[go: up one dir, main page]

JP2008222507A - Multiple glass - Google Patents

Multiple glass Download PDF

Info

Publication number
JP2008222507A
JP2008222507A JP2007064386A JP2007064386A JP2008222507A JP 2008222507 A JP2008222507 A JP 2008222507A JP 2007064386 A JP2007064386 A JP 2007064386A JP 2007064386 A JP2007064386 A JP 2007064386A JP 2008222507 A JP2008222507 A JP 2008222507A
Authority
JP
Japan
Prior art keywords
film
metal oxide
glass
oxide film
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007064386A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kato
和広 加藤
Hideo Omoto
英雄 大本
Kenji Fujii
健司 藤井
Koji Kobayashi
孝司 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2007064386A priority Critical patent/JP2008222507A/en
Priority to PCT/JP2008/053949 priority patent/WO2008111455A1/en
Publication of JP2008222507A publication Critical patent/JP2008222507A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3613Coatings of type glass/inorganic compound/metal/inorganic compound/metal/other
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3639Multilayers containing at least two functional metal layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3681Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used in glazing, e.g. windows or windscreens
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Surface Treatment Of Glass (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multiple glass, excellent in a heat insulative property suppressing the heat flow from the inside of a room to outdoor during winter, a heat-shielding property suppressing the flow of solar energy coming into a room during summer, high in visible light transmittance and excellent in giving lighting and visibility effects. <P>SOLUTION: The multiple glass is obtained by arranging two glass sheets apart from each other at a specific distance, where a low resistive film comprising successively laminated layers of the first Ag film, the second metal oxide film, the second Ag film and the third metal oxide film is placed at the side of a hollow layer, and the first metal oxide film, the second metal oxide film and the third metal oxide film comprise each a metal oxide film consisting mainly of ZnO film. The diffraction angle of the diffraction peak at the crystal face (002) of the ZnO film is at most 33.9°; the glass sheet has the thickness of at least 3 mm; and for the total thickness t1 of the two glass sheets, the visible light transmittance of the multiple glass is at least (70.0-0.3×t1)% and the solar heat gain coefficient is at most 0.38. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、建築物や車両などの窓に用いられる複層ガラスに関する。   The present invention relates to a multi-layer glass used for windows of buildings and vehicles.

近年、住宅やビル等の建築物の窓ガラスには、夏季には日射エネルギーの室外から室内への流入を抑制し、冬季には室内から室外への熱流出を抑制する省エネルギー窓材として、2枚の透明ガラスをスペーサーを介して合わせ、2枚の透明ガラスの間に断熱空気層を形成した複層ガラスが用いられるようになった。   2. Description of the Related Art Recently, window glass of a building such as a house or a building is used as an energy-saving window material that suppresses inflow of solar radiation energy from outdoor to indoor in summer and suppresses heat flow from indoor to outdoor in winter. Multi-layer glass in which a sheet of transparent glass is combined through a spacer and an insulating air layer is formed between the two transparent glasses has come to be used.

また、住宅やビル等の建築物の窓ガラスは、居住性、室外の視認性の向上を目的として大面積化しており、それに伴い、夏季には、日射エネルギーの室内への流入が増大して、冷房負荷の増加となっている。   In addition, the window glass of buildings such as houses and buildings has become larger for the purpose of improving habitability and outdoor visibility, and as a result, inflow of solar energy into the room has increased in summer. The cooling load has increased.

そこで、夏季の日射エネルギーの室内への流入を抑制し、冷房負荷を軽減させるため、複層ガラスの室内側ガラスに、赤外線反射膜を形成した低放射ガラスが多く用いられるようになった。   Therefore, in order to suppress the inflow of solar radiation energy into the room in summer and reduce the cooling load, low-emission glass in which an infrared reflecting film is formed on the indoor side glass of the multi-layer glass has come to be often used.

赤外線反射膜として、ZnO膜とAg膜とを交互に積層した積層膜が知られている。   As an infrared reflecting film, a laminated film in which ZnO films and Ag films are alternately laminated is known.

特許文献1には、ZnO膜と厚みが110Å以下のAg膜とを交互に積層する赤外線反射膜が開示され、Ag膜が1層の場合と2層の場合の実施例で、可視光透過率が80%、太陽エネルギーの透過率が44%以上の低放射ガラスが記載されている。   Patent Document 1 discloses an infrared reflective film in which a ZnO film and an Ag film having a thickness of 110 mm or less are alternately laminated. In the examples in which the Ag film has one layer and two layers, visible light transmittance is disclosed. Is a low emission glass having a solar energy transmittance of 44% or more.

特許文献2には、ガラスにZnO膜、Ag膜、ZnO膜と順次積層し、その上にアモルファス層(SiN)を積層して、耐久性を向上させたものが開示されている。また、可視光透過率が78〜83%の実施例が記載されている。また、特許文献3には、可視光透過率が71.2〜80.0%、日射透過率が30.4〜45.6%の、ZnO膜とAg膜を交互に5層積層する積層膜が記載されている。 Patent Document 2 discloses a film in which a ZnO film, an Ag film, and a ZnO film are sequentially laminated on glass, and an amorphous layer (SiN x ) is laminated thereon to improve durability. Moreover, the Example whose visible light transmittance is 78 to 83% is described. Patent Document 3 discloses a laminated film in which five layers of ZnO films and Ag films having a visible light transmittance of 71.2 to 80.0% and a solar radiation transmittance of 30.4 to 45.6% are alternately laminated. Is described.

さらに、特許文献4には、Ag膜1層用いた遮熱膜と反射防止膜を用いて、可視光透過率が49〜51%、日射透過率が30〜32%の複層ガラスが記載されている。   Furthermore, Patent Document 4 describes a multilayer glass having a visible light transmittance of 49 to 51% and a solar radiation transmittance of 30 to 32% using a heat shielding film and an antireflection film using one Ag film. ing.

ZnO膜とAg膜とを交互に積層する赤外線反射膜は、Ag膜の抵抗値が小さいほど赤外線の反射率が大きくなり、従って、赤外線反射率を大きくして遮蔽性能を高めるためには、Ag膜を厚くしてその抵抗を低くすればよいが、Ag膜を厚くすると、可視光透過率が小さくなって、窓の採光性能が悪くなってしまう。   In the infrared reflection film in which the ZnO film and the Ag film are alternately laminated, the infrared reflectance increases as the resistance value of the Ag film decreases. Therefore, in order to increase the infrared reflectance and improve the shielding performance, Ag The film may be thickened to lower its resistance, but if the Ag film is thickened, the visible light transmittance is reduced and the lighting performance of the window is deteriorated.

Ag膜の抵抗に関しては、特許文献5に、ZnO膜とAg膜を交互に積層する積層膜で、厚み12nmのAg膜を4層積層させ、4.2Ω/□の低抵抗膜が得られることが記載されている。さらに、特許文献6には、Ag膜をマグネトロンスパッタリング法で成膜する時の、放電電圧とAgターゲット表面の磁界の強さとを調整して、Ag膜が1層の場合、Ag膜の厚みt1が5〜30nmの範囲で、積層膜の比抵抗が(35.8/t1+2.3)×10―6Ωcm以下の赤外線反射積層膜、および、Ag膜が2層の場合、Ag膜の総厚みt2が15〜35nmの範囲で、積層膜の比抵抗が(168.6/t2+1.3)×10―6Ωcm以下である赤外線反射積層膜が記載されている。 Regarding the resistance of the Ag film, Patent Document 5 discloses that a laminated film in which ZnO films and Ag films are alternately laminated and four Ag films having a thickness of 12 nm are laminated to obtain a low resistance film of 4.2Ω / □. Is described. Furthermore, Patent Document 6 discloses that when the Ag film is formed by magnetron sputtering, the discharge voltage and the strength of the magnetic field on the surface of the Ag target are adjusted, and when the Ag film is a single layer, the thickness t1 of the Ag film. In the range of 5 to 30 nm, the specific thickness of the laminated film is (35.8 / t1 + 2.3) × 10 −6 Ωcm or less, and the total thickness of the Ag film when the Ag reflective film has two layers. An infrared reflective laminated film is described in which the specific resistance of the laminated film is (168.6 / t2 + 1.3) × 10 −6 Ωcm or less when t2 is in the range of 15 to 35 nm.

高い可視光透過性を得るためには、金属膜であるAg膜の膜厚を薄くすることが有効であるが、Ag膜の膜厚を薄くすると、赤外線反射率が低下し、赤外線反射率の低下に伴い、日射反射率が低下し、日射エネルギーの室内への流入が増加することで、遮熱性が低下してしまう。   In order to obtain high visible light transmittance, it is effective to reduce the thickness of the Ag film, which is a metal film. However, if the thickness of the Ag film is reduced, the infrared reflectance decreases, and the infrared reflectance is reduced. With the decrease, the solar reflectance decreases and the inflow of solar energy into the room increases, resulting in a decrease in heat shielding properties.

従って、Ag膜の膜厚は、可視光透過率と日射反射率との兼ね合いで決定される。   Therefore, the film thickness of the Ag film is determined in consideration of the visible light transmittance and the solar reflectance.

さらに、ZnO膜とAg膜とを交互の積層する赤外線反射膜に関して、耐久性が向上するものとして、特許文献7には、ZnO膜の結晶性に関するX線回折の記載が、また、特許文献8には、Agの結晶性に関するX線回折の記載がなされている。
特開昭63−134232号公報 特開2002−173343号公報 特開2004−58592号公報 特開2006−143525号公報 特開昭63−239044号公報 特開2006−206424号公報 特開平4−357025号公報 特開平5−24149号公報
Further, regarding the infrared reflective film in which the ZnO film and the Ag film are alternately laminated, the durability of the infrared reflective film is improved. Patent Document 7 describes the X-ray diffraction relating to the crystallinity of the ZnO film. Describes X-ray diffraction relating to the crystallinity of Ag.
JP 63-134232 A JP 2002-173343 A JP 2004-58592 A JP 2006-143525 A Japanese Patent Laid-Open No. 63-239044 JP 2006-206424 A JP-A-4-357525 Japanese Patent Laid-Open No. 5-24149

本発明は、高い可視光透過率を有し、かつ日射エネルギーの室内への流入が小さい高い遮熱性を有する複層ガラスの提供を課題とする。   An object of the present invention is to provide a multi-layer glass having a high visible light transmittance and a high heat shielding property with a small amount of solar energy flowing into a room.

本発明の複層ガラスは、2枚の板ガラスが所定の間隔で対向隔置され、該2枚の板ガラスの周縁部に該所定の間隔を保持するようにスペーサーが配設され、該2枚の板ガラスの間に密封された中空層が形成され、1枚の板ガラスに低抵抗膜が形成されている複層ガラスにおいて、低抵抗膜が中空層側に配せられ、該低抵抗膜は第1金属酸化物膜、第1Ag膜、第2金属酸化物膜、第2Ag膜、第3金属酸化物膜が順次積層されてなる積層膜であり、第1金属酸化物膜、第2金属酸化物膜、第3金属酸化物膜はZnO膜を主とする金属酸化物膜でなり、該ZnO膜はCuKα線を用いたX線回折法による、該ZnO膜の(002)結晶面による回折ピークの回折角度2θが33.9°以下であり、複層ガラスの2枚の板ガラスは共に3mm以上の厚みを有し、2枚の板ガラスの厚みの合計t1(mm)に対し、該複層ガラスのJISR3106:1998に準拠した可視光透過率が(70.0−0.3×t1)%以上であり、該複層ガラスのJISR3106:1998に準拠した日射熱取得率が0.38以下であることを特徴とする複層ガラスである。   In the multilayer glass of the present invention, two sheet glasses are opposed to each other at a predetermined interval, and a spacer is disposed at the peripheral edge of the two sheet glasses so as to maintain the predetermined interval. In a multi-layer glass in which a hollow layer sealed between plate glasses is formed and a low resistance film is formed on one sheet glass, the low resistance film is disposed on the hollow layer side, and the low resistance film is a first layer. A metal oxide film, a first Ag film, a second metal oxide film, a second Ag film, and a third metal oxide film are sequentially laminated, and are a first metal oxide film and a second metal oxide film. The third metal oxide film is a metal oxide film mainly composed of a ZnO film, and the ZnO film is diffracted by a diffraction peak by the (002) crystal plane of the ZnO film by an X-ray diffraction method using CuKα rays. The angle 2θ is 33.9 ° or less, and the two glass sheets of the multilayer glass are both 3 mm or more in thickness. The visible light transmittance according to JIS R3106: 1998 of the multilayer glass is not less than (70.0−0.3 × t1)% with respect to the total thickness t1 (mm) of the two plate glasses. Yes, the double-glazed glass is characterized in that the solar heat acquisition rate based on JIS R3106: 1998 is 0.38 or less.

また、本名発明の複層ガラスは、前記複層ガラスにおいて、積層膜が、第1Ag膜の厚みと第2Ag膜の厚みとの合計をt2(nm)とし、低抵抗膜の表面抵抗が(3.4−0.04×t2)Ω/□以下であることを特徴とする複層ガラスである。   Further, in the multilayer glass of the present invention, in the multilayer glass, the laminated film has a total thickness of the first Ag film and the second Ag film of t2 (nm), and the surface resistance of the low resistance film is (3 4-0.04 × t2) A double glazing characterized by being Ω / □ or less.

また、本名発明の複層ガラスは、前記複層ガラスにおいて、第1金属酸化物膜の光学厚みが57nm〜77nmの範囲にあり、第1Ag膜の厚みが12nm〜16nmの範囲にあり、第2金属酸化物膜の光学厚みが160nm〜200nmの範囲にあり、第2Ag膜の厚みが12nm〜16nmの範囲にあり、第3金属酸化物膜の光学厚みが62nm〜82nmの範囲にあることを特徴とする複層ガラスである。   Further, in the multilayer glass of the present invention, in the multilayer glass, the optical thickness of the first metal oxide film is in the range of 57 nm to 77 nm, the thickness of the first Ag film is in the range of 12 nm to 16 nm, The optical thickness of the metal oxide film is in the range of 160 nm to 200 nm, the thickness of the second Ag film is in the range of 12 nm to 16 nm, and the optical thickness of the third metal oxide film is in the range of 62 nm to 82 nm. It is a multilayer glass.

また、本名発明の複層ガラスは、前記複層ガラスにおいて、低抵抗膜が形成されている板ガラスの、ガラス面の反射色が、CIEL*a*b*色度座標図において、−20≦a*≦−5、−10≦b*≦5、であることを特徴とする複層ガラス複層ガラスである。   Further, in the multilayer glass of the present invention, in the multilayer glass, the reflection color of the glass surface of the plate glass on which the low resistance film is formed is −20 ≦ a in the CIE L * a * b * chromaticity coordinate diagram. * ≦ −5, −10 ≦ b * ≦ 5.

本発明の複層ガラスは、日射熱取得率が小さいくしかも可視光透過率の大きい複層ガラスを提供することにより、明るく、しかも遮熱性に優れた窓を実現する。   The double-glazed glass of the present invention realizes a bright and excellent heat-shielding window by providing a double-glazed glass having a low solar heat acquisition rate and a high visible light transmittance.

本発明の複層ガラスは、透明性が高く、住宅やビル等の建築物等において日射を遮ることを目的とする窓ガラスに用いる。   The double-glazed glass of the present invention is highly transparent and is used for a window glass intended to block solar radiation in buildings such as houses and buildings.

本発明の複層ガラスは、図1に示すように、低抵抗膜2が形成されている透明な板ガラス1ともう1枚の透明な板ガラス1とを対向配置し、板ガラス1、1´の周辺部をスペーサ4に接着剤3で接着し、さらに、シーリング材5で周辺部をシールして、2枚の透明な板ガラス1、1´の間に密閉された中空層を形成するものである。   As shown in FIG. 1, the multi-layer glass of the present invention has a transparent plate glass 1 on which a low-resistance film 2 is formed and another transparent plate glass 1 facing each other, and the periphery of the plate glasses 1 and 1 ′. The portion is bonded to the spacer 4 with the adhesive 3, and the peripheral portion is sealed with a sealing material 5 to form a sealed hollow layer between the two transparent plate glasses 1, 1 ′.

本発明の複層ガラスを、建物の窓に設置するときには、低抵抗膜2が形成されている透明な板ガラス1を室外側にすることが好ましい。   When the multilayer glass of the present invention is installed in a building window, it is preferable that the transparent plate glass 1 on which the low-resistance film 2 is formed be the outdoor side.

また、中空層の結露を防ぐために、スペーサー4には、乾燥材(図示しない)を充填したペーサーを用いることが好ましい。   In order to prevent condensation of the hollow layer, the spacer 4 is preferably a pacer filled with a drying material (not shown).

透明な2枚の板ガラス1には、図2に示すような、金属酸化物膜とAg膜とを交互に積層してなる低抵抗膜2が形成されている。   A low resistance film 2 formed by alternately laminating metal oxide films and Ag films as shown in FIG. 2 is formed on two transparent plate glasses 1.

各Ag膜の板ガラスとは反対側の面には、金属酸化物膜形成時にAg膜が酸化されることを防ぐため、保護金属膜(図示しない)を形成することが好ましい。   A protective metal film (not shown) is preferably formed on the surface of each Ag film opposite to the plate glass in order to prevent the Ag film from being oxidized when the metal oxide film is formed.

透明な板ガラスには、ソーダライムガラスや、ソーダライムガラスに比べて酸化鉄含有量が少ない高透過ガラスなど、廉価なフロート板ガラスが好適であるが、透明ガラスの他にも、ポリカーボネートやポリエチレンテレフタレート等の透明な樹脂基材あるいはフィルム基材等を好適に用いることができる。   For transparent plate glass, inexpensive float plate glass such as soda lime glass and high transmission glass with less iron oxide content than soda lime glass is suitable, but besides transparent glass, polycarbonate, polyethylene terephthalate, etc. A transparent resin substrate, a film substrate, or the like can be suitably used.

金属酸化物膜は、板ガラスとAg膜との密着性や、低抵抗膜の膜相互の密着性を高めて、低放射ガラスの積層膜の強度と耐久性を高めるために、さらには、低放射ガラスの可視光の透過率を高めるために用いられる。   The metal oxide film is used to increase the adhesion between the plate glass and the Ag film and the adhesion between the low resistance films, and to increase the strength and durability of the laminated film of the low emission glass. Used to increase the visible light transmittance of glass.

金属酸化物膜は、低放射ガラスの好適な膜強度や耐久性および高い透過率を得るために、Ag膜の透明ガラス側に隣接して、ZnO膜を用いることが好適である。   As the metal oxide film, it is preferable to use a ZnO film adjacent to the transparent glass side of the Ag film in order to obtain a suitable film strength and durability of the low emission glass and high transmittance.

さらに金属酸化物膜には、ZnO膜の他に、Si、Sn、Al、Ti等の酸化物膜、Si、Sn、Zn、Al、Ti等の窒化物膜や窒酸化物膜のなかから少なくとも1種類以上を選んでなる金属酸化物膜を用いてもよい。   In addition to the ZnO film, the metal oxide film includes at least one of an oxide film such as Si, Sn, Al, Ti, a nitride film such as Si, Sn, Zn, Al, Ti, or a nitride oxide film. A metal oxide film selected from one or more types may be used.

金属酸化物膜は、図3に示されるような、マグネトロンスパッタリング装置によって、ターゲット20に金属ターゲットを用い、ガス導入管26から酸素ガスを導入して成膜するか、あるいは、ターゲット20に、金属酸化物ターゲットを用いて誘電体成膜することができる。   The metal oxide film is formed by using a metal target as the target 20 and introducing an oxygen gas from the gas introduction pipe 26 using a magnetron sputtering apparatus as shown in FIG. A dielectric film can be formed using an oxide target.

透明なガラス板21を基板ホルダー22で保持し、真空チャンバー23内をメインバルブ24を開放することで真空ポンプ25を用いて排気し、さらに、真空チャンバー内にガス導入管25より、金属酸化物膜を作製する場合には酸素ガスまたはArと酸素の混合ガスを、マスフローコントローラー26によりガス流量を制御して導入し、真空チャンバー23内の圧力を調整することが好ましい。   The transparent glass plate 21 is held by the substrate holder 22, the inside of the vacuum chamber 23 is evacuated by using the vacuum pump 25 by opening the main valve 24, and the metal oxide is further introduced into the vacuum chamber from the gas introduction pipe 25. In the case of forming a film, it is preferable to adjust the pressure in the vacuum chamber 23 by introducing oxygen gas or a mixed gas of Ar and oxygen while controlling the gas flow rate by the mass flow controller 26.

また、透明な板ガラス21を保持した基板ホルダー22は移動可能な構造となっていて(図示せず)、板ガラス21がターゲット20を通過する時間を、基板ホルダー22の移動速度を変えて行い、成膜する膜の厚みを制御することが望ましい。   The substrate holder 22 holding the transparent plate glass 21 has a movable structure (not shown), and the time for the plate glass 21 to pass the target 20 is changed by changing the moving speed of the substrate holder 22. It is desirable to control the thickness of the film to be formed.

例えば、ZnOを成膜する場合、Znターゲットをターゲット20に用いて、ガス導入管25から適当な混合比のArガスと酸素ガスを導入して成膜することができる。あるいは、ZnOターゲットをターゲット20に用いて、ガス導入管25からArガスのみを導入し、ZnO膜の成膜をしてもよい。   For example, when forming a ZnO film, it is possible to form a film by using a Zn target as the target 20 and introducing Ar gas and oxygen gas in an appropriate mixing ratio from the gas introduction pipe 25. Alternatively, a ZnO film may be formed by introducing only Ar gas from the gas introduction pipe 25 using a ZnO target as the target 20.

さらに、ZnO膜は、X線回折測定によるZnO(002)面による回折ピーク最大強度位置が33.9°以下になることが好ましい。   Furthermore, the ZnO film preferably has a diffraction peak maximum intensity position of 33.9 ° or less by the ZnO (002) plane as measured by X-ray diffraction.

成膜時の真空チャンバー8内の圧力は、真空ポンプとマスフローコントローラーにより制御して導入する酸素ガス流量とにより調整されるが、安定な放電が維持できる範囲で、できるだけ低い圧力にして成膜することが好ましい。真空チャンバー23内の圧力は、真空計26によって測定される。   The pressure in the vacuum chamber 8 at the time of film formation is adjusted by the flow rate of oxygen gas introduced by being controlled by a vacuum pump and a mass flow controller, but the film is formed at a pressure as low as possible within a range where stable discharge can be maintained. It is preferable. The pressure in the vacuum chamber 23 is measured by a vacuum gauge 26.

CuKα線を用いたX線回折法により測定される、ZnO(002)面による回折ピーク最大強度の回折角度2θが34°以上になると、Ag膜の単位厚みあたりの抵抗値が大きい。したがって、CuKα線を用いたX線回折法により測定される、ZnO(002)面による回折ピーク最大強度の回折角度2θが34°以上の場合は、Ag膜の抵抗値を小さくするために、Ag膜を厚くしなければならず、好ましい可視光透過率が得にくくなる。   When the diffraction angle 2θ of the diffraction peak maximum intensity by the ZnO (002) plane measured by the X-ray diffraction method using CuKα rays is 34 ° or more, the resistance value per unit thickness of the Ag film is large. Therefore, when the diffraction angle 2θ of the diffraction peak maximum intensity by the ZnO (002) plane measured by the X-ray diffraction method using CuKα rays is 34 ° or more, in order to reduce the resistance value of the Ag film, Ag The film must be thick, and it becomes difficult to obtain a preferable visible light transmittance.

ZnO膜の回折角度2θが33.9°以下となるためには、酸素ガスの流量は200sccm以下で、真空チャンバー23内の圧力は0.9Pa以下とすることが好ましく、真空チャンバー23内の圧力はできる限り低くすることが望ましい。   In order for the diffraction angle 2θ of the ZnO film to be 33.9 ° or less, the flow rate of oxygen gas is preferably 200 sccm or less, and the pressure in the vacuum chamber 23 is preferably 0.9 Pa or less. Is as low as possible.

Ag膜も金属酸化物膜と同様に、図3に示すマグネトロンスパッタリング装置によって成膜することができ、金属酸化物膜のZnO膜に接して成膜をすることが、Ag膜と金属酸化物膜との密着性を保つので、好ましい。   Similarly to the metal oxide film, the Ag film can be formed by the magnetron sputtering apparatus shown in FIG. 3. The Ag film and the metal oxide film can be formed in contact with the ZnO film of the metal oxide film. This is preferable because the adhesiveness is maintained.

ターゲット20にAgの金属ターゲットを用い、透明な板ガラス21を基板ホルダー22で保持し、真空チャンバー23内をメインバルブ24を開放することで真空ポンプ25を用いて排気し、さらに、真空チャンバー内にガス導入管25よりArガスを、マスフローコントローラー26によりガス流量を制御して導入し、透明板ガラス21を保持した基板ホルダー22を、所望の速度でターゲットを通過させ、透明な板ガラス上にAg膜を形成する。   An Ag metal target is used as the target 20, a transparent plate glass 21 is held by a substrate holder 22, the inside of the vacuum chamber 23 is evacuated by using a vacuum pump 25 by opening the main valve 24, and further inside the vacuum chamber. Ar gas is introduced from the gas introduction pipe 25 by controlling the gas flow rate by the mass flow controller 26, the target is passed through the substrate holder 22 holding the transparent plate glass 21 at a desired speed, and an Ag film is formed on the transparent plate glass. Form.

Ag膜には、Pt、Bi、Cu、Au等の金属を、0.0〜10.0重量%程度含むAgターゲットを用いて、金属膜を成膜し、Agを主成分とするPt、Bi、Cu、Au等の金属を0.0〜10.0重量%含む金属膜を用いても良い。   For the Ag film, a metal film is formed using an Ag target containing about 0.0 to 10.0% by weight of a metal such as Pt, Bi, Cu, or Au, and Pt, Bi containing Ag as a main component. Alternatively, a metal film containing 0.0 to 10.0% by weight of a metal such as Cu or Au may be used.

前述する金属酸化物膜の選択は、可視域の光学特性、金属酸化物膜自体の機械強度、隣接する金属酸化物膜およびAg膜との密着性を考慮して、行うことが望ましい。   The selection of the metal oxide film described above is desirably performed in consideration of optical characteristics in the visible region, mechanical strength of the metal oxide film itself, and adhesion to the adjacent metal oxide film and Ag film.

金属酸化物膜の波長550nmにおける屈折率をn、金属酸化物膜の幾何学的膜厚をd(nm)とした時の、光学的膜厚をnとすると、第1金属酸化物膜のnが57nm〜77nmの範囲にあり、第2金属酸化物膜のnが160nm〜200nmの範囲にあり、第3金属酸化物膜のnが62nm〜82nmの範囲とすることが好ましい。 When the refractive index at a wavelength of 550 nm of the metal oxide film is n, and the optical film thickness is n d when the geometric film thickness of the metal oxide film is d (nm), the first metal oxide film n d is in the range of 57Nm~77nm, n d of the second metal oxide film is in the range of 160Nm~200nm, it is preferable that n d of the third metal oxide film is in the range of 62Nm~82nm.

金属酸化物膜の光学的膜厚の下限値(透明ガラスに直接成膜される第1金属酸化物膜の場合は、57nm、第2金属酸化物膜の場合は160nm、第3金属酸化物膜の場合は62nm)を下回る場合、または、金属酸化物膜の光学的膜厚がその上限値(透明ガラスに直接成膜される第1金属酸化物膜の場合は、77nm、第2金属酸化物膜の場合は、200nm、第3金属酸化物膜の場合は、82nm)を越えると、可視光透過率が低下し、さらに建築物用途として好ましい反射色調が得られなくなる。   Lower limit of optical thickness of metal oxide film (57 nm for first metal oxide film directly deposited on transparent glass, 160 nm for second metal oxide film, third metal oxide film Or less than 62 nm), or the upper limit of the optical film thickness of the metal oxide film (in the case of the first metal oxide film formed directly on the transparent glass, 77 nm, the second metal oxide In the case of a film, if it exceeds 200 nm, and in the case of a third metal oxide film, it exceeds 82 nm), the visible light transmittance is lowered, and further, it is impossible to obtain a reflection color tone preferable for building use.

さらに、第1Ag膜の幾何学的膜厚と第2Ag膜の幾何学的膜厚の和、すなわちAg膜の総幾何学的膜厚は、24〜32nmの範囲にあることが好ましい。総幾何学的膜厚が24nm未満の場合、日射反射率が低下し、有効な遮熱性が得られず、また、総幾何学的膜厚が32nmを越えると、可視光透過率が低下し、さらに建築物用途として好ましくない、赤味を帯びた反射色調となる。   Furthermore, the sum of the geometric thickness of the first Ag film and the geometric thickness of the second Ag film, that is, the total geometric thickness of the Ag film is preferably in the range of 24 to 32 nm. When the total geometric film thickness is less than 24 nm, the solar reflectance is decreased, and effective heat shielding is not obtained. When the total geometric film thickness exceeds 32 nm, the visible light transmittance is decreased, Furthermore, it becomes a reddish reflection color tone, which is not preferable for building use.

さらに、第2金属酸化物膜を形成中に第1Ag膜がプラズマによるダメージを受けることを防ぐ目的で、第1Ag膜と第2金属酸化物膜の間に幾何学的膜厚が2nm程度の保護金属膜を成膜することが望ましい。第2Ag膜と第3金属酸化物膜の間にも同様に、保護金属膜を成膜することが望ましい。   Further, in order to prevent the first Ag film from being damaged by the plasma during the formation of the second metal oxide film, a protective film having a geometric film thickness of about 2 nm between the first Ag film and the second metal oxide film. It is desirable to form a metal film. Similarly, it is desirable to form a protective metal film between the second Ag film and the third metal oxide film.

保護金属膜には、Zn、Sn、Ti、Al、NiCr、Cr、Zn合金、Sn合金、および各金属にAl,Sb金属を0.0〜10.0重量%含んだもの等を用いることができる。   As the protective metal film, use may be made of Zn, Sn, Ti, Al, NiCr, Cr, Zn alloy, Sn alloy, and each metal containing 0.0 to 10.0% by weight of Al, Sb metal. it can.

また、保護金属膜の代わりに、Alを2〜12重量%含む酸化亜鉛(ZnAlOx)(以後AZO膜と呼ぶ)を用いることができる。   In place of the protective metal film, zinc oxide (ZnAlOx) containing 2 to 12% by weight of Al (hereinafter referred to as an AZO film) can be used.

Ag膜および金属酸化物膜は、スパッタリング法で成膜することが好ましく、特に図3に示すような、マグネトロンスパッタリング装置を用いて成膜することが好ましい。   The Ag film and the metal oxide film are preferably formed by a sputtering method, and particularly preferably formed using a magnetron sputtering apparatus as shown in FIG.

金属酸化物膜は、ターゲットに金属ターゲットを用い、ガス導入管から酸素ガスを導入して成膜するか、あるいは、ターゲットに、成膜される酸化物と同じ酸化物ターゲットを用いて成膜することができる。   The metal oxide film is formed by using a metal target as a target and introducing oxygen gas from a gas introduction pipe, or by forming the target using the same oxide target as the oxide to be formed. be able to.

以下、図面を参照しながら本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

実施例1
図2に示すような、板ガラス1に、第1金属酸化物膜10、第1Ag膜13、第2金属酸化物膜11、第2Ag膜14、第3金属酸化物膜12を、図3に示すマグネトロンスパッタリング装置を用いて、積層し、低抵抗膜2を形成した。板ガラス1には、厚み3mmのソーダライムガラスを用いた。
Example 1
As shown in FIG. 2, the first metal oxide film 10, the first Ag film 13, the second metal oxide film 11, the second Ag film 14, and the third metal oxide film 12 are shown in FIG. The low resistance film 2 was formed by stacking using a magnetron sputtering apparatus. As the plate glass 1, soda lime glass having a thickness of 3 mm was used.

第1金属酸化物膜10として、厚み3mmのソーダライムガラス上にZnO膜を成膜した。ターゲット20にZnターゲットを用い、ソーダライムガラスを基板ホルダー22に保持させた後、真空チャンバー23内を真空ポンプ25によって排気した。成膜中、真空ポンプ25は連続して稼働させた。   As the first metal oxide film 10, a ZnO film was formed on soda lime glass having a thickness of 3 mm. A Zn target was used as the target 20, soda lime glass was held on the substrate holder 22, and then the vacuum chamber 23 was evacuated by the vacuum pump 25. During film formation, the vacuum pump 25 was continuously operated.

真空チャンバー23内の雰囲気ガスは、ガス導入管26より、酸素ガスを導入し、酸素ガスの流量をマスフローコントローラー27により制御して調整した。   The atmospheric gas in the vacuum chamber 23 was adjusted by introducing an oxygen gas from a gas introduction pipe 26 and controlling the flow rate of the oxygen gas by a mass flow controller 27.

真空ポンプ25にはクライオポンプを用いた。成膜中の真空チャンバ−内の圧力は、マスフローコントローラー27により酸素ガス流量を60sccm以下に制御して圧力チャンバー23内に導入して、圧力チャンバー23内の圧力を、所望の0.3Paに調節した。   A cryopump was used as the vacuum pump 25. The pressure in the vacuum chamber during film formation is controlled by controlling the oxygen gas flow rate to 60 sccm or less by the mass flow controller 27 and introducing it into the pressure chamber 23 to adjust the pressure in the pressure chamber 23 to a desired 0.3 Pa. did.

第1金属酸化物膜にはZnO膜を用い、32nmの幾何学的膜厚で成膜した。ZnO膜の幾何学的な膜厚は、板ガラスの搬送速度により調整した。   A ZnO film was used as the first metal oxide film and was formed with a geometric thickness of 32 nm. The geometric thickness of the ZnO film was adjusted by the conveyance speed of the plate glass.

成膜したZnO膜の波長550nmにおける屈折率(複素屈折率の実数部)は2.1であり、第1金属酸化物10のZnO膜の光学的膜厚nは67nmであった。 Refractive index at a wavelength of 550nm of the formed ZnO film (the real part of the complex refractive index) is 2.1, the optical thickness n d of the ZnO film of the first metal oxide 10 was 67 nm.

次に、真空チャンバー23内の酸素ガスを排気した後、Arガスをガス導入管26からマスフローコントローラー27で制御して真空チャンバー23内に導入して、真空チャンバー23内をArガス雰囲気にし、第1Ag膜13を成膜した。   Next, after evacuating the oxygen gas in the vacuum chamber 23, the Ar gas is controlled by the mass flow controller 27 from the gas introduction pipe 26 and introduced into the vacuum chamber 23, and the inside of the vacuum chamber 23 is made an Ar gas atmosphere. A 1 Ag film 13 was formed.

第1Ag膜は、Agターゲットをターゲット20に用いて、第1金属酸化物膜(ZnO膜)の上に成膜した。第1Ag膜の幾何学的膜厚は、14nmとした。   The first Ag film was formed on the first metal oxide film (ZnO film) using an Ag target as the target 20. The geometric thickness of the first Ag film was 14 nm.

第1Ag膜の成膜中、真空チャンバー内の圧力は、真空ポンプと開閉バルブによって0.5Paとした。   During the formation of the first Ag film, the pressure in the vacuum chamber was set to 0.5 Pa by a vacuum pump and an opening / closing valve.

次に、第1Ag膜の上に、ZnAl(Al4wt%含有ZnO)ターゲットを用い、図2には図示しない、2nmの幾何学的膜厚のZnAl膜を成膜した。   Next, a ZnAl film having a geometric thickness of 2 nm (not shown in FIG. 2) was formed on the first Ag film using a ZnAl (Al4 wt% -containing ZnO) target.

ZnAl膜の成膜中、圧力チャンバー内のガス雰囲気および圧力は、Ag膜の成膜と同様にした。   During the formation of the ZnAl film, the gas atmosphere and pressure in the pressure chamber were the same as in the formation of the Ag film.

さらに、ZnAl膜の上に第2金属酸化物膜11として、ZnO膜を182nmの光学的膜厚で成膜した。成膜条件は、板ガラス21の表面に成膜した第1金属酸化物膜10のZnO膜と同様にした。   Further, a ZnO film was formed as a second metal oxide film 11 on the ZnAl film with an optical thickness of 182 nm. The film formation conditions were the same as those for the ZnO film of the first metal oxide film 10 formed on the surface of the plate glass 21.

さらに、第2金属酸化物膜11の上に第2Ag膜14を14nmの幾何学的膜厚で成膜した。第2Ag膜14の成膜は、第1Ag膜と同様にして行った。   Further, a second Ag film 14 was formed on the second metal oxide film 11 with a geometric film thickness of 14 nm. The second Ag film 14 was formed in the same manner as the first Ag film.

次に、第2Ag膜の上に、ZnAl(Al4wt%含有ZnO)ターゲットを用い、図2には図示しない、2nmの幾何学的膜厚のZnAl膜を成膜した。成膜は、第1Ag膜上に成膜したZnAl膜と同様にして行った。   Next, a ZnAl film having a geometric thickness of 2 nm (not shown in FIG. 2) was formed on the second Ag film using a ZnAl (Al4 wt% -containing ZnO) target. The film formation was performed in the same manner as the ZnAl film formed on the first Ag film.

さらに、ZnAl膜の上に第3金属酸化物膜12として、ZnO膜を72nmの光学的膜厚で成膜した。成膜は、板ガラスの表面に第1金属酸化物膜10として成膜した、ZnO膜と同様にして行った。   Furthermore, a ZnO film having an optical thickness of 72 nm was formed as the third metal oxide film 12 on the ZnAl film. The film formation was performed in the same manner as the ZnO film formed as the first metal oxide film 10 on the surface of the plate glass.

このようにして低抵抗膜2を形成した板ガラス1を用いて、図1に示すような複層ガラスを作製した。板ガラス1´には、厚み3mmのソーダライムガラスを用いた。   A multi-layer glass as shown in FIG. 1 was produced using the plate glass 1 on which the low resistance film 2 was formed in this way. As the plate glass 1 ′, soda lime glass having a thickness of 3 mm was used.

複層ガラスの構成は、室外側から、低抵抗膜2を形成した厚み3mmのソーダライムガラス、空気層6mm、厚み3mmのソーダライムガラスとした。   The multi-layer glass was composed of soda lime glass having a thickness of 3 mm and a soda lime glass having an air layer of 6 mm and a thickness of 3 mm formed with a low resistance film 2 from the outdoor side.

可視光透過率および日射熱取得率をJISR3106:1998に準拠して算出した結果、可視光透過率は69.3%であり、日射熱取得率は0.36であった。また、垂直入射光の非膜面の反射色がCIEL*a*b*色度座標図において、a*が−9.2、b*が−5.3であった。   As a result of calculating the visible light transmittance and the solar heat acquisition rate based on JIS R3106: 1998, the visible light transmittance was 69.3% and the solar heat acquisition rate was 0.36. In addition, in the CIEL * a * b * chromaticity coordinate diagram, the reflection color of the non-film surface of normal incident light was −9.2 and b * was −5.3.

実施例2
板ガラス1、1´に厚み6mmのソーダライムガラスを用いた他は、全て実施例1と同様にして複層ガラスを作製した。
Example 2
A multilayer glass was produced in the same manner as in Example 1 except that soda lime glass having a thickness of 6 mm was used for the plate glasses 1 and 1 ′.

板ガラス1を室外側にした時の、JISR3106:1998に準拠して算出した可視光透過率は67.0%であり、日射熱取得率は0.36であった。また、垂直入射光の非膜面の反射色は、a*が−9.3、b*が−6.1であった。   When the plate glass 1 was set to the outdoor side, the visible light transmittance calculated in accordance with JIS R3106: 1998 was 67.0%, and the solar heat gain rate was 0.36. In addition, the reflection color of the non-film surface of normal incident light was −9.3 for a * and −6.1 for b *.

実施例3
板ガラス1、1´に厚み12mmのソーダライムガラスを用いた他は、全て実施例1と同様にした。
Example 3
The same procedure as in Example 1 was performed except that soda lime glass having a thickness of 12 mm was used for the plate glasses 1 and 1 '.

板ガラス1を室外側にした時の、JISR3106:1998に準拠して算出したところ、可視光透過率は63.7%であり、日射熱取得率は0.35であった。また、垂直入射光の非膜面の反射色は、a*が−10.5、b*が−5.6であった。   When it calculated based on JISR3106: 1998 when the plate glass 1 was made into the outdoor side, the visible light transmittance | permeability was 63.7% and the solar radiation heat acquisition rate was 0.35. The reflection color of the non-film surface of normal incident light was a * of -10.5 and b * of -5.6.

実施例4
板ガラス1、1´に厚み6mmの可視光透過率が91%の高透過ガラスを用いた他は、全て実施例1と同様にした。
Example 4
The same procedure as in Example 1 was performed, except that a high transmittance glass having a thickness of 6 mm and a visible light transmittance of 91% was used for the plate glasses 1 and 1 ′.

板ガラス1を室外側にした時の、JISR3106:1998に準拠して算出したところ、可視光透過率は69.9%であり、日射熱取得率は0.35であった。また、垂直入射光の非膜面の反射色はa*が−11.2、b*が−6.6であった。   When it calculated based on JISR3106: 1998 when the plate glass 1 was made into the outdoor side, the visible light transmittance | permeability was 69.9% and the solar radiation heat acquisition rate was 0.35. In addition, the reflection color of the non-film surface of the normal incident light was a * of −11.2 and b * of −6.6.

実施例5
板ガラス1に厚み6mmの可視光透過率が91%の高透過ガラスを用い、板ガラス1´に厚み12mmの可視光透過率が90%の高透過ガラスを用いた他は、全て実施例1と同様にした。
Example 5
Example 1 is the same as Example 1 except that a high transmittance glass having a visible light transmittance of 91% having a thickness of 6 mm is used for the plate glass 1 and a high transmittance glass having a thickness of 90% having a visible light transmittance of 12 mm is used for the plate glass 1 ′. I made it.

板ガラス1を室外側にした時の、JISR3106:1998に準拠して算出したところ、、可視光透過率は69.2%であり、日射熱取得率は0.34であった。また、垂直入射光の非膜面の反射色は、a*が−11.2、b*が−6.6であった。   When it calculated based on JISR3106: 1998 when the plate glass 1 was made into the outdoor side, the visible light transmittance | permeability was 69.2% and the solar radiation heat acquisition rate was 0.34. Further, the reflection color of the non-film surface of the normal incident light was a * of −11.2 and b * of −6.6.

実施例6
板ガラス1に、実施例5と同様の、厚み6mmの高透過ガラスを用い、第1金属酸化物膜10として、板ガラス1にSnO膜を成膜し、次いでSnO膜の上にZnO膜を成膜した。
Example 6
The same high-transmission glass with a thickness of 6 mm as in Example 5 is used for the plate glass 1, and a SnO 2 film is formed on the plate glass 1 as the first metal oxide film 10, and then a ZnO film is formed on the SnO 2 film. A film was formed.

SnO膜の成膜は、ターゲット20にSnターゲットを用い、高透過ガラスを基板ホルダー22に保持させた後、真空チャンバー23内を真空ポンプ25によって排気した。成膜中、真空ポンプ25は連続して稼働させた。 The SnO 2 film was formed by using a Sn target as the target 20, holding the highly transmissive glass on the substrate holder 22, and then evacuating the vacuum chamber 23 with the vacuum pump 25. During film formation, the vacuum pump 25 was continuously operated.

真空チャンバー23内の雰囲気ガスは、ガス導入管26より、酸素ガスを導入し、酸素ガスの流量をマスフローコントローラー27により制御して調整した。   The atmospheric gas in the vacuum chamber 23 was adjusted by introducing an oxygen gas from a gas introduction pipe 26 and controlling the flow rate of the oxygen gas by a mass flow controller 27.

真空ポンプ25にはクライオポンプを用いた。成膜中の真空チャンバ−内の圧力は、マスフローコントローラー27により酸素ガス流量を60sccm以下に制御して圧力チャンバー23内に導入して、圧力チャンバー23内の圧力を、所望の0.3Paに調節した。   A cryopump was used as the vacuum pump 25. The pressure in the vacuum chamber during film formation is controlled by controlling the oxygen gas flow rate to 60 sccm or less by the mass flow controller 27 and introducing it into the pressure chamber 23 to adjust the pressure in the pressure chamber 23 to a desired 0.3 Pa. did.

ZnO膜の成膜は、ターゲット20にZnターゲットを用い、SnO膜を成膜した高透過ガラスを基板ホルダー22に保持し、SnO膜の成膜と同様に、マスフローコントローラー27により酸素ガス流量を60sccm以下に制御し、圧力チャンバー23内の圧力を、所望の0.3Paに調節して行った。 The ZnO film is formed by using a Zn target as the target 20, holding the highly transmissive glass on which the SnO 2 film is formed on the substrate holder 22, and, similarly to the formation of the SnO 2 film, using the mass flow controller 27 with the oxygen gas flow rate. Was controlled to 60 sccm or less, and the pressure in the pressure chamber 23 was adjusted to a desired 0.3 Pa.

第1金属酸化物膜10として成膜したSnO膜の光学的膜厚は46.2nm、ZnO膜の光学的膜厚は21nmとした。 The optical film thickness of the SnO 2 film formed as the first metal oxide film 10 was 46.2 nm, and the optical film thickness of the ZnO film was 21 nm.

第1金属酸化物膜10の上に、幾何学的厚みが14nmの第1Ag膜13を、実施例1と同様にして成膜した。   A first Ag film 13 having a geometric thickness of 14 nm was formed on the first metal oxide film 10 in the same manner as in Example 1.

第2金属酸化物膜11として、光学的膜厚が119.1nmのSnO膜と光学的膜厚が63nmのZnO膜を用いた。第2金属酸化物膜11の成膜は、第1金属酸化物膜10と同様にして行った。 As the second metal oxide film 11, an SnO 2 film having an optical film thickness of 119.1 nm and a ZnO film having an optical film thickness of 63 nm were used. The second metal oxide film 11 was formed in the same manner as the first metal oxide film 10.

第2金属酸化物膜11の上に、第1Ag膜13と同様に幾何学的厚みが14nmの第2Ag膜14を成膜し、第1Ag膜13と第2Ag膜14との幾何学的厚みの合計を28nmとした。   A second Ag film 14 having a geometric thickness of 14 nm is formed on the second metal oxide film 11 in the same manner as the first Ag film 13, and the geometric thickness of the first Ag film 13 and the second Ag film 14 is increased. The total was 28 nm.

第2Ag膜14の上に第3金属酸化物膜12として、光学的膜厚が71.8nmのZnO膜を成膜した。成膜方法は、第1金属酸化物膜10のZnO膜と同様にした。   A ZnO film having an optical film thickness of 71.8 nm was formed as the third metal oxide film 12 on the second Ag film 14. The film forming method was the same as that of the ZnO film of the first metal oxide film 10.

板ガラス1´に厚み6mmの高透過ガラスを用い、図1に示すような複層ガラスを作製した。   A multi-layer glass as shown in FIG. 1 was produced by using a highly transparent glass having a thickness of 6 mm for the plate glass 1 ′.

この複層ガラスの可視光透過率および日射熱取得率をJISR3106:1998に準拠して算出した結果、可視光透過率は71.6%であり、日射熱取得率は0.36であった。また、垂直入射光の非膜面の反射色がCIEL*a*b*色度座標図において、a*が−7.8、b*が−3.4であった。   As a result of calculating the visible light transmittance and the solar heat gain of this multilayer glass based on JIS R3106: 1998, the visible light transmittance was 71.6% and the solar heat heat gain was 0.36. In addition, in the CIEL * a * b * chromaticity coordinate diagram, the reflection color of the non-film surface of the normal incident light was a * of −7.8 and b * of −3.4.

比較例1
厚み3mmの板ガラス1に形成した低抵抗膜の構成は、第1金属酸化物膜10に、光学的膜厚が50nmのZnO膜を用い、第2金属酸化物膜11に、光学的膜厚が191nmのZnO膜を用い、第3金属酸化物膜12に、光学的膜厚が80nmのZnO膜を用い、さらに、第1Ag膜13と第2Ag膜14との幾何学的厚みの合計を31nmとした。
Comparative Example 1
The structure of the low resistance film formed on the plate glass 1 having a thickness of 3 mm uses a ZnO film having an optical film thickness of 50 nm for the first metal oxide film 10 and an optical film thickness for the second metal oxide film 11. A ZnO film with a thickness of 191 nm is used, a ZnO film with an optical thickness of 80 nm is used for the third metal oxide film 12, and the total geometric thickness of the first Ag film 13 and the second Ag film 14 is 31 nm. did.

第1金属酸化物膜10、第2金属酸化物膜11および第3金属酸化物膜12のZnO膜の成膜は、ターゲット20にZnターゲットを用い、真空チャンバー23内の排気を、真空ポンプ25を連続して稼働させて、真空チャンバー23内の雰囲気ガスは、ガス導入管26より、酸素ガスを導入し、酸素ガスの流量をマスフローコントローラー27により100sccm以下に制御して調整し、圧力チャンバー23内の圧力を、1.0〜1.2Paに調節して、行った。また、第1Ag膜13と第2Ag膜は、実施例1と同様の成膜方法で成膜した。   The ZnO films of the first metal oxide film 10, the second metal oxide film 11, and the third metal oxide film 12 are formed by using a Zn target as the target 20 and exhausting the vacuum chamber 23 by using a vacuum pump 25. Are continuously operated, and the atmospheric gas in the vacuum chamber 23 is adjusted by introducing oxygen gas from the gas introduction pipe 26 and controlling the flow rate of the oxygen gas to 100 sccm or less by the mass flow controller 27. The inside pressure was adjusted to 1.0 to 1.2 Pa. The first Ag film 13 and the second Ag film were formed by the same film forming method as in Example 1.

厚み3mmの板ガラス1´にソーダライムガラスを用い、実施例1と同様にして、図1に示す複層ガラスを作製した。   The soda lime glass was used for the plate glass 1 ′ having a thickness of 3 mm, and the multilayer glass shown in FIG.

この複層ガラスの可視光透過率および日射熱取得率をJISR3106:1998に準拠して算出した結果、可視光透過率は60.4%であり、日射熱取得率は0.35であった。また、垂直入射光の非膜面の反射色がCIEL*a*b*色度座標図において、a*が−3.0、b*が−9.3であった。   As a result of calculating the visible light transmittance and the solar heat gain of this multilayer glass based on JIS R3106: 1998, the visible light transmittance was 60.4% and the solar heat heat gain was 0.35. In addition, in the CIEL * a * b * chromaticity coordinate diagram, the reflection color of the non-film surface of normal incident light was −3.0 and b * was −9.3.

比較例2
板ガラス1、1´に厚み6mmの可視光透過率が91%の高透過ガラスを用いた他は、全て比較例1と同様にして複層ガラスを作製した。
Comparative Example 2
A multilayer glass was prepared in the same manner as in Comparative Example 1 except that a high transmittance glass having a visible light transmittance of 91% and a thickness of 6 mm was used for the plate glasses 1 and 1 ′.

板ガラス1を室外側にした時の、JISR3106:1998に準拠して算出した可視光透過率は62.2%であり、日射熱取得率は0.35であった。また、垂直入射光の非膜面の反射色は、a*が−2.4、b*が−10.0であった。   When the plate glass 1 was set to the outdoor side, the visible light transmittance calculated in accordance with JIS R3106: 1998 was 62.2%, and the solar heat acquisition rate was 0.35. The reflection color of the non-film surface of the normal incident light was a * of −2.4 and b * of −10.0.

比較例3
板ガラス1、1´に厚み12mmのソーダライムガラスを用いた他は、全て比較例1と同様にして複層ガラスを作製した。
Comparative Example 3
A multilayer glass was produced in the same manner as in Comparative Example 1 except that soda lime glass having a thickness of 12 mm was used for the plate glasses 1 and 1 ′.

板ガラス1を室外側にした時の、JISR3106:1998に準拠して算出した可視光透過率は56.5%であり、日射熱取得率は0.35であった。また、垂直入射光の非膜面の反射色は、a*が−1.97、b*が−9.40であった。   When the plate glass 1 was set to the outdoor side, the visible light transmittance calculated in accordance with JIS R3106: 1998 was 56.5%, and the solar heat gain rate was 0.35. In addition, the reflection color of the non-film surface of normal incident light was a * of -1.97 and b * of -9.40.

比較例4
板ガラス1、1´に厚み10mmのソーダライムガラスを用い、第1金属酸化物膜10に、光学的膜厚が61nmのZnO膜を用い、第2金属酸化物膜11に、光学的膜厚が221nmのZnO膜を用い、第3金属酸化物膜12に、光学的膜厚が69nmのZnO膜を用い、さらに、第1Ag膜13と第2Ag膜14との幾何学的厚みの合計を22nmとして、比較例1と同様の成膜方法で成膜し、その他は実施例1と同様にして、図1に示す複層ガラスを作製した。
Comparative Example 4
A soda lime glass having a thickness of 10 mm is used for the plate glass 1, 1 ′, a ZnO film having an optical film thickness of 61 nm is used for the first metal oxide film 10, and an optical film thickness is used for the second metal oxide film 11. A ZnO film with a thickness of 221 nm is used, a ZnO film with an optical thickness of 69 nm is used for the third metal oxide film 12, and the total geometric thickness of the first Ag film 13 and the second Ag film 14 is 22 nm. A film was formed by the same film forming method as in Comparative Example 1, and the other processes were performed in the same manner as in Example 1 to produce a multilayer glass shown in FIG.

板ガラス1を室外側にした時の、JISR3106:1998に準拠して算出した可視光透過率は51.5%であり、日射熱取得率は0.37であった。また、垂直入射光の非膜面の反射色は、a*が−6.50、b*が1.70であった。   When the plate glass 1 was set to the outdoor side, the visible light transmittance calculated in accordance with JIS R3106: 1998 was 51.5%, and the solar heat acquisition rate was 0.37. Moreover, the reflection color of the non-film surface of normal incident light was −6.50 for b * and 1.70 for b *.

比較例5
板ガラス1、1´に厚み12mmのソーダライムガラスを用いた他は、全て比較例4と同様にして、図1に示す複層ガラスを作製した。
Comparative Example 5
A multilayer glass shown in FIG. 1 was prepared in the same manner as in Comparative Example 4 except that soda lime glass having a thickness of 12 mm was used for the plate glasses 1 and 1 ′.

板ガラス1を室外側にした時の、JISR3106:1998に準拠して算出した可視光透過率は60.3%であり、日射熱取得率は0.37であった。また、垂直入射光の非膜面の反射色は、a*が−6.50、b*が1.70であった。   When the plate glass 1 was placed on the outdoor side, the visible light transmittance calculated in accordance with JIS R3106: 1998 was 60.3%, and the solar heat gain rate was 0.37. Moreover, the reflection color of the non-film surface of normal incident light was −6.50 for b * and 1.70 for b *.

比較例6
板ガラス1、1´に厚み12mmのソーダライムガラスを用い、第1金属酸化物膜10に、光学的膜厚が48nmのZnO膜を用い、第2金属酸化物膜11に、光学的膜厚が139nmのZnO膜を用い、さらに、第1Ag膜13の幾何学的厚みを12nmとし、第3金属酸化物膜および第2Ag膜は成膜せずに、、図1に示す複層ガラスを作製した。
Comparative Example 6
A soda lime glass having a thickness of 12 mm is used for the plate glass 1, 1 ′, a ZnO film having an optical film thickness of 48 nm is used for the first metal oxide film 10, and an optical film thickness is used for the second metal oxide film 11. A multilayer glass shown in FIG. 1 was produced using a ZnO film of 139 nm, the geometric thickness of the first Ag film 13 being 12 nm, and without forming the third metal oxide film and the second Ag film. .

第1、第2金属酸化物膜および第1Ag膜の成膜方法は比較例1と同様にして行った。   The first and second metal oxide films and the first Ag film were formed in the same manner as in Comparative Example 1.

板ガラス1を室外側にした時の、JISR3106:1998に準拠して算出した可視光透過率は65.5%であるが、日射熱取得率は0.48で、遮熱性の劣るものあった。また、垂直入射光の非膜面の反射色は、a*が−2.38、b*が−16.79であった。   When the plate glass 1 was set to the outdoor side, the visible light transmittance calculated in accordance with JIS R3106: 1998 was 65.5%, but the solar heat gain rate was 0.48, and the heat shielding property was poor. In addition, the reflection color of the non-film surface of normal incident light was a * of −2.38 and b * of −16.79.

表1に、実施例1〜5及び比較例1〜5の低抵抗膜の膜構成を、また、表2に実施例1〜5及び比較例1〜5の、JISR3106:1998に準拠した可視光透過率、日射熱取得率および反射色を示す。   Table 1 shows the film configurations of the low resistance films of Examples 1 to 5 and Comparative Examples 1 to 5, and Table 2 shows visible light based on JIS R3106: 1998 of Examples 1 to 5 and Comparative Examples 1 to 5. It shows transmittance, solar heat gain rate and reflection color.

Figure 2008222507
Figure 2008222507

Figure 2008222507
Figure 2008222507

表3は、実施例と比較例で成膜したZnO膜の、CuKα線を用いたX線回折法による、ZnO膜の(002)結晶面による回折ピークの回折角度と抵抗膜の表面抵抗の値を示す。   Table 3 shows the diffraction angle of the diffraction peak by the (002) crystal plane of the ZnO film and the value of the surface resistance of the resistance film of the ZnO film formed in the example and the comparative example by the X-ray diffraction method using CuKα rays. Indicates.

Figure 2008222507
Figure 2008222507

実施例1〜6の回折角は全て33.9°以下であり、比較例では33.9°より大きいものであった。   The diffraction angles of Examples 1 to 6 were all 33.9 ° or less, and in Comparative Examples, they were larger than 33.9 °.

実施例の低抵抗膜の表面抵抗は、第1Ag膜の厚みと第2Ag膜の厚みとの合計t2は28nmで、3.4−0.04×t2の値2.28に対し、いずれも低い抵抗値であった。   The surface resistance of the low resistance film of the example is a total t2 of the thickness of the first Ag film and the thickness of the second Ag film of 28 nm, which is lower than the value 2.28 of 3.4-0.04 × t2. Resistance value.

比較例1〜3の低抵抗膜の表面抵抗は、第1Ag膜の厚みと第2Ag膜の厚みとの合計t2は31nmで、3.4−0.04×t2の値2.16に対し、いずれも高い抵抗値であった。   The surface resistance of the low resistance films of Comparative Examples 1 to 3 is that the total t2 of the thickness of the first Ag film and the thickness of the second Ag film is 31 nm, whereas the value 2.16 of 3.4-0.04 × t2 is All were high resistance values.

また、比較例4、5の低抵抗膜の表面抵抗は、第1Ag膜の厚みと第2Ag膜の厚みとの合計t2は22nmで、3.4−0.04×t2の値2.52に対し、いずれも高い抵抗値であった。   The surface resistance of the low resistance films of Comparative Examples 4 and 5 is that the total t2 of the thickness of the first Ag film and the thickness of the second Ag film is 22 nm, and the value 2.52 of 3.4-0.04 × t2 is 2.52. On the other hand, the resistance value was high.

本発明の複層ガラスの構成を示す断面図である。It is sectional drawing which shows the structure of the multilayer glass of this invention. 低抵抗膜の膜構成を示す断面図である。It is sectional drawing which shows the film | membrane structure of a low resistance film. マグネトロンスパッタリング装置の概略図である。It is the schematic of a magnetron sputtering apparatus. 透明ガラスの厚みに対する可視光透過率の関係を示すグラフである。It is a graph which shows the relationship of the visible light transmittance | permeability with respect to the thickness of transparent glass.

符号の説明Explanation of symbols

1 板ガラス
2 低抵抗膜
3 接着剤
4 スペーサー
5 シーリング材
10 第1金属酸化物
11 第2金属酸化物
12 第3金属酸化物
13 第1Ag膜
14 第2Ag膜
20 ターゲット
21 板ガラス
22 基板ホルダー
23 真空チャンバー
24 メインバルブ
25 真空ポンプ
26 ガス導入管
27 マスフローコントローラー
DESCRIPTION OF SYMBOLS 1 Plate glass 2 Low resistance film 3 Adhesive 4 Spacer 5 Sealing material 10 1st metal oxide 11 2nd metal oxide 12 3rd metal oxide 13 1st Ag film 14 2nd Ag film 20 Target 21 Plate glass 22 Substrate holder 23 Vacuum chamber 24 Main valve 25 Vacuum pump 26 Gas introduction pipe 27 Mass flow controller

Claims (4)

2枚の板ガラスが所定の間隔で対向隔置され、該2枚の板ガラスの周縁部に該所定の間隔を保持するようにスペーサーが配設され、該2枚の板ガラスの間に密封された中空層が形成され、1枚の板ガラスに低抵抗膜が形成されている複層ガラスにおいて、低抵抗膜が中空層側に配せられ、該低抵抗膜は第1金属酸化物膜、第1Ag膜、第2金属酸化物膜、第2Ag膜、第3金属酸化物膜が順次積層されてなる積層膜であり、第1金属酸化物膜、第2金属酸化物膜、第3金属酸化物膜はZnO膜を主とする金属酸化物膜でなり、該ZnO膜はCuKα線を用いたX線回折法による、該ZnO膜の(002)結晶面による回折ピークの回折角度2θが33.9°以下であり、複層ガラスの2枚の板ガラスは共に3mm以上の厚みを有し、2枚の板ガラスの厚みの合計t1(mm)に対し、該複層ガラスのJISR3106:1998に準拠した可視光透過率が(70.0−0.3×t1)%以上であり、該複層ガラスのJISR3106:1998に準拠した日射熱取得率が0.38以下であることを特徴とする複層ガラス。   The two plate glasses are spaced apart from each other at a predetermined interval, a spacer is disposed at the peripheral portion of the two plate glasses so as to maintain the predetermined interval, and the hollow is sealed between the two plate glasses. In a multi-layer glass in which a low resistance film is formed on one sheet glass, the low resistance film is disposed on the hollow layer side, and the low resistance film includes a first metal oxide film and a first Ag film. , A second metal oxide film, a second Ag film, and a third metal oxide film are sequentially laminated. The first metal oxide film, the second metal oxide film, and the third metal oxide film are A ZnO film is mainly a metal oxide film, and the ZnO film has a diffraction angle 2θ of a diffraction peak due to the (002) crystal plane of the ZnO film by X-ray diffraction using CuKα rays of 33.9 ° or less. The two glass sheets of the multi-layer glass both have a thickness of 3 mm or more and have two sheet glass. The visible light transmittance according to JIS R3106: 1998 of the multilayer glass is (70.0-0.3 × t1)% or more with respect to the total thickness t1 (mm) of the glass, and the multilayer glass has JIS R3106 : A double-glazed glass characterized in that the solar heat acquisition rate according to 1998 is 0.38 or less. 積層膜が、第1Ag膜の厚みと第2Ag膜の厚みとの合計をt2(nm)とし、低抵抗膜の表面抵抗が(3.4−0.04×t2)Ω/□以下であることを特徴とする請求項1に記載の複層ガラス。   The laminated film has a total thickness of the first Ag film and the second Ag film of t2 (nm), and the surface resistance of the low resistance film is (3.4-0.04 × t2) Ω / □ or less. The multilayer glass according to claim 1, wherein: 第1金属酸化物膜の光学厚みが57nm〜77nmの範囲にあり、第1Ag膜の厚みが12nm〜16nmの範囲にあり、第2金属酸化物膜の光学厚みが160nm〜200nmの範囲にあり、第2Ag膜の厚みが12nm〜16nmの範囲にあり、第3金属酸化物膜の光学厚みが62nm〜82nmの範囲にあることを特徴とする請求項1または2のいずれかに記載の複層ガラス。   The optical thickness of the first metal oxide film is in the range of 57 nm to 77 nm, the thickness of the first Ag film is in the range of 12 nm to 16 nm, and the optical thickness of the second metal oxide film is in the range of 160 nm to 200 nm, 3. The multilayer glass according to claim 1, wherein the thickness of the second Ag film is in the range of 12 nm to 16 nm, and the optical thickness of the third metal oxide film is in the range of 62 nm to 82 nm. . 低抵抗膜が形成されている板ガラスの、ガラス面の反射色が、CIEL*a*b*色度座標図において、−20≦a*≦−5、−10≦b*≦5、であることを特徴とする請求項1乃至3のいずれかに記載の複層ガラス。   The reflection color of the glass surface of the plate glass on which the low resistance film is formed is −20 ≦ a * ≦ −5, −10 ≦ b * ≦ 5 in the CIE L * a * b * chromaticity coordinate diagram. The multilayer glass according to any one of claims 1 to 3.
JP2007064386A 2007-03-14 2007-03-14 Multiple glass Pending JP2008222507A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007064386A JP2008222507A (en) 2007-03-14 2007-03-14 Multiple glass
PCT/JP2008/053949 WO2008111455A1 (en) 2007-03-14 2008-03-05 Double glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007064386A JP2008222507A (en) 2007-03-14 2007-03-14 Multiple glass

Publications (1)

Publication Number Publication Date
JP2008222507A true JP2008222507A (en) 2008-09-25

Family

ID=39759398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007064386A Pending JP2008222507A (en) 2007-03-14 2007-03-14 Multiple glass

Country Status (2)

Country Link
JP (1) JP2008222507A (en)
WO (1) WO2008111455A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011173764A (en) * 2010-02-25 2011-09-08 Central Glass Co Ltd Low radiation film
JP2014076918A (en) * 2012-10-11 2014-05-01 Central Glass Co Ltd Glass laminate for window

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023064111A1 (en) * 2021-10-11 2023-04-20 Vitro Flat Glass Llc Heat-treatable coating having reduced haze
US12350905B2 (en) 2021-10-11 2025-07-08 Vitro Flat Glass Llc Heat-treatable coating having reduced haze

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04357025A (en) * 1990-07-05 1992-12-10 Asahi Glass Co Ltd Heat ray screening film
JPH0524149A (en) * 1990-11-29 1993-02-02 Asahi Glass Co Ltd Heat ray blocking film
JPH0971441A (en) * 1995-09-04 1997-03-18 Nippon Sheet Glass Co Ltd Highly durable and low-radiant multilayer film structure
JP2003104758A (en) * 2001-09-27 2003-04-09 Nippon Sheet Glass Co Ltd Heat ray shielding glass and double grazing using the same
JP2004058592A (en) * 2002-07-31 2004-02-26 Asahi Glass Co Ltd Laminates and structures
JP2006206424A (en) * 2004-12-27 2006-08-10 Central Glass Co Ltd Ag FILM FORMING METHOD AND LOW-EMISSIVITY GLASS

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04357025A (en) * 1990-07-05 1992-12-10 Asahi Glass Co Ltd Heat ray screening film
JPH0524149A (en) * 1990-11-29 1993-02-02 Asahi Glass Co Ltd Heat ray blocking film
JPH0971441A (en) * 1995-09-04 1997-03-18 Nippon Sheet Glass Co Ltd Highly durable and low-radiant multilayer film structure
JP2003104758A (en) * 2001-09-27 2003-04-09 Nippon Sheet Glass Co Ltd Heat ray shielding glass and double grazing using the same
JP2004058592A (en) * 2002-07-31 2004-02-26 Asahi Glass Co Ltd Laminates and structures
JP2006206424A (en) * 2004-12-27 2006-08-10 Central Glass Co Ltd Ag FILM FORMING METHOD AND LOW-EMISSIVITY GLASS

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011173764A (en) * 2010-02-25 2011-09-08 Central Glass Co Ltd Low radiation film
JP2014076918A (en) * 2012-10-11 2014-05-01 Central Glass Co Ltd Glass laminate for window

Also Published As

Publication number Publication date
WO2008111455A1 (en) 2008-09-18

Similar Documents

Publication Publication Date Title
JP3902676B2 (en) Transparent substrate with a thin film stack acting on sunlight and / or infrared
US20230322617A1 (en) Solar Control Coating With High Solar Heat Gain Coefficient
JP4763569B2 (en) High-infrared reflective coating, thin film coating deposition method and related technology
US6413643B1 (en) Sunlight shielding translucent glass panel and sunlight shielding translucent multilayer glass panel assembly
CN103864315B (en) A kind of silver-colored titanium complex functional layer Low emissivity energy-saving glass and preparation method thereof
US12060751B2 (en) Coated glass pane
JP2007191384A (en) Low emissivity glass
WO2012115111A1 (en) Laminate
JP6601419B2 (en) Glass plate with laminated film and multilayer glass
JP2008222507A (en) Multiple glass
WO2007072877A1 (en) Low emissivity glass
EP3464208A1 (en) Solar-control glazing
JP2007070146A (en) Low emissive multilayered glass
JP2018002564A (en) Gray color tone low radiation glass
JP2014124815A (en) Low-radiation film
JP2019182684A (en) Low radiation glass
WO2010098200A1 (en) Stack article
JP2006206424A (en) Ag FILM FORMING METHOD AND LOW-EMISSIVITY GLASS
JP2004217432A (en) Laminates and structures
WO2014109369A1 (en) Laminated body and multi-layered glass
JP6287502B2 (en) Low radiation window material
JP2007197237A (en) Low-radiation double glazing
JP5598324B2 (en) Manufacturing method of low radiation film
JP2011063500A (en) Heat ray shielding laminated film
JP2003327451A (en) Laminates and structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090930

RD04 Notification of resignation of power of attorney

Effective date: 20100325

Free format text: JAPANESE INTERMEDIATE CODE: A7424

RD02 Notification of acceptance of power of attorney

Effective date: 20100326

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A131 Notification of reasons for refusal

Effective date: 20120508

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120911

Free format text: JAPANESE INTERMEDIATE CODE: A02