[go: up one dir, main page]

JP2008231294A - Two-stage gasifier - Google Patents

Two-stage gasifier Download PDF

Info

Publication number
JP2008231294A
JP2008231294A JP2007074287A JP2007074287A JP2008231294A JP 2008231294 A JP2008231294 A JP 2008231294A JP 2007074287 A JP2007074287 A JP 2007074287A JP 2007074287 A JP2007074287 A JP 2007074287A JP 2008231294 A JP2008231294 A JP 2008231294A
Authority
JP
Japan
Prior art keywords
furnace
burner group
furnace body
temperature
upper burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007074287A
Other languages
Japanese (ja)
Inventor
Shuntaro Koyama
俊太郎 小山
Hideki Suzuki
英樹 鈴木
Masao Sotooka
正夫 外岡
Eiji Arimori
映二 有森
Toru Akiyama
穐山  徹
Fumihiko Hanayama
文彦 花山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Mitsubishi Power Ltd
Original Assignee
Electric Power Development Co Ltd
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Babcock Hitachi KK filed Critical Electric Power Development Co Ltd
Priority to JP2007074287A priority Critical patent/JP2008231294A/en
Publication of JP2008231294A publication Critical patent/JP2008231294A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)

Abstract

【課題】二段ガス化炉をスケールアップする目的で、炉本体の直径を大きくする際にあたって、炉本体の高さをむやみに高くすることなく、炉本体内で低温領域と高温領域とが明確に形成されて望ましい温度分布が形成されるようにし、かつ炉壁の損傷を防止でき、炉壁からの熱損失を小さくする。
【解決手段】円筒状の炉本体2と、この炉本体の上部に配される上部バーナー群3と、炉本体の下部に配される下部バーナー群4を備え、炉本体2の上端部に、製品ガスが排出されるガス出口5が、炉本体2の下端部には溶融スラグが排出される溶融スラグ出口7が形成され、上部バーナ群3と下部バーナ群4との間隔Lbと、ガス出口5と上部バーナ群3との間隔Luとの比率がLb/Lu=2〜12とされているガス化炉である。
【選択図】図1
[Problem] To increase the diameter of a furnace body for the purpose of scaling up a two-stage gasification furnace, the low temperature region and the high temperature region are clearly defined in the furnace body without increasing the height of the furnace body. So that a desirable temperature distribution is formed, and damage to the furnace wall can be prevented, and heat loss from the furnace wall is reduced.
SOLUTION: A cylindrical furnace body 2, an upper burner group 3 disposed on the upper part of the furnace body, and a lower burner group 4 disposed on the lower part of the furnace body are provided. A gas outlet 5 from which the product gas is discharged is formed, and a molten slag outlet 7 from which molten slag is discharged is formed at the lower end portion of the furnace body 2, and an interval Lb between the upper burner group 3 and the lower burner group 4, and a gas outlet 5 is a gasification furnace in which the ratio of the distance Lu between the upper burner group 3 and the upper burner group 3 is Lb / Lu = 2-12.
[Selection] Figure 1

Description

この発明は、石炭等の固形炭化水素燃料から一酸化炭素、水素、メタンなどの燃料ガスを製造する石炭ガス化プロセスに用いられる二段ガス化炉に関する。   The present invention relates to a two-stage gasification furnace used in a coal gasification process for producing fuel gas such as carbon monoxide, hydrogen, and methane from a solid hydrocarbon fuel such as coal.

石炭ガス化に用いられるプロセスとして、二段ガス化法がある。この二段ガス化法に関して、例えば特公平4−72877号公報、特公平4−55238号公報にこのプロセスに用いられる二段ガス化炉が開示されている。   As a process used for coal gasification, there is a two-stage gasification method. Regarding this two-stage gasification method, for example, Japanese Patent Publication No. 4-72877 and Japanese Patent Publication No. 4-55238 disclose a two-stage gasification furnace.

図1は、このような二段ガス化炉の一例を示すものである。この二段ガス化炉1は、図1(a)に示すように、炉本体2と、この炉本体2の上部に設けられた上部バーナ群3と、炉本体2の下部に設けられた下部バーナ群4とから概略構成されている。
炉本体2は、ほぼ一定の断面積を有する円筒状となっており、その頂部には炉本体2内で生成した一酸化炭素、水素、メタンなどの製品ガスを導出するガス出口5が開口している。このガス出口5の直径(Dout)は、炉本体2の直径(D)よりも小さくされ、後段の機器に接続されるようになっている。
FIG. 1 shows an example of such a two-stage gasifier. As shown in FIG. 1A, the two-stage gasification furnace 1 includes a furnace body 2, an upper burner group 3 provided at the upper part of the furnace body 2, and a lower part provided at the lower part of the furnace body 2. The burner group 4 is schematically configured.
The furnace main body 2 has a cylindrical shape having a substantially constant cross-sectional area, and a gas outlet 5 through which a product gas such as carbon monoxide, hydrogen, and methane generated in the furnace main body 2 is led opens at the top. ing. The diameter (Dout) of the gas outlet 5 is made smaller than the diameter (D) of the furnace body 2 and is connected to the subsequent apparatus.

炉本体2に下部の内面には、円環状のスラグスタック6が取り付けられており、このスラグスタック6の中心開口部は、溶融スラグが流下する溶融スラグ出口7となっている。この溶融スラグ出口7の直径も炉本体2の直径よりも小さくされ、この溶融スラグ出口7からの放熱を少なくするように構成されている。   An annular slag stack 6 is attached to the inner surface of the lower part of the furnace body 2, and the central opening of the slag stack 6 serves as a molten slag outlet 7 through which the molten slag flows down. The diameter of the molten slag outlet 7 is also made smaller than the diameter of the furnace body 2 so that the heat radiation from the molten slag outlet 7 is reduced.

上部バーナ群3は、炉本体2の上部に配置され、図1(b)に示すように4本のバーナ31、32、33、34がそれぞれ炉本体2の周壁に均等に配されて取り付けられている。これらバーナ31・・・は、それぞれの噴射口が炉本体2の中心軸に向けられておらず、図示のように、中心軸よりも外側に向けられており、それぞれの噴射口から噴射される燃焼ガスが炉本体2の円周方向に流れ、炉本体2内で旋回流を形成するようになっている。   The upper burner group 3 is disposed at the upper part of the furnace body 2 and four burners 31, 32, 33, and 34 are each equally distributed and attached to the peripheral wall of the furnace body 2 as shown in FIG. ing. These burners 31... Are not directed toward the central axis of the furnace body 2 but are directed outward from the central axis as shown in the figure, and are ejected from the respective ejection openings. The combustion gas flows in the circumferential direction of the furnace body 2 to form a swirl flow in the furnace body 2.

この上部バーナ群3により形成される旋回流の仮想的な円の直径は「仮想旋回流円径」と呼ばれ、これの直径を以下、Duと呼ぶ。
なお、本発明での「仮想旋回流円径」とは、現実のガスの流れによる旋回流についてのものではなく、各バーナ31、32・・のノズルの噴射方向軸を仮想的に延長した4本の直線に内接する円の直径を言うものと定義する。これにより、「仮想旋回流円径」を定めることにより、各バーナ31、32・・の配置が定まることになる。
上部バーナ群3を構成する個々のバーナには、石炭などの固形炭化水素燃料の微粉末と空気、酸素ガスなどの酸素含有気体からなる酸化剤が供給され、これがそれぞれの噴射口から噴射されるようになっている。以下、酸化剤と固形炭化水素燃料との混合比(酸化剤供給量/固形炭化水素燃料供給量:重量比)を酸化剤量比とする。
The diameter of the virtual circle of the swirl flow formed by the upper burner group 3 is called “virtual swirl flow circle diameter”, and this diameter is hereinafter referred to as Du.
The “virtual swirl flow circle diameter” in the present invention does not refer to a swirl flow due to an actual gas flow, but is a virtual extension of the nozzle in the jet direction of each burner 31, 32,. It is defined as the diameter of a circle inscribed in a straight line of a book. Thereby, by determining the “virtual swirl flow circle diameter”, the arrangement of the burners 31, 32,... Is determined.
The individual burners constituting the upper burner group 3 are supplied with a fine powder of a solid hydrocarbon fuel such as coal and an oxidizer composed of an oxygen-containing gas such as air or oxygen gas, and this is injected from each injection port. It is like that. Hereinafter, the mixing ratio of oxidant and solid hydrocarbon fuel (oxidant supply amount / solid hydrocarbon fuel supply amount: weight ratio) is defined as the oxidant amount ratio.

下部バーナ群4は、炉本体2の下部のスラグスタック6の上方に配置され、図(c)に示すように4本のバーナ41、42、43、44がそれぞれ炉本体2の周壁に均等に配されて取り付けられている。これらバーナ41・・・も、それぞれの噴射口が炉本体2の中心軸に向けられておらず、図示のように、中心軸よりも外側に向けられており、それぞれの噴射口から噴射される燃焼ガスが同様にして炉本体2内で旋回流を形成するようになっている。この下部バーナ群4により形成される旋回流の仮想的な円の直径は、やはり「仮想旋回流円径」と呼ばれ、この直径を以下、Dlと呼ぶ。ここでの「仮想旋回流円径」の定義は、上部バーナ群3におけるものと同様である。   The lower burner group 4 is disposed above the slag stack 6 at the lower part of the furnace body 2, and the four burners 41, 42, 43, 44 are evenly arranged on the peripheral wall of the furnace body 2 as shown in FIG. It is arranged and attached. These burners 41 are also not directed to the central axis of the furnace body 2 but directed to the outside of the central axis as shown in the figure, and are injected from the respective injection openings. Similarly, the combustion gas forms a swirl flow in the furnace body 2. The diameter of the virtual circle of the swirl flow formed by the lower burner group 4 is also called “virtual swirl flow circle diameter”, and this diameter is hereinafter referred to as Dl. The definition of the “virtual swirl flow circle diameter” here is the same as that in the upper burner group 3.

下部バーナ群4を構成する個々のバーナには、上部バーナ群3と同様に、固形炭化水素燃料の微粉末と空気、酸素ガスなどの酸素含有気体からなる酸化剤が供給され、これがそれぞれの噴射口から噴射されるようになっている。
そして、上部バーナ群3による仮想旋回流円径Duが下部バーナ群4による仮想旋回流円径Dlよりも大きくなるように、かつ下部バーナ群4による仮想旋回流円径Dlがガス出口5の直径Doutよりも大きくなるように構成されている(Du>Dl>Dout)。
As with the upper burner group 3, the individual burners constituting the lower burner group 4 are supplied with fine powder of solid hydrocarbon fuel and an oxidant composed of an oxygen-containing gas such as air or oxygen gas. It comes to be injected from the mouth.
The virtual swirl flow circle diameter Du by the upper burner group 3 is larger than the virtual swirl flow circle diameter Dl by the lower burner group 4, and the virtual swirl flow circle diameter Dl by the lower burner group 4 is the diameter of the gas outlet 5. It is configured to be larger than Dout (Du>Dl> Dout).

このように構成された二段ガス化炉1では、上部バーナ群3での酸化剤量比を低くし、下部バーナ群4での酸化剤量比を高くして燃焼させ、燃焼ガスの旋回流を形成することにより、図2に示すような炉本体2内での温度分布が形成され、上部領域では固形炭化水素燃料中の灰分が溶融しない温度で、下部領域では灰分が溶融する温度で運転される。   In the two-stage gasification furnace 1 configured as described above, combustion is performed by reducing the oxidant amount ratio in the upper burner group 3 and increasing the oxidant amount ratio in the lower burner group 4 so as to cause combustion. 2 is formed, the temperature distribution in the furnace body 2 as shown in FIG. 2 is formed, and the ash content in the solid hydrocarbon fuel is not melted in the upper region, and the ash content is melted in the lower region. Is done.

これにより、上部バーナ群3付近の領域では、高温の旋回流内での化学反応により、水素、一酸化炭素、メタンなどのガスが生成し、上部のガス出口5から高温の製品ガスとして導出される。このガスの温度は、固形炭化水素燃料中の灰分の溶融温度よりも低い温度となっている。
一方、下部バーナ群4付近の領域では二酸化炭素、水分などのガスが生成し、このガスは上部バーナ群3の領域に上昇し、ここでの反応に供される。また、固形炭化水素燃料中の灰分は、上部バーナ群3で生成して降下する灰分ととも溶融し、この溶融した灰分は溶融スラグとして、旋回流に乗って炉本体2の壁面に付着し、ここを伝わって下部の溶融スラグ出口7から流下、排出される。
ここで、下部バーナ群4と溶融スラグ出口7との間隔をLlとし、両バーナ群間の間隔をLbとし、上部バーナ群3とガス出口5の間隔をLuとし、炉本体2の高さをLとしたとき、L=Ll+Lb+Luとなっている。
Thereby, in a region near the upper burner group 3, a gas such as hydrogen, carbon monoxide, and methane is generated by a chemical reaction in the high-temperature swirling flow, and is derived as a high-temperature product gas from the upper gas outlet 5. The The temperature of this gas is lower than the melting temperature of the ash content in the solid hydrocarbon fuel.
On the other hand, in the area near the lower burner group 4, gases such as carbon dioxide and moisture are generated, and this gas rises to the area of the upper burner group 3 and is used for the reaction here. Further, the ash content in the solid hydrocarbon fuel is melted together with the ash content that is generated and descends in the upper burner group 3, and this molten ash content as a molten slag adheres to the wall surface of the furnace body 2 on the swirling flow, It travels down here and flows down from the lower molten slag outlet 7 and is discharged.
Here, the interval between the lower burner group 4 and the molten slag outlet 7 is L1, the interval between both burner groups is Lb, the interval between the upper burner group 3 and the gas outlet 5 is Lu, and the height of the furnace body 2 is When L, L = Ll + Lb + Lu.

このような二段ガス化炉1を用いた二段ガス化法にあっては、製品ガスの収率が高く、溶融スラグの回収が良好に行える、製品ガスの温度を低くすることができ、後段の熱回収機器での熱負荷が軽減され、小型化が可能であり、溶融スラグや燃焼灰が付着するスラッギング、ファウリングなどが生じないなどの利点があるとされている。   In the two-stage gasification method using such a two-stage gasification furnace 1, the product gas yield is high, the molten slag can be recovered well, the temperature of the product gas can be lowered, It is said that there is an advantage that the heat load on the subsequent heat recovery device is reduced, the size can be reduced, and there is no slagging, fouling, etc. to which molten slag or combustion ash adheres.

ところで、このような二段ガス化炉1を実用化に向けてスケールアップ(処理能力の増強)する場合には、以下のような問題がある。
すなわち、二段ガス化炉1をスケールアップするための手段の1つとして、炉本体2の直径(D)を大きくする場合には、炉本体2の高さ(L)と炉本体2の直径(D)との比率(L/D)が小さくなり、同時に上部バーナ群3と下部バーナ群4との間隔(Lb)と炉本体2の直径(D)との比率(Lb/D)も小さくなる。
このため、上部バーナ群3および下部バーナ群4での酸化剤量比を適切に設定したとしても、炉本体2内での温度分布に、図2に示すような低温領域と高温領域の明確な形成が困難となる。
By the way, when such a two-stage gasification furnace 1 is scaled up (enhanced processing capacity) for practical use, there are the following problems.
That is, when the diameter (D) of the furnace body 2 is increased as one means for scaling up the two-stage gasification furnace 1, the height (L) of the furnace body 2 and the diameter of the furnace body 2 are increased. The ratio (L / D) to (D) is reduced, and at the same time, the ratio (Lb / D) between the distance (Lb) between the upper burner group 3 and the lower burner group 4 and the diameter (D) of the furnace body 2 is also reduced. Become.
For this reason, even if the oxidant amount ratio in the upper burner group 3 and the lower burner group 4 is appropriately set, the temperature distribution in the furnace body 2 is clearly defined as a low temperature region and a high temperature region as shown in FIG. Formation becomes difficult.

このような問題に対する対応策として、炉本体2内での図2に示すような適切な温度分布を形成するため、炉本体2の高さ(L)を、小型炉における炉本体2の高さ(L)と炉本体2の直径(D)との比率(L/D)と同じ割合を保ちつつ、高くすることが考えられる。
しかし、このようにして炉本体2の高さ(L)を高くすると、炉本体2の炉壁面積が過大となり、その結果として、炉壁からの伝熱損失が増え、温度維持のための酸素量が増え、製品ガスの回収量が少なくなる(ガス化効率が低下)。また、炉負荷が小さいときには石炭入熱が少ないため、この現象は一層顕著となる。
As a countermeasure against such a problem, in order to form an appropriate temperature distribution as shown in FIG. 2 in the furnace body 2, the height (L) of the furnace body 2 is set to the height of the furnace body 2 in the small furnace. It is conceivable to increase the ratio while maintaining the same ratio (L / D) between (L) and the diameter (D) of the furnace body 2.
However, when the height (L) of the furnace body 2 is increased in this way, the furnace wall area of the furnace body 2 becomes excessive, resulting in an increase in heat transfer loss from the furnace wall and oxygen for maintaining the temperature. The amount increases and the amount of product gas recovered decreases (gasification efficiency decreases). In addition, this phenomenon becomes more prominent because the coal heat input is small when the furnace load is small.

また、炉本体2の高さ(L)が高いため、高温領域も必要以上に広がり、溶融スラグに晒される炉壁領域が増大し、炉壁の損傷の範囲が広まることにもなる。
また、炉本体2の高さだけでなく、上部バーナ群3と下部バーナ群4との間隔もできるだけ長くするために、上部バーナ群3をできるだけガス出口5に近づけると、上部バーナ群3の火炎が炉本体2の天井壁に直接接触し、壁に損傷を及ぼすことになる。
特公平4−72977号公報 特公平4−55238号公報
Further, since the height (L) of the furnace body 2 is high, the high temperature region is unnecessarily widened, the furnace wall region exposed to the molten slag is increased, and the range of damage to the furnace wall is widened.
Further, not only the height of the furnace main body 2 but also the distance between the upper burner group 3 and the lower burner group 4 is made as long as possible so that the upper burner group 3 is brought as close to the gas outlet 5 as possible, the flame of the upper burner group 3 Will directly contact the ceiling wall of the furnace body 2 and damage the wall.
Japanese Examined Patent Publication No. 4-72977 Japanese Patent Publication No. 4-55238

よって、本発明における課題は、二段ガス化炉をスケールアップする目的で、炉本体の直径を大きくする際にあたって、炉本体の高さをむやみに高くすることなく、炉本体内で低温領域と高温領域とが明確に形成されて望ましい温度分布が形成されるようにし、かつ炉壁の損傷を防止でき、炉壁からの熱損失を小さくすることにある。   Therefore, the problem in the present invention is to increase the diameter of the furnace body for the purpose of scaling up the two-stage gasification furnace, and without increasing the height of the furnace body unnecessarily, the low temperature region in the furnace body. A high temperature region is clearly formed so that a desired temperature distribution is formed, damage to the furnace wall can be prevented, and heat loss from the furnace wall is reduced.

かかる課題を解決するため、
請求項1にかかる発明は、円筒状の炉本体と、この炉本体の上部に配され、固形炭化水素燃料粉末と酸化剤との混合流体を噴射する上部バーナー群と、炉本体の下部に配され、固形炭化水素燃料粉末と酸化剤との混合流体を噴射する下部バーナー群を備え、
炉本体の上端部には、製品ガスが排出されるガス出口が形成され、
上部バーナ群と下部バーナ群との間隔Lbと、ガス出口と上部バーナ群との間隔Luとの比率がLb/Lu=2〜12とされていることを特徴とするガス化炉である。
To solve this problem,
The invention according to claim 1 includes a cylindrical furnace body, an upper burner group that is disposed above the furnace body and that injects a mixed fluid of solid hydrocarbon fuel powder and an oxidizer, and a lower body body. A lower burner group for injecting a mixed fluid of solid hydrocarbon fuel powder and oxidant,
A gas outlet from which product gas is discharged is formed at the upper end of the furnace body,
The gasification furnace is characterized in that the ratio of the distance Lb between the upper burner group and the lower burner group and the distance Lu between the gas outlet and the upper burner group is Lb / Lu = 2-12.

本発明によれば、上部バーナ群と下部バーナ群との間隔Lbと、ガス出口と上部バーナ群との間隔Luとの比率をLb/Lu=2〜12とすることにより、炉本体の直径を大きくしてガス化炉のスケールアップを図る場合にも、炉本体の高さをむやみに高くしなくとも、炉本体内の温度分布を、図2に示すような適切なものとすることができる。
このため、炉本体の高さを高くすることによる製品ガスの回収量の低下、炉本体の炉壁の損傷などの弊害が生じることがなくなる。
According to the present invention, the ratio of the distance Lb between the upper burner group and the lower burner group and the distance Lu between the gas outlet and the upper burner group is set to Lb / Lu = 2 to 12, whereby the diameter of the furnace main body is set. Even when increasing the scale of the gasification furnace by increasing the temperature, the temperature distribution in the furnace body can be made appropriate as shown in FIG. 2 without increasing the height of the furnace body unnecessarily. .
For this reason, adverse effects such as a decrease in the amount of product gas recovered by increasing the height of the furnace body and damage to the furnace wall of the furnace body are prevented.

以下、図1を利用して、本発明のガス化炉の一例を説明する。
この例のガス化炉1では、上部バーナ群3と下部バーナ群4との間隔Lbと、ガス出口5と上部バーナ群3との間隔Luとの比率(Lb/Lu)が2〜12とされている以外は、図1に示した従来のものと同様の構造となっている。
Hereinafter, an example of the gasification furnace of the present invention will be described with reference to FIG.
In the gasification furnace 1 of this example, the ratio (Lb / Lu) between the distance Lb between the upper burner group 3 and the lower burner group 4 and the distance Lu between the gas outlet 5 and the upper burner group 3 is 2-12. Except for this, it has the same structure as the conventional one shown in FIG.

以下、本発明において、上部バーナ群3と下部バーナ群4との間隔Lbと、ガス出口5と上部バーナ群3との間隔Luとの比率、Lb/Luを2〜12とした理由もしくは根拠に関して説明する。
図3に、小規模な2段ガス化炉の炉内温度分布(ガス化炉半径方向の平均温度)を示す。縦軸は相対炉高さL*で、L*=1は生成ガス出口5を、L*=0は溶融スラグ出口7を表す。
試験条件は、上部バーナ群3の酸化剤量比=0.54(トン/トン)、下部バーナ群4の酸化剤量比=1.11(トン/トン)、ガス化圧力2.5MPaである。
使用した石炭の灰の溶融温度(JIS法、酸化雰囲気の流動点)は、1430℃である。グラフ中の黒点は実測値を示し、実線は3次元熱流動解析の結果を示す。
Hereinafter, in the present invention, the ratio between the interval Lb between the upper burner group 3 and the lower burner group 4 and the interval Lu between the gas outlet 5 and the upper burner group 3, the reason or basis for setting Lb / Lu to 2-12 explain.
FIG. 3 shows the in-furnace temperature distribution (average temperature in the gasifier radial direction) of a small-scale two-stage gasifier. The vertical axis represents the relative furnace height L *, where L * = 1 represents the product gas outlet 5 and L * = 0 represents the molten slag outlet 7.
The test conditions are an oxidant amount ratio of the upper burner group 3 = 0.54 (ton / ton), an oxidant amount ratio of the lower burner group 4 = 1.11 (ton / ton), and a gasification pressure of 2.5 MPa. .
The melting temperature of the coal ash used (JIS method, pour point of oxidizing atmosphere) is 1430 ° C. The black dots in the graph indicate actual measurement values, and the solid lines indicate the results of three-dimensional heat flow analysis.

L*が約0.45以下で灰溶融温度を超える領域、0.45以上で灰溶融温度よりも低い領域が明瞭に形成されている。これは、下部バーナ群4付近では、下部バーナ群4による反応で発生した高温ガスにより灰溶融とスラグ流下に充分必要な温度領域が形成される一方、上部バーナ群3による反応で発生した灰の溶融温度以下のガスが下部バーナ群3に向ってある位置まで下降するためである。
図3に示した温度分布が、本発明で対象とする2段ガス化炉の理想とする温度分布の一例である。
A region where L * is about 0.45 or less and exceeds the ash melting temperature, and a region where 0.4 or more and lower than the ash melting temperature are clearly formed. This is because, in the vicinity of the lower burner group 4, the high temperature gas generated by the reaction by the lower burner group 4 forms a sufficient temperature range for ash melting and slag flow, while the ash generated by the reaction by the upper burner group 3 This is because the gas below the melting temperature descends to a position facing the lower burner group 3.
The temperature distribution shown in FIG. 3 is an example of the ideal temperature distribution of the two-stage gasifier targeted by the present invention.

図3に示したような炉本体2内での温度分布は、ガス化炉1の上部バーナ群3、下部バーナ群4から噴出される固形炭化水素燃料粉末と酸化剤との反応やこれらの流動状態で決まるので、炉高さLと炉径Dの比L/Dや上部バーナ群3と下部バーナ群4との間隔(Lb)に影響される。
そこで、L/DおよびLbを任意に変え、3次元熱流動解析で炉内での温度分布を調べた結果、2段ガス化炉内の温度分布形成は、上部バーナ群3と下部バーナ群4との間隔Lbと上部バーナ群3とガス出口2の間隔Luの比に支配されることを見出した。
The temperature distribution in the furnace main body 2 as shown in FIG. 3 shows the reaction between the solid hydrocarbon fuel powder ejected from the upper burner group 3 and the lower burner group 4 of the gasification furnace 1 and the oxidant, and their flow. Since it is determined by the state, it is influenced by the ratio L / D of the furnace height L and the furnace diameter D and the distance (Lb) between the upper burner group 3 and the lower burner group 4.
Therefore, L / D and Lb were arbitrarily changed, and the temperature distribution in the furnace was examined by the three-dimensional heat flow analysis. As a result, the temperature distribution formation in the two-stage gasification furnace was achieved by the upper burner group 3 and the lower burner group 4. It has been found that it is governed by the ratio of the distance Lb between the upper burner group 3 and the distance Lu between the gas outlet 2.

図4にその結果を示す。
検討の対象としたガス化炉の処理量は小規模ガス化炉の20倍とし、ガス化条件は、上部バーナ群3の酸化剤量比=0.54(トン/トン)、下部バーナ群4の酸化剤量比=1.05(トン/トン)、ガス化圧力3.0MPaである。石炭灰の溶融温度は1430℃である。
図4のグラフでの横軸はLb/Luで、縦軸は上部バーナ群3と下部バーナ群4との間の領域での最も低い温度で、この温度により灰の溶融・非溶融形成がバーナ間で形成されるかどうかの判定ができる。
また、温度は、ガス化炉半径方向の平均温度と壁近傍の温度を示した。壁近傍の温度は、ガス化炉壁に溶融スラグ層が形成されるかどうか否か(灰の非溶融壁状態、又は溶融壁状態)の直接的な判断要素となる。
FIG. 4 shows the result.
The throughput of the gasifier considered was 20 times that of the small-scale gasifier, and the gasification conditions were the oxidant amount ratio of the upper burner group 3 = 0.54 (ton / ton), the lower burner group 4 The oxidizer amount ratio is 1.05 (ton / ton) and the gasification pressure is 3.0 MPa. The melting temperature of coal ash is 1430 ° C.
In the graph of FIG. 4, the horizontal axis is Lb / Lu, and the vertical axis is the lowest temperature in the region between the upper burner group 3 and the lower burner group 4. It can be determined whether it is formed between.
Moreover, temperature showed the average temperature of the gasifier radial direction, and the temperature of the wall vicinity. The temperature in the vicinity of the wall is a direct determination factor on whether or not a molten slag layer is formed on the gasifier wall (whether the ash is in an unmolten wall state or a molten wall state).

その結果、Lb/Luが小さいと、バーナ間最低温度は灰溶融温度を超えるが、この比が大きくなるに伴いバーナ間最低温度は灰溶融温度より低くなり、ある値から再び高くなることがわかる。
Lb/Luが小さいということは上部バーナ群3がガス化炉天井壁から離れている(Luが大きい)か、Lbが小さい(上部バーナ群3と下部バーナ群4が接近している)かであり、いずれでも両バーナ群間には灰の非溶融領域は形成されない。
As a result, when Lb / Lu is small, the minimum temperature between burners exceeds the ash melting temperature, but as this ratio increases, the minimum temperature between burners becomes lower than the ash melting temperature and increases again from a certain value. .
Lb / Lu is small because the upper burner group 3 is away from the gasifier ceiling wall (Lu is large) or Lb is small (the upper burner group 3 and the lower burner group 4 are close to each other). In any case, no non-melted region of ash is formed between both burner groups.

この状態は、(1)灰溶融領域が長く(広く)、溶融スラグにより耐火物が損傷する領域が広がりやすい、(2)伝熱損失量が増える、(3)実際の運転にあたり2段反応機能の維持、制御操作が困難になる、等の理由で好ましくない。
Lb/Luが大きくなる、すなわち両バーナ群間を離すと(Lbが大きい)、両バーナ群間に低温領域がうまく形成されるようになる。しかし、さらに大きくすると、すなわち(a)バーナ群間を離し過ぎる(Lbが大き過ぎる)と、上部バーナ群3で生成した低温ガスの高温側への流れが弱まり、両バーナ群間の温度は全体的に高温側温度の影響に支配されるため、または(b)上部バーナ群3がガス化炉天井壁6に近すぎる(Luが小さ過ぎる)と上部バーナ群3の各バーナ31・・・の噴出孔近傍の局所的高温火炎の影響が強くなり、いずれも両バーナ群間の最低温度は高くなる。
In this state, (1) the ash melting region is long (wide), the region where the refractory is damaged by the molten slag tends to expand, (2) the amount of heat transfer loss increases, (3) the two-stage reaction function in actual operation It is not preferable for the reason that maintenance and control operations become difficult.
When Lb / Lu increases, that is, when the two burner groups are separated (Lb is large), a low temperature region is successfully formed between the two burner groups. However, if it is further increased, that is, (a) if the burner groups are separated too much (Lb is too large), the flow of the low-temperature gas generated in the upper burner group 3 to the high temperature side becomes weak, and the temperature between both burner groups If the upper burner group 3 is too close to the gasification furnace ceiling wall 6 (Lu is too small), the burners 31 of the upper burner group 3 The influence of the local high-temperature flame in the vicinity of the jet hole becomes stronger, and the minimum temperature between both burner groups becomes higher.

また、(b)の場合、バーナ火炎がガス化炉天井壁に直接触れる。通常、ガス化炉天井壁は炉壁と同様な構造か、または水冷管で構成されているが、バーナ火炎が直接当たると炉壁損傷を招くので好ましくない。
したがって、図4の結果から、好適な炉内温度分を形成するための望ましい範囲としては2≦Lb/Lu≦12となる。
なお、下部バーナ群4と溶融スラグ出口7の間隔Llは、溶融スラグの安定排出やガス化炉壁や炉床に損傷を与えない条件で溶融スラグ出口7に近い位置で決められるもので、この種のガス化炉で定められている範囲とすればよい。
In the case of (b), the burner flame directly touches the gasifier ceiling wall. Normally, the gasification furnace ceiling wall has the same structure as the furnace wall or a water-cooled tube. However, if the burner flame directly hits the furnace wall, it is not preferable.
Therefore, from the result of FIG. 4, 2 ≦ Lb / Lu ≦ 12 is set as a desirable range for forming a suitable temperature in the furnace.
The interval Ll between the lower burner group 4 and the molten slag outlet 7 is determined at a position close to the molten slag outlet 7 under the condition that the molten slag is stably discharged and the gasification furnace wall and hearth are not damaged. What is necessary is just to set it as the range defined by the kind of gasifier.

本発明のLb/Luを2≦Lb/Lu≦12の範囲に設定することにより、炉高Lを過大にしなくても2段反応の温度分布を形成できる例を図5および図6に示す。
図5の(a)で示したガス化炉1は、従来の手法、すなわち小規模ガス化炉におけるL/Dと等しいL/Dを保って処理能力を20倍とした大型炉を示す。また、(b)で示したガス化炉1は、本発明の手法を用い、Lb/Lu=4.8とし、炉の高さ(L)を(a)のガス化炉の0.38倍とし、処理能力を20倍とした大型炉を示す。
FIGS. 5 and 6 show examples in which the temperature distribution of the two-stage reaction can be formed without setting the furnace height L excessively by setting Lb / Lu of the present invention in the range of 2 ≦ Lb / Lu ≦ 12.
The gasification furnace 1 shown in (a) of FIG. 5 is a conventional furnace, that is, a large-sized furnace that maintains L / D equal to L / D in a small-scale gasification furnace and has a processing capacity of 20 times. Further, the gasification furnace 1 shown in (b) uses the method of the present invention, Lb / Lu = 4.8, and the height (L) of the furnace is 0.38 times that of the gasification furnace of (a). And a large furnace with a processing capacity of 20 times.

この2種のガス化炉における温度分布を3次元熱流動解析により求めたものが図6である。図6の曲線(a)は図5の(a)で示したガス化炉についての温度分布であり、曲線(b)は図5の(b)で示したガス化炉についても温度分布である。この結果、本発明によるガス化炉(b)でも従来手法によるガス化炉(a)と同様な温度分布が形成でき、本発明では炉の高さをむやみに高くする必要がないことがわかった。
以上のように、両バーナ群の配置位置を適正化することにより、炉の寸法を大型化しても適切な温度分布形成を可能とするものである。
FIG. 6 shows the temperature distribution in the two types of gasification furnaces obtained by a three-dimensional heat flow analysis. Curve (a) in FIG. 6 is the temperature distribution for the gasification furnace shown in FIG. 5 (a), and curve (b) is also the temperature distribution for the gasification furnace shown in FIG. 5 (b). . As a result, it was found that the gas distribution furnace (b) according to the present invention can form a temperature distribution similar to that of the conventional gasification furnace (a), and the present invention does not require an unnecessarily high furnace height. .
As described above, by optimizing the arrangement positions of both burner groups, it is possible to form an appropriate temperature distribution even if the size of the furnace is increased.

図7は、炉高さによる伝熱損失量の影響を示すものである。図7のグラフは、図5の(b)のガス化炉1の炉高およびその時の炉壁からの伝熱損失量をそれぞれ1とした時の相対高さと相対伝熱損失量の関係を示したものである。
仮に大型炉の炉高Lを従来の設計法により求めると、本発明による炉高より1/0.38≒2.6倍高くする必要があるが、これにより炉壁の伝熱損失は約2.1倍になる。これによるガス化温度の低下を防ぐため、酸素使用量は3.7%増加し、これによりCOとHの生成量は2.0%低下することになる。
FIG. 7 shows the effect of heat transfer loss due to the furnace height. The graph of FIG. 7 shows the relationship between the relative height and the relative heat transfer loss amount when the furnace height of the gasification furnace 1 in FIG. 5B and the heat transfer loss amount from the furnace wall at that time are respectively 1. It is a thing.
If the furnace height L of the large furnace is determined by the conventional design method, it is necessary to make the furnace height 1 / 0.38≈2.6 times higher than the furnace height according to the present invention. .1x. In order to prevent the gasification temperature from being lowered due to this, the amount of oxygen used is increased by 3.7%, thereby reducing the amount of CO and H 2 produced by 2.0%.

上述の実施形態では酸化剤に酸素を用いたが、酸化剤には、これ以外に空気、又は空気と酸素の混合ガスが用いられる。また、石炭種が決まれば、その元素組成や灰組成、灰溶融温度等に応じて適切な2段反応を行わせる温度(灰溶融、非溶融温度)は決まり、いずれの酸化剤を用いたとしても、そのような温度を維持するように酸化剤と石炭の供給割合を決める。
また、固形炭化水素燃料には石炭以外の固形炭化水素燃料、例えば、石油残渣油、固形バイオマス、プラスチック等の固形廃棄物等が用いられる。なお、固形炭化水素燃料に灰分が一定以上含まれないものには、ガス化炉壁保護の観点で、原料に灰分相当の組成の無機物を添加することもできる。
In the above-described embodiment, oxygen is used as the oxidizing agent, but air or a mixed gas of air and oxygen is used as the oxidizing agent. In addition, once the coal type is determined, the temperature (ash melting, non-melting temperature) at which an appropriate two-stage reaction is performed is determined according to the elemental composition, ash composition, ash melting temperature, etc., and any oxidant is used. Also, determine the supply ratio of oxidizer and coal to maintain such temperature.
Moreover, solid hydrocarbon fuels other than coal, for example, solid wastes such as petroleum residue oil, solid biomass, and plastics are used as the solid hydrocarbon fuel. In the case where the solid hydrocarbon fuel does not contain ash in a certain amount or more, an inorganic substance having a composition corresponding to the ash can be added to the raw material from the viewpoint of protecting the gasifier wall.

本発明における二段ガス化炉の例を示す概略構成図である。It is a schematic block diagram which shows the example of the two-stage gasifier in this invention. 本発明における二段ガス化炉の炉本体内での温度分布を示すグラフである。It is a graph which shows the temperature distribution in the furnace main body of the two-stage gasifier in this invention. 小規模炉における炉本体内での温度分布を示すグラフである。It is a graph which shows the temperature distribution in the furnace main body in a small-scale furnace. 本発明におけるLb/Luとバーナ群間での最低温度との関係を示すグラフであるIt is a graph which shows the relationship between Lb / Lu and the minimum temperature between burner groups in this invention. 本発明での効果を確認するための本発明および従来手法によるモデル炉を示す説明図である。It is explanatory drawing which shows the model furnace by this invention and the conventional method for confirming the effect in this invention. 図5に示した2種のモデル炉における温度分布を示すグラフである。It is a graph which shows the temperature distribution in two types of model furnaces shown in FIG. ガス化炉の炉高さと炉壁伝熱損失との関係を示すグラフである。It is a graph which shows the relationship between the furnace height of a gasification furnace, and a furnace wall heat-transfer loss.

符号の説明Explanation of symbols

1・・ガス化炉、2・・炉本体、3・・上部バーナ群、4・・下部バーナ群、5・・ガス出口、7・・溶融スラグ出口 1 ... Gasification furnace 2 ... Furnace body 3 ... Upper burner group 4 ... Lower burner group 5 ... Gas outlet 7 ... Melt slag outlet

Claims (1)

固形炭化水素燃料粉末と酸化剤との反応によりガスを生成する円筒状の炉本体と、この炉本体の上部に配され、固形炭化水素燃料粉末と酸化剤との混合流体を炉本体内に噴射する上部バーナー群と、炉本体の下部に配され、固形炭化水素燃料粉末と酸化剤との混合流体を炉本体内に噴射する下部バーナー群を備え、
炉本体の上端部には、製品ガスが排出されるガス出口が形成され、
上部バーナ群と下部バーナ群との間隔Lbと、ガス出口と上部バーナ群との間隔Luとの比率がLb/Lu=2〜12とされていることを特徴とする二段ガス化炉。
A cylindrical furnace body that generates gas by the reaction of the solid hydrocarbon fuel powder and the oxidant, and a fluid mixture of the solid hydrocarbon fuel powder and the oxidant that is disposed in the upper part of the furnace body is injected into the furnace body. An upper burner group, and a lower burner group disposed in the lower part of the furnace body and injecting a mixed fluid of solid hydrocarbon fuel powder and oxidant into the furnace body,
A gas outlet from which product gas is discharged is formed at the upper end of the furnace body,
A two-stage gasification furnace characterized in that the ratio between the distance Lb between the upper burner group and the lower burner group and the distance Lu between the gas outlet and the upper burner group is Lb / Lu = 2-12.
JP2007074287A 2007-03-22 2007-03-22 Two-stage gasifier Pending JP2008231294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007074287A JP2008231294A (en) 2007-03-22 2007-03-22 Two-stage gasifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007074287A JP2008231294A (en) 2007-03-22 2007-03-22 Two-stage gasifier

Publications (1)

Publication Number Publication Date
JP2008231294A true JP2008231294A (en) 2008-10-02

Family

ID=39904491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007074287A Pending JP2008231294A (en) 2007-03-22 2007-03-22 Two-stage gasifier

Country Status (1)

Country Link
JP (1) JP2008231294A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102358850A (en) * 2011-09-13 2012-02-22 中南大学 Dispersion gasifier of high-calorific value solid fuel
CN102433162A (en) * 2011-05-06 2012-05-02 华东理工大学 Entrained-flow bed gasifier with staged oxygen feeding and gasification method thereof
CN102453550A (en) * 2011-05-06 2012-05-16 华东理工大学 Multi-nozzle multi-stage oxygen supplying entrained-flow gasifier and gasification method thereof
CN106590753A (en) * 2015-10-19 2017-04-26 中国石油化工股份有限公司 Gasification device for preparing methane-rich synthesis gas by coal and method of gasification reaction
KR101793977B1 (en) * 2015-12-22 2017-11-06 두산중공업 주식회사 Prediction methods of inside the furnace slagging generating position and created possibility
US10185792B2 (en) 2015-12-22 2019-01-22 DOOSAN Heavy Industries Construction Co., LTD Method for predicting slagging production position and slagging production possibility in furnace
CN112745966A (en) * 2019-09-16 2021-05-04 中国科学院工程热物理研究所 Circulating fluidized bed gasification device and circulating fluidized bed gasification method
CN113319113A (en) * 2021-05-17 2021-08-31 太原理工大学 Thermal desorption device and process for organic contaminated soil

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173092A (en) * 1984-02-20 1985-09-06 Hitachi Ltd coal gasifier
JPS6369144U (en) * 1986-10-23 1988-05-10
JPH0325202A (en) * 1989-06-20 1991-02-04 Babcock Hitachi Kk Burner for gasifying powder raw material and powder raw material gasifying device
JPH0753969A (en) * 1993-08-10 1995-02-28 Hitachi Ltd Coal gasifier
JPH11158475A (en) * 1997-11-26 1999-06-15 Babcock Hitachi Kk Air stream bed coal gasifier
JP2001059092A (en) * 1999-08-23 2001-03-06 Babcock Hitachi Kk Gas flow bed coal gasifier
JP2003057119A (en) * 2001-08-20 2003-02-26 Babcock Hitachi Kk Gasification furnace provided with temperature measuring device
JP2003231888A (en) * 2002-02-12 2003-08-19 Hitachi Ltd Gasification method and gasifier

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173092A (en) * 1984-02-20 1985-09-06 Hitachi Ltd coal gasifier
JPS6369144U (en) * 1986-10-23 1988-05-10
JPH0325202A (en) * 1989-06-20 1991-02-04 Babcock Hitachi Kk Burner for gasifying powder raw material and powder raw material gasifying device
JPH0753969A (en) * 1993-08-10 1995-02-28 Hitachi Ltd Coal gasifier
JPH11158475A (en) * 1997-11-26 1999-06-15 Babcock Hitachi Kk Air stream bed coal gasifier
JP2001059092A (en) * 1999-08-23 2001-03-06 Babcock Hitachi Kk Gas flow bed coal gasifier
JP2003057119A (en) * 2001-08-20 2003-02-26 Babcock Hitachi Kk Gasification furnace provided with temperature measuring device
JP2003231888A (en) * 2002-02-12 2003-08-19 Hitachi Ltd Gasification method and gasifier

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102433162A (en) * 2011-05-06 2012-05-02 华东理工大学 Entrained-flow bed gasifier with staged oxygen feeding and gasification method thereof
CN102453550A (en) * 2011-05-06 2012-05-16 华东理工大学 Multi-nozzle multi-stage oxygen supplying entrained-flow gasifier and gasification method thereof
CN102433162B (en) * 2011-05-06 2013-12-04 华东理工大学 Entrained-flow bed gasifier with staged oxygen feeding and gasification method thereof
CN102453550B (en) * 2011-05-06 2013-12-04 华东理工大学 Multi-nozzle multi-stage oxygen supplying entrained-flow gasifier and gasification method thereof
CN102358850A (en) * 2011-09-13 2012-02-22 中南大学 Dispersion gasifier of high-calorific value solid fuel
CN106590753A (en) * 2015-10-19 2017-04-26 中国石油化工股份有限公司 Gasification device for preparing methane-rich synthesis gas by coal and method of gasification reaction
CN106590753B (en) * 2015-10-19 2020-09-04 中国石油化工股份有限公司 Gasification device and method for preparing methane-rich synthesis gas from coal
KR101793977B1 (en) * 2015-12-22 2017-11-06 두산중공업 주식회사 Prediction methods of inside the furnace slagging generating position and created possibility
US10185792B2 (en) 2015-12-22 2019-01-22 DOOSAN Heavy Industries Construction Co., LTD Method for predicting slagging production position and slagging production possibility in furnace
CN112745966A (en) * 2019-09-16 2021-05-04 中国科学院工程热物理研究所 Circulating fluidized bed gasification device and circulating fluidized bed gasification method
CN113319113A (en) * 2021-05-17 2021-08-31 太原理工大学 Thermal desorption device and process for organic contaminated soil

Similar Documents

Publication Publication Date Title
JP2008231294A (en) Two-stage gasifier
CN102305415B (en) Plasma oil-free ignition system in oxygen-enriched environments
JP6229863B2 (en) Oxygen blast furnace operation method
JP5087955B2 (en) Melting reduction method
JP5617531B2 (en) Combustion method of low calorific value gas by combustion burner and blast furnace operation method
CN100404652C (en) Staged gasifier for coal and coke gasification
JP5392230B2 (en) Blast furnace gas combustion method with combustion burner
JP2011513504A (en) Coal gasification reactor start-up method
KR101314443B1 (en) Blast furnace operation method, low-calorific-value gas combustion method for same, and blast furnace equipment
TWI843066B (en) Gas reduction material injection method and tuyere for blast furnace
JP4392100B2 (en) Method of injecting reducing gas into the blast furnace
CN215049953U (en) Ash and slag discharging structure of fixed bed gasification furnace
CN101970618A (en) Improved gasification process using staged oxygen
JP2011153371A (en) Blast furnace operation method
JP4274020B2 (en) Method for smelting reduction of metal oxide-containing ore
JP6322327B1 (en) Method for supplying oxygen-containing gas to fluidized bed gasifier and fluidized bed gasifier
JP3734177B2 (en) Waste melting method
JP5389335B2 (en) Gasifier
JP2005264189A (en) Method of injecting solid fuel into the blast furnace
JP5392229B2 (en) Combustion method of low calorific value gas by combustion burner
JP2004091921A (en) Method of blowing solid fuel into blast furnace and blowing lance
JP2009019125A (en) Gasification method and apparatus
JP3601799B2 (en) Combustion burners used in melting furnaces for steelmaking
JP2005213590A (en) Solid fuel injection method and injection lance for blast furnace
JP4345506B2 (en) Method of injecting solid fuel into the blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120626