明する。
本実施形態に係る画像形成装置としての4連タンデム直接転写方式のカラーレーザプリンタ(以下、単に「カラーレーザプリンタ」という)は、1つの手差しトレイ36、2つの給紙カセット34(第1給紙トレイ)、34(第2給紙トレイ)の3つの給紙トレイを有しており、手差しトレイ36より給紙されたシート状記録媒体としての図示しない転写紙は給紙コロ37により最上のものから順に1枚ずつ分離され、レジストローラ対23へ向けて搬送される。第1給紙トレイ34又は第2給紙トレイ34から給紙された転写紙は、給紙コロ35により最上のものから順に1枚ずつ分離され、搬送ローラ対39を介してレジストローラ対23へ向けて搬送される。
Next, FIG. 10 shows an embodiment (ninth embodiment) of an image forming apparatus that includes any one of the optical sensors according to each of the above-described embodiments and that can improve image density control accuracy and achieve high image quality. This will be explained based on.
A four-tandem direct transfer color laser printer (hereinafter simply referred to as “color laser printer”) as an image forming apparatus according to the present embodiment includes one manual feed tray 36 and two paper feed cassettes 34 (first paper feed). 3) (second tray), and a transfer sheet (not shown) as a sheet-like recording medium fed from the manual feed tray 36 is the uppermost one by a feed roller 37. Are separated one by one in order, and conveyed toward the registration roller pair 23. The transfer sheets fed from the first sheet feed tray 34 or the second sheet feed tray 34 are separated one by one from the uppermost one by the sheet feed roller 35 and are transferred to the registration roller pair 23 via the transport roller pair 39. It is conveyed toward.

給紙された転写紙は、レジストローラ対23で一旦停止され、スキューを修正された後、後述する最上流に位置する感光体ドラム14Y上に形成された画像の先端と転写紙の搬送方向の所定位置とが一致するタイミングで、図示しないレジストクラッチのオン制御によるレジストローラ対23の回転動作により転写ベルト18へ向けて搬送される。
転写紙は、転写ベルト18とこれに当接した紙吸着ローラ41とで構成される紙吸着ニップを通過する際、紙吸着ローラ41に印加されるバイアスにより転写ベルト18に静電力で吸着され搬送される。
The fed transfer paper is temporarily stopped by the pair of registration rollers 23, the skew is corrected, and then the leading edge of the image formed on the photosensitive drum 14Y positioned at the uppermost stream described later and the transfer paper in the transport direction. At a timing coincident with the predetermined position, the sheet is conveyed toward the transfer belt 18 by the rotation operation of the registration roller pair 23 by ON control of a registration clutch (not shown).
When the transfer paper passes through a paper suction nip composed of the transfer belt 18 and a paper suction roller 41 in contact with the transfer belt 18, the transfer paper is attracted to the transfer belt 18 by electrostatic force by a bias applied to the paper suction roller 41 and conveyed. Is done.

転写ベルト18に吸着された転写紙には、転写ベルト18を挟んで各色の感光体ドラム14B、14C、14M、14Yと対向した位置に配置された転写ブラシ21B、21C、21M、21Yにトナーの帯電極性(マイナス)と逆極性の転写バイアス(プラス)が印加されることにより、各感光体ドラム14B、14C、14M、14Yに作像された各色のトナー像がイエロー(Y)、マゼンタ(M)、シアン(C)、黒(Bk)の順で転写される。
各色の転写工程を経た転写紙は、下流側の駆動ローラ19部位で転写ベルト18から曲率分離され、定着装置24へ搬送される。定着装置24における定着ベルト25と加圧ローラ26により構成される定着ニップを通過することにより、トナー像が熱と圧力により転写紙に定着される。定着がなされた転写紙は、片面印刷モードの場合には、装置本体上面に形成されたFD(フェイスダウン)トレイ30へと排出される。
予め両面印刷モードが選択されている場合には、定着装置24を出た転写紙は、図示しない反転ユニットへ送られ、該ユニットにて表裏を反転されてから転写ユニット下部に位置する両面搬送ユニット33に搬送される。転写紙は該両面搬送ユニット33から再給紙され、搬送ローラ対39を経てレジストローラ対23へ搬送される。以降は、片面印刷モード時と同様の動作を経て定着装置24を通過し、FDトレイ30へと排出される。
The transfer paper adsorbed by the transfer belt 18 has toner transferred to the transfer brushes 21B, 21C, 21M, and 21Y disposed at positions facing the photosensitive drums 14B, 14C, 14M, and 14Y of the respective colors with the transfer belt 18 interposed therebetween. By applying a transfer bias (plus) opposite to the charging polarity (minus), the toner images of the respective colors formed on the photoconductor drums 14B, 14C, 14M, and 14Y are converted into yellow (Y) and magenta (M ), Cyan (C), and black (Bk).
The transfer paper that has undergone the transfer process of each color is separated from the transfer belt 18 by the downstream drive roller 19 and is conveyed to the fixing device 24. By passing through a fixing nip formed by the fixing belt 25 and the pressure roller 26 in the fixing device 24, the toner image is fixed on the transfer paper by heat and pressure. In the single-sided printing mode, the fixed transfer paper is discharged to an FD (face-down) tray 30 formed on the upper surface of the apparatus main body.
When the double-sided printing mode is selected in advance, the transfer paper that has exited the fixing device 24 is sent to a reversing unit (not shown), and the front and back sides are reversed by the unit, and then the double-sided transport unit positioned below the transfer unit. It is conveyed to 33. The transfer paper is fed again from the double-sided conveyance unit 33 and conveyed to the registration roller pair 23 through the conveyance roller pair 39. Thereafter, it passes through the fixing device 24 through the same operation as in the single-sided printing mode, and is discharged to the FD tray 30.

次に、上記カラーレーザプリンタの画像形成部における構成及び作像動作を詳細に説明する。
画像形成部は、各色共に同様の構成及び動作を有しているのでイエロー画像を形成する構成及び動作を代表して説明し、その他については各色に対応する符号を付して説明を省略する。
転写紙搬送方向の最上流側に位置する感光体ドラム14Yの周囲には、帯電ローラ42Y、クリーニング手段43Yを有する作像ユニット12Yと、現像ユニット13Y、光書き込みユニット16等が設けられている。
画像形成時、感光体ドラム14Yは図示しないメインモータにより時計回り方向に回転駆動され、帯電ローラ42Yに印加されたACバイアス(DC成分はゼロ)により除電され、その表面電位が基準電位となる。
Next, the configuration and image forming operation in the image forming unit of the color laser printer will be described in detail.
Since the image forming unit has the same configuration and operation for each color, the configuration and operation for forming a yellow image will be described as a representative, and the other components are denoted by reference numerals corresponding to the respective colors and description thereof is omitted.
An image forming unit 12Y having a charging roller 42Y and a cleaning unit 43Y, a developing unit 13Y, an optical writing unit 16, and the like are provided around the photosensitive drum 14Y positioned on the most upstream side in the transfer paper conveyance direction.
At the time of image formation, the photosensitive drum 14Y is rotationally driven in a clockwise direction by a main motor (not shown), is neutralized by an AC bias (DC component is zero) applied to the charging roller 42Y, and the surface potential becomes a reference potential.

次に、感光体ドラム14Yは、帯電ローラ42YにACバイアスを重畳したDCバイアスを印加することによりほぼDC成分に等しい電位に均一に帯電され、その表面電位が目標帯電電位に帯電される。
プリント画像として図示しないコントローラ部より送られてきたデジタル画像情報は、各色毎の2値化されたLD発光信号に変換され、シリンダレンズ、ポリゴンモータ、fθレンズ、第1〜第3ミラー、及びWTLレンズ等を有する光書き込みユニット16により感光体ドラム14Y上に露光光16Yが照射される。
照射された部分のドラム表面電位が略−50vとなり、画像情報に対応した静電潜像が形成される。
Next, the photosensitive drum 14Y is uniformly charged to a potential substantially equal to the DC component by applying a DC bias with an AC bias superimposed on the charging roller 42Y, and the surface potential is charged to the target charging potential.
Digital image information sent from a controller unit (not shown) as a print image is converted into a binarized LD light emission signal for each color, and a cylinder lens, a polygon motor, an fθ lens, first to third mirrors, and a WTL. Exposure light 16Y is irradiated onto the photosensitive drum 14Y by an optical writing unit 16 having a lens or the like.
The drum surface potential of the irradiated portion becomes approximately −50 v, and an electrostatic latent image corresponding to the image information is formed.

感光体ドラム14Y上のイエロー画像情報に対応した静電潜像は、現像ユニット13Yにより可視像化される。現像ユニット13Yの現像スリーブ44YにACバイアスを重畳したDCが印加されることにより、書き込みにより電位が低下した画像部分にのみトナーが現像され、トナー像が形成される。
作像された各色の感光体ドラム14B、14C、14M、14Y上のトナー画像は、転写ベルト18上に吸着された転写紙上に上記転写バイアスにより転写される。
The electrostatic latent image corresponding to the yellow image information on the photosensitive drum 14Y is visualized by the developing unit 13Y. By applying DC with superimposed AC bias to the developing sleeve 44Y of the developing unit 13Y, the toner is developed only in the image portion where the potential is lowered by writing, and a toner image is formed.
The formed toner images on the photosensitive drums 14B, 14C, 14M, and 14Y of the respective colors are transferred onto the transfer paper adsorbed on the transfer belt 18 by the transfer bias.

なお、本実施形態におけるカラーレーザプリンタでは、上記のような画像形成モードとは別に、電源投入時、またはある所定枚数通紙後に各色の画像濃度を適正化するためにプロセスコントロール動作(以下「プロコン動作」と略す)が実行される。
このプロコン動作では、各色複数の階調パターンとしての濃度検知用パッチ(以下「Pパターン」と略す)を、帯電バイアス、現像バイアスとを適当なタイミングで順次切り替えることにより転写ベルト上に作像し、これらPパターンの出力電圧を、駆動ローラ19の近傍における転写ベルト18の外部に配置された光学センサ1により検知し、その出力電圧を付着量変換アルゴリズムにより付着量変換して、現在の現像能力を表す(現像γ、Vk)の算出を行い、この算出値に基づき、現像バイアス値及びトナー濃度制御目標値の変更をする制御を行っている。
本実施形態では直接転写方式を示したが、タンデム型中間転写方式の
画像形成装置においても同様に実施することができる。
In the color laser printer according to the present embodiment, in addition to the image forming mode as described above, a process control operation (hereinafter referred to as “process control”) is performed in order to optimize the image density of each color when the power is turned on or after a predetermined number of sheets have passed. Abbreviated as “operation”).
In this process control operation, a density detection patch (hereinafter abbreviated as “P pattern”) as a plurality of gradation patterns for each color is formed on the transfer belt by sequentially switching between a charging bias and a developing bias at an appropriate timing. The output voltage of these P patterns is detected by the optical sensor 1 disposed outside the transfer belt 18 in the vicinity of the driving roller 19, and the output amount is converted by the adhesion amount conversion algorithm to obtain the current developing capability. (Development γ, Vk) is calculated, and control for changing the development bias value and the toner density control target value is performed based on the calculated values.
Although the direct transfer method is shown in the present embodiment, the same can be applied to an image forming apparatus of a tandem type intermediate transfer method.

本発明の第1の実施形態に係る光学センサの縦断面図である。It is a longitudinal cross-sectional view of the optical sensor which concerns on the 1st Embodiment of this invention. 第2の実施形態に係る光学センサの縦断面図である。It is a longitudinal cross-sectional view of the optical sensor which concerns on 2nd Embodiment. 第3の実施形態に係る光学センサの縦断面図である。It is a longitudinal cross-sectional view of the optical sensor which concerns on 3rd Embodiment. 第4の実施形態に係る光学センサの縦断面図である。It is a longitudinal cross-sectional view of the optical sensor which concerns on 4th Embodiment. 第5の実施形態に係る光学センサの縦断面図である。It is a longitudinal cross-sectional view of the optical sensor which concerns on 5th Embodiment. 第6の実施形態に係る光学センサの縦断面図である。It is a longitudinal cross-sectional view of the optical sensor which concerns on 6th Embodiment. 第7の実施形態に係る光学センサの縦断面図である。It is a longitudinal cross-sectional view of the optical sensor which concerns on 7th Embodiment. 第7の実施形態における拡散反射光に対する光学素子装着部の斜視図である。It is a perspective view of the optical element mounting part with respect to the diffuse reflected light in 7th Embodiment. 第8の実施形態における拡散反射光に対する光学素子装着部の斜視図である。It is a perspective view of the optical element mounting part with respect to the diffuse reflected light in 8th Embodiment. 第9の実施形態に係る画像形成装置の概要構成図である。It is a schematic block diagram of the image forming apparatus which concerns on 9th Embodiment. カラートナーとブラックトナーについてのトナー付着量とセンサ出力の関係を示すグラフである。5 is a graph showing a relationship between toner adhesion amount and sensor output for color toner and black toner.

符号の説明Explanation of symbols

1A、1B、1C、1D、1E、1F、1G 光学センサ
2 実装基板
3 発光手段としてのLED
4 正反射光受光手段としての正反射光用フォトトランジスタ
5 拡散反射光受光手段としての拡散反射光用フォトトランジスタ
6a、6b 装着部
8 照射用偏光フィルタ
9 正反射光受光用偏光フィルタ
18 照射対象物で且つ像担持体としての転写ベルト
50 拡散反射光受光用偏光フィルタ
51 拡散反射光集光レンズ
1A, 1B, 1C, 1D, 1E, 1F, 1G Optical sensor 2 Mounting substrate 3 LED as light emitting means
4 Phototransistor for specular reflection light as a means for receiving regular reflection light 5 Phototransistor for diffuse reflection light as a means for receiving diffuse reflection light 6a, 6b Mounting part 8 Polarizing filter for irradiation 9 Polarizing filter for receiving specular reflection light 18 Irradiation object Transfer belt as an image carrier 50 Diffuse reflection light receiving polarizing filter 51 Diffuse reflection light condensing lens

Claims (16)

実装基板と、該実装基板に実装された発光手段と、該発光手段から照射され照射対象物で反射した正反射光を受光する正反射光受光手段と、前記発光手段から照射され前記照射対象物で反射した拡散反射光を受光する拡散反射光受光手段と、を有する光学センサにおいて、
前記発光手段が前記正反射光受光手段と前記拡散反射光受光手段との間に配置され、
前記発光手段と前記照射対象物との間の光路上に照射用偏光フィルタが設けられているとともに、前記照射対象物と前記正反射光受光手段との間の光路上に正反射光受光用偏光フィルタが設けられ、
前記照射対象物と前記拡散反射光受光手段との間の光路は開放されていることを特徴とする光学センサ。
A mounting substrate; a light emitting unit mounted on the mounting substrate; a specularly reflected light receiving unit that receives specularly reflected light that is irradiated from the light emitting unit and reflected by the irradiation target; and an irradiation target that is irradiated from the light emitting unit. In the optical sensor having a diffuse reflection light receiving means for receiving the diffuse reflection light reflected by
The light emitting means is disposed between the regular reflection light receiving means and the diffuse reflection light receiving means;
A polarizing filter for irradiation is provided on the optical path between the light emitting means and the irradiation object, and the polarized light receiving polarized light is provided on the optical path between the irradiation object and the regular reflection light receiving means. A filter is provided,
An optical sensor characterized in that an optical path between the irradiation object and the diffusely reflected light receiving means is open.
実装基板と、該実装基板に実装された発光手段と、該発光手段から照射され照射対象物で反射した正反射光を受光する正反射光受光手段と、前記発光手段から照射され前記照射対象物で反射した拡散反射光を受光する拡散反射光受光手段と、を有する光学センサにおいて、
前記発光手段が前記正反射光受光手段と前記拡散反射光受光手段との間に配置され、
前記発光手段と前記照射対象物との間の光路上に照射用偏光フィルタが設けられているとともに、前記照射対象物と前記正反射光受光手段との間の光路上に正反射光受光用偏光フィルタが設けられ、
前記照射対象物と前記拡散反射光受光手段との間の光路上には、前記拡散反射光受光用偏光フィルタを取り付け可能な装着部が設けられていることを特徴とする光学センサ。
A mounting substrate; a light emitting unit mounted on the mounting substrate; a specularly reflected light receiving unit that receives specularly reflected light that is irradiated from the light emitting unit and reflected by the irradiation target; and an irradiation target that is irradiated from the light emitting unit. In the optical sensor having a diffuse reflection light receiving means for receiving the diffuse reflection light reflected by
The light emitting means is disposed between the regular reflection light receiving means and the diffuse reflection light receiving means;
A polarizing filter for irradiation is provided on the optical path between the light emitting means and the irradiation object, and the polarized light receiving polarized light is provided on the optical path between the irradiation object and the regular reflection light receiving means. A filter is provided,
An optical sensor, wherein a mounting portion to which the diffused reflected light receiving polarizing filter can be attached is provided on an optical path between the irradiation object and the diffusely reflected light receiving means.
実装基板と、該実装基板に実装された発光手段と、該発光手段から照射され照射対象物で反射した正反射光を受光する正反射光受光手段と、前記発光手段から照射され前記照射対象物で反射した拡散反射光を受光する拡散反射光受光手段と、を有する光学センサにおいて、
前記発光手段が前記正反射光受光手段と前記拡散反射光受光手段との間に配置され、
前記発光手段と前記照射対象物との間の光路上に照射用偏光フィルタが設けられているとともに、前記照射対象物と前記正反射光受光手段との間の光路上に正反射光受光用偏光フィルタが設けられ、
前記照射対象物と前記拡散反射光受光手段との間の光路上には、前記拡散反射光を集光する拡散反射光集光レンズを取り付け可能な装着部が設けられていることを特徴とする光学センサ。
A mounting substrate; a light emitting unit mounted on the mounting substrate; a specularly reflected light receiving unit that receives specularly reflected light that is irradiated from the light emitting unit and reflected by the irradiation target; and an irradiation target that is irradiated from the light emitting unit. In the optical sensor having a diffuse reflection light receiving means for receiving the diffuse reflection light reflected by
The light emitting means is disposed between the regular reflection light receiving means and the diffuse reflection light receiving means;
A polarizing filter for irradiation is provided on the optical path between the light emitting means and the irradiation object, and the polarized light receiving polarized light is provided on the optical path between the irradiation object and the regular reflection light receiving means. A filter is provided,
On the optical path between the irradiation object and the diffuse reflection light receiving means, a mounting portion to which a diffuse reflection light condensing lens for condensing the diffuse reflection light can be attached is provided. Optical sensor.
実装基板と、該実装基板に実装された発光手段と、該発光手段から照射され照射対象物で反射した正反射光を受光する正反射光受光手段と、前記発光手段から照射され前記照射対象物で反射した拡散反射光を受光する拡散反射光受光手段と、を有する光学センサにおいて、
前記発光手段が前記正反射光受光手段と前記拡散反射光受光手段との間に配置され、
前記発光手段と前記照射対象物との間の光路上に照射用偏光フィルタが設けられているとともに、前記照射対象物と前記正反射光受光手段との間の光路上に正反射光受光用偏光フィルタが設けられ、
前記照射対象物と前記拡散反射光受光手段との間の光路上には、前記拡散反射光を減光する拡散反射光減光フィルタを取り付け可能な装着部が設けられていることを特徴とする光学センサ。
A mounting substrate; a light emitting unit mounted on the mounting substrate; a specularly reflected light receiving unit that receives specularly reflected light that is irradiated from the light emitting unit and reflected by the irradiation target; and an irradiation target that is irradiated from the light emitting unit. In the optical sensor having a diffuse reflection light receiving means for receiving the diffuse reflection light reflected by
The light emitting means is disposed between the regular reflection light receiving means and the diffuse reflection light receiving means;
A polarizing filter for irradiation is provided on the optical path between the light emitting means and the irradiation object, and the polarized light receiving polarized light is provided on the optical path between the irradiation object and the regular reflection light receiving means. A filter is provided,
On the optical path between the irradiation object and the diffuse reflection light receiving means, a mounting portion to which a diffuse reflection light attenuating filter for reducing the diffuse reflection light can be attached is provided. Optical sensor.
実装基板と、該実装基板に実装された発光手段と、該発光手段から照射され照射対象物で反射した正反射光を受光する正反射光受光手段と、前記発光手段から照射され前記照射対象物で反射した拡散反射光を受光する拡散反射光受光手段と、を有する光学センサにおいて、
前記発光手段が前記正反射光受光手段と前記拡散反射光受光手段との間に配置され、
前記発光手段と前記照射対象物との間の光路上に照射用偏光フィルタが設けられているとともに、前記照射対象物と前記正反射光受光手段との間の光路上に正反射光受光用偏光フィルタが設けられ、
前記照射対象物と前記拡散反射光受光手段との間の光路上には、前記拡散反射光受光用偏光フィルタと、拡散反射光を集光する拡散反射光集光レンズと拡散反射光を減光する拡散反射光減光フィルタのうちいずれか一方と、を併せて取り付け可能な装着部が設けられていることを特徴とする光学センサ。
A mounting substrate; a light emitting unit mounted on the mounting substrate; a specularly reflected light receiving unit that receives specularly reflected light that is irradiated from the light emitting unit and reflected by the irradiation target; and an irradiation target that is irradiated from the light emitting unit. In the optical sensor having a diffuse reflection light receiving means for receiving the diffuse reflection light reflected by
The light emitting means is disposed between the regular reflection light receiving means and the diffuse reflection light receiving means;
A polarizing filter for irradiation is provided on the optical path between the light emitting means and the irradiation object, and the polarized light receiving polarized light is provided on the optical path between the irradiation object and the regular reflection light receiving means. A filter is provided,
On the optical path between the irradiation object and the diffuse reflection light receiving means, the diffuse reflection light receiving polarizing filter, a diffuse reflection light collecting lens for condensing the diffuse reflection light, and dimming the diffuse reflection light. An optical sensor, comprising: a mounting portion that can be attached together with any one of the diffuse reflection light attenuating filters.
請求項2〜5のいずれか1つに記載の光学センサにおいて、
前記装着部が、前記拡散反射光受光用偏光フィルタ、前記拡散反射光集光レンズ、あるいは前記拡散反射光減光フィルタを差し込んで装着可能なスリット状ないし段部構造を有していることを特徴とする光学センサ。
The optical sensor according to any one of claims 2 to 5,
The mounting portion has a slit-like or stepped portion structure that can be attached by inserting the diffuse reflection light receiving polarizing filter, the diffuse reflection light condensing lens, or the diffuse reflection light attenuation filter. An optical sensor.
請求項1〜6のいずれか1つに記載の光学センサにおいて、
前記発光手段が前記実装基板の実装面に対して略平行に光を発光するように配置されているとともに、前記正反射光受光手段及び前記拡散反射光受光手段が前記実装基板の実装面に対して略平行に光を受光するように配置されていることを特徴とする光学センサ。
In the optical sensor according to any one of claims 1 to 6,
The light emitting means is arranged to emit light substantially parallel to the mounting surface of the mounting board, and the specular reflection light receiving means and the diffuse reflection light receiving means are with respect to the mounting surface of the mounting board. The optical sensor is arranged so as to receive light substantially in parallel.
請求項1〜7のいずれか1つに記載の光学センサにおいて、
前記発光手段と前記照射対象物との間の光路上に、前記発光手段から照射した光を集光する照射光集光レンズが設けられていることを特徴とする光学センサ。
In the optical sensor according to any one of claims 1 to 7,
An optical sensor, wherein an irradiation light condensing lens for condensing light emitted from the light emitting means is provided on an optical path between the light emitting means and the irradiation object.
請求項1〜8のいずれか1つに記載の光学センサにおいて、
前記正反射光受光手段と前記照射対象物との間の光路上に、前記発光手段から前記照射対象物へ照射された光の正反射光を集光する正反射光集光レンズが設けられていることを特徴とする光学センサ。
The optical sensor according to any one of claims 1 to 8,
On the optical path between the regular reflection light receiving means and the irradiation object, a regular reflection light condensing lens for collecting the regular reflection light of the light irradiated from the light emitting means to the irradiation object is provided. An optical sensor.
請求項1〜9のいずれか1つに記載の光学センサにおいて、
前記照射用偏光フィルタと前記正反射光受光用偏光フィルタが一体に構成されていることを特徴とする光学センサ。
The optical sensor according to any one of claims 1 to 9,
The optical sensor, wherein the irradiation polarizing filter and the regular reflection light receiving polarizing filter are integrally formed.
請求項1〜7のいずれか1つに記載の光学センサにおいて、
前記照射用偏光フィルタが、前記発光手段から照射された光を集光する機能を有することを特徴とする光学センサ。
In the optical sensor according to any one of claims 1 to 7,
The optical sensor, wherein the irradiation polarizing filter has a function of collecting the light irradiated from the light emitting means.
請求項1、2、3、4、5、6、7、11のいずれか1つに記載の光学センサにおいて、
前記正反射光受光用偏光フィルタが、前記発光手段から前記照射対象物へ照射された光の正反射光を集光する機能を有することを特徴とする光学センサ。
The optical sensor according to any one of claims 1, 2, 3, 4, 5, 6, 7, and 11,
The optical sensor, wherein the regular reflection light receiving polarizing filter has a function of collecting regular reflection light of light irradiated from the light emitting means onto the irradiation object.
光を正反射させる表面を有する像担持体と、該像担持体上にトナー像を形成するトナー像形成手段と、該トナー像形成手段により前記像担持体上にトナーを付着させたときの該トナーの付着量を検出するための光学センサと、該光学センサの検出結果に基づいて画像濃度制御を行う画像濃度制御手段とを備えた画像形成装置において、
前記光学センサとして、請求項1〜12のいずれか1つに記載の光学センサを用いたことを特徴とする画像形成装置。
An image carrier having a surface for regularly reflecting light, a toner image forming unit for forming a toner image on the image carrier, and the toner image formed on the image carrier by the toner image forming unit. In an image forming apparatus comprising an optical sensor for detecting the amount of toner adhesion, and image density control means for performing image density control based on the detection result of the optical sensor,
An image forming apparatus using the optical sensor according to claim 1 as the optical sensor.
実装基板と、該実装基板に実装された発光手段と、該発光手段から照射され像担持体で反射した正反射光を受光する正反射光受光手段と、前記発光手段から照射され前記像担持体で反射した拡散反射光を受光する拡散反射光受光手段とを有し、前記発光手段が前記正反射光受光手段と前記拡散反射光受光手段との間に配置され、前記発光手段と前記照射対象物との間の光路上に照射用偏光フィルタが設けられているとともに、前記像担持体と前記正反射光受光手段との間の光路上に正反射光受光用偏光フィルタが設けられた光学センサを備えた画像形成装置の組み立て方法であって、
前記像担持体と前記拡散反射光受光手段との間の光路上に、光学素子を取り付け可能な装着部を設け、前記像担持体からの拡散反射光量の程度により前記装着部に光学素子を装着して拡散反射光量を調整することを特徴とする画像形成装置の製造方法。
A mounting substrate; light emitting means mounted on the mounting substrate; specular light receiving means for receiving specularly reflected light emitted from the light emitting means and reflected by the image carrier; and the image carrier irradiated from the light emitting means. A diffuse reflected light receiving means for receiving the diffuse reflected light reflected by the light emitting means, wherein the light emitting means is disposed between the regular reflected light receiving means and the diffuse reflected light receiving means, and the light emitting means and the irradiation target An optical sensor provided with a polarizing filter for irradiation on the optical path between the object and a polarizing filter for receiving regular reflection light on the optical path between the image carrier and the regular reflection light receiving means An image forming apparatus assembly method comprising:
A mounting portion to which an optical element can be attached is provided on the optical path between the image carrier and the diffusely reflected light receiving means, and the optical element is attached to the mounting portion depending on the amount of diffuse reflected light from the image carrier. And adjusting the amount of diffusely reflected light.
請求項14記載の画像形成装置の組み立て方法において、
前記拡散反射光量が所定値を超える場合には前記装着部に前記光学素子として拡散反射光受光用偏光フィルタと拡散反射光を減光する拡散反射光減光フィルタのうち少なくとも一方を装着し、所定値以下の場合には前記装着部に前記拡散反射光受光用偏光フィルタと拡散反射光減光フィルタのいずれも装着しないことを特徴とする画像形成装置の組み立て方法。
The method of assembling an image forming apparatus according to claim 14.
When the amount of diffuse reflected light exceeds a predetermined value, at least one of a diffuse reflected light receiving polarizing filter and a diffuse reflected light attenuating filter for reducing diffuse reflected light is mounted on the mounting portion as the optical element. An assembly method for an image forming apparatus, wherein neither the diffuse reflection light receiving polarization filter nor the diffuse reflection light attenuation filter is attached to the attachment portion when the value is less than or equal to the value.
請求項14記載の画像形成装置の組み立て方法において、
前記拡散反射光量が所定値以下の場合、前記装着部に前記光学素子として拡散反射光を集光する拡散反射光集光レンズを装着することを特徴とする画像形成装置の組み立て方法。
The method of assembling an image forming apparatus according to claim 14.
A method of assembling an image forming apparatus, comprising: mounting a diffuse reflected light condensing lens that collects diffuse reflected light as the optical element on the mounting portion when the diffuse reflected light amount is a predetermined value or less.
JP2007076815A 2007-03-23 2007-03-23 Optical sensor, image forming device, and assembling method of image forming device Pending JP2008233024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007076815A JP2008233024A (en) 2007-03-23 2007-03-23 Optical sensor, image forming device, and assembling method of image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007076815A JP2008233024A (en) 2007-03-23 2007-03-23 Optical sensor, image forming device, and assembling method of image forming device

Publications (1)

Publication Number Publication Date
JP2008233024A true JP2008233024A (en) 2008-10-02

Family

ID=39905974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007076815A Pending JP2008233024A (en) 2007-03-23 2007-03-23 Optical sensor, image forming device, and assembling method of image forming device

Country Status (1)

Country Link
JP (1) JP2008233024A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011107524A (en) * 2009-11-19 2011-06-02 Fuji Xerox Co Ltd Optical device, displacement detection sensor, and image forming apparatus
JP2013167592A (en) * 2012-02-17 2013-08-29 Ricoh Co Ltd Optical sensor and image formation apparatus
JP2013170859A (en) * 2012-02-20 2013-09-02 Ricoh Co Ltd Optical sensor and image forming device
JP2016138875A (en) * 2015-01-21 2016-08-04 株式会社リコー Optical sensor, recording medium discrimination device, and image formation device
JP2016169081A (en) * 2015-03-12 2016-09-23 キヤノン株式会社 Oht sheet detection unit and sheet detection unit
JP2017505442A (en) * 2014-02-06 2017-02-16 オーイーディーエー・リアド・ホールディングス・(2006)・リミテッド System and method based on spectral characteristics for feeding a masterbatch to a plastic processing machine
JP2017126043A (en) * 2016-01-15 2017-07-20 オムロン株式会社 Toner density sensor and image forming apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011107524A (en) * 2009-11-19 2011-06-02 Fuji Xerox Co Ltd Optical device, displacement detection sensor, and image forming apparatus
JP2013167592A (en) * 2012-02-17 2013-08-29 Ricoh Co Ltd Optical sensor and image formation apparatus
JP2013170859A (en) * 2012-02-20 2013-09-02 Ricoh Co Ltd Optical sensor and image forming device
JP2017505442A (en) * 2014-02-06 2017-02-16 オーイーディーエー・リアド・ホールディングス・(2006)・リミテッド System and method based on spectral characteristics for feeding a masterbatch to a plastic processing machine
US10427326B2 (en) 2014-02-06 2019-10-01 O.E.D.A. Liad Holdings (2006) Ltd. Spectral properties-based system and method for feeding masterbatches into a plastic processing machine
US10703018B2 (en) 2014-02-06 2020-07-07 Ampacet Corporation Spectral properties-based system and method for feeding masterbatches into a plastic processing machine
JP2016138875A (en) * 2015-01-21 2016-08-04 株式会社リコー Optical sensor, recording medium discrimination device, and image formation device
JP7005884B2 (en) 2015-01-21 2022-01-24 株式会社リコー Optical sensor, recording medium discrimination device, and image forming device
JP2016169081A (en) * 2015-03-12 2016-09-23 キヤノン株式会社 Oht sheet detection unit and sheet detection unit
JP2017126043A (en) * 2016-01-15 2017-07-20 オムロン株式会社 Toner density sensor and image forming apparatus
CN106980249A (en) * 2016-01-15 2017-07-25 欧姆龙株式会社 Toner concentration inductor and image processing system

Similar Documents

Publication Publication Date Title
US10228647B2 (en) Optical sensor and image forming apparatus
US7751741B2 (en) Optical sensor and image forming apparatus including same
JP2008233024A (en) Optical sensor, image forming device, and assembling method of image forming device
US8867937B2 (en) Diffuse reflection output conversion method, attached powder amount conversion method, and image forming apparatus
JP5197876B2 (en) Image forming apparatus and unit detachable from image forming apparatus
JP6675344B2 (en) Optical sensor and image forming apparatus
JP5447270B2 (en) Detection apparatus and image forming apparatus
CN101452242B (en) Light amount detector, misalignment amount detector, and image density detector
US8490968B2 (en) Image forming apparatus with conveyance interval adjustment for recording paper
US8521047B2 (en) Image forming apparatus and toner concentration sensor
JP2012194504A (en) Printer
JP2006267644A (en) Image forming apparatus
US8548343B2 (en) Image forming apparatus and method of measuring linear speed
JP6269958B2 (en) Image reading apparatus and image forming apparatus including the image reading apparatus
JP2011059460A (en) Medium conveying device and image forming apparatus
JP2007057891A (en) Image forming apparatus
JP2009150997A (en) Image forming apparatus
JP2008070840A (en) Image forming apparatus
JP2007022721A (en) Image forming device
JP7478015B2 (en) Image forming device
JP7481888B2 (en) Image forming device
JP2017083519A (en) Image density detecting device and image forming device
JP2002049193A (en) Image forming device
JP5222528B2 (en) Optical density sensor and image forming apparatus
JP2022017377A (en) Water detector and image forming device