JP2008222903A - Light-absorbing resin composition for laser welding, light-absorbing resin molded article, and method for producing light-absorbing resin molded article - Google Patents
Light-absorbing resin composition for laser welding, light-absorbing resin molded article, and method for producing light-absorbing resin molded article Download PDFInfo
- Publication number
- JP2008222903A JP2008222903A JP2007064855A JP2007064855A JP2008222903A JP 2008222903 A JP2008222903 A JP 2008222903A JP 2007064855 A JP2007064855 A JP 2007064855A JP 2007064855 A JP2007064855 A JP 2007064855A JP 2008222903 A JP2008222903 A JP 2008222903A
- Authority
- JP
- Japan
- Prior art keywords
- light
- absorbing
- absorbing resin
- fine particles
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 162
- 239000011347 resin Substances 0.000 title claims abstract description 162
- 239000011342 resin composition Substances 0.000 title claims abstract description 74
- 238000003466 welding Methods 0.000 title claims abstract description 67
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000002270 dispersing agent Substances 0.000 claims abstract description 44
- -1 hafnium nitride Chemical class 0.000 claims abstract description 36
- 150000004767 nitrides Chemical class 0.000 claims abstract description 36
- 229920000642 polymer Polymers 0.000 claims abstract description 33
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims abstract description 22
- 230000009477 glass transition Effects 0.000 claims abstract description 13
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 13
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims abstract description 13
- ZVWKZXLXHLZXLS-UHFFFAOYSA-N zirconium nitride Chemical compound [Zr]#N ZVWKZXLXHLZXLS-UHFFFAOYSA-N 0.000 claims abstract description 13
- CFJRGWXELQQLSA-UHFFFAOYSA-N azanylidyneniobium Chemical compound [Nb]#N CFJRGWXELQQLSA-UHFFFAOYSA-N 0.000 claims abstract description 12
- SKKMWRVAJNPLFY-UHFFFAOYSA-N azanylidynevanadium Chemical compound [V]#N SKKMWRVAJNPLFY-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000010419 fine particle Substances 0.000 claims description 253
- 238000010521 absorption reaction Methods 0.000 claims description 36
- 238000000465 moulding Methods 0.000 claims description 30
- 229920005992 thermoplastic resin Polymers 0.000 claims description 28
- 229920000178 Acrylic resin Polymers 0.000 claims description 27
- 239000004925 Acrylic resin Substances 0.000 claims description 27
- 239000002245 particle Substances 0.000 claims description 25
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 18
- 239000002344 surface layer Substances 0.000 claims description 12
- 229920005668 polycarbonate resin Polymers 0.000 claims description 10
- 239000004431 polycarbonate resin Substances 0.000 claims description 10
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 9
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 9
- 239000011230 binding agent Substances 0.000 claims description 8
- 238000004898 kneading Methods 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 8
- 229920006122 polyamide resin Polymers 0.000 claims description 6
- 239000004743 Polypropylene Substances 0.000 claims description 4
- 229920001155 polypropylene Polymers 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 238000007865 diluting Methods 0.000 claims description 3
- 229920001684 low density polyethylene Polymers 0.000 claims description 3
- 239000004702 low-density polyethylene Substances 0.000 claims description 3
- 229920001707 polybutylene terephthalate Polymers 0.000 claims description 3
- 229920005749 polyurethane resin Polymers 0.000 claims description 3
- 239000004815 dispersion polymer Substances 0.000 claims description 2
- 229920003023 plastic Polymers 0.000 abstract description 11
- 239000004033 plastic Substances 0.000 abstract description 10
- 239000006096 absorbing agent Substances 0.000 abstract description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052799 carbon Inorganic materials 0.000 abstract description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 75
- 239000006185 dispersion Substances 0.000 description 67
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 48
- 238000002834 transmittance Methods 0.000 description 43
- 238000012360 testing method Methods 0.000 description 31
- 230000000052 comparative effect Effects 0.000 description 24
- 239000004065 semiconductor Substances 0.000 description 24
- 238000000034 method Methods 0.000 description 23
- 239000008188 pellet Substances 0.000 description 23
- 239000004594 Masterbatch (MB) Substances 0.000 description 21
- 238000000576 coating method Methods 0.000 description 14
- 239000011248 coating agent Substances 0.000 description 13
- 239000010408 film Substances 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 239000002904 solvent Substances 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 9
- 230000020169 heat generation Effects 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 229920001577 copolymer Polymers 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- 239000000155 melt Substances 0.000 description 5
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 5
- 229910001887 tin oxide Inorganic materials 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000002250 absorbent Substances 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 150000004703 alkoxides Chemical class 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 239000003574 free electron Substances 0.000 description 4
- 230000031700 light absorption Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 239000003973 paint Substances 0.000 description 4
- 229920013716 polyethylene resin Polymers 0.000 description 4
- 229920005990 polystyrene resin Polymers 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000002745 absorbent Effects 0.000 description 3
- 238000005187 foaming Methods 0.000 description 3
- 229910003437 indium oxide Inorganic materials 0.000 description 3
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 235000000177 Indigofera tinctoria Nutrition 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- RRJHFUHAKCSNRY-UHFFFAOYSA-L [Cu+2].[O-]P([O-])=O Chemical compound [Cu+2].[O-]P([O-])=O RRJHFUHAKCSNRY-UHFFFAOYSA-L 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229920006026 co-polymeric resin Polymers 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000002788 crimping Methods 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical group FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 229940097275 indigo Drugs 0.000 description 2
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 235000015110 jellies Nutrition 0.000 description 2
- 239000008274 jelly Substances 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000012778 molding material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000001132 ultrasonic dispersion Methods 0.000 description 2
- 239000004034 viscosity adjusting agent Substances 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 229920001893 acrylonitrile styrene Polymers 0.000 description 1
- 229920001898 acrylonitrile–EPDM–styrene Polymers 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 238000007611 bar coating method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005430 electron energy loss spectroscopy Methods 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- HBEQXAKJSGXAIQ-UHFFFAOYSA-N oxopalladium Chemical compound [Pd]=O HBEQXAKJSGXAIQ-UHFFFAOYSA-N 0.000 description 1
- 229910003445 palladium oxide Inorganic materials 0.000 description 1
- 229920013653 perfluoroalkoxyethylene Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000001175 rotational moulding Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1677—Laser beams making use of an absorber or impact modifier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/739—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/7392—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
- B29C66/73921—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1603—Laser beams characterised by the type of electromagnetic radiation
- B29C65/1612—Infrared [IR] radiation, e.g. by infrared lasers
- B29C65/1616—Near infrared radiation [NIR], e.g. by YAG lasers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1629—Laser beams characterised by the way of heating the interface
- B29C65/1635—Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1629—Laser beams characterised by the way of heating the interface
- B29C65/1654—Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/71—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Electromagnetism (AREA)
- Toxicology (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
本発明は、プラスチック部材をレーザー溶着法で接合させる際に用いるレーザー溶着用光吸収樹脂組成物及び光吸収樹脂成形体、並びに光吸収樹脂成形体の製造方法に関する。より詳しくは、従来の有機系光吸収剤にはない熱安定性を持ち、従来のカーボン系光吸収剤では得られないレーザー溶着後の透明性と透光性をプラスチック部材に与えるレーザー溶着用光吸収樹脂組成物及び光吸収樹脂成形体、並びに光吸収樹脂成形体の製造方法に関する。 The present invention relates to a laser-welding light-absorbing resin composition and a light-absorbing resin molding used when plastic members are joined by a laser welding method, and a method for producing a light-absorbing resin molding. More specifically, the laser welding light has the thermal stability not found in conventional organic light absorbers, and gives the plastic member transparency and translucency after laser welding that cannot be obtained with conventional carbon light absorbers. The present invention relates to an absorbent resin composition, a light-absorbing resin molded body, and a method for producing a light-absorbing resin molded body.
近年、熱可塑性樹脂の接合方法としてレーザー溶着法が適用される機会が増えている。これは、当該レーザー溶着法を用いると、細かく複雑な接合界面を持つ部材でも、無振動で容易に安定した接合ができ、バリや煙の発生もなく、接合品の外観が向上すると共に接合部の設計自由度が広がるなどの利点を有することによるものと考えられる。 In recent years, an opportunity to apply a laser welding method as a joining method of a thermoplastic resin is increasing. This is because when the laser welding method is used, even a member having a fine and complicated joining interface can be easily and stably joined without vibration, the generation of burrs and smoke can be improved, and the appearance of the joined product can be improved. This is considered to be due to the advantage that the degree of freedom of design increases.
レーザー溶着法においては、通常、接合したいプラスチック部材の一方が光透過性樹脂成形体、もう一方がレーザー光を吸収して熱を発生する光吸収樹脂成形体で構成されている。 In the laser welding method, usually, one of the plastic members to be joined is composed of a light-transmitting resin molded body, and the other is composed of a light-absorbing resin molded body that absorbs laser light and generates heat.
このプラスチック部材へ、光透過性樹脂成形体の側からレーザー照射をおこなうと、まず光吸収樹脂成形体が溶解し、次に、当該溶解した光吸収樹脂成形体周辺から光透過性樹脂成形体の側へ熱が伝達されて溶解が起こり接合がなされる。 When laser irradiation is performed on the plastic member from the side of the light-transmitting resin molded body, the light-absorbing resin molded body is first dissolved, and then the periphery of the dissolved light-absorbing resin molded body is Heat is transferred to the side, melting occurs and bonding is performed.
レーザー光源としては、波長1064nmのNd:YAGレーザーや、波長が800〜1000nmである半導体レーザーが主として使用されるため、波長800〜1200nmの近赤外線の波長を効率よく吸収する材料が光吸収樹脂組成物として用いられる。 As a laser light source, an Nd: YAG laser with a wavelength of 1064 nm and a semiconductor laser with a wavelength of 800 to 1000 nm are mainly used. Therefore, a material that efficiently absorbs a near infrared wavelength of 800 to 1200 nm is a light absorbing resin composition. Used as a thing.
上記光吸収樹脂組成物には、有機系のフタロシアニン系化合物、シアニン系化合物、アミニウム系化合物、イモニウム系化合物、スクオリウム系化合物、ポリメチン系化合物、アントラキノン系化合物、アゾ系化合物、または、無機系ではカーボンブラックを含有する樹脂組成物が知られている(特許文献1参照)。 The light absorbing resin composition includes an organic phthalocyanine compound, a cyanine compound, an aminium compound, an imonium compound, a squalium compound, a polymethine compound, an anthraquinone compound, an azo compound, or carbon in the inorganic system. A resin composition containing black is known (see Patent Document 1).
また、特許文献2では、光吸収樹脂組成物として、レーザーに対する感度を向上させるため、芳香環を有するホスホン酸銅とともに、金属の単体、塩、酸化物、水酸化物等を添加したものが提案されている。上記金属の酸化物として具体的には、酸化ケイ素、酸化チタン、酸化アルミニウム、酸化鉄、酸化マグネシウム、酸化亜鉛、酸化コバルト、酸化鉛、酸化スズ、酸化アンチモン、酸化インジウム、酸化マンガン、酸化モリブテン、酸化ニッケル、酸化銅、酸化パラジウム、酸化ランタン、アンチモンドープ酸化スズ(ATO)、インジウムドープ酸化スズ(ITO)等を含有する樹脂組成物が提示されている。 Patent Document 2 proposes a light-absorbing resin composition in which a metal simple substance, salt, oxide, hydroxide or the like is added together with copper phosphonate having an aromatic ring in order to improve sensitivity to laser. Has been. Specific examples of the metal oxide include silicon oxide, titanium oxide, aluminum oxide, iron oxide, magnesium oxide, zinc oxide, cobalt oxide, lead oxide, tin oxide, antimony oxide, indium oxide, manganese oxide, molybdenum oxide, Resin compositions containing nickel oxide, copper oxide, palladium oxide, lanthanum oxide, antimony-doped tin oxide (ATO), indium-doped tin oxide (ITO) and the like are presented.
また、特許文献3では、レーザー波長域の光吸収能を有する無機系材料として、錫添加酸化インジウム(ITO)、アンチモン添加錫酸化物(ATO)を添加した光吸収樹脂組成物が提案されている。
しかしながら、本発明者らの検討によれば、特許文献1に記載の有機系の光吸収樹脂組成物(レーザー光吸収材料)は、一般に吸収波長幅が狭く、十分な発熱を得るためには比較的多くの添加量を必要とする。また熱安定性に劣るため、発熱と並行して分解が起こり、レーザー照射条件によっては、必ずしも均一安定な接合体を得られない場合がある。 However, according to the study by the present inventors, the organic light-absorbing resin composition (laser light-absorbing material) described in Patent Document 1 generally has a narrow absorption wavelength width, and is compared for obtaining sufficient heat generation. Requires a large amount of addition. Moreover, since it is inferior in heat stability, decomposition | disassembly occurs in parallel with heat_generation | fever and depending on laser irradiation conditions, a uniform stable joined body may not necessarily be obtained.
一方、特許文献1に記載の無機系のカーボン材料は熱安定性が高い。しかし、それ自身が可視光波長領域に持つ吸収のためにプラスチック部材が黒く着色し、透明なプラスチック接合部材を得たい場合や接合部の黒化を嫌う部材には不都合である。ところが、医療分野を始めとして、透明無着色となる接合への要求は益々強まっている。また、カーボンブラックは凝集しやすく、ホスト樹脂の中で分散状態にムラがあったり凝集が生じていると、レーザー光吸収による発熱が不均一になって溶着に部分的なムラを生じたり、部分的な発泡を生じたり、また溶着時間が長くなるなどの課題がある。 On the other hand, the inorganic carbon material described in Patent Document 1 has high thermal stability. However, the plastic member is colored black due to absorption itself in the visible light wavelength region, which is inconvenient for obtaining a transparent plastic joint member or a member that dislikes blackening of the joint portion. However, in the medical field and the like, there is an increasing demand for bonding that is transparent and colorless. Also, carbon black is easy to agglomerate, and if the dispersion state in the host resin is uneven or agglomerated, heat generation due to laser light absorption will be uneven and partial unevenness will occur in the weld. There are problems such as the occurrence of general foaming and the long welding time.
特許文献2に記載の、芳香環を有するホスホン酸銅とともに、金属の単体、塩、酸化物、水酸化物等を添加した光吸収樹脂組成物は、レーザー光に対する感度が不十分であり、問題なく接合するためには、該組成物を大量に添加する必要がある。しかし、当該組成物の大量添加は、樹脂成形体自体の基本物性を変えてしまう可能性があり、機械的強度の低下を招くなどの問題を有していた。 The light-absorbing resin composition added with a simple substance of metal, salt, oxide, hydroxide, etc. together with copper phosphonate having an aromatic ring described in Patent Document 2 has insufficient sensitivity to laser light, which is a problem. It is necessary to add a large amount of the composition in order to join without any problems. However, the addition of a large amount of the composition may change the basic physical properties of the resin molded body itself, which causes problems such as a decrease in mechanical strength.
特許文献3に記載の錫添加酸化インジウム(ITO)、アンチモン添加錫酸化物(ATO)を添加した光吸収樹脂組成物は、透明性には優れるが、単位重量当りの赤外線吸収率はカーボンなどよりもはるかに低い。また1000nm以上の比較的長い波長の近赤外線から吸収が始まるため、半導体レーザーの波長800〜1000nmやNd:YAGレーザーの波長1064nmでの吸収は実質的に非常に弱いという問題がある。この為、適切なレーザー溶着を行なうには、プラスチック部材へ、該組成物を大量に添加する必要がある。しかし、当該組成物の大量添加は部材自体の基本物性を変えてしまうことに加えて、コスト的な制約も大きくなる。特にITOでは、資源的・価格的な問題が大きい。
The light-absorbing resin composition added with tin-doped indium oxide (ITO) and antimony-doped tin oxide (ATO) described in
本発明は上述の事情を考慮してなされたものであり、その解決しようとする課題は、レーザー光により均一な発熱を生じて安定したレーザー溶着が可能であり、接合溶着部分が透明性を保持できるレーザー溶着用光吸収樹脂組成物、および、光吸収樹脂成形体、並びに、光吸収樹脂成形体の製造方法を提供することにある。 The present invention has been made in consideration of the above-mentioned circumstances, and the problem to be solved is that uniform heat generation is generated by laser light and stable laser welding is possible, and the welded portion maintains transparency. An object of the present invention is to provide a laser-absorbing light-absorbing resin composition, a light-absorbing resin molded body, and a method for producing the light-absorbing resin molded body.
上述の課題を解決すべく本発明者らが研究を重ねた結果、レーザー溶着のための光吸収樹脂として求められる特性とは、
1.レーザーの波長域付近である近赤外線波長である800〜1200nmに亘って強い吸収を持ち、高い吸収係数を有すること、
2.可視光波長である380〜780nmにおける吸収が少ないこと、
3.ホスト樹脂に対する光吸収材料の溶解性または分散性が高いこと、
であることに想到した。
As a result of repeated researches by the present inventors to solve the above-mentioned problems, the characteristics required as a light-absorbing resin for laser welding are:
1. Having a strong absorption over a near infrared wavelength of 800 to 1200 nm, which is near the wavelength region of the laser, and having a high absorption coefficient,
2. Less absorption at 380 to 780 nm which is a visible light wavelength,
3. The solubility or dispersibility of the light-absorbing material in the host resin is high,
I came up with that.
そこで、本発明者らは、レーザー溶着用に用いるレーザー光の波長域である近赤外線波長800〜1200nmに亘って強い吸収を持ち、可視光では吸収が十分に少ないために透明性を保持でき、接合溶着部分が透明な概観を損なうことなく、レーザー光により均一な発熱を生じて安定したレーザー溶着が可能なレーザー溶着用光吸収樹脂組成物及び光吸収樹脂成形体、並びに光吸収樹脂成形体の製造方法の研究を行った。 Therefore, the present inventors have strong absorption over the near-infrared wavelength range of 800 to 1200 nm, which is the wavelength range of the laser beam used for laser welding, and can maintain transparency because the absorption is sufficiently small in visible light, Laser-absorbing light-absorbing resin composition and light-absorbing resin molded body capable of stable laser welding by generating uniform heat generation by laser light without impairing the transparent appearance of the joint-welded portion, and light-absorbing resin-molded body The manufacturing method was studied.
当該研究の結果、本発明者等は、30℃以上のガラス転移温度を持つ高分子分散剤とレーザー光吸収微粒子とを含有するレーザー溶着用光吸収樹脂組成物において、レーザー光吸収微粒子として、窒化チタン、窒化ジルコニウム、窒化ハフニウム、窒化バナジウム、窒化ニオブ、窒化タンタルから選択される少なくとも1種の窒化物微粒子を用いることによって、Nd:YAGレーザーや半導体レーザーの波長範囲の光を強く吸収してレーザー溶着を容易にする一方、可視光域の波長の光を透過して物体の透明性を保持できるレーザー溶着用光吸収樹脂組成物が得られることを見出し、本発明に至った。 As a result of the research, the present inventors, in a laser-welding light-absorbing resin composition containing a polymer dispersant having a glass transition temperature of 30 ° C. or higher and laser-light-absorbing fine particles, nitrided as laser-light-absorbing fine particles. By using at least one kind of nitride fine particles selected from titanium, zirconium nitride, hafnium nitride, vanadium nitride, niobium nitride, and tantalum nitride, the laser strongly absorbs light in the wavelength range of Nd: YAG laser and semiconductor laser. The inventors have found that a light-absorbing resin composition for laser welding capable of transmitting light having a wavelength in the visible light range and maintaining the transparency of an object can be obtained while facilitating welding, and has led to the present invention.
これら、窒化チタン、窒化ジルコニウム、窒化ハフニウム、窒化バナジウム、窒化ニオブ、窒化タンタルから選択される少なくとも1種の窒化物微粒子は、自由電子を多量に持ち、プラズモン励起の波長が近赤外域にあることで、上記特性を発揮していると考えられる。 At least one nitride fine particle selected from titanium nitride, zirconium nitride, hafnium nitride, vanadium nitride, niobium nitride, and tantalum nitride has a large amount of free electrons and the wavelength of plasmon excitation is in the near infrared region. Therefore, it is considered that the above characteristics are exhibited.
すなわち、
第1の構成は、
30℃以上のガラス転移温度を持つ高分子分散剤と、レーザー光吸収微粒子とを含有するレーザー溶着用光吸収樹脂組成物であって、
上記レーザー光吸収微粒子が、窒化チタン、窒化ジルコニウム、窒化ハフニウム、窒化バナジウム、窒化ニオブ、窒化タンタルから選択される少なくとも1種の窒化物微粒子であることを特徴とするレーザー溶着用光吸収樹脂組成物である。
That is,
The first configuration is
A laser-absorbing light-absorbing resin composition comprising a polymer dispersant having a glass transition temperature of 30 ° C. or higher and laser-absorbing fine particles,
The laser-welding light-absorbing resin composition, wherein the laser-light-absorbing fine particles are at least one kind of nitride fine particles selected from titanium nitride, zirconium nitride, hafnium nitride, vanadium nitride, niobium nitride, and tantalum nitride It is.
第2の構成は、
前記窒化物微粒子の平均粒径が1000nm以下であることを特徴とする第1の構成に記載のレーザー溶着用光吸収樹脂組成物である。
The second configuration is
The average particle size of the nitride fine particles is 1000 nm or less. The light-absorbing resin composition for laser welding according to the first configuration.
第3の構成は、
第1または第2の構成のいずれかに記載のレーザー溶着用光吸収樹脂組成物が、当該レーザー溶着用光吸収樹脂組成物に含まれている高分子分散剤と熱可塑性樹脂により希釈され混練されて成形された光吸収樹脂成形体であって、
当該光吸収樹脂成形体の表面層であって表面から3mm以下の領域における窒化物微粒子の含有量が、0.001g/m2以上、0.4g/m2以下であることを特徴とする光吸収樹脂成形体である。
The third configuration is
The laser-welding light-absorbing resin composition according to either the first or second configuration is diluted and kneaded with a polymer dispersant and a thermoplastic resin contained in the laser-welding light-absorbing resin composition. A light-absorbing resin molded article molded by
The light characterized in that the content of nitride fine particles in the surface layer of the light-absorbing resin molding is 3 mm or less from the surface is 0.001 g / m 2 or more and 0.4 g / m 2 or less. This is an absorbent resin molding.
第4の構成は、
第1または第2の構成のいずれかに記載のレーザー溶着用光吸収樹脂組成物が、当該レーザー溶着用光吸収樹脂組成物に含まれている高分子分散剤と熱可塑性樹脂、により希釈され混練されて成形された光吸収樹脂成形体であって、
当該成形された光吸収樹脂成形体の形状が、板状またはフィルム状であることを特徴とする光吸収樹脂成形体である。
The fourth configuration is
The laser-welding light-absorbing resin composition according to either the first or second configuration is diluted and kneaded with the polymer dispersant and the thermoplastic resin contained in the laser-welding light-absorbing resin composition. A light-absorbing resin molded article,
The light-absorbing resin molded body is characterized in that the shape of the molded light-absorbing resin molded body is a plate shape or a film shape.
第5の構成は、
上記熱可塑性樹脂が、アクリル樹脂、ポリカーボネート樹脂、スチレン樹脂、低密度ポリエチレン樹脂、ポリプロピレン樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、フッ素樹脂の群から選択される1種以上の樹脂であることを特徴とする第3または第4の構成のいずれかに記載の光吸収樹脂成形体である。
The fifth configuration is
The thermoplastic resin is at least one selected from the group consisting of acrylic resin, polycarbonate resin, styrene resin, low density polyethylene resin, polypropylene resin, polyurethane resin, polyamide resin, polyethylene terephthalate resin, polybutylene terephthalate resin, and fluororesin. The light-absorbing resin molded body according to any one of the third and fourth configurations, which is a resin.
第6の構成は、
第1または第2の構成のいずれかに記載の光吸収樹脂組成物が、バインダーによって希釈されて基材の表面にコーティングされていることを特徴とする光吸収樹脂成形体である。
The sixth configuration is
A light-absorbing resin molded article, wherein the light-absorbing resin composition according to any one of the first and second configurations is diluted with a binder and coated on the surface of a substrate.
第7の構成は、
第3から第6の構成のいずれかに記載の光吸収樹脂成形体が、波長500〜1000nmに吸収の極大値を有することを特徴とする光吸収樹脂成形体である。
The seventh configuration is
The light-absorbing resin molded body according to any one of the third to sixth configurations is a light-absorbing resin molded body having an absorption maximum at a wavelength of 500 to 1000 nm.
第8の構成は、
30℃以上のガラス転移温度を持つ高分子分散剤と、レーザー光吸収微粒子とを含有するレーザー溶着用光吸収樹脂組成物が、当該レーザー溶着用光吸収樹脂組成物に含まれている高分子分散剤と熱可塑性樹脂により希釈され混練されて成形された光吸収樹脂成形体の製造方法であって、
当該レーザー光吸収微粒子が、窒化チタン、窒化ジルコニウム、窒化ハフニウム、窒化バナジウム、窒化ニオブ、窒化タンタルから選択される少なくとも1種の窒化物微粒子である光吸収樹脂組成物を、当該高分子分散剤と熱可塑性樹脂を用いて、当該光吸収樹脂成形体の表面層であって表面から3mm以下の領域における窒化物微粒子の含有量が、0.001g/m2以上、0.4g/m2以下となるように希釈し、混練し成形して光吸収樹脂成形体を製造することを特徴とする光吸収樹脂成形体の製造方法である。
The eighth configuration is
Polymer dispersion in which a laser welding light absorbing resin composition containing a polymer dispersant having a glass transition temperature of 30 ° C. or higher and laser light absorbing fine particles is contained in the laser welding light absorbing resin composition A method for producing a light-absorbing resin molded article that is diluted and kneaded with an agent and a thermoplastic resin,
A light-absorbing resin composition in which the laser light-absorbing fine particles are at least one kind of nitride fine particles selected from titanium nitride, zirconium nitride, hafnium nitride, vanadium nitride, niobium nitride, and tantalum nitride; Using a thermoplastic resin, the content of nitride fine particles in the surface layer of the light-absorbing resin molded body and in a region of 3 mm or less from the surface is 0.001 g / m 2 or more and 0.4 g / m 2 or less. The method for producing a light-absorbing resin molded body is characterized in that the light-absorbing resin molded body is manufactured by diluting as described above, kneading and molding.
本発明によれば、30℃以上のガラス転移温度を持つ高分子分散剤とレーザー光吸収微粒子とを含有するレーザー溶着用光吸収樹脂組成物は、レーザー光吸収微粒子として、窒化チタン、窒化ジルコニウム、窒化ハフニウム、窒化バナジウム、窒化ニオブ、窒化タンタルから選択される少なくとも1種の窒化物微粒子を用いており、またこれらの微粒子が高分子分散剤中に高度に分散した固形粉末状の形状を有している。 According to the present invention, a laser-welding light-absorbing resin composition containing a polymer dispersant having a glass transition temperature of 30 ° C. or higher and laser-light-absorbing fine particles includes titanium nitride, zirconium nitride, At least one kind of nitride fine particles selected from hafnium nitride, vanadium nitride, niobium nitride, and tantalum nitride are used, and these fine particles have a solid powder shape in which they are highly dispersed in a polymer dispersant. ing.
上記構成を有する結果、本レーザー溶着用光吸収樹脂組成物は、容易にレーザー光吸収樹脂成形体に成形でき、Nd:YAGレーザーや半導体レーザーの波長範囲の光を強く吸収してレーザー溶着を容易に実施できる一方、可視光域の波長の光をほぼ透過して物体の透明性を保持でき、着色が少なく透明な溶着界面を得ることができるため、レーザー溶着の適用範囲が増え、且つ、熱安定性に優れるため、安定したプラスチック間の接合を提供でき、工業的に極めて有益である。 As a result of having the above configuration, the laser-absorbing light-absorbing resin composition can be easily molded into a laser-light-absorbing resin molding, and strongly absorbs light in the wavelength range of Nd: YAG lasers and semiconductor lasers to facilitate laser welding. On the other hand, since the transparency of the object can be maintained almost through the light having a wavelength in the visible light range and a transparent welding interface with less coloring can be obtained, the application range of laser welding is increased, and the heat Since it is excellent in stability, it can provide a stable joint between plastics, which is extremely useful industrially.
以下、本発明を実施するための最良の形態について説明する。 Hereinafter, the best mode for carrying out the present invention will be described.
本実施形態の、30℃以上のガラス転移温度を持つ高分子分散剤とレーザー光吸収微粒子とを含有するレーザー溶着用光吸収樹脂組成物は、レーザー光吸収微粒子が、窒化チタン、窒化ジルコニウム、窒化ハフニウム、窒化バナジウム、窒化ニオブ、窒化タンタルから選択される少なくとも1種の窒化物微粒子であることを特徴としている。 The laser-welding light-absorbing resin composition containing a polymer dispersant having a glass transition temperature of 30 ° C. or higher and a laser-light-absorbing fine particle according to the present embodiment is composed of titanium nitride, zirconium nitride, and nitride. It is characterized by being at least one kind of nitride fine particles selected from hafnium, vanadium nitride, niobium nitride, and tantalum nitride.
本実施形態のレーザー光吸収微粒子は、レーザー光波長域の光を吸収する機能を有する無機微粒子であり、自由電子を大量に保有してプラズマ共鳴振動を生ずる微粒子である。レーザー光が上記微粒子に入射するとその光の振動数に応じて自由電子が励起されて電子の集合的振動が生じ、エネルギーが吸収・輻射される。この時の吸収波長は自由電子密度や電子の有効質量に依存しており、微粒子の種類によっては、Nd:YAGレーザーや半導体レーザー光の波長範囲800〜1200nmの近傍にプラズマ吸収波長を持つものがある。エネルギー分解能の高い電子エネルギー損失分光法(EELS)を用いるとプラズモン励起によるエネルギー損失ピークを直接観測することが出来る。 The laser light-absorbing fine particles of the present embodiment are inorganic fine particles having a function of absorbing light in the laser light wavelength region, and are fine particles that retain a large amount of free electrons and cause plasma resonance vibration. When laser light is incident on the fine particles, free electrons are excited in accordance with the frequency of the light to cause collective vibration of electrons, and energy is absorbed and radiated. The absorption wavelength at this time depends on the free electron density and the effective mass of electrons, and depending on the type of fine particles, those having a plasma absorption wavelength in the vicinity of the wavelength range of 800 to 1200 nm of Nd: YAG laser or semiconductor laser light. is there. When electron energy loss spectroscopy (EELS) with high energy resolution is used, an energy loss peak due to plasmon excitation can be directly observed.
本実施形態のレーザー光吸収微粒子の具体例として、窒化チタンTiN、窒化ジルコニウムZrN、窒化ハフニウムHfN、窒化バナジウムVN、窒化ニオブNbN、窒化タンタルTaNなどの窒化物微粒子が挙げられる。これらの窒化物はNaCl型(B1型)の結晶構造を有する金属間化合物であるが、不定比化合物(ベルトライド化合物)としての特徴を持っており、例えば窒化チタンにおいては、TiNXで表記され、Xは0.8<X<1.16の広い範囲をとることが知られている。ナノ微粒子にしたときの近赤外線の吸収特性は、このような組成の不定比性の広い範囲において見られるので、本発明においては不定比性を含めたNaCl型の結晶構造を持つ窒化物を意味するものとする。 Specific examples of the laser light absorbing fine particles of the present embodiment include nitride fine particles such as titanium nitride TiN, zirconium nitride ZrN, hafnium nitride HfN, vanadium nitride VN, niobium nitride NbN, and tantalum nitride TaN. These nitrides are intermetallic compounds having a NaCl type (B1 type) crystal structure, but have characteristics as non-stoichiometric compounds (beltride compounds). For example, titanium nitride is represented by TiN x. , X is known to have a wide range of 0.8 <X <1.16. Since the absorption characteristics of near-infrared when nano-particles are formed can be seen in a wide range of non-stoichiometry of such a composition, in the present invention, it means a nitride having a NaCl-type crystal structure including non-stoichiometry. It shall be.
また、本発明に使用される窒化物微粒子は、一部または全量がオキシ窒化物で代替されたものであっても良い。またこれらの窒化物微粒子は、その表面が酸化していないことが好ましいが、通常は僅かに酸化していることが多く、また微粒子の分散工程で表面の酸化が起こることはある程度避けられない。しかしその場合でも近赤外線の吸収効果を発現する有効性に変わりは無い。またこれらの窒化物微粒子は、結晶としての完全性が高いほど近赤外線の吸収効果が大きいが、結晶性が低くX線回折で極めてブロードな回折ピークを生じるようなものであっても、微粒子内部の基本的な原子の結合が各金属元素と窒素の結合から成り立っているものであるならば近赤外線の吸収効果を発現する。
上記レーザー光吸収微粒子は、十分微小なサイズで分散された時には、波長500〜1000nmに吸収の極大値を有している。極大値近傍の波長では、十分に大きい吸収係数を有するため、波長範囲800〜1200nmのレーザー光を十分吸収して発熱する。
The nitride fine particles used in the present invention may be partially or wholly replaced with oxynitride. These nitride fine particles are preferably not oxidized on the surface, but are usually slightly oxidized, and it is inevitable that oxidation of the surface occurs in the fine particle dispersion process to some extent. However, even in that case, there is no change in the effectiveness of developing the near infrared absorption effect. Further, these nitride fine particles have a greater near-infrared absorption effect as the crystal completeness is higher, but even if the crystallinity is low and X-ray diffraction produces a very broad diffraction peak, If the basic atomic bond is composed of a bond between each metal element and nitrogen, a near-infrared absorbing effect is exhibited.
The laser light-absorbing fine particles have a maximum value of absorption at a wavelength of 500 to 1000 nm when dispersed in a sufficiently small size. Since the wavelength near the maximum value has a sufficiently large absorption coefficient, the laser beam in the wavelength range of 800 to 1200 nm is sufficiently absorbed to generate heat.
以上説明した窒化物微粒子は、単独で使用してもよいが、二種類以上を混合して使用することも好ましい。本発明者らの実験によればこれらの微粒子を十分細かく、かつ均一に分散した組成物においては、上記レーザー光吸収微粒子が、波長500〜1000nmに吸収の極大値を有していることから、極大値近傍の波長では、十分に大きい吸収係数を有するため、波長範囲800〜1200nmのレーザー光を十分吸収して発熱する。 The nitride fine particles described above may be used alone, but it is also preferable to use a mixture of two or more kinds. According to the experiments of the present inventors, in the composition in which these fine particles are sufficiently finely and uniformly dispersed, the laser light-absorbing fine particles have a maximum value of absorption at a wavelength of 500 to 1000 nm. Since the wavelength near the maximum value has a sufficiently large absorption coefficient, the laser beam in the wavelength range of 800 to 1200 nm is sufficiently absorbed to generate heat.
可視光波長が380〜780nmであり、視感度が波長550nm付近をピークとする釣鐘型であることを考慮すると、このような膜では可視光を有効に透過し、それ以外の波長の光を有効に吸収することが理解できる。 Considering that the visible light wavelength is 380 to 780 nm and the visibility is a bell-shaped peak with a peak at around 550 nm, such a film effectively transmits visible light and effectively uses light of other wavelengths. Can be absorbed.
本実施形態で使用するレーザー光吸収微粒子の粒径は、レーザー光吸収成分として機能するかぎり任意であるが、好ましくは1000nm以下、より好ましくは200nm以下がよい。粒子径が1000nm以下であれば、微粒子若しくは微粒子が凝集した粗大凝集粒子が、成形した光吸収樹脂成形体の光散乱源とならず、レーザー溶着後の透明成形体が曇らず透明に見えるからである。また、粒子径が1000nm以下であればレーザー光吸収能そのものの減衰が少ないため、粒子径は1000nm以下が好ましい。 The particle diameter of the laser light absorbing fine particles used in the present embodiment is arbitrary as long as it functions as a laser light absorbing component, but is preferably 1000 nm or less, more preferably 200 nm or less. If the particle diameter is 1000 nm or less, fine particles or coarse aggregate particles formed by agglomeration of fine particles do not serve as a light scattering source for the molded light-absorbing resin molded product, and the transparent molded product after laser welding looks transparent without being clouded. is there. Further, if the particle diameter is 1000 nm or less, the attenuation of the laser light absorption itself is small, and therefore the particle diameter is preferably 1000 nm or less.
本実施形態で使用するレーザー光吸収微粒子は、可視光領域で完全に透明ではなく、微粒子の種類や粒子径、分散凝集の状態などに応じて幾分かの着色を有している。微粒子径をより小さく、また、より均一に分散することにより、微粒子による散乱光は軽減され、例えば平均微粒子径200nm以下に均一分散する場合には、Rayleigh散乱のモードになって、可視光で光を通さない黒色材料であってもその微粒子の集合体は可視光での透明性が生まれる。 The laser light-absorbing fine particles used in the present embodiment are not completely transparent in the visible light region, and have some color depending on the kind of fine particles, the particle diameter, the state of dispersion aggregation, and the like. By making the fine particle size smaller and more uniformly dispersed, the scattered light by the fine particles is reduced. For example, when the fine particles are uniformly dispersed to an average fine particle size of 200 nm or less, the Rayleigh scattering mode is set, and the light is emitted with visible light. Even if it is a black material that does not pass through, the aggregate of the fine particles produces transparency under visible light.
ホストとなる熱可塑性樹脂中における、レーザー光吸収微粒子の分散状態は、レーザー溶着用光吸収樹脂組成物の特性にとって極めて重要である。当該微粒子が凝集することなく十分に分散している時は、当該組成物の最終的な着色状態が均一になり、レーザー照射による発熱部位が均一になるので、溶着後の外観が良好なものになる。これに対し、ホストとなる熱可塑性樹脂中において、微粒子が十分に分散せず凝集している時は、最終的な着色状態が不均一になるだけではなく、レーザー照射による発熱部位が不均一になる。そして、当該発熱部位の不均一に起因して、レーザー溶着用光吸収樹脂組成物の局所部位が発泡したり、外観不良を生じたりする。
当該レーザー溶着用光吸収樹脂組成物における局所部位の発泡や外観不良を回避するため、以下の工程を採ることが好ましい。
(1)レーザー光吸収微粒子を分散剤と共に溶媒中に均一に分散した分散液を製造する。
(2)真空乾燥機、熱風乾燥機、ヘンシェルミキサーなどの加熱混合機を用いて、当該分散液から溶媒を加熱除去して、当該レーザー溶着用光吸収組成物を製造する。
(3)作製したレーザー溶着用光吸収組成物を、前記分散剤と熱可塑性樹脂により希釈、混練、成形して、目的とする光吸収樹脂成形体を製造する。
The dispersion state of the laser-absorbing fine particles in the host thermoplastic resin is extremely important for the characteristics of the laser-welding light-absorbing resin composition. When the fine particles are sufficiently dispersed without agglomeration, the final colored state of the composition becomes uniform, and the heat generation site by laser irradiation becomes uniform, so that the appearance after welding is good. Become. On the other hand, when the fine particles are not sufficiently dispersed and aggregated in the host thermoplastic resin, not only the final colored state becomes non-uniform, but also the heat generation site due to laser irradiation becomes non-uniform. Become. And the local site | part of the light-absorbing resin composition for laser welding foams due to the nonuniformity of the heat generating site, or the appearance is poor.
In order to avoid foaming at the local site and poor appearance in the laser-absorbing light-absorbing resin composition, it is preferable to take the following steps.
(1) A dispersion in which laser light absorbing fine particles are uniformly dispersed in a solvent together with a dispersant is produced.
(2) Using a heating mixer such as a vacuum dryer, hot air dryer, Henschel mixer or the like, the solvent is removed from the dispersion by heating to produce the laser-welded light absorbing composition.
(3) The produced laser-absorbing light-absorbing composition is diluted, kneaded, and molded with the dispersant and the thermoplastic resin to produce a desired light-absorbing resin molded body.
ここで、本発明者らは、最終的に(3)の工程で得られる光吸収樹脂成形体におけるレーザー光吸収微粒子の分散状態が、(1)の工程の微粒子分散液の製造において得られる分散状態に大きく依存すること、および、(1)の工程の微粒子分散液中で実現した高度な分散状態を、ハンドリングの容易な固形粉末である(2)の工程で得られるレーザー溶着用光吸収組成物においても保持すること、が重要であることに想到した。 Here, the present inventors finally found that the dispersion state of the laser-light-absorbing fine particles in the light-absorbing resin molding obtained in the step (3) is the dispersion obtained in the production of the fine particle dispersion in the step (1). The laser-welding light absorbing composition obtained in the step (2), which is a solid powder that is easy to handle, and that is highly dependent on the state and the advanced dispersion state realized in the fine particle dispersion in the step (1) I came to realize that it is important to hold the object.
そこで本発明者らは、(1)の工程の微粒子分散液の調製において、当該レーザー光吸収微粒子に適合した分散剤の検討を行った。多くの検討結果から、本発明者らは、当該分散剤としては、分子が短く、微粒子表面に付着しても立体的障害作用の効果が低い分散剤ではなく、分子が長く、微粒子表面に付着したとき、その立体的障害作用により、当該微粒子同士の凝集を防ぐ高分子分散剤が好適であることを見出した。 Therefore, the present inventors examined a dispersant suitable for the laser light-absorbing fine particles in the preparation of the fine particle dispersion in the step (1). Based on the results of many studies, the present inventors have found that the dispersant is not a dispersant having a short molecule and having a low steric hindrance effect even if it adheres to the surface of the fine particle, but has a long molecule and adheres to the fine particle surface. Then, it has been found that a polymer dispersant that prevents aggregation of the fine particles is suitable due to its steric hindrance.
さらに、上記高分子分散剤のガラス転移温度は、30℃以上であることが必要である。高分子分散剤のガラス転移温度が30℃以上であれば、(2)の工程にて溶媒除去した後、当該高分子分散剤がゼリー状に固まり、べたつくなどハンドリングに不便なものとなることを回避できるからである。 Furthermore, the glass transition temperature of the polymer dispersant needs to be 30 ° C. or higher. If the glass transition temperature of the polymer dispersant is 30 ° C. or higher, after removing the solvent in the step (2), the polymer dispersant will solidify in a jelly shape and become inconvenient to handle such as stickiness. This is because it can be avoided.
当該高分子分散剤としては、ポリエステル系、アクリル系、ウレタン系、を始めとする高分子主骨格の末端に、種々の親油性官能基、親水性官能基が付属する高分子であるものが好ましい。高分子分散剤の種類や配合量は、分散対象であるレーザー光吸収微粒子の種類とその表面特性に応じて適宜決められるものである。一般的には、高分子分散剤の配合量は、レーザー光吸収微粒子の重量の2〜10倍程度が好ましい。 The polymer dispersant is preferably a polymer in which various lipophilic functional groups and hydrophilic functional groups are attached to the terminal of the main polymer skeleton including polyester, acrylic, and urethane. . The type and blending amount of the polymer dispersant are appropriately determined according to the type of laser light absorbing fine particles to be dispersed and the surface characteristics thereof. Generally, the blending amount of the polymer dispersant is preferably about 2 to 10 times the weight of the laser light absorbing fine particles.
適宜量の高分子分散剤を配合することで、最終的に得られる光吸収樹脂成形体における微粒子の分散均一性を保つことが出来る。一方、高分子分散剤の過大量添加を避けることで、当該高分子分散剤と、最終的に得られる光吸収樹脂成形体の主成分をなす樹脂と、の親和性の度合いに応じて、成形体に曇りが発生するなどの不都合を回避することが出来る。 By blending an appropriate amount of the polymer dispersant, the dispersion uniformity of the fine particles in the finally obtained light-absorbing resin molding can be maintained. On the other hand, by avoiding excessive addition of the polymer dispersant, molding is performed according to the degree of affinity between the polymer dispersant and the resin that is the main component of the finally obtained light-absorbing resin molding. Inconveniences such as cloudiness on the body can be avoided.
レーザー光吸収微粒子、分散剤および溶媒を、均一に分散させるには、微粒子を樹脂へ均一に分散させる方法、装置であれば任意に選択できる。例としては、ビーズミル、ボールミル、サンドミル、超音波分散装置、等の方法、装置を用いることができる。 In order to uniformly disperse the laser light absorbing fine particles, the dispersant and the solvent, any method and apparatus for uniformly dispersing the fine particles in the resin can be selected. As an example, a method and apparatus such as a bead mill, a ball mill, a sand mill, and an ultrasonic dispersion apparatus can be used.
上記レーザー溶着用光吸収樹脂組成物を、熱可塑性樹脂により希釈、混練、成形して、直接、光吸収樹脂成形体を得ることができる。また、上記レーザー溶着用光吸収樹脂を、熱可塑性樹脂により希釈、混練して、レーザー溶着用光吸収樹脂組成物を主として含有する粒状、ペレット状のマスターバッチを作製し、さらに、当該マスターバッチの熱可塑性樹脂と同種の熱可塑性樹脂成形材料、または、当該マスターバッチの熱可塑性樹脂と相溶性を有する熱可塑性樹脂成形材料、によりさらに希釈、混練、成形して、最終的な光吸収樹脂成形体を得ることも可能である。 The laser-absorbing light-absorbing resin composition can be diluted, kneaded and molded with a thermoplastic resin to obtain a light-absorbing resin molding directly. Further, the laser welding light-absorbing resin is diluted and kneaded with a thermoplastic resin to produce a granular, pellet-shaped masterbatch mainly containing the laser-welding light-absorbing resin composition. The final light-absorbing resin molding is further diluted, kneaded and molded with the same thermoplastic resin molding material as the thermoplastic resin or a thermoplastic resin molding material compatible with the thermoplastic resin of the masterbatch. It is also possible to obtain
上記希釈、混練には、リボンブレンダー、タンブラー、ナウターミキサー、ヘンシェルミキサー、スーパーミキサー、プラネタリーミキサー等の混合機、またバンバリーミキサー、ニーダー、ロール、ニーダールーダー、一軸押出機、二軸押出機等の溶融混練機を使用することが出来る。この希釈、混練工程において、必要に応じて安定剤、滑剤、充填剤、粘度調整剤、導電付与材、酸化防止剤、剥離材、ガラス繊維やカーボン繊維などの補強剤、染料、顔料、その他の添加剤を添加することが可能である。尤も、いずれの工程においても、レーザー光吸収微粒子の分散性が、レーザー溶着用光吸収樹脂組成物中において十分均一に保たれていることが重要である。当該希釈、混練、成形の工程において、レーザー光吸収微粒子の分散性が十分均一に保たれていれば、その後工程において、初期の分散均一性が崩れることは殆どないからである。 For the above dilution and kneading, mixers such as ribbon blender, tumbler, nauter mixer, Henschel mixer, super mixer, planetary mixer, banbury mixer, kneader, roll, kneader ruder, single screw extruder, twin screw extruder, etc. The melt kneader can be used. In this dilution and kneading process, stabilizers, lubricants, fillers, viscosity modifiers, conductivity-imparting agents, antioxidants, release materials, reinforcing agents such as glass fibers and carbon fibers, dyes, pigments, and other materials as necessary It is possible to add additives. However, in any step, it is important that the dispersibility of the laser-absorbing fine particles is kept sufficiently uniform in the laser-absorbing light-absorbing resin composition. This is because if the dispersibility of the laser light-absorbing fine particles is kept sufficiently uniform in the dilution, kneading and molding steps, the initial dispersion uniformity is hardly lost in the subsequent steps.
上述したように、本実施形態における、レーザー溶着用光吸収樹脂組成物を希釈する熱可塑樹脂としては、当該高分子分散剤と同一の熱可塑性樹脂、または、相溶性を有する当該高分子分散剤とは異なる熱可塑性樹脂を用いることができる。 As described above, in the present embodiment, the thermoplastic resin for diluting the laser-absorbing light-absorbing resin composition is the same thermoplastic resin as the polymer dispersant, or the compatible polymer dispersant. Different thermoplastic resins can be used.
当該熱可塑性樹脂としては、アクリル樹脂、スチレン樹脂、フッ素樹脂、ポリカーボネート樹脂、低密度ポリエチレン樹脂、ポリプロピレン樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、などの熱可塑性樹脂を用いることが好ましい。 As the thermoplastic resin, a thermoplastic resin such as acrylic resin, styrene resin, fluororesin, polycarbonate resin, low density polyethylene resin, polypropylene resin, polyurethane resin, polyamide resin, polyethylene terephthalate resin, polybutylene terephthalate resin, or the like is used. Is preferred.
例えば、アクリル樹脂としては、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレートを主原料とし、必要に応じて炭素数1〜8のアルキル基を有するアクリル酸エステル、酢酸ビニル、スチレン、アクリロニトリル、メタクリロニトリル等を共重合成分として用いた重合体または共重合体が挙げられる。例えば、メタクリル酸メチルを50〜99.95モル%へ、アクリル酸アルキルエステルなどの共重合可能な他の単量体を0.05〜50モル%の割合で加えて得られる共重合体が挙げられる。 For example, as acrylic resins, methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate are used as main raw materials, and acrylic acid esters having 1 to 8 carbon atoms, vinyl acetate, styrene, acrylonitrile, methacryloyl as required. Examples thereof include polymers or copolymers using nitrile or the like as a copolymerization component. For example, a copolymer obtained by adding methyl methacrylate to 50 to 99.95 mol% and another copolymerizable monomer such as alkyl acrylate in a proportion of 0.05 to 50 mol% can be mentioned. It is done.
また、例えば、スチレン樹脂としては、ポリスチレン、アクリロニトリル−スチレン共重合体、メタクリル酸メチル−スチレン共重合体、アクリロニトリル−メタクリル酸メチル−スチレン共重合体、アクリロニトリル−ブタジエン−スチレン樹脂、アクリロニトリル−アクリルゴム−スチレン樹脂、アクリロニトリル−EPDM−スチレン樹脂など、スチレン30〜100モル%へ、共重合可能な単量体0〜70モル%を加えて得られる共重合体が挙げられる。 Examples of the styrene resin include polystyrene, acrylonitrile-styrene copolymer, methyl methacrylate-styrene copolymer, acrylonitrile-methyl methacrylate-styrene copolymer, acrylonitrile-butadiene-styrene resin, acrylonitrile-acrylic rubber- Examples thereof include copolymers obtained by adding 0 to 70 mol% of a copolymerizable monomer to 30 to 100 mol% of styrene, such as styrene resin and acrylonitrile-EPDM-styrene resin.
また、例えば、フッ素樹脂としては、ポリフッ化エチレン、ポリ2フッ化エチレン、ポリ4フッ化エチレン、エチレン−2フッ化エチレン共重合体、エチレン−4フッ化エチレン共重合体、4フッ化エチレン−パーフルオロアルコキシエチレン共重合体などが挙げられる。 Further, for example, as the fluororesin, polyfluorinated ethylene, polydifluorinated ethylene, polytetrafluoroethylene, ethylene-2 fluoroethylene copolymer, ethylene-4 fluoroethylene copolymer, tetrafluoroethylene- Examples include perfluoroalkoxyethylene copolymers.
得られた光吸収樹脂成形体においては、その表面層であって表面から3mm以下の領域において、窒化チタン、窒化ジルコニウム、窒化ハフニウム、窒化バナジウム、窒化ニオブ、窒化タンタルから選択される少なくとも1種の窒化物微粒子の含有量が0.001g/m2以上、0.4g/m2以下であることが望ましい。
ここで、窒化物微粒子の含有量を規定する領域を、光吸収樹脂成形体の表面層であって表面から3mm以下の領域としたのは、当該光吸収樹脂成形体へレーザーを照射したときに、溶融して接合に寄与する部分が、実質的に、光吸収樹脂成形体の表面層であって、表面から3mm以下の領域だからである。
In the obtained light-absorbing resin molded body, at least one kind selected from titanium nitride, zirconium nitride, hafnium nitride, vanadium nitride, niobium nitride, and tantalum nitride in the surface layer and in a region of 3 mm or less from the surface. It is desirable that the content of the nitride fine particles is 0.001 g / m 2 or more and 0.4 g / m 2 or less.
Here, the region that defines the content of the nitride fine particles is the surface layer of the light-absorbing resin molded body and the region that is 3 mm or less from the surface when the light-absorbing resin molded body is irradiated with laser. This is because the portion that melts and contributes to the bonding is substantially the surface layer of the light-absorbing resin molded body and is an area of 3 mm or less from the surface.
当該光吸収樹脂成形体の表面層であって、表面から3mm以下の領域において、窒化物微粒子の含有量が過剰であると、濃い藍色の着色が行き過ぎた部材となってしまう。さらに、レーザーを照射した際に、局所的に発熱する熱量が多くなり過ぎて樹脂や分散剤が蒸発し、溶着部の周りに気泡の発生を伴うなどの問題が出てくる。反対に、当該含有量が過少であると、レーザーを照射した際に、当該レーザーのエネルギーを十分に吸収することが出来ない。この結果、たとえレーザーパワーを上げても、光透過樹脂と光吸収樹脂成形体のレーザー発熱量が同程度になってしまい、光透過樹脂と光吸収樹脂成形体の両者が溶解したり、変形したり、接合がうまく行かない、などの問題が出てくる。 In the surface layer of the light-absorbing resin molded body, if the content of the nitride fine particles is excessive in a region of 3 mm or less from the surface, a member having excessively deep indigo coloration is obtained. Furthermore, when the laser is irradiated, the amount of heat generated locally increases too much, causing the resin and the dispersant to evaporate, resulting in problems such as the generation of bubbles around the welded part. On the other hand, if the content is too small, the energy of the laser cannot be sufficiently absorbed when the laser is irradiated. As a result, even if the laser power is increased, the laser heat generation amount of the light transmitting resin and the light absorbing resin molded body becomes approximately the same, and both the light transmitting resin and the light absorbing resin molded body are dissolved or deformed. Or problems such as poor bonding.
これらの問題を回避する為、当該光吸収樹脂成形体の表面層であって表面から3mm以下の領域において、窒化物微粒子の含有量は、0.001g/m2〜0.4g/m2の範囲内にあることが好ましいこととなる。 To avoid these problems, in the region from a to the surface a surface layer less 3mm of the light-absorbent resin molding, the content of the nitride particles are of 0.001g / m 2 ~0.4g / m 2 It is preferable to be within the range.
表面から3mm以下の領域において、窒化物微粒子の含有量の測定は、プラスチック部材の厚みが3mm以下の場合は、プラスチック部材の重量に対する窒化物微粒子の重量の割合がそのまま含有量となり、プラスチック部材の厚みが3mmを超える場合は、成形体の断面透過電子顕微鏡写真を撮影し、表面から厚さ3mmまでの領域中に含まれる、窒化物微粒子の面積から面分率を算出し、その面分率で均一に成形体中に含有されるとして体積分率を算出し、これを含有量とした。 In the region of 3 mm or less from the surface, the measurement of the content of the nitride fine particles is such that when the thickness of the plastic member is 3 mm or less, the ratio of the weight of the nitride fine particles to the weight of the plastic member is the content. When the thickness exceeds 3 mm, a cross-sectional transmission electron micrograph of the molded body is taken, and the area fraction is calculated from the area of the nitride fine particles contained in the region from the surface to the thickness of 3 mm. The volume fraction was calculated as if it was uniformly contained in the molded product, and this was taken as the content.
光吸収樹脂成形体は、さらに必要に応じて、粘度調整剤、導電付与材、酸化防止剤、安定剤、潤滑剤、充填剤、ガラス繊維やカーボン繊維などの補強材、染料、顔料の1種または2種以上を含有していてもよい。 If necessary, the light-absorbing resin molded body may be a viscosity modifier, a conductivity-imparting material, an antioxidant, a stabilizer, a lubricant, a filler, a reinforcing material such as glass fiber or carbon fiber, a dye, or a pigment. Or you may contain 2 or more types.
光吸収樹脂成形体の形状は、必要に応じて任意の形状に成形可能であり、平面状および曲面状、その他複雑形状に成形することが可能である。また、平面状成形体の厚さは、板状からフィルム状まで必要に応じて任意の厚さに調整することが可能である。さらに平面状に形成した樹脂シートは、後加工によって球面状等任意の形状に成形することができる。 The shape of the light-absorbing resin molding can be molded into an arbitrary shape as necessary, and can be molded into a flat shape, a curved surface shape, or other complicated shapes. Moreover, the thickness of a planar molded object can be adjusted to arbitrary thickness from plate shape to film shape as needed. Furthermore, the resin sheet formed into a flat shape can be formed into an arbitrary shape such as a spherical shape by post-processing.
上記光吸収樹脂成形体の成形方法としては、射出成形、押出成形、圧縮成形または回転成形等の任意の方法を挙げることができる。特に、射出成形により成形品を得る方法と、押出成形により成形品を得る方法が好適に採用される。押出成形により板状、フィルム状の成形品を得る方法として、Tダイなどの押出機を用いて押出した溶融熱可塑性樹脂を冷却ロールで冷却しながら引き取る方法により製造される。 Examples of the method for molding the light-absorbing resin molded body include arbitrary methods such as injection molding, extrusion molding, compression molding, and rotational molding. In particular, a method of obtaining a molded product by injection molding and a method of obtaining a molded product by extrusion molding are preferably employed. As a method for obtaining a plate-like or film-like molded article by extrusion molding, the molded thermoplastic resin is produced by a method in which a molten thermoplastic resin extruded using an extruder such as a T-die is taken out while being cooled by a cooling roll.
アクリル樹脂やフッ素樹脂などのようにモノマー液のキャスティングにより樹脂成形体を製造できる場合は、アクリルシラップ原液中に上記レーザー溶着用光吸収樹脂組成物を混合、溶解するか、または、直接窒化物微粒子の分散液を混合、溶解し、成形用鋳型にキャストし、その後、高分子化工程を経て成形体としても良い。この場合、微粒子分散液に含まれる溶剤、分散剤は、アクリルシラップ原液中に通常含有されるモノマー液、開始剤、架橋剤、その他添加剤と相溶性のものを選択する。これらの溶剤、分散剤が、アクリルポリマーの重合過程を阻害し、その結果、樹脂成形体中に空隙が生じることを回避する為である。 When a resin molding can be produced by casting a monomer solution such as an acrylic resin or a fluororesin, the above laser-absorbing light-absorbing resin composition is mixed and dissolved in the acrylic syrup stock solution, or directly nitride fine particles The dispersion may be mixed and dissolved, cast into a mold for molding, and then formed into a molded body through a polymerizing step. In this case, the solvent and dispersant contained in the fine particle dispersion are selected from those compatible with the monomer liquid, initiator, crosslinking agent, and other additives usually contained in the acrylic syrup stock solution. This is because these solvents and dispersants inhibit the polymerization process of the acrylic polymer and, as a result, avoid the formation of voids in the resin molded body.
レーザー光吸収微粒子である窒化物微粒子は、光吸収樹脂成形体の全体にわたって均一に分散して含有されていても良いし、光吸収樹脂成形体の表面のコーティング膜中に均一分散して含有されていてもよい。コーティング膜には、押出しシート成形の場合に用いられる共押出しで形成される表面層にレーザー光吸収微粒子が均一分散して含有されている場合も含まれる。 The nitride fine particles, which are laser light absorbing fine particles, may be uniformly dispersed throughout the light absorbing resin molded body, or may be uniformly dispersed in the coating film on the surface of the light absorbing resin molded body. It may be. The coating film includes a case where the laser light absorbing fine particles are uniformly dispersed and contained in the surface layer formed by coextrusion used in the case of extrusion sheet molding.
成形体の製造方法により、分散微粒子の分布状態は上記のように大きく分かれるが、当該光吸収樹脂成形体へレーザーを照射したときに、溶融して接合に寄与する部分は、実質的に、光吸収樹脂成形体の表面層であって、表面から3mm以下の領域である。従って、製造方法に関わらず、上記したように、窒化物微粒子の含有量を規定する領域は、得られた光吸収樹脂成形体の表面層であって表面から3mm以下の領域である。 Depending on the method of manufacturing the molded body, the distribution state of the dispersed fine particles is largely divided as described above, but when the light-absorbing resin molded body is irradiated with a laser, the part that contributes to the bonding by melting is substantially light. It is a surface layer of the absorbent resin molding, and is an area of 3 mm or less from the surface. Therefore, regardless of the manufacturing method, as described above, the region defining the content of the nitride fine particles is the surface layer of the obtained light-absorbing resin molded body and is a region of 3 mm or less from the surface.
光吸収樹脂成形体の表面のコーティング膜中にレーザー光吸収微粒子を均一に分散させる方法としては、まずビーズミル、ボールミル、サンドミル、超音波分散などの方法を用いて上記レーザー光吸収微粒子を任意の溶剤及び分散剤に分散したレーザー光吸収微粒子分散液を調製し、これにバインダー樹脂を添加した後、基材の表面にコーティングし、溶媒を蒸発させ所定の方法でバインダー樹脂を硬化させれば、当該微粒子が媒体中に分散したコーティング薄膜の形成が可能となる。コーティング膜の厚さは特に限定しないが、1μm〜100μm程度の範囲が好ましい。コーティングの方法は、基材表面に微粒子含有樹脂が均一にコートできればよく、特に限定されないが、例えば、バーコート法、グラビヤコート法、スプレーコート法、ディップコート法、スクリーン印刷、はけ塗り等が挙げられる。また、微粒子を直接バインダー樹脂中に分散したものは、基材表面に塗布後、溶媒を蒸発させる必要が無く、環境的、工業的に好ましい。 As a method for uniformly dispersing the laser light absorbing fine particles in the coating film on the surface of the light absorbing resin molded body, first, the laser light absorbing fine particles are made into an arbitrary solvent by using a method such as a bead mill, a ball mill, a sand mill, or an ultrasonic dispersion. And a laser light-absorbing fine particle dispersion dispersed in a dispersing agent, and after adding a binder resin to this, coating the surface of the substrate, evaporating the solvent and curing the binder resin by a predetermined method, A coating thin film in which fine particles are dispersed in a medium can be formed. Although the thickness of a coating film is not specifically limited, The range of about 1 micrometer-100 micrometers is preferable. The coating method is not particularly limited as long as the fine particle-containing resin can be uniformly coated on the surface of the substrate, and examples thereof include a bar coating method, a gravure coating method, a spray coating method, a dip coating method, screen printing, and brush coating. Can be mentioned. In addition, a material in which fine particles are directly dispersed in a binder resin is environmentally and industrially preferable because it is not necessary to evaporate the solvent after coating on the substrate surface.
上記バインダー樹脂としては、例えば、UV硬化樹脂、熱硬化樹脂、電子線硬化樹脂、常温硬化樹脂、熱可塑樹脂等が目的に応じて選定可能である。 As the binder resin, for example, a UV curable resin, a thermosetting resin, an electron beam curable resin, a room temperature curable resin, a thermoplastic resin, or the like can be selected according to the purpose.
具体的には、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、エチレン酢酸ビニル共重合体、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、ふっ素樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリビニルブチラール樹脂が挙げられる。また、金属アルコキシドを用いたバインダーの利用も可能である。上記金属アルコキシドとしては、Si、Ti、Al、Zr等のアルコキシドが代表的である。これら金属アルコキシドを用いたバインダーは加水分解して、加熱することで酸化物膜を形成することが可能である。 Specifically, polyethylene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl alcohol resin, polystyrene resin, polypropylene resin, ethylene vinyl acetate copolymer, polyester resin, polyethylene terephthalate resin, fluorine resin, polycarbonate resin, acrylic resin And polyvinyl butyral resin. Also, a binder using a metal alkoxide can be used. Representative examples of the metal alkoxide include alkoxides such as Si, Ti, Al, and Zr. A binder using these metal alkoxides can be hydrolyzed and heated to form an oxide film.
レーザー溶着する光透過性樹脂部材と光吸収樹脂成形体との接合面は、平面であっても凹形と凸形のはめ合わせでも良い。接合面の片面、または両面にコーティングされていても良い。 The bonding surface between the light-transmitting resin member to be laser-welded and the light-absorbing resin molding may be a flat surface or a concave and convex fitting. It may be coated on one side or both sides of the joint surface.
照射するレーザー光の照射条件は適宜可能であるが、通常レーザー出力は5〜500W、走査速度は2mm/s〜500mm/sの範囲で行い、レーザー光照射角度は接合面に垂直に照射することが好ましい。 Irradiation conditions of the laser beam to be irradiated can be appropriately determined. Usually, the laser output is in the range of 5 to 500 W, the scanning speed is in the range of 2 mm / s to 500 mm / s, and the laser beam irradiation angle is irradiated perpendicularly to the bonding surface. Is preferred.
以下に、本発明の実施例を比較例とともに具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。 Examples of the present invention will be specifically described below together with comparative examples. However, the present invention is not limited to the following examples.
(実施例1)
熱プラズマ法で窒化チタンTiNの微粒子を作製した。当該TiN微粒子がNaCl型結晶構造のTiN単相である事は粉末X線回折法で確認した。
(Example 1)
Fine particles of titanium nitride TiN were prepared by a thermal plasma method. It was confirmed by powder X-ray diffraction that the TiN fine particles were a TiN single phase having a NaCl type crystal structure.
このTiN微粒子5重量%と、高分子系分散剤として東亞合成(株)製スチレン・アクリル系高分子分散剤UG−4030(室温で固形粉末状であり、ガラス転移温度52℃)のトルエン溶液(有効成分40%)37.5重量%と、トルエン57.5重量%とを秤量し、ジルコニアビ−ズを入れたペイントシェーカー内に充填して6時間粉砕・分散処理することによって窒化チタンTiNの微粒子分散液(A液)を調製した。 A toluene solution of 5% by weight of the TiN fine particles and a styrene / acrylic polymer dispersant UG-4030 (solid powder at room temperature, glass transition temperature 52 ° C.) manufactured by Toagosei Co., Ltd. as a polymer dispersant. 40% active ingredient) 37.5% by weight and 57.5% by weight of toluene, weighed in a paint shaker containing zirconia beads, and pulverized and dispersed for 6 hours. A fine particle dispersion (liquid A) was prepared.
ここで、微粒子分散液(A液)内における微粒子の分散粒子径を、動的光散乱法を原理とした装置(大塚電子(株)社製ELS−8000)によって測定したところ、104nmであった。次に、当該A液をトルエンで希釈し、レーザー光吸収剤濃度を0.001重量%とした。当該A液のトルエン希釈液を1cmの厚みを持つガラスセルに入れ、分光光度計(日立製作所製分光光度計U−4000)を用いて、紫外から近赤外に亘って透過率を測定した。当該A液のトルエン希釈液においてLambert−Beerの法則が成り立つものと仮定し、TiNの重量濃度換算の吸収係数εを、次式(1)を用いて各波長において求めた。当該重量吸収係数εを可視・近赤外領域の波長に対してプロットしたものを図1の太い実線に示す。 Here, when the dispersed particle diameter of the fine particles in the fine particle dispersion (liquid A) was measured by an apparatus based on the principle of dynamic light scattering (ELS-8000 manufactured by Otsuka Electronics Co., Ltd.), it was 104 nm. . Next, the solution A was diluted with toluene to adjust the laser light absorber concentration to 0.001% by weight. The toluene diluted solution of the solution A was put in a glass cell having a thickness of 1 cm, and the transmittance was measured from ultraviolet to near infrared using a spectrophotometer (Hitachi Ltd. spectrophotometer U-4000). Assuming that the Lambert-Beer law holds in the toluene dilution of the A solution, the absorption coefficient ε in terms of weight concentration of TiN was determined at each wavelength using the following equation (1). The weight absorption coefficient ε plotted with respect to the wavelength in the visible / near infrared region is shown by a thick solid line in FIG.
ε=[log(100/T)]/C (T:波長λにおける透過率%、C:分散液のレーザー光吸収剤濃度g/L) ・・・・・・(1)
図1に示すように、窒化チタンTiN微粒子には、波長710nm付近にピークを持つ大きい吸収帯が観察された。可視光部分に吸収がかかっているため当該TiN微粒子分散液は濃い紫色〜藍色を呈した。図1の吸収プロファイルにより、TiN微粒子分散液は、波長940nmでは30.61L/gcm、波長1064nmでは23.82L/gcmと、それぞれ十分に大きな吸収係数を持ち、波長800〜1130nmにわたって20L/gcm以上の大きさの吸収係数をもつことにより、波長1064nmのNd:YAGレーザーや、波長が800〜1000nmである半導体レーザーからのレーザー光を吸収するのに好都合であることが確認された。
ε = [log (100 / T)] / C (T:% transmittance at wavelength λ, C: concentration of laser light absorber in dispersion liquid g / L) (1)
As shown in FIG. 1, a large absorption band having a peak near a wavelength of 710 nm was observed in the titanium nitride TiN fine particles. Since the visible light portion is absorbed, the TiN fine particle dispersion has a deep purple to indigo color. From the absorption profile of FIG. 1, the TiN fine particle dispersion has a sufficiently large absorption coefficient of 30.61 L / gcm at a wavelength of 940 nm and 23.82 L / gcm at a wavelength of 1064 nm, and is 20 L / gcm or more over a wavelength range of 800 to 1130 nm. It has been confirmed that it is advantageous for absorbing laser light from an Nd: YAG laser having a wavelength of 1064 nm or a semiconductor laser having a wavelength of 800 to 1000 nm.
(実施例2)
実施例1に係るA液を加熱してトルエン溶媒成分を蒸発させて、窒化チタンTiN微粒子25重量%が高分子分散剤の中に均一分散している固形状の粉末である光吸収樹脂組成物(B粉)を得た。この光吸収樹脂組成物(B粉)9重量部と、無着色で透明なアクリル樹脂ペレット1重量部とを混合し、二軸押出機を用いて280℃で溶融混練し、押出されたストランドをペレット状にカットし、TiN微粒子濃度2.5重量%の光吸収成分含有マスターバッチを得た。
(Example 2)
The light-absorbing resin composition, which is a solid powder in which the liquid A according to Example 1 is heated to evaporate the toluene solvent component and 25% by weight of titanium nitride TiN fine particles are uniformly dispersed in the polymer dispersant. (B powder) was obtained. 9 parts by weight of this light-absorbing resin composition (B powder) and 1 part by weight of uncolored and transparent acrylic resin pellets are mixed, melt-kneaded at 280 ° C. using a twin-screw extruder, and the extruded strand is It was cut into pellets to obtain a light-absorbing component-containing master batch having a TiN fine particle concentration of 2.5% by weight.
このマスターバッチと、アクリル樹脂ペレットとをブレンダーに充填し、均一に混合した後、Tダイを用いて厚さ2.0mmに押出成形し、TiN微粒子が濃度0.002重量%で樹脂全体に均一に分散したアクリル樹脂試験プレートであるプレート1(光吸収樹脂成形物)を作製した。プレート1のサイズは、幅5cm×長さ9cmである。 This master batch and acrylic resin pellets are filled into a blender, mixed uniformly, and then extruded to a thickness of 2.0 mm using a T-die. TiN fine particles are uniformly distributed throughout the resin at a concentration of 0.002% by weight. A plate 1 (light-absorbing resin molding), which is an acrylic resin test plate dispersed in, was prepared. The size of the plate 1 is 5 cm wide × 9 cm long.
ここで、厚さ2mmの当該プレート1に含有されるTiN微粒子の含有量は、(アクリル樹脂プレート1m2の体積)×(アクリル樹脂の密度g/cm3)×(微粒子重量濃度%)で求められ、100cm×100cm×0.2cm×1.2g/cm3×0.00002=0.048gである。 Here, the content of the TiN fine particles contained in the plate 1 having a thickness of 2 mm is obtained by (volume of acrylic resin plate 1 m 2 ) × (density of acrylic resin g / cm 3 ) × (weight fine particle concentration%). 100 cm × 100 cm × 0.2 cm × 1.2 g / cm 3 × 0.00002 = 0.048 g.
次に、当該プレート1の光学特性を、分光光度計(日立製作所(株)製 U−4000)を用いて測定した。その結果、図2に示すように、可視光透過率は59%、940nmにおける透過率は56%であり、十分な視覚的な明るさを持つと同時に、半導体レーザーの波長940nmの光は十分に吸収されることが分かった。 Next, the optical characteristic of the said plate 1 was measured using the spectrophotometer (Hitachi Ltd. U-4000). As a result, as shown in FIG. 2, the visible light transmittance is 59%, and the transmittance at 940 nm is 56%. At the same time, the light of the semiconductor laser having a wavelength of 940 nm is sufficiently bright. It was found that it was absorbed.
次に、プレート1と同サイズであるが、TiN微粒子を含有しないプレートを作製しプレート2(光透過樹脂成形物)とした。 Next, a plate having the same size as that of the plate 1 but not containing TiN fine particles was prepared and used as a plate 2 (light-transmitting resin molded product).
ここで、TiN微粒子を含有するプレート1と、含有しないプレート2とを重ね合わせ、圧着治具で密着させておいて、幅方向(5cm)へ3cmに亘ってレーザー光を照射した。レーザー光照射は、出力30Wのファインデバイス社製半導体レーザー(波長940nm)を用いて焦点径1.2mm、走査速度16mm/sで行った。レーザー光の照射に伴って、光吸収微粒子を含有するプレート1が発熱して溶融し、更に熱の伝播によりプレート2も溶融して両者が融着し、冷却により固化して接合が完了した。圧着治具を開放しても接合はそのまま維持された。 Here, the plate 1 containing TiN fine particles and the plate 2 not containing were superposed and brought into close contact with a crimping jig, and laser light was irradiated over 3 cm in the width direction (5 cm). The laser beam irradiation was performed using a fine device semiconductor laser (wavelength 940 nm) with an output of 30 W at a focal diameter of 1.2 mm and a scanning speed of 16 mm / s. With the irradiation of the laser beam, the plate 1 containing the light-absorbing fine particles was heated and melted, and further, the plate 2 was melted by the propagation of heat and fused together, and solidified by cooling to complete the joining. Even when the crimping jig was opened, the bonding was maintained.
外観を目視で観察し、色むらがなく表面光沢も問題ないと評価された。 The appearance was visually observed, and it was evaluated that there was no color unevenness and the surface gloss was satisfactory.
接合された2枚のプレートを両手で持ち、その両端を下側へ、中心部を上側へ力をかけて、接合部の強さを推定した。強い力をかけても接合部がしっかりと維持されることが分かった。以下、接合強度に関しては、図2に示すように、強い力でも接合を維持したものを○、接合されたが軽い力で接合部がはがれたものを×、接合そのものが不完全だったものを××と評価して表示した。 The jointed two plates were held with both hands, and the strength of the joint was estimated by applying a force to both ends of the plate downward and the center toward the top. It was found that the joint was firmly maintained even when a strong force was applied. Hereinafter, as shown in FIG. 2, as for the bonding strength, the case where the bonding is maintained even with a strong force is indicated as ○, the case where the bonding is peeled off with a light force but the bonding is peeled off, and the bonding itself is incomplete. XX was evaluated and displayed.
(比較例1)
実施例1において、東亞合成(株)製スチレン・アクリル系高分子分散剤UG−4030(室温で固形粉末状であり、ガラス転移温度52℃)の替わりに、室温で液体状の高分子分散剤である東亞合成(株)製XG−4000(ガラス転移温度は−61℃)を用いた以外は、実施例1と同様にして比較例1に係るTiN微粒子分散液を作製した。分散粒径121nmのTiN微粒子分散液が作製された。次に、これを加熱してトルエンを蒸発させ、TiN微粒子25重量%が高分子分散剤の中に均一分散した比較例3に係る光吸収樹脂組成物を得た。しかし、この比較例3に係る光吸収樹脂組成物はゼリー状でべたつき、その後の工程で正確な秤量やクリアペレットとの混合が困難であったので、これを廃棄して終了した。
(Comparative Example 1)
In Example 1, instead of styrene / acrylic polymer dispersant UG-4030 (solid powder at room temperature, glass transition temperature 52 ° C.) manufactured by Toagosei Co., Ltd., a polymer dispersant that is liquid at room temperature A TiN fine particle dispersion according to Comparative Example 1 was prepared in the same manner as in Example 1 except that XG-4000 manufactured by Toagosei Co., Ltd. (with a glass transition temperature of −61 ° C.) was used. A TiN fine particle dispersion having a dispersed particle diameter of 121 nm was prepared. Next, this was heated to evaporate toluene, and a light-absorbing resin composition according to Comparative Example 3 in which 25% by weight of TiN fine particles were uniformly dispersed in the polymer dispersant was obtained. However, the light-absorbing resin composition according to Comparative Example 3 was sticky in a jelly form, and accurate weighing and mixing with clear pellets were difficult in the subsequent steps.
(実施例3)
実施例1と同様にして、窒化ジルコニウムZrNの微粒子分散液(微粒子分散液内における微粒子の分散粒子径は、123nmであった)を作製し、続いて実施例2と同様にして、ZrNの微粒子分散液を加熱しトルエン溶媒成分を蒸発させて、微粒子成分(ZrN)を25重量%含有する光吸収樹脂組成物とした。この光吸収樹脂組成物にアクリル樹脂の透明なペレットを混合して、二軸押出機で溶融混練し、押出して光吸収微粒子(ZrN微粒子)成分を2.5重量%含有するマスターバッチを得た。溶融混練温度は、280℃で行なった。このマスターバッチを更に同一のクリアアクリル樹脂ペレットで希釈して、ZrN微粒子が濃度0.002重量%で樹脂全体に均一に分散したアクリル樹脂試験プレートである実施例3に係るプレート1を作製した。(実施例3に係るプレート1は、実施例2に係るプレート1と、同サイズとした。)
当該実施例3に係るプレート1について、分光光度計を用いて300〜2600nmの透過プロファイルを測定し、可視光透過率および940nmにおける透過率を図2に示した。さらに、プレート1と光吸収微粒子を含有しない樹脂試験プレートであるプレート2(実施例2で説明したプレート2と、同サイズである)とを、密着させて半導体レーザー光を照射した。この場合のプレート1(厚さ2mm)のZrN微粒子の含有量は、0.048g/m2である。評価結果をまとめて図2に示す。
(Example 3)
A fine particle dispersion of zirconium nitride ZrN was prepared in the same manner as in Example 1 (the dispersed particle diameter of the fine particles in the fine particle dispersion was 123 nm). Subsequently, the fine ZrN particles were obtained in the same manner as in Example 2. The dispersion was heated to evaporate the toluene solvent component to obtain a light-absorbing resin composition containing 25% by weight of the fine particle component (ZrN). This light-absorbing resin composition was mixed with transparent pellets of acrylic resin, melt-kneaded with a twin-screw extruder, and extruded to obtain a master batch containing 2.5 wt% of light-absorbing fine particles (ZrN fine particles). . The melt kneading temperature was 280 ° C. This master batch was further diluted with the same clear acrylic resin pellets to produce plate 1 according to Example 3, which was an acrylic resin test plate in which ZrN fine particles were uniformly dispersed throughout the resin at a concentration of 0.002% by weight. (The plate 1 according to Example 3 has the same size as the plate 1 according to Example 2.)
About the plate 1 which concerns on the said Example 3, the transmission profile of 300-2600 nm was measured using the spectrophotometer, and the visible light transmittance | permeability and the transmittance | permeability in 940 nm were shown in FIG. Furthermore, the plate 1 and the plate 2 (which is the same size as the plate 2 described in Example 2), which is a resin test plate not containing light-absorbing fine particles, were brought into close contact with each other and irradiated with semiconductor laser light. In this case, the content of the ZrN fine particles in the plate 1 (thickness 2 mm) is 0.048 g / m 2 . The evaluation results are summarized in FIG.
図2から明らかなように、この窒化ジルコニウムZrN微粒子を添加した光吸収樹脂成形物を用いると、可視光透過率は62%、940nmにおける透過率は58%であり、可視光が十分に通されて明るい透明性を維持しつつも、表面光沢を維持した美しい溶着がなされ、接合部の概観や強度にも問題の無いレーザー溶着を行なうことが可能となる。 As is apparent from FIG. 2, when this light-absorbing resin molded product added with the zirconium nitride ZrN fine particles is used, the visible light transmittance is 62% and the transmittance at 940 nm is 58%, so that visible light is sufficiently transmitted. In addition, it is possible to perform laser welding with no problem in the appearance and strength of the joint portion, while maintaining beautiful and transparent transparency and maintaining beautiful surface gloss.
(実施例4)
実施例1と同様にして、窒化ハフニウムHfNの微粒子分散液(微粒子分散液内における微粒子の分散粒子径は、130nmであった)を作製し、続いて実施例2と同様にして、HfNの微粒子分散液を加熱しトルエン溶媒成分を蒸発させて、微粒子成分(HfN)を25重量%含有する光吸収樹脂組成物とする。この光吸収樹脂組成物にポリカーボネート樹脂の透明なペレットを混合して、二軸押出機で溶融混練し、押出して光吸収微粒子(HfN微粒子)成分を2.5重量%含有するマスターバッチを得た。溶融混練温度は、280℃で行なった。このマスターバッチを更に同一のクリアポリカーボネート樹脂ペレットで希釈して、HfN微粒子が濃度0.002重量%で樹脂全体に均一に分散したポリカーボネート樹脂試験プレートである実施例4に係るプレート1を作製した。
Example 4
A fine particle dispersion of hafnium nitride HfN (the dispersion particle size of the fine particles in the fine particle dispersion was 130 nm) was prepared in the same manner as in Example 1, and then the fine particles of HfN were prepared in the same manner as in Example 2. The dispersion is heated to evaporate the toluene solvent component to obtain a light-absorbing resin composition containing 25% by weight of the fine particle component (HfN). This light-absorbing resin composition was mixed with transparent pellets of polycarbonate resin, melt-kneaded with a twin screw extruder, and extruded to obtain a master batch containing 2.5% by weight of light-absorbing fine particles (HfN fine particles). . The melt kneading temperature was 280 ° C. This master batch was further diluted with the same clear polycarbonate resin pellets to prepare plate 1 according to Example 4, which is a polycarbonate resin test plate in which HfN fine particles were uniformly dispersed throughout the resin at a concentration of 0.002% by weight.
当該実施例4に係るプレート1を、分光光度計を用いて300〜2600nmの透過プロファイルを測定し、可視光透過率および940nmにおける透過率を図2に示した。さらに、プレート1と光吸収微粒子を含有しない樹脂試験プレートであるプレート2(実施例2で説明したプレート2と、同サイズである。)とを、密着させて半導体レーザー光を照射した。なおこの場合のプレート1(厚さ2mm)のHfN微粒子含有量は、0.048g/m2である。評価結果をまとめて図2に示す。 The plate 1 according to Example 4 was measured for a transmission profile of 300 to 2600 nm using a spectrophotometer, and the visible light transmittance and the transmittance at 940 nm are shown in FIG. Furthermore, the plate 1 and the plate 2 (which is the same size as the plate 2 described in Example 2), which is a resin test plate not containing light-absorbing fine particles, were brought into close contact with each other and irradiated with semiconductor laser light. In this case, the HfN fine particle content of the plate 1 (thickness 2 mm) is 0.048 g / m 2 . The evaluation results are summarized in FIG.
図2から明らかなように、この窒化ハフニウムHfN微粒子を添加した光吸収樹脂成形物を用いると、可視光透過率は58%、940nmにおける透過率は55%であり、可視光が十分に通されて明るい透明性を維持しつつも、表面光沢を維持した美しい溶着がなされ、接合部の概観や強度にも問題の無いレーザー溶着を行なうことが可能となる。 As is apparent from FIG. 2, when the light-absorbing resin molded product to which the hafnium nitride HfN fine particles are added is used, the visible light transmittance is 58% and the transmittance at 940 nm is 55%. In addition, it is possible to perform laser welding with no problem in the appearance and strength of the joint portion, while maintaining beautiful and transparent transparency and maintaining beautiful surface gloss.
(実施例5)
実施例1と同様にして、窒化タンタルTaNの微粒子分散液(微粒子分散液内における微粒子の分散粒子径は、196nmであった)を作製し、続いて実施例2と同様にして、TaNの微粒子分散液を加熱しトルエン溶媒成分を蒸発させて、微粒子成分(TaN)を25重量%含有する光吸収樹脂組成物とする。この光吸収樹脂組成物にポリカーボネート樹脂の透明なペレットを混合して、二軸押出機で溶融混練し、押出して光吸収微粒子(TaN微粒子)成分を2.5重量%含有するマスターバッチを得た。溶融混練温度は、280℃で行なった。このマスターバッチを更に同一のクリアポリカーボネート樹脂ペレットで希釈して、TaN微粒子が濃度0.0025重量%で樹脂全体に均一に分散したポリカーボネート樹脂試験プレートである実施例5に係るプレート1を作製した。
(Example 5)
A fine particle dispersion of tantalum nitride TaN was prepared in the same manner as in Example 1 (the dispersed particle diameter of the fine particles in the fine particle dispersion was 196 nm). Subsequently, the fine particles of TaN were prepared in the same manner as in Example 2. The dispersion is heated to evaporate the toluene solvent component to obtain a light-absorbing resin composition containing 25% by weight of the fine particle component (TaN). This light-absorbing resin composition was mixed with transparent pellets of polycarbonate resin, melt-kneaded with a twin-screw extruder, and extruded to obtain a master batch containing 2.5 wt% of light-absorbing fine particles (TaN fine particles). . The melt kneading temperature was 280 ° C. This master batch was further diluted with the same clear polycarbonate resin pellets to produce Plate 1 according to Example 5, which was a polycarbonate resin test plate in which TaN fine particles were uniformly dispersed throughout the resin at a concentration of 0.0025% by weight.
当該実施例5に係るプレート1を、分光光度計を用いて300〜2600nmの透過プロファイルを測定し、可視光透過率および940nmにおける透過率を図2に示した。さらに、プレート1と光吸収微粒子を含有しない樹脂試験プレートであるプレート2(実施例2で説明したプレート2と、同サイズである。)とを、密着させて半導体レーザー光を照射した。なおこの場合のプレート1(厚さ2mm)のTaN微粒子含有量は、0.061g/m2である。評価結果をまとめて図2に示す。 The plate 1 according to Example 5 was measured for a transmission profile of 300 to 2600 nm using a spectrophotometer, and the visible light transmittance and the transmittance at 940 nm are shown in FIG. Furthermore, the plate 1 and the plate 2 (which is the same size as the plate 2 described in Example 2), which is a resin test plate not containing light-absorbing fine particles, were brought into close contact with each other and irradiated with semiconductor laser light. In this case, the content of TaN fine particles in the plate 1 (thickness 2 mm) is 0.061 g / m 2 . The evaluation results are summarized in FIG.
図2から明らかなように、この窒化タンタルTaN微粒子を添加した光吸収樹脂成形物を用いると、可視光透過率は50%、940nmにおける透過率は47%であり、可視光が十分に通されて明るい透明性を維持しつつも、表面光沢を維持した美しい溶着がなされ、接合部の概観や強度にも問題の無いレーザー溶着を行なうことが可能となる。 As is apparent from FIG. 2, when the light-absorbing resin molded product to which the tantalum nitride TaN fine particles are added is used, the visible light transmittance is 50%, and the transmittance at 940 nm is 47%. In addition, it is possible to perform laser welding with no problem in the appearance and strength of the joint portion, while maintaining beautiful and transparent transparency and maintaining beautiful surface gloss.
(実施例6)
実施例1と同様にして、窒化チタンTiNの微粒子分散液(微粒子分散液内における微粒子の分散粒子径は、112nmであった)を作製し、続いて実施例2と同様にして、TiNの微粒子分散液を加熱しトルエン溶媒成分を蒸発させて、微粒子成分(TiN)を25重量%含有する光吸収樹脂組成物とする。この光吸収樹脂組成物にポリエチレンテレフタレート樹脂の透明なペレットを混合して、二軸押出機で溶融混練し、押出して光吸収微粒子(TiN微粒子)成分を2.5重量%含有するマスターバッチを得た。このマスターバッチを更に同一のクリアなポリエチレンテレフタレート樹脂ペレットで希釈して、TiN微粒子が濃度0.004重量%で樹脂全体に均一に分散したポリエチレンテレフタレート樹脂試験プレートである実施例6に係るプレート1を作製した。
(Example 6)
A fine particle dispersion of titanium nitride TiN was prepared in the same manner as in Example 1 (the dispersed particle diameter of the fine particles in the fine particle dispersion was 112 nm). Subsequently, the fine particles of TiN were prepared in the same manner as in Example 2. The dispersion is heated to evaporate the toluene solvent component to obtain a light-absorbing resin composition containing 25% by weight of the fine particle component (TiN). This light-absorbing resin composition is mixed with transparent pellets of polyethylene terephthalate resin, melt-kneaded with a twin screw extruder, and extruded to obtain a masterbatch containing 2.5% by weight of light-absorbing fine particles (TiN fine particles). It was. The master batch was further diluted with the same clear polyethylene terephthalate resin pellets, and the plate 1 according to Example 6, which is a polyethylene terephthalate resin test plate in which TiN fine particles were uniformly dispersed throughout the resin at a concentration of 0.004% by weight, was obtained. Produced.
当該実施例6に係るプレート1を、分光光度計を用いて300〜2600nmの透過プロファイルを測定し、可視光透過率および940nmにおける透過率を図2に示した。さらに、プレート1と光吸収微粒子を含有しない樹脂試験プレートであるプレート2(実施例2で説明したプレート2と、同サイズである。)とを、密着させて半導体レーザー光を照射した。なおこの場合のプレート1(厚さ2mm)のTiN微粒子含有量は、0.096g/m2である。評価結果をまとめて図2に示す。
図2から明らかなように、このTiN微粒子を添加したポリエチレンテレフタレートベースの光吸収樹脂成形物を用いると、可視光透過率は39%、940nmにおける透過率は34%であり、可視光が通されて透明性を維持しつつも、表面光沢を維持した美しい溶着がなされ、接合部の概観や強度にも問題の無いレーザー溶着を行なうことが可能となる。
(実施例7)
実施例1と同様にして、窒化ニオブNbNの微粒子分散液(微粒子分散液内における微粒子の分散粒子径は、225nmであった)を作製し、続いて実施例2と同様にして、NbNの微粒子分散液を加熱しトルエン溶媒成分を蒸発させて、微粒子成分(NbN)を25重量%含有する光吸収樹脂組成物とする。この光吸収樹脂組成物にポリスチレン樹脂の透明なペレットを混合して、二軸押出機で溶融混練し、押出して光吸収微粒子(NbN微粒子)成分を2.5重量%含有するマスターバッチを得た。このマスターバッチを更に同一のクリアなポリスチレン樹脂ペレットで希釈して、NbN微粒子が濃度0.0068重量%で樹脂全体に均一に分散したポリスチレン樹脂試験プレートである実施例7に係るプレート1を作製した。
The plate 1 according to Example 6 was measured for a transmission profile of 300 to 2600 nm using a spectrophotometer, and the visible light transmittance and the transmittance at 940 nm are shown in FIG. Furthermore, the plate 1 and the plate 2 (which is the same size as the plate 2 described in Example 2), which is a resin test plate not containing light-absorbing fine particles, were brought into close contact with each other and irradiated with semiconductor laser light. In this case, the TiN fine particle content of the plate 1 (thickness 2 mm) is 0.096 g / m 2 . The evaluation results are summarized in FIG.
As can be seen from FIG. 2, when the light-absorbing resin molding based on polyethylene terephthalate to which the TiN fine particles are added is used, the visible light transmittance is 39% and the transmittance at 940 nm is 34%. Therefore, it is possible to perform laser welding with no problem in the appearance and strength of the bonded portion, while maintaining beautiful transparency while maintaining transparency.
(Example 7)
In the same manner as in Example 1, a fine particle dispersion of niobium nitride NbN (dispersed particle size of fine particles in the fine particle dispersion was 225 nm) was prepared. Subsequently, in the same manner as in Example 2, NbN fine particles The dispersion is heated to evaporate the toluene solvent component to obtain a light-absorbing resin composition containing 25% by weight of the fine particle component (NbN). This light-absorbing resin composition was mixed with transparent pellets of polystyrene resin, melt-kneaded with a twin screw extruder, and extruded to obtain a masterbatch containing 2.5 wt% of light-absorbing fine particles (NbN fine particles). . This master batch was further diluted with the same clear polystyrene resin pellets to produce plate 1 according to Example 7, which was a polystyrene resin test plate in which NbN fine particles were uniformly dispersed throughout the resin at a concentration of 0.0068% by weight. .
当該実施例7に係るプレート1を、分光光度計を用いて300〜2600nmの透過プロファイルを測定し、可視光透過率および940nmにおける透過率を図2に示した。さらに、プレート1と光吸収微粒子を含有しない樹脂試験プレートであるプレート2(実施例2で説明したプレート2と、同サイズである。)とを、密着させて半導体レーザー光を照射した。なおこの場合のプレート1(厚さ2mm)のNbN微粒子含有量は、0.163g/m2である。評価結果をまとめて図2に示す。 The plate 1 according to Example 7 was measured for a transmission profile of 300 to 2600 nm using a spectrophotometer, and the visible light transmittance and the transmittance at 940 nm are shown in FIG. Furthermore, the plate 1 and the plate 2 (which is the same size as the plate 2 described in Example 2), which is a resin test plate not containing light-absorbing fine particles, were brought into close contact with each other and irradiated with semiconductor laser light. In this case, the NbN fine particle content of the plate 1 (thickness 2 mm) is 0.163 g / m 2 . The evaluation results are summarized in FIG.
図2から明らかなように、このNbN微粒子を添加したポリスチレンベースの光吸収樹脂成形物を用いると、可視光透過率は25%、940nmにおける透過率は24%であり、可視光が通されて透明性を維持しつつも、表面光沢を維持した美しい溶着がなされ、接合部の概観や強度にも問題の無いレーザー溶着を行なうことが可能となる。 As can be seen from FIG. 2, when this polystyrene-based light-absorbing resin molding added with NbN fine particles is used, the visible light transmittance is 25%, and the transmittance at 940 nm is 24%. While maintaining transparency, beautiful welding is performed while maintaining surface gloss, and laser welding can be performed with no problem in the appearance and strength of the joint.
(実施例8)
実施例1と同様にして、窒化チタンTiNの微粒子分散液(微粒子分散液内における微粒子の分散粒子径は、139nmであった)を作製し、続いて実施例2と同様にして、TiNの微粒子分散液を加熱しトルエン溶媒成分を蒸発させて、微粒子成分(TiN)を25重量%含有する光吸収樹脂組成物とする。この光吸収樹脂組成物にポリアミド樹脂の透明なペレットを混合して、二軸押出機で溶融混練し、押出して光吸収微粒子(TiN微粒子)成分を2.5重量%含有するマスターバッチを得た。このマスターバッチを更に同一のクリアなポリアミド樹脂ペレットで希釈して、TiN微粒子が濃度0.001重量%で樹脂全体に均一に分散したポリアミド樹脂試験プレートである実施例8に係るプレート1を作製した。
(Example 8)
A fine particle dispersion of titanium nitride TiN was prepared in the same manner as in Example 1 (the dispersed particle diameter of the fine particles in the fine particle dispersion was 139 nm). Subsequently, TiN fine particles were obtained in the same manner as in Example 2. The dispersion is heated to evaporate the toluene solvent component to obtain a light-absorbing resin composition containing 25% by weight of the fine particle component (TiN). This light-absorbing resin composition was mixed with transparent pellets of polyamide resin, melt-kneaded with a twin-screw extruder, and extruded to obtain a master batch containing 2.5 wt% of light-absorbing fine particles (TiN fine particles). . This master batch was further diluted with the same clear polyamide resin pellets to produce plate 1 according to Example 8, which was a polyamide resin test plate in which TiN fine particles were uniformly dispersed throughout the resin at a concentration of 0.001% by weight. .
当該実施例8に係るプレート1を、分光光度計を用いて300〜2600nmの透過プロファイルを測定し、可視光透過率および940nmにおける透過率を図2に示した。さらに、プレート1と光吸収微粒子を含有しない樹脂試験プレートであるプレート2(実施例2で説明したプレート2と、同サイズである。)とを、密着させて半導体レーザー光を照射した。なおこの場合のプレート1(厚さ2mm)のTiN微粒子含有量は、0.024g/m2である。評価結果をまとめて図2に示す。 The plate 1 according to Example 8 was measured for a transmission profile of 300 to 2600 nm using a spectrophotometer, and the visible light transmittance and the transmittance at 940 nm are shown in FIG. Furthermore, the plate 1 and the plate 2 (which is the same size as the plate 2 described in Example 2), which is a resin test plate not containing light-absorbing fine particles, were brought into close contact with each other and irradiated with semiconductor laser light. In this case, the TiN fine particle content of the plate 1 (thickness 2 mm) is 0.024 g / m 2 . The evaluation results are summarized in FIG.
図2から明らかなように、このTiN微粒子を添加したポリエチレンテレフタレートベースの光吸収樹脂成形物を用いると、可視光透過率は73%、940nmにおける透過率は69%であり、可視光が十分に通されて明るい透明性を維持しつつも、表面光沢を維持した美しい溶着がなされ、接合部の概観や強度にも問題の無いレーザー溶着を行なうことが可能となる。 As can be seen from FIG. 2, when the light-absorbing resin molding based on polyethylene terephthalate to which the TiN fine particles are added is used, the visible light transmittance is 73%, and the transmittance at 940 nm is 69%. It is possible to perform laser welding without causing any problems in the appearance and strength of the bonded portion, while maintaining beautiful transparency while maintaining the bright transparency.
(実施例9)
実施例1と同様にして、窒化チタンTiNの微粒子分散液(微粒子分散液内における微粒子の分散粒子径は、160nmであった)を作製し、続いて実施例2と同様にして、TiNの微粒子分散液を加熱しトルエン溶媒成分を蒸発させて、微粒子成分(TiN)を25重量%含有する光吸収樹脂組成物とする。この光吸収樹脂組成物にポリエチレン樹脂の透明なペレットを混合して、二軸押出機で溶融混練し、押出して光吸収微粒子(TiN微粒子)成分を2.5重量%含有するマスターバッチを得た。このマスターバッチを更に同一のクリアなポリエチレン樹脂ペレットで希釈して、TiN微粒子が濃度0.0021重量%で樹脂全体に均一に分散したポリエチレン樹脂試験プレートである実施例9に係るプレート1を作製した。このプレート1は光を十分透過したがやや曇りが見られた。
Example 9
A fine particle dispersion of titanium nitride TiN was prepared in the same manner as in Example 1 (the dispersed particle diameter of the fine particles in the fine particle dispersion was 160 nm), and subsequently, fine particles of TiN were obtained in the same manner as in Example 2. The dispersion is heated to evaporate the toluene solvent component to obtain a light-absorbing resin composition containing 25% by weight of the fine particle component (TiN). This light-absorbing resin composition was mixed with transparent pellets of polyethylene resin, melt-kneaded with a twin screw extruder, and extruded to obtain a master batch containing 2.5% by weight of light-absorbing fine particles (TiN fine particles). . This master batch was further diluted with the same clear polyethylene resin pellets, and a plate 1 according to Example 9 which was a polyethylene resin test plate in which TiN fine particles were uniformly dispersed throughout the resin at a concentration of 0.0021% by weight was produced. . Although this plate 1 transmitted light sufficiently, it was slightly cloudy.
当該実施例9に係るプレート1を、分光光度計を用いて300〜2600nmの透過プロファイルを測定し、可視光透過率および940nmにおける透過率を図2に示した。さらに、プレート1と光吸収微粒子を含有しない樹脂試験プレートであるプレート2(実施例2で説明したプレート2と、同サイズである。)とを、密着させて半導体レーザー光を照射した。なおこの場合のプレート1(厚さ2mm)のTiN微粒子含有量は、0.050g/m2である。評価結果をまとめて図2に示す。 The plate 1 according to Example 9 was measured for a transmission profile of 300 to 2600 nm using a spectrophotometer, and the visible light transmittance and the transmittance at 940 nm are shown in FIG. Furthermore, the plate 1 and the plate 2 (which is the same size as the plate 2 described in Example 2), which is a resin test plate not containing light-absorbing fine particles, were brought into close contact with each other and irradiated with semiconductor laser light. In this case, the TiN fine particle content of the plate 1 (thickness 2 mm) is 0.050 g / m 2 . The evaluation results are summarized in FIG.
図2から明らかなように、このTiN微粒子を添加したポリエチレンベースの光吸収樹脂成形物を用いると、可視光透過率は53%、940nmにおける透過率は55%であり、可視光が十分に通されて明るい透明性を維持しつつも、表面光沢を維持した美しい溶着がなされ、接合部の概観や強度にも問題の無いレーザー溶着を行なうことが可能となる。 As can be seen from FIG. 2, when the polyethylene-based light-absorbing resin molded product to which TiN fine particles are added is used, the visible light transmittance is 53% and the transmittance at 940 nm is 55%. As a result, it is possible to perform beautiful laser welding with maintaining the surface gloss while maintaining bright transparency, and it is possible to perform laser welding with no problem in the appearance and strength of the joint.
(実施例10)
実施例1と同様にして、窒化チタンTiNの微粒子分散液(微粒子分散液内における微粒子の分散粒子径は、128nmであった)を作製し、続いて実施例2と同様にして、TiNの微粒子分散液を加熱しトルエン溶媒成分を蒸発させて、微粒子成分(TiN)を25重量%含有する光吸収樹脂組成物とする。この光吸収樹脂組成物にエチレン−4フッ化エチレン共重合体樹脂の透明なペレットを混合して、二軸押出機で溶融混練し、押出して光吸収微粒子(TiN微粒子)成分を2.5重量%含有するマスターバッチを得た。このマスターバッチを更に同一のクリアなエチレン−4フッ化エチレン共重合体樹脂ペレットで希釈して、TiN微粒子が濃度0.0037重量%で樹脂全体に均一に分散したエチレン−4フッ化エチレン共重合体樹脂試験プレートである実施例10に係るプレート1を作製した。
(Example 10)
A fine particle dispersion of titanium nitride TiN was prepared in the same manner as in Example 1 (the dispersed particle diameter of the fine particles in the fine particle dispersion was 128 nm), and subsequently, fine particles of TiN were obtained in the same manner as in Example 2. The dispersion is heated to evaporate the toluene solvent component to obtain a light-absorbing resin composition containing 25% by weight of the fine particle component (TiN). This light-absorbing resin composition is mixed with transparent pellets of ethylene-tetrafluoroethylene copolymer resin, melt-kneaded with a twin-screw extruder, and extruded to give 2.5 parts by weight of light-absorbing fine particles (TiN fine particles). % Containing a master batch. This master batch was further diluted with the same clear ethylene-4 fluoroethylene copolymer resin pellets, and ethylene-4 fluoroethylene copolymer with TiN fine particles uniformly dispersed throughout the resin at a concentration of 0.0037% by weight. A plate 1 according to Example 10 which is a united resin test plate was produced.
当該実施例10に係るプレート1を、分光光度計を用いて300〜2600nmの透過プロファイルを測定し、可視光透過率および940nmにおける透過率を図2に示した。さらに、プレート1と光吸収微粒子を含有しない樹脂試験プレートであるプレート2(実施例2で説明したプレート2と、同サイズである。)とを、密着させて半導体レーザー光を照射した。なおこの場合のプレート1(厚さ2mm)のTiN微粒子含有量は、0.088g/m2である。評価結果をまとめて図2に示す。 The plate 1 according to Example 10 was measured for a transmission profile of 300 to 2600 nm using a spectrophotometer, and the visible light transmittance and the transmittance at 940 nm are shown in FIG. Furthermore, the plate 1 and the plate 2 (which is the same size as the plate 2 described in Example 2), which is a resin test plate not containing light-absorbing fine particles, were brought into close contact with each other and irradiated with semiconductor laser light. In this case, the TiN fine particle content of the plate 1 (thickness 2 mm) is 0.088 g / m 2 . The evaluation results are summarized in FIG.
図2から明らかなように、このTiN微粒子を添加したエチレン−4フッ化エチレン共重合体樹脂ベースの光吸収樹脂成形物を用いると、可視光透過率は44%、940nmにおける透過率は39%であり、可視光が十分に通されて明るい透明性を維持しつつも、表面光沢を維持した美しい溶着がなされ、接合部の概観や強度にも問題の無いレーザー溶着を行なうことが可能となる。
(実施例11)
実施例1と同様にして窒化チタンTiN微粒子5重量%、高分子系分散剤25重量%、トルエン70重量%を含むTiNの微粒子分散液(C液)を作製した。該微粒子分散液内における微粒子の分散粒子径は、118nmであった。この分散液23重量%とハードコート用紫外線硬化樹脂(東亞合成(株)製UV−3701、固形分100%)77重量%とを混合してコーティング液とした。このコーティング液を、厚さ3mmのアクリル樹脂プレート基板上に、バーコーターを用いて塗布、成膜した。このアクリル基板を、60℃で30秒乾燥し溶剤を蒸発させた後、高圧水銀ランプで硬化させ、コーティング膜つきアクリル基板である実施例11に係るプレート1を作製した。
As is apparent from FIG. 2, when the light-absorbing resin molding based on ethylene-4 fluoroethylene copolymer resin added with the TiN fine particles is used, the visible light transmittance is 44%, and the transmittance at 940 nm is 39%. It is possible to perform laser welding with no problem in the appearance and strength of the joint, because beautiful welding is performed while maintaining the surface gloss while maintaining sufficient transparency by passing visible light sufficiently. .
(Example 11)
In the same manner as in Example 1, a TiN fine particle dispersion (solution C) containing 5% by weight of titanium nitride TiN fine particles, 25% by weight of a polymeric dispersant, and 70% by weight of toluene was prepared. The dispersed particle diameter of the fine particles in the fine particle dispersion was 118 nm. 23% by weight of this dispersion and 77% by weight of an ultraviolet curable resin for hard coat (UV-3701 manufactured by Toagosei Co., Ltd., solid content: 100%) were mixed to prepare a coating liquid. This coating solution was applied and formed on a 3 mm thick acrylic resin plate substrate using a bar coater. The acrylic substrate was dried at 60 ° C. for 30 seconds to evaporate the solvent, and then cured with a high-pressure mercury lamp, to produce the plate 1 according to Example 11 which was an acrylic substrate with a coating film.
当該実施例11に係るプレート1のコーティング膜厚は、触針式膜厚計で5μmと測定された。固形分比率からこの膜中の微粒子濃度は1.48重量%であり、厚さ5μmにわたるTiN微粒子の含有量は0.09g/m2である。この実施例11に係るプレート1の光学特性を測定したところ、可視光透過率は46%で可視光領域の光を十分透過している事が分かった。さらに、プレート1と光吸収微粒子を含有しない樹脂試験プレートであるプレート2(実施例2で説明したプレート2と、同サイズである。)とを、プレート1のコーティング面を介して密着させて、半導体レーザー光を照射した。評価結果をまとめて図2に示す。 The coating film thickness of the plate 1 according to Example 11 was measured to be 5 μm with a stylus type film thickness meter. From the solid content ratio, the fine particle concentration in this film is 1.48% by weight, and the content of TiN fine particles over a thickness of 5 μm is 0.09 g / m 2 . When the optical characteristics of the plate 1 according to Example 11 were measured, it was found that the visible light transmittance was 46% and the light in the visible light region was sufficiently transmitted. Further, the plate 1 and the plate 2 (which is the same size as the plate 2 described in Example 2), which is a resin test plate not containing light-absorbing fine particles, are brought into close contact with each other via the coating surface of the plate 1. Irradiated with semiconductor laser light. The evaluation results are summarized in FIG.
図2から明らかなように、このTiN微粒子をコーティングした光吸収樹脂成形物を用いると、可視光透過率は46%、940nmにおける透過率は39%であり、可視光が十分に通されて透明性を維持しつつも、表面光沢を維持した美しい溶着がなされ、接合部の概観や強度にも問題の無いレーザー溶着を行なうことが可能となる。 As is apparent from FIG. 2, when the light-absorbing resin molding coated with the TiN fine particles is used, the visible light transmittance is 46%, and the transmittance at 940 nm is 39%. Beautiful welding with maintaining surface gloss is made while maintaining the properties, and it becomes possible to perform laser welding with no problem in the appearance and strength of the joint.
(比較例2)
住友金属鉱山(株)製ITO微粒子20重量%と、高分子系分散剤35重量%と、トルエン45重量%とを秤量し、ジルコニアビーズを入れたペイントシェーカーに充填して6時間粉砕・分散処理することによって、ITOの微粒子分散液を調製した。当該ITOの微粒子分散液の分散粒子径は、140nmであった。
当該ITOの微粒子分散液をトルエンでレーザー光吸収剤濃度0.1重量%となるように希釈し、実施例1と同様にして重量吸収係数を求め、図1の細い破線に示す。この図1のプロファイルから明らかなように、比較例2に係るITO微粒子分散液は、波長1000nm前後から長い近赤外線波長を吸収する特性があり、波長1064nmのNd:YAGレーザーであれば吸収する可能性があることが分かる。
しかし、比較例2に係るITO微粒子の重量吸収係数は、波長1064nmで約0.35L/gcmと非常に小さい。波長1064nmでの窒化チタンTiNの重量吸収係数は23.8L/gcmであり、ITOはTiNの約1/68の効果しかないことが分かった。波長が800〜1000nmである半導体レーザーに係る領域では、さらにこの差は大きい。波長940nmの重量吸収係数は、ITOの0.19L/gcmに対して、TiNではその161倍の値30.6L/gcmを持つ。従って、比較例2に係るITO微粒子を用いて、本実施例1〜11による微粒子と同様の効果を得ようとした場合、本実施例1〜11による微粒子に比べて2桁〜3桁以上も多い量のITO微粒子を用いる必要があることが分かった。
(Comparative Example 2)
Sumitomo Metal Mining Co., Ltd. ITO
The ITO fine particle dispersion was diluted with toluene to a laser light absorber concentration of 0.1% by weight, and the weight absorption coefficient was determined in the same manner as in Example 1 and is shown by a thin broken line in FIG. As is apparent from the profile of FIG. 1, the ITO fine particle dispersion according to Comparative Example 2 has a characteristic of absorbing a long near-infrared wavelength from a wavelength of about 1000 nm, and can be absorbed by an Nd: YAG laser having a wavelength of 1064 nm. You can see that there is sex.
However, the weight absorption coefficient of the ITO fine particles according to Comparative Example 2 is very small at about 0.35 L / gcm at a wavelength of 1064 nm. The weight absorption coefficient of titanium nitride TiN at a wavelength of 1064 nm was 23.8 L / gcm, and it was found that ITO had only about 1/68 of the effect of TiN. In the region related to the semiconductor laser having a wavelength of 800 to 1000 nm, this difference is even greater. The weight absorption coefficient at a wavelength of 940 nm has a value of 30.6 L / gcm, which is 161 times that of TiN, compared to 0.19 L / gcm of ITO. Therefore, when the ITO fine particles according to Comparative Example 2 are used to obtain the same effect as the fine particles according to Examples 1 to 11, two to three orders of magnitude or more are obtained as compared with the fine particles according to Examples 1 to 11. It has been found that it is necessary to use a large amount of ITO fine particles.
作製したITOトルエン分散液を用いて、実施例2と同様の手順を踏んで、ITOを0.017重量%含有するアクリル樹脂試験プレートであるプレート1を作製した。この時のプレート1(厚さ2mm)のITO微粒子含有量は、本特許の窒化物微粒子の含有量上限である0.4g/m2とした。ITO微粒子含有量は実施例2〜11に示す窒化物微粒子に比べて最も多いにもかかわらず、940nm透過率は87%であった。 By using the prepared ITO toluene dispersion, the same procedure as in Example 2 was followed to prepare an acrylic resin test plate 1 containing 0.017% by weight of ITO. The ITO fine particle content of the plate 1 (thickness 2 mm) at this time was 0.4 g / m 2 which is the upper limit of the content of nitride fine particles of this patent. Although the content of ITO fine particles was the highest as compared with the nitride fine particles shown in Examples 2 to 11, the 940 nm transmittance was 87%.
このITOを0.017重量%含有するアクリル樹脂試験プレート1と、ITO微粒子を含有しない樹脂試験プレートであるプレート2(実施例2で説明したプレート2と、同サイズである。)とを、共に密着させて半導体レーザー光を照射した。この場合、レーザー光の照射で溶着は全く起こらなかった。
(比較例3)
住友金属鉱山(株)製ATO微粒子20重量%と、高分子系分散剤35重量%と、トルエン45重量%とを秤量し、ジルコニアビーズを入れたペイントシェーカーに充填して6時間粉砕・分散処理することによって、ITOの微粒子分散液を調製した。当該ATOの
微粒子分散液の分散粒子径は、117nmであった。
当該ATOの微粒子分散液をトルエンでレーザー光吸収剤濃度0.1重量%となるように希釈し、実施例1と同様にして重量吸収係数を求め、図1の細い破線に示す。この図1のプロファイルから明らかなように、比較例3に係るATO微粒子分散液は、波長1000nm前後から長い近赤外線波長を吸収する特性があり、波長1064nmのNd:YAGレーザーであれば吸収する可能性があることが分かる。しかし、比較例3に係るATO微粒子の重量吸収係数は、波長1064nmで約0.57L/gcmと非常に小さい。波長1064nmでの窒化チタンTiNの重量吸収係数は23.8L/gcmであり、ATOはTiNの約1/42の効果しかないことが分かった。波長が800〜1000nmである半導体レーザーに係る領域では、さらにこの差は大きい。波長940nmの重量吸収係数は、ATOの0.38L/gcmに対して、TiNではその80倍の値30.6L/gcmを持つ。従って、比較例3に係るATO微粒子を用いて、本実施例1〜11による微粒子と同様の効果を得ようとした場合、本実施例1〜9による微粒子に比べて2桁程度多い量のATO微粒子を用いる必要があることが分かった。
Both the acrylic resin test plate 1 containing 0.017% by weight of ITO and the plate 2 which is a resin test plate not containing ITO fine particles (the same size as the plate 2 described in Example 2) are used together. It was made to adhere and it irradiated with the semiconductor laser beam. In this case, welding did not occur at all by laser light irradiation.
(Comparative Example 3)
Sumitomo Metal Mining Co., Ltd. 20% by weight of ATO fine particles, 35% by weight of polymeric dispersant and 45% by weight of toluene are weighed and filled in a paint shaker containing zirconia beads and pulverized and dispersed for 6 hours. By doing so, a fine particle dispersion of ITO was prepared. Of the ATO
The dispersed particle size of the fine particle dispersion was 117 nm.
The ATO fine particle dispersion was diluted with toluene to a laser light absorber concentration of 0.1% by weight, and the weight absorption coefficient was determined in the same manner as in Example 1 and is shown by the thin broken line in FIG. As apparent from the profile of FIG. 1, the ATO fine particle dispersion according to Comparative Example 3 has a characteristic of absorbing a long near-infrared wavelength from a wavelength of about 1000 nm, and can absorb an Nd: YAG laser having a wavelength of 1064 nm. You can see that there is sex. However, the weight absorption coefficient of the ATO fine particles according to Comparative Example 3 is as small as about 0.57 L / gcm at a wavelength of 1064 nm. The weight absorption coefficient of titanium nitride TiN at a wavelength of 1064 nm was 23.8 L / gcm, and ATO was found to have only about 1/42 of the effect of TiN. In the region related to the semiconductor laser having a wavelength of 800 to 1000 nm, this difference is even greater. The weight absorption coefficient at a wavelength of 940 nm has a value of 30.6 L / gcm which is 80 times that of TiN compared to 0.38 L / gcm of ATO. Therefore, when the ATO fine particles according to Comparative Example 3 are used to obtain the same effect as the fine particles according to Examples 1 to 11, an amount of ATO that is about two orders of magnitude higher than the fine particles according to Examples 1 to 9 is used. It was found that it was necessary to use fine particles.
作製したATOトルエン分散液を用いて、実施例2と同様の手順を踏んで、ATOを0.017重量%含有するアクリル樹脂試験プレートであるプレート1を作製した。この時のプレート1(厚さ2mm)のITO微粒子含有量は、本特許の窒化物微粒子の含有量上限である0.4g/m2とした。ATO微粒子含有量は実施例2〜11に示す窒化物微粒子に比べて最も多いにもかかわらず、940nm透過率は88%であった。 Using the produced ATO toluene dispersion, the same procedure as in Example 2 was followed to produce Plate 1 which was an acrylic resin test plate containing 0.017% by weight of ATO. The ITO fine particle content of the plate 1 (thickness 2 mm) at this time was 0.4 g / m 2 which is the upper limit of the content of nitride fine particles of this patent. Although the ATO fine particle content was the highest as compared with the nitride fine particles shown in Examples 2 to 11, the 940 nm transmittance was 88%.
このATOを0.017重量%含有するアクリル樹脂試験プレート1と、ATO微粒子を含有しない樹脂試験プレートであるプレート2(実施例2で説明したプレート2と、同サイズである。)とを、共に密着させて半導体レーザー光を照射した。この場合、レーザー光の照射で溶着は全く起こらなかった。 Both the acrylic resin test plate 1 containing 0.017% by weight of this ATO and the plate 2 which is a resin test plate containing no ATO fine particles (the same size as the plate 2 described in Example 2). It was made to adhere and it irradiated with the semiconductor laser beam. In this case, welding did not occur at all by laser light irradiation.
(比較例4)
窒化チタンTiN微粒子をペイントシェーカーで極めて簡略に5分間だけ粉砕して分散処理を行い、粒径を測定すると1100nmであった。このTiN微粒子分散液を用いて、実施例2と同様の工程で、TiN微粒子を0.048重量%含有するアクリル樹脂プレートである比較例4に係るプレート1を作製した。
(Comparative Example 4)
The titanium nitride TiN fine particles were pulverized very simply for 5 minutes by a paint shaker and subjected to dispersion treatment, and the particle diameter was measured to be 1100 nm. Using this TiN fine particle dispersion, a plate 1 according to Comparative Example 4, which is an acrylic resin plate containing 0.048% by weight of TiN fine particles, was produced in the same process as in Example 2.
比較例4に係るプレート1は、粒径が大きすぎるために近赤外部の吸収がほとんど無く、可視光透過率56%に対して940nmにおける透過率は77%であった。比較例6に係るプレート1の厚み1mm部分のTiN微粒子の含有量は、1.2g/m2である。 Since the plate 1 according to Comparative Example 4 had an excessively large particle size, there was almost no absorption in the near-infrared region, and the transmittance at 940 nm was 77% with respect to the visible light transmittance of 56%. The content of the TiN fine particles in the 1 mm-thick portion of the plate 1 according to Comparative Example 6 is 1.2 g / m 2 .
このTiN微粒子を0.1重量%含有するアクリル樹脂試験プレートと、TiN微粒子を含有しない樹脂試験プレートであるプレート2(実施例2で説明したプレート2と、同サイズである。)とを、密着させて半導体レーザー光を照射した。この場合、レーザー光の照射で溶着は起こるものの、接合強度は弱く、2枚のプレートは簡単にはがれることが分かった。 The acrylic resin test plate containing 0.1% by weight of the TiN fine particles and the plate 2 which is a resin test plate not containing the TiN fine particles (the same size as the plate 2 described in Example 2) are adhered to each other. Then, a semiconductor laser beam was irradiated. In this case, although welding occurred by laser light irradiation, it was found that the bonding strength was weak and the two plates could be easily peeled off.
(比較例5)
実施例2で得られたTiN微粒子を含む光吸収樹脂組成物(B粉)を用いて、TiN微粒子を0.025重量%と高濃度に含有するアクリル樹脂プレートである比較例5に係るプレート1を作製した。
(Comparative Example 5)
Plate 1 according to Comparative Example 5 which is an acrylic resin plate containing TiN fine particles at a high concentration of 0.025 wt% using the light-absorbing resin composition (B powder) containing TiN fine particles obtained in Example 2 Was made.
比較例5に係るプレート1(厚さ2mm)のTiN微粒子の含有量は、0.60g/m2である。このプレートはほとんど黒に近く可視光をほとんど透過せず、透明なレーザー光吸収樹脂としては成り立たないことが分かった。 The content of TiN fine particles in the plate 1 (thickness 2 mm) according to Comparative Example 5 is 0.60 g / m 2 . This plate is almost black and hardly transmits visible light, indicating that it cannot be used as a transparent laser light absorbing resin.
このTiN微粒子を0.025重量%含有するアクリル樹脂試験プレート1と、TiN微粒子を含有しない樹脂試験プレートであるプレート2(実施例2で説明したプレート2と、同サイズである。)とを、密着させて半導体レーザー光を照射した。この場合、レーザー光による発熱、溶解が行き過ぎて、レーザー走査した領域に沿って一面に発泡が見られ、外観も不良であった。 An acrylic resin test plate 1 containing 0.025% by weight of the TiN fine particles and a plate 2 that is a resin test plate not containing TiN fine particles (the same size as the plate 2 described in Example 2). It was made to adhere and it irradiated with the semiconductor laser beam. In this case, heat generation and dissolution due to the laser beam were excessive, foaming was seen on one side along the laser-scanned region, and the appearance was poor.
(比較例6)
熱プラズマ法で作製されたTiN微粒子を、湿式分散せずにそのままクリアなアクリル樹脂ペレットとブレンダーで混合し、2軸押出し機で溶融して混練し、押出されたストランドをペレット状にカットし、TiN微粒子を2.5重量%含有するアクリル樹脂マスターバッチを得た。これを更にクリアペレットで希釈して、TiN微粒子を0.002重量%含有するアクリル樹脂試験プレートである比較例6に係るプレート1を作製した。
(Comparative Example 6)
TiN fine particles produced by the thermal plasma method are mixed with a clear acrylic resin pellet and a blender as it is without being wet-dispersed, melted and kneaded with a twin screw extruder, and the extruded strand is cut into a pellet. An acrylic resin master batch containing 2.5% by weight of TiN fine particles was obtained. This was further diluted with a clear pellet to prepare a plate 1 according to Comparative Example 6 which is an acrylic resin test plate containing 0.002 wt% of TiN fine particles.
比較例6に係るプレート1(厚さ2mm)のTiN微粒子の含有量は、0.048g/m2である。プレート1はそれ自体に濃淡の色ムラが観察された。 The content of TiN fine particles in the plate 1 (thickness 2 mm) according to Comparative Example 6 is 0.048 g / m 2 . The plate 1 was observed to have uneven color shading.
このTiN微粒子を0.002重量%含有するアクリル樹脂試験プレート1と、TiN微粒子を含有しない樹脂試験プレートであるプレート2(実施例2で説明したプレート2と、同サイズである。)とを、共に密着させて半導体レーザー光を照射した。この場合、レーザー照射により溶着はしたが、接合強度が通常より弱く、簡単にはがれる結果となった。 An acrylic resin test plate 1 containing 0.002% by weight of the TiN fine particles and a plate 2 that is a resin test plate not containing TiN fine particles (the same size as the plate 2 described in Example 2). Both were closely adhered and irradiated with a semiconductor laser beam. In this case, the welding was performed by laser irradiation, but the bonding strength was weaker than usual and the result was easily peeled off.
Claims (8)
上記レーザー光吸収微粒子が、窒化チタン、窒化ジルコニウム、窒化ハフニウム、窒化バナジウム、窒化ニオブ、窒化タンタルから選択される少なくとも1種の窒化物微粒子であることを特徴とするレーザー溶着用光吸収樹脂組成物。 A laser-absorbing light-absorbing resin composition comprising a polymer dispersant having a glass transition temperature of 30 ° C. or higher and laser-absorbing fine particles,
The laser-welding light-absorbing resin composition, wherein the laser-light-absorbing fine particles are at least one kind of nitride fine particles selected from titanium nitride, zirconium nitride, hafnium nitride, vanadium nitride, niobium nitride, and tantalum nitride .
当該光吸収樹脂成形体の表面層であって、表面から3mm以下の領域における膣化物微粒子の含有量が、0.001g/m2以上、0.4g/m2以下であることを特徴とする光吸収樹脂成形体。 3. A laser-welding light-absorbing resin composition according to claim 1, wherein the laser-welding light-absorbing resin composition is diluted with a polymer dispersant and a thermoplastic resin contained in the laser-welding light-absorbing resin composition and kneaded and molded. A light-absorbing resin molded body,
The surface layer of the light-absorbing resin molded body, wherein the content of the vaginalized fine particles in a region 3 mm or less from the surface is 0.001 g / m 2 or more and 0.4 g / m 2 or less. Light-absorbing resin molding.
当該成形された光吸収樹脂成形体の形状が、板状またはフィルム状であることを特徴とする請求項3に記載の光吸収樹脂成形体。 3. A laser-welding light-absorbing resin composition according to claim 1, wherein the laser-welding light-absorbing resin composition is diluted with a polymer dispersant and a thermoplastic resin contained in the laser-welding light-absorbing resin composition and kneaded and molded. A light-absorbing resin molded body,
The light-absorbing resin molded body according to claim 3, wherein the shape of the molded light-absorbing resin molded body is a plate shape or a film shape.
当該レーザー光吸収微粒子が、窒化チタン、窒化ジルコニウム、窒化ハフニウム、窒化バナジウム、窒化ニオブ、窒化タンタルから選択される少なくとも1種の窒化物微粒子である光吸収樹脂組成物を、当該高分子分散剤と熱可塑性樹脂を用いて、当該光吸収樹脂成形体の表面層であって表面から3mm以下の領域における該窒化物微粒子の含有量が、0.001g/m2以上、0.4g/m2以下となるように希釈し、混練し成形して光吸収樹脂成形体を製造することを特徴とする光吸収樹脂成形体の製造方法。 Polymer dispersion in which a laser welding light absorbing resin composition containing a polymer dispersant having a glass transition temperature of 30 ° C. or higher and laser light absorbing fine particles is contained in the laser welding light absorbing resin composition A method for producing a light-absorbing resin molded article that is diluted and kneaded with an agent and a thermoplastic resin,
A light-absorbing resin composition in which the laser light-absorbing fine particles are at least one kind of nitride fine particles selected from titanium nitride, zirconium nitride, hafnium nitride, vanadium nitride, niobium nitride, and tantalum nitride; Using a thermoplastic resin, the content of the nitride fine particles in the surface layer of the light-absorbing resin molded body, which is 3 mm or less from the surface, is 0.001 g / m 2 or more and 0.4 g / m 2 or less. The method for producing a light-absorbing resin molded body is characterized in that a light-absorbing resin molded body is produced by diluting, kneading and molding so as to be.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007064855A JP4984992B2 (en) | 2007-03-14 | 2007-03-14 | Light-absorbing resin molded body and method for producing light-absorbing resin molded body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007064855A JP4984992B2 (en) | 2007-03-14 | 2007-03-14 | Light-absorbing resin molded body and method for producing light-absorbing resin molded body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008222903A true JP2008222903A (en) | 2008-09-25 |
JP4984992B2 JP4984992B2 (en) | 2012-07-25 |
Family
ID=39841891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007064855A Active JP4984992B2 (en) | 2007-03-14 | 2007-03-14 | Light-absorbing resin molded body and method for producing light-absorbing resin molded body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4984992B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011184522A (en) * | 2010-03-05 | 2011-09-22 | Sumitomo Metal Mining Co Ltd | Near-infrared shielding polyester resin composition and molded article thereof, and laminate of the molded article |
JP2012030560A (en) * | 2010-08-02 | 2012-02-16 | Hayakawa Rubber Co Ltd | Joining method using laser beam, and laser joining agent used for the joining method |
WO2013031464A1 (en) * | 2011-08-31 | 2013-03-07 | Fujifilm Corporation | Gray composition |
JP2017531089A (en) * | 2014-10-20 | 2017-10-19 | カララント クロマティックス アーゲーColorant Chromatics Ag | Polymer material |
JP2018523068A (en) * | 2015-07-07 | 2018-08-16 | ダブリュ.エル.ゴア アンド アソシエーツ,ゲゼルシャフト ミット ベシュレンクテル ハフツングW.L. Gore & Associates, Gesellschaft Mit Beschrankter Haftung | Ring seal |
JP2019207882A (en) * | 2019-07-26 | 2019-12-05 | 堺ディスプレイプロダクト株式会社 | Flexible OLED device, manufacturing method thereof, and supporting substrate |
JP2020019692A (en) * | 2018-08-03 | 2020-02-06 | 三菱マテリアル電子化成株式会社 | Zirconium nitride film and method of manufacturing the same |
WO2021181984A1 (en) * | 2020-03-12 | 2021-09-16 | 富士フイルム株式会社 | Optical element, infrared sensor, solid state imaging element, and method for manufacturing optical element |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7614720B2 (en) * | 2018-12-21 | 2025-01-16 | キヤノン株式会社 | Inorganic material powder and method for producing structure |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1176800A (en) * | 1997-07-17 | 1999-03-23 | Nippon Paint Co Ltd | Solid sol of noble metal or copper, its production, coating material composition and resin formed product |
JP2005179121A (en) * | 2003-12-19 | 2005-07-07 | Sumitomo Metal Mining Co Ltd | Solar shading fine particles, solar shading resin material in which these fine particles are dispersed in a resin component, and solar shading fine particle dispersion used for manufacturing solar shading resin material and solar shading resin material And solar shading composite base material |
WO2005084955A1 (en) * | 2004-03-04 | 2005-09-15 | Degussa Ag | Laser-weldable which are transparently, translucently or opaquely dyed by means of colorants |
-
2007
- 2007-03-14 JP JP2007064855A patent/JP4984992B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1176800A (en) * | 1997-07-17 | 1999-03-23 | Nippon Paint Co Ltd | Solid sol of noble metal or copper, its production, coating material composition and resin formed product |
JP2005179121A (en) * | 2003-12-19 | 2005-07-07 | Sumitomo Metal Mining Co Ltd | Solar shading fine particles, solar shading resin material in which these fine particles are dispersed in a resin component, and solar shading fine particle dispersion used for manufacturing solar shading resin material and solar shading resin material And solar shading composite base material |
WO2005084955A1 (en) * | 2004-03-04 | 2005-09-15 | Degussa Ag | Laser-weldable which are transparently, translucently or opaquely dyed by means of colorants |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011184522A (en) * | 2010-03-05 | 2011-09-22 | Sumitomo Metal Mining Co Ltd | Near-infrared shielding polyester resin composition and molded article thereof, and laminate of the molded article |
JP2012030560A (en) * | 2010-08-02 | 2012-02-16 | Hayakawa Rubber Co Ltd | Joining method using laser beam, and laser joining agent used for the joining method |
WO2013031464A1 (en) * | 2011-08-31 | 2013-03-07 | Fujifilm Corporation | Gray composition |
JP2013049809A (en) * | 2011-08-31 | 2013-03-14 | Fujifilm Corp | Gray composition |
KR101613139B1 (en) * | 2011-08-31 | 2016-04-18 | 후지필름 가부시키가이샤 | Gray composition |
US10407554B2 (en) | 2014-10-20 | 2019-09-10 | Colorant Chromatics Ag | Polymeric materials |
JP2017531089A (en) * | 2014-10-20 | 2017-10-19 | カララント クロマティックス アーゲーColorant Chromatics Ag | Polymer material |
JP2018523068A (en) * | 2015-07-07 | 2018-08-16 | ダブリュ.エル.ゴア アンド アソシエーツ,ゲゼルシャフト ミット ベシュレンクテル ハフツングW.L. Gore & Associates, Gesellschaft Mit Beschrankter Haftung | Ring seal |
JP2020019692A (en) * | 2018-08-03 | 2020-02-06 | 三菱マテリアル電子化成株式会社 | Zirconium nitride film and method of manufacturing the same |
JP7212471B2 (en) | 2018-08-03 | 2023-01-25 | 三菱マテリアル電子化成株式会社 | Manufacturing method of zirconium nitride film |
JP2019207882A (en) * | 2019-07-26 | 2019-12-05 | 堺ディスプレイプロダクト株式会社 | Flexible OLED device, manufacturing method thereof, and supporting substrate |
WO2021181984A1 (en) * | 2020-03-12 | 2021-09-16 | 富士フイルム株式会社 | Optical element, infrared sensor, solid state imaging element, and method for manufacturing optical element |
JPWO2021181984A1 (en) * | 2020-03-12 | 2021-09-16 | ||
JP7407268B2 (en) | 2020-03-12 | 2023-12-28 | 富士フイルム株式会社 | Optical elements, infrared sensors, solid-state image sensors, manufacturing methods for optical elements |
US12289942B2 (en) | 2020-03-12 | 2025-04-29 | Fujifilm Corporation | Optical element, infrared sensor, solid-state imaging element, and manufacturing method for optical element |
Also Published As
Publication number | Publication date |
---|---|
JP4984992B2 (en) | 2012-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4853710B2 (en) | Laser-absorbing light-absorbing resin composition, light-absorbing resin molded body, and method for producing light-absorbing resin molded body | |
JP5168445B2 (en) | CONNECTED BODY AND METHOD FOR PRODUCING THE SAME | |
JP4984992B2 (en) | Light-absorbing resin molded body and method for producing light-absorbing resin molded body | |
JP4582664B2 (en) | Laser weldable plastic material colored transparent, translucent or opaque by colorant | |
CN108292090B (en) | Reflective transparent screen and image projection device having the same | |
JP4490478B2 (en) | Highly transparent plastic material capable of laser marking and laser welding | |
BR112020009258A2 (en) | fine infrared absorbent particles, fine particulate powder, fine particle dispersion liquid, fine particle dispersion body, and, methods for producing fine infrared absorbent particles, fine particle powder, fine particle dispersion liquid and dispersion of fine particles. | |
CN1434837A (en) | Color stable plgmented polymeric films | |
JP4610238B2 (en) | Bonding method of resin moldings | |
JP2012007024A (en) | Light absorption resin composition for laser welding, light absorption resin molded article, and method for producing light absorption resin molded article | |
JP4742237B2 (en) | Resin composition for stimulated emission light amplification light wave and use thereof | |
CN106010335A (en) | Adhesive tape and preparation method thereof, and component | |
TW528878B (en) | Method of making an antireflection polymeric material | |
Gu et al. | Scalable Production of High-Strength Recycled Noniridescent Structural Color Models via Twin-Screw Extrusion and 3D Printing | |
WO2020026709A1 (en) | Three-dimensional modeling material, three-dimensional model production method using same, and three-dimensional model | |
JP2010197412A (en) | Optical unit and method of manufacturing the same | |
JP2009235303A (en) | Antimony-doped tin oxide fine particles dispersion for addition to polycarbonate resin, its manufacturing method, and antimony-doped tin oxide dispersed polycarbonate resin molded product | |
JP2007168163A (en) | Composite molded product | |
CN111890591A (en) | Method of controlling particle size of filler in extrudable composition, composition comprising filler, and device made from composition | |
JP2024008219A (en) | Thermochromic resin composite material and laminate using the same | |
HK1098428B (en) | Highly transparent laser-markable and laser-weldable plastic materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090702 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111020 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111220 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120403 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120416 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4984992 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150511 Year of fee payment: 3 |