[go: up one dir, main page]

JP2008219989A - Power interchange device - Google Patents

Power interchange device Download PDF

Info

Publication number
JP2008219989A
JP2008219989A JP2007051034A JP2007051034A JP2008219989A JP 2008219989 A JP2008219989 A JP 2008219989A JP 2007051034 A JP2007051034 A JP 2007051034A JP 2007051034 A JP2007051034 A JP 2007051034A JP 2008219989 A JP2008219989 A JP 2008219989A
Authority
JP
Japan
Prior art keywords
power
phase
instantaneous
active power
interchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007051034A
Other languages
Japanese (ja)
Other versions
JP4764993B2 (en
Inventor
Akio Suzuki
明夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2007051034A priority Critical patent/JP4764993B2/en
Publication of JP2008219989A publication Critical patent/JP2008219989A/en
Application granted granted Critical
Publication of JP4764993B2 publication Critical patent/JP4764993B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

【課題】従来の技術では、平均有効電力の演算に半周期移動平均を使用しているため、半周期(基本波位相で180°)の演算遅れが生じ、有効電力の変動が大きい場合には、演算遅れにより電力融通量に誤差が発生するという課題がある。
【解決手段】単相交流間で電力融通を行う電力融通装置において、それぞれの相の瞬時負荷電圧と瞬時負荷電流を乗じて瞬時電力を演算し、前記瞬時電力から基本波位相で30°前の瞬時電力を減算し、さらに、基本波位相で60°前の瞬時電力を加算することにより平均有効電力を演算し、それぞれの相の有効電力の差分から電力融通を行う。
【選択図】図3
[PROBLEMS] The conventional technique uses a half-cycle moving average for calculating the average active power, so that a calculation delay of half cycle (180 ° in fundamental wave phase) occurs, and the fluctuation of active power is large. There is a problem that an error occurs in the power accommodation amount due to a calculation delay.
In a power interchange device that performs power interchange between single-phase alternating currents, the instantaneous power is calculated by multiplying the instantaneous load voltage and the instantaneous load current of each phase, and the fundamental phase is 30 degrees before the instantaneous power. The average active power is calculated by subtracting the instantaneous power, and adding the instantaneous power of 60 ° before the fundamental wave phase, and power interchange is performed from the difference of the active power of each phase.
[Selection] Figure 3

Description

本発明は、インバ-タを用いて単相交流間で電力融通を行う電力融通装置の制御方式に関する。   The present invention relates to a control method for a power accommodation apparatus that performs power accommodation between single-phase alternating currents using an inverter.

単相交流間で電力融通を行うためには、電力融通行うそれぞれの単相の電力を演算する必要がある。ここで、
瞬時電圧:e=Esin(wt) ・・・(1)
瞬時電流:i=Isin(wt+θ) ・・・(2)
とすると、瞬時電力pは、以下のようになる。
瞬時電力p=e*i= Esin(wt)* Isin(wt+θ) = P/2*(cosθ-cos(2wt+θ))・・・(3)
(但し、P=E*I、wは角周波数、θは位相角)
(3)式より単相の瞬時電力は、直流分(cosθ分)と基本波の2倍周波数の正弦波リプル分(cos(2wt+θ)分)とになる。このため、平均有効電力を求めるには、2倍周波数の正弦波リプル分を除去する必要がある。
2倍周波数の正弦波リプル分除去方法の従来の実施例を、図5に示す。従来の実施例としては、特許文献1「三相電気量の正相/逆相検知回路」がある。従来の技術では、正相ベクトル変換器の出力IdP、IqPに含まれる逆相分の除去(正相ベクトル変換器の出力は、正相分は直流、逆相分は基本波の2倍周波数の正弦波リプルとなる)、及び、逆相ベクトル変換器の出力IdN、IqNに含まれる正相分の除去(逆相ベクトル変換器の出力は、逆相分は直流、正相分は基本波の2倍周波数の正弦波リプルとなる)に、半周期移動平均(基本波の2倍周波数の移動平均)を使用している。即ち基本波の180°期間にわたり移動平均演算することにより、2m(mは整数)倍の周波数の高調波成分を完全に除去することができる。
特開平6−245383号公報
In order to perform power interchange between single-phase alternating currents, it is necessary to calculate each single-phase power to be interchanged. here,
Instantaneous voltage: e = Esin (wt) (1)
Instantaneous current: i = Isin (wt + θ) (2)
Then, the instantaneous power p is as follows.
Instantaneous power p = e * i = Esin (wt) * Isin (wt + θ) = P / 2 * (cosθ-cos (2wt + θ)) ... (3)
(However, P = E * I, w is angular frequency, θ is phase angle)
From equation (3), the single-phase instantaneous power is a DC component (cosθ component) and a sinusoidal ripple component (cos (2wt + θ) component) that is twice the fundamental frequency. Therefore, in order to obtain the average active power, it is necessary to remove the double frequency sine wave ripple.
FIG. 5 shows a conventional embodiment of a method of removing a double frequency sine wave ripple. As a conventional example, there is Patent Document 1 “Three-phase electric quantity normal / reverse phase detection circuit”. In the prior art, the negative phase component included in the outputs IdP and IqP of the positive phase vector converter is removed (the output of the positive phase vector converter is DC for the positive phase and the double frequency of the fundamental wave for the negative phase component). Sine wave ripple) and removal of the positive phase included in the outputs IdN and IqN of the negative phase vector converter (the negative phase converter output is DC for the negative phase and the fundamental wave for the positive phase) Half-cycle moving average (moving average of double frequency of fundamental wave) is used for sine wave ripple of double frequency). That is, by calculating the moving average over the 180 ° period of the fundamental wave, the harmonic component having a frequency 2 m (m is an integer) times can be completely removed.
JP-A-6-245383

上述のように、従来の技術では、平均有効電力の演算に半周期移動平均を使用しているため、半周期(基本波位相で180°)の演算遅れが生じ、有効電力の変動が大きい場合には、演算遅れにより電力融通量に誤差が発生するという課題がある。   As described above, the conventional technique uses a half-cycle moving average for calculating the average active power, so that a calculation delay of a half cycle (180 ° in the fundamental wave phase) occurs and the fluctuation of the active power is large. However, there is a problem that an error occurs in the power accommodation amount due to a calculation delay.

上述の課題を解決するために、第1の発明においては単相交流間で電力融通を行う電力融通装置において、それぞれの相の瞬時負荷電圧と瞬時負荷電流を乗じて瞬時電力を演算し、前記瞬時電力から基本波位相で30°前の瞬時電力を減算し、さらに、基本波位相で60°前の瞬時電力を加算することにより平均有効電力を演算し、それぞれの相の有効電力の差分から電力融通を行う。   In order to solve the above-described problem, in the first invention, in the power accommodation device that performs power accommodation between single-phase alternating current, the instantaneous power is calculated by multiplying the instantaneous load voltage and the instantaneous load current of each phase, The average active power is calculated by subtracting the instantaneous power of 30 ° before the fundamental phase from the instantaneous power, and adding the instantaneous power of 60 ° before the fundamental phase, and from the difference of the active power of each phase Perform power interchange.

本発明では、単相交流間で電力融通を行う電力融通装置において、それぞれの相の瞬時負荷電圧と瞬時負荷電流を乗じて瞬時電力を演算し、前記瞬時電力から基本波位相で30°前の瞬時電力を減算し、さらに、基本波位相で60°前の瞬時電力を加算することにより平均有効電力を演算し、それぞれの相の有効電力の差分から電力融通を行うようにしているため、少ない演算遅れで単相の有効電力を演算できる。その結果、電鉄用電力融通装置などの負荷の有効電力が急変する装置に適用しても、演算遅れによる電力融通誤差を小さくでき、装置の高性能化が可能となる。   In the present invention, in a power accommodation device that performs power accommodation between single-phase alternating currents, the instantaneous power is calculated by multiplying the instantaneous load voltage and the instantaneous load current of each phase, and the fundamental phase is 30 ° before the instantaneous power. Since the average active power is calculated by subtracting the instantaneous power and then adding the instantaneous power of 60 ° before the fundamental phase, and power is interchanged from the difference of the active power of each phase, there is little Single-phase active power can be computed with computation delay. As a result, even when applied to a device in which the effective power of the load changes suddenly, such as a power interchange device for railways, a power interchange error due to a calculation delay can be reduced, and the performance of the device can be improved.

本発明の要点は、単相交流間で電力融通を行う電力融通装置において、平均有効電力の演算方法として、それぞれの相の瞬時負荷電圧と瞬時負荷電流を乗じて瞬時電力を演算し、前記瞬時電力から基本波位相で30°前の瞬時電力を減算し、さらに、基本波位相で60°前の瞬時電力を加算するようにしている点である。   The main point of the present invention is that, in a power interchange apparatus that performs power interchange between single-phase alternating currents, as an average active power calculation method, an instantaneous power is calculated by multiplying an instantaneous load voltage and an instantaneous load current of each phase, and the instantaneous power is calculated. The point is that the instantaneous power 30 degrees before the fundamental wave phase is subtracted from the power, and further the instantaneous power 60 degrees before the fundamental wave phase is added.

図1に、瞬時電圧、瞬時電流、及び、瞬時電力の関係を説明する図を示す。(3)式に示したように、瞬時電力は、直流分と基本波の2倍周波数の正弦波リプル分になる。
図2に、第1の発明を説明する図を示す。(3)式のwtに、基本波位相で30°前の瞬時電力に相当するwt-30°を、及び基本波位相で60°前の瞬時電力に相当するwt-60°を、それぞれ代入すると、30°前の瞬時電圧p(-30)は(4)式のように、60°前の瞬時電圧p(-60)は(5)式のようになる。
p(-30)= P/2*(cosθ-cos(2(wt-30°)+θ))= P/2*(cosθ-cos(2wt+θ-60°))
=P/2*(cosθ+cos(2wt+θ-240°))・・・(4)
p(-60)= P/2*(cosθ-cos(2(wt-60°)+θ))= P/2*(cosθ-cos(2wt+θ-120°))・・・(5)
従って、(3)式から、(4)式を減算し、(5)式を加算すると、
p- p(-30)+p(-60)= P/2*(cosθ-cos(2wt+θ))-P/2*(cosθ+cos(2wt+θ-240°))
+P/2*(cosθ-cos(2wt+θ-120°))
=P/2*cosθ-P/2*(cos(2wt+θ)+cos(2wt+θ-120°)+cos(2wt+θ-240°))
=P/2*cosθ・・・(6)
(6)式のようになる。即ち、基本波の2倍周波数の正弦波リプルを除去でき、平均有効電力が求められる。本発明では、有効電力の演算遅れは、現在の値と、基本波位相で30°前、及び60°前の値を使用しているため、ほぼ30°相当の遅れで済む。
FIG. 1 is a diagram illustrating the relationship between instantaneous voltage, instantaneous current, and instantaneous power. As shown in the equation (3), the instantaneous power is a sine wave ripple of the DC component and twice the fundamental frequency.
FIG. 2 is a diagram for explaining the first invention. Substituting wt-30 in the equation (3) for wt-30 °, which corresponds to the instantaneous power 30 ° before the fundamental phase, and wt-60 °, which corresponds to the instantaneous power 60 ° before the fundamental phase, respectively. The instantaneous voltage p (-30) before 30 ° is given by equation (4), and the instantaneous voltage p (-60) before 60 ° is given by equation (5).
p (-30) = P / 2 * (cosθ-cos (2 (wt-30 °) + θ)) = P / 2 * (cosθ-cos (2wt + θ-60 °))
= P / 2 * (cosθ + cos (2wt + θ-240 °)) ... (4)
p (-60) = P / 2 * (cosθ-cos (2 (wt-60 °) + θ)) = P / 2 * (cosθ-cos (2wt + θ-120 °)) ... (5)
Therefore, subtracting (4) from (3) and adding (5),
p- p (-30) + p (-60) = P / 2 * (cosθ-cos (2wt + θ))-P / 2 * (cosθ + cos (2wt + θ-240 °))
+ P / 2 * (cosθ-cos (2wt + θ-120 °))
= P / 2 * cosθ-P / 2 * (cos (2wt + θ) + cos (2wt + θ-120 °) + cos (2wt + θ-240 °))
= P / 2 * cosθ ・ ・ ・ (6)
It becomes like (6) types. That is, a sinusoidal ripple having a frequency twice that of the fundamental wave can be removed, and an average active power is obtained. In the present invention, the calculation delay of the active power uses a current value and values of 30 ° before and 60 ° before the fundamental wave phase, so that a delay equivalent to about 30 ° is sufficient.

図3は、本発明を電鉄用電力融通装置に適用した場合の実施例を示す回路図である。三相交流電源11をき電トランス12で、90°位相のずれた単相交流であるM座、T座のそれぞれの電圧vM,vTに変換し、M座のラインには電流検出器13を介してM座負荷17、及び電圧検出器15が、T座のラインには電流検出器14を介してT座負荷18、及び電圧検出器16が、またM座ラインには電力融通装置として、トランス(TrM)19を介して交流入力としたインバータ(INVM)21が、T座ラインには電力融通装置としてトランス(TrT)20を介して交流入力としたインバータ(INVT)22が接続され、インバータ21とインバータ22の直流部は共通に接続されている。
電力融通用インバータ21への電力指令PM*とインバータ22への電力指令PT*は下記のように生成される。
M座の平均有効電力PMは、電流検出器13で検出した交流負荷電流iMとM座の交流電圧vMとを乗算器23で掛算して求めた瞬時電力pMを平均有効電力演算器25に入力し、この演算器25で基本波位相で30°前の瞬時電力を減算し、さらに基本波位相で60°前の瞬時電力を加算して求める。またT座の平均有効電力PTは、電流検出器14で検出した交流負荷電流iTとT座の交流電圧vTとを乗算器24で掛算して求めた瞬時電力pTを平均有効電力演算器26に入力し、この演算器26で基本波位相で30°前の瞬時電力を減算し、さらに基本波位相で60°前の瞬時電力を加算して求める。
さらに、M座の平均有効電力PMとT座の平均有効電力PTとの差が加算器27で求められ、この差の半分を割算器28で求めて、これをインバータ21への電力指令PM*とする。また、インバータ21への電力指令PM*の符号を符号反転器29で反転したものをインバータ22への電力指令PT*とする。
ここで、平均有効電力演算器25、26の構成例を図4に示す。T座での例であるが、M座においても同様である。平均有効電力演算器(PA)25では、瞬時電力pM(T)に、メモリ(MEM)31に格納された30°前の瞬時電力pM(T)(-30°)を減算し、さらにメモリ(MEM)31に格納された60°前の瞬時電力pM(T)(-60°)を加算している。メモリ(MEM)31は、60°の期間に相当するリングバッファで構成される。例えば、60°の期間に相当するリングバッファの数を60個(d1〜d60)とし、60°前の瞬時電力が10番目のバッファ(d10)に格納されているとすると、10番目のバッファ(d10)より60°前の瞬時電力pM(T)(-60°)を読み出し、10番目のバッファ(d10)より30°相当位相の進んだ40番目バッファ(d40)より30°前の瞬時電力pM(T)(-30°)を読み出し、加減算を行っている。そして、10番目のバッファより60°前の瞬時電力pM(T)(-60°)を読み出した後に、現在の瞬時電力pM(T)を格納する。次に平均有効電力を演算する時には、11番目のバッファが60°前の瞬時電力pM(T)(-60°)となり、41番目バッファ(d40)が30°前の瞬時電力pM(T)(-30°)となる。このように、メモリMEMの読込みと格納を逐次行うことにより、
平均有効電力PM(T)を演算している。
以上のように、M座の平均有効電力PMとT座の平均有効電力PTを算出し、これらの差分の半分の電力をインバータINVM、INVTの電力指令PM*、PT*とし、電力融通することにより、き電トランス(FT)12のM座電力PM’、T座電力PT’は、(7)式,(8)式のようになり、平衡化できる。
FIG. 3 is a circuit diagram showing an embodiment when the present invention is applied to a power interchange device for electric railways. A three-phase AC power source 11 is converted into a voltage VM, vT of M- and T-seats, which are single-phase ACs that are 90 ° out of phase, with a feeding transformer 12, and a current detector 13 is connected to the M-seat line. The M seat load 17 and the voltage detector 15 are connected to the T seat line via the current detector 14, and the T seat load 18 and the voltage detector 16 are connected to the M seat line. An inverter (INVM) 21 having an AC input via a transformer (TrM) 19 is connected to the T seat line, and an inverter (INVT) 22 having an AC input via a transformer (TrT) 20 is connected to the T seat line as an inverter. 21 and the DC part of the inverter 22 are connected in common.
The power command PM * to the power interchange inverter 21 and the power command PT * to the inverter 22 are generated as follows.
The average active power PM of the M seat is input to the average active power calculator 25 by the instantaneous power pM obtained by multiplying the AC load current iM detected by the current detector 13 and the AC voltage vM of the M seat by the multiplier 23. Then, the calculator 25 subtracts the instantaneous power 30 ° before the fundamental wave phase, and further adds the instantaneous power 60 ° before the fundamental wave phase. The average active power PT in the T seat is obtained by multiplying the average power pT obtained by multiplying the AC load current iT detected by the current detector 14 and the AC voltage vT in the T seat by the multiplier 24 into the average active power calculator 26. Then, the calculator 26 subtracts the instantaneous power 30 ° before the fundamental wave phase and further adds the instantaneous power 60 ° before the fundamental wave phase.
Further, the difference between the average active power PM at the M position and the average active power PT at the T position is obtained by the adder 27, and half of this difference is obtained by the divider 28, and this is obtained as a power command PM to the inverter 21. * Further, the power command PT * to the inverter 22 is obtained by inverting the sign of the power command PM * to the inverter 21 by the sign inverter 29.
Here, a configuration example of the average active power calculators 25 and 26 is shown in FIG. This is an example of the T seat, but the same applies to the M seat. The average active power calculator (PA) 25 subtracts the instantaneous power pM (T) (-30 °) 30 ° before stored in the memory (MEM) 31 from the instantaneous power pM (T) and further stores the memory ( The instantaneous power pM (T) (-60 °) 60 ° before stored in the (MEM) 31 is added. The memory (MEM) 31 is composed of a ring buffer corresponding to a period of 60 °. For example, assuming that the number of ring buffers corresponding to a period of 60 ° is 60 (d1 to d60) and instantaneous power before 60 ° is stored in the 10th buffer (d10), the 10th buffer ( The instantaneous power pM (T) (-60 °) 60 ° before d10) is read out, and the instantaneous power pM 30 ° before the 40th buffer (d40) advanced by 30 ° phase from the 10th buffer (d10). (T) (-30 °) is read and addition / subtraction is performed. Then, after reading the instantaneous power pM (T) (−60 °) 60 ° before the tenth buffer, the current instantaneous power pM (T) is stored. Next, when calculating the average active power, the eleventh buffer becomes the instantaneous power pM (T) (-60 °) before 60 °, and the 41st buffer (d40) has the instantaneous power pM (T) (30 ° before). -30 °). In this way, by sequentially reading and storing the memory MEM,
Average active power PM (T) is calculated.
As described above, calculate the average active power PM of the M seat and the average active power PT of the T seat, and use half of the difference as the power commands PM * and PT * of the inverters INVM and INVT for power interchange. Thus, the M seat power PM ′ and the T seat power PT ′ of the feeder transformer (FT) 12 are expressed by the equations (7) and (8) and can be balanced.

M座電力:PM’= PM-PM*=PM-1/2*(PM-PT)=1/2*(PM+PT)・・・(7)
T座電力:PT’= PT-PT*=PT+1/2*(PM-PT)=1/2*(PM+PT)・・・(8)
M power: PM '= PM-PM * = PM-1 / 2 * (PM-PT) = 1/2 * (PM + PT) (7)
T-seat power: PT '= PT-PT * = PT + 1/2 * (PM-PT) = 1/2 * (PM + PT) (8)

本発明は、交流き電鉄道のき電トランス出力(M座,T座)間の電力不平衡の解消に適用可能である。   The present invention can be applied to the elimination of power imbalance between feeding transformer outputs (M seat, T seat) of an AC feeding railway.

瞬時電圧、瞬時電流、瞬時電力を説明する図Diagram explaining instantaneous voltage, instantaneous current, and instantaneous power 本発明の原理を説明するための図The figure for demonstrating the principle of this invention 本発明の実施例を示す回路ブロック図Circuit block diagram showing an embodiment of the present invention 平均有効電力演算器の構成例Configuration example of average active power calculator 従来の平均有効電力演算の例Example of conventional average active power calculation

符号の説明Explanation of symbols

11・・・三相交流電源 12・・・き電トランス
13、14・・・電流検出器 15、16・・・電圧検出器
17・・・M座負荷 18・・・T座負荷
19,20・・・トランス 21、22・・・インバータ
23、24・・・乗算器 25、26・・・平均有効電力演算器
27・・・加算器 28・・・割算器 29・・・符号反転器
30・・・加算器 31・・・メモリ
DESCRIPTION OF SYMBOLS 11 ... Three-phase AC power supply 12 ... Feeding transformer 13, 14 ... Current detector 15, 16 ... Voltage detector 17 ... M seat load 18 ... T seat load 19, 20 ... Transformers 21,22 ... Inverters 23,24 ... Multipliers 25,26 ... Average active power calculator 27 ... Adder 28 ... Divisor 29 ... Signal inverter 30 ... adder 31 ... memory

Claims (1)

単相交流間で電力融通を行う電力融通装置において、
それぞれの相の瞬時負荷電圧と瞬時負荷電流を乗じて瞬時電力を演算し、前記瞬時電力から基本波位相で30°前の瞬時電力を減算し、さらに、基本波位相で60°前の瞬時電力を加算することにより平均有効電力を演算し、それぞれの相の有効電力の差分から電力融通を行うことを特徴とした電力融通装置。
In a power interchange device that performs power interchange between single-phase alternating currents,
Multiply the instantaneous load voltage and instantaneous load current of each phase to calculate the instantaneous power, subtract the instantaneous power 30 degrees before the fundamental phase from the instantaneous power, and then the instantaneous power 60 degrees before the fundamental phase A power interchange apparatus characterized in that the average active power is calculated by adding and the power interchange is performed from the difference between the active powers of the respective phases.
JP2007051034A 2007-03-01 2007-03-01 Power interchange device Active JP4764993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007051034A JP4764993B2 (en) 2007-03-01 2007-03-01 Power interchange device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007051034A JP4764993B2 (en) 2007-03-01 2007-03-01 Power interchange device

Publications (2)

Publication Number Publication Date
JP2008219989A true JP2008219989A (en) 2008-09-18
JP4764993B2 JP4764993B2 (en) 2011-09-07

Family

ID=39839359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007051034A Active JP4764993B2 (en) 2007-03-01 2007-03-01 Power interchange device

Country Status (1)

Country Link
JP (1) JP4764993B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124823A (en) * 2007-11-13 2009-06-04 Toshiba Mitsubishi-Electric Industrial System Corp Controller of railway static power conditioner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5152878A (en) * 1974-11-02 1976-05-10 Tokyo Electric Power Co Denkiryono kenshutsuhoshiki
JPH05111164A (en) * 1991-10-08 1993-04-30 Hitachi Ltd Power converter
JP2003061250A (en) * 2001-08-10 2003-02-28 Mitsubishi Electric Corp Voltage fluctuation compensator
JP2003270277A (en) * 2002-03-13 2003-09-25 Mitsubishi Electric Corp Instantaneous reactive power in ac circuit, method for calculating reactive power effective value and method for measuring instantaneous reactive power, reactive power effective value and phase difference
JP2005148028A (en) * 2003-11-20 2005-06-09 Miwa Electric Co Ltd Device and method for measuring voltage, current, active power, reactive power, and frequency in power system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5152878A (en) * 1974-11-02 1976-05-10 Tokyo Electric Power Co Denkiryono kenshutsuhoshiki
JPH05111164A (en) * 1991-10-08 1993-04-30 Hitachi Ltd Power converter
JP2003061250A (en) * 2001-08-10 2003-02-28 Mitsubishi Electric Corp Voltage fluctuation compensator
JP2003270277A (en) * 2002-03-13 2003-09-25 Mitsubishi Electric Corp Instantaneous reactive power in ac circuit, method for calculating reactive power effective value and method for measuring instantaneous reactive power, reactive power effective value and phase difference
JP2005148028A (en) * 2003-11-20 2005-06-09 Miwa Electric Co Ltd Device and method for measuring voltage, current, active power, reactive power, and frequency in power system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124823A (en) * 2007-11-13 2009-06-04 Toshiba Mitsubishi-Electric Industrial System Corp Controller of railway static power conditioner

Also Published As

Publication number Publication date
JP4764993B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
EP2763301B1 (en) Power converter control method
JP6116829B2 (en) Control device for single-phase power converter
JP2006271095A (en) Power converter
WO2017163831A1 (en) Power supply system and control method
JP6848622B2 (en) Power converter and its control device
JP4764993B2 (en) Power interchange device
JP6876585B2 (en) Power converter and power conversion system
JP5078144B2 (en) Power conversion method and power conversion device
JP5076730B2 (en) Phase detector
JP3266966B2 (en) Positive / negative phase component detection circuit for three-phase electricity
US12218577B2 (en) Power conversion device and control device having overcurrent suppression
EP2869453B1 (en) Apparatus for compensating phase error in inverter output voltage
US11482963B2 (en) Inverter control device
JP2015027136A (en) Inverter controller
JP5637310B2 (en) Inverter device
JP2007225427A (en) Power failure detection circuit and uninterruptible power supply
JP2010226806A (en) Power conversion device
JP5517723B2 (en) Harmonic current compensation apparatus and harmonic current compensation method
JP2009288070A (en) Device for measuring alternating current electric power
JP2008295135A (en) Power conversion equipment
JP2017139920A (en) Power conversion apparatus
JP6342354B2 (en) Isolated operation detection device, isolated operation detection device control method, and grid-connected inverter
JP2011247852A (en) Phase detection method of ac signal
JP6419565B2 (en) Detection device, power conversion device, detection method using three-phase alternating current as input, and control method for power conversion device.
JP2002191125A (en) Power factor improvement device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Ref document number: 4764993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250