JP2008212916A - Ultrasonic composite vibrator - Google Patents
Ultrasonic composite vibrator Download PDFInfo
- Publication number
- JP2008212916A JP2008212916A JP2007096841A JP2007096841A JP2008212916A JP 2008212916 A JP2008212916 A JP 2008212916A JP 2007096841 A JP2007096841 A JP 2007096841A JP 2007096841 A JP2007096841 A JP 2007096841A JP 2008212916 A JP2008212916 A JP 2008212916A
- Authority
- JP
- Japan
- Prior art keywords
- vibration
- longitudinal
- bending
- ultrasonic
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
Abstract
【課題】 各種の強力超音波応用のための複合振動体として、2次元の振動軌跡の振動面と垂直な振動成分のない低周波から高周波数の超音波複合水平振動装置等を容易に提供すること。
【解決手段】 縦振動源で駆動する振動棒1、1’間に音速の異なる材料2を縦振動方向と垂直な面の厚さを斜めに変化させた円形振動体2、または斜め切断した円板2,7を組み合わせた円板対を挿入し、音速の異なる円環により縦振動棒の円環の厚さ変化方向に縦振動波の位相差、振動速度差を生じさせ曲げ振動6を励振させ、さらに縦振動5および曲げ振動6の共振周波数を振動位相差がほぼ90°になるように近接させ、振動棒自由端面4で縦振動5’および曲げ振動6’を複合させることにより楕円から円形の2次元の振動軌跡を有する振動面に垂直な振動成分の少ない超音波複合水平振動装置が構成される。また円板対変換器複数を角度を変えて組み合わせることにより超音波回転装置等の構成も可能である。
【選択図】図1PROBLEM TO BE SOLVED: To easily provide a low-frequency to high-frequency ultrasonic composite horizontal vibration device having no vibration component perpendicular to a vibration surface of a two-dimensional vibration locus as a composite vibrator for various kinds of powerful ultrasonic applications. thing.
SOLUTION: A circular vibrating body 2 in which a thickness of a surface perpendicular to a longitudinal vibration direction is obliquely changed between a vibrating rod 1 and 1 'driven by a longitudinal vibration source, or a circle cut obliquely. Insert a pair of discs that combine plates 2 and 7 to excite the bending vibration 6 by creating a phase difference and a vibration velocity difference of the longitudinal vibration wave in the direction of thickness change of the ring of the longitudinal vibration rod by annulus having different sound speeds. Furthermore, the resonance frequencies of the longitudinal vibration 5 and the bending vibration 6 are brought close to each other so that the vibration phase difference is approximately 90 °, and the longitudinal vibration 5 ′ and the bending vibration 6 ′ are combined on the free end face 4 of the vibration rod to thereby form the ellipse. An ultrasonic composite horizontal vibration device having a small vibration component perpendicular to the vibration surface having a circular two-dimensional vibration locus is configured. In addition, an ultrasonic rotating device or the like can be configured by combining a plurality of disk pair converters at different angles.
[Selection] Figure 1
Description
本発明は、金属、プラスチックス、セラミックス、電子部品等を振動加工(接合、切削、研磨、塑性加工等)する超音波加工機、移動装置等に用いられる超音波複合振動装置に関する。特に大面積の一様な溶接が必要な多数のバンプを有する半導体チップのフリップチップ溶接等には振動面と垂直な成分の少ない複合水平振動装置が要望されている。 The present invention relates to an ultrasonic composite vibration device used for an ultrasonic processing machine, a moving device, or the like that vibrates metal (plastics, ceramics, electronic parts, etc.) (bonding, cutting, polishing, plastic processing, etc.). In particular, for flip chip welding of a semiconductor chip having a large number of bumps that require uniform welding over a large area, a composite horizontal vibration device having a small component perpendicular to the vibration surface is desired.
従来、超音波複合振動装置として特開平11−87437に記載されたものが知られている。
従来技術は、直交する2個の駆動用縦振動子で複合曲げ振動体を励振するものである。2. Description of the Related Art Conventionally, an ultrasonic composite vibration device described in JP-A-11-87437 is known.
The prior art excites a composite bending vibrator with two orthogonal drive longitudinal vibrators.
しかしながら、従来技術では、2個の駆動用縦振動子による曲げ振動棒の励振のため、振動系が複雑になり、また曲げ振動棒端面の複合振動は大振動振幅では振動面周辺の垂直振動成分が無視できず、多数のバンプを有する大面積の導体チップのフリップチップ溶接が、複合振動では必要振動振幅、必要静圧力が従来の直線振動と比べて小となるが大面積の一様な溶接が困難で応用範囲に限界があった。また溶接に有効な高周波数の複合振動系の加工・構成が困難であった。 However, in the prior art, the vibration system becomes complicated due to the excitation of the bending vibration bar by two drive longitudinal vibrators, and the combined vibration of the end face of the bending vibration bar is a vertical vibration component around the vibration surface with a large vibration amplitude. Flip chip welding of a large area conductor chip with a large number of bumps cannot be ignored, but the composite vibration requires a smaller vibration amplitude and required static pressure than conventional linear vibration, but a large area uniform welding However, the application range was limited. In addition, it is difficult to process and configure a high-frequency composite vibration system effective for welding.
このため、大面積の半導体の一様な溶接、大面積の金属板のスポット接合や、シーム溶接、プラスチック接合、金属の塑性加工等の超音波加工用に振動面と垂直な振動成分が小な超音波複合水平振動装置が切望されていた。 For this reason, the vibration component perpendicular to the vibration surface is small for ultrasonic processing such as uniform welding of large area semiconductors, spot bonding of large area metal plates, seam welding, plastic bonding, and metal plastic processing. An ultrasonic composite horizontal vibration device has been desired.
本発明の課題は、振動体材料が剛性に富み、振動損失の小な振動体を縦振動および曲げ振動を振動変換器を用いて同時に駆動することにより、構成の容易な超音波複合振動装置を提供することにある。 An object of the present invention is to provide an ultrasonic composite vibration device having an easy structure by simultaneously driving longitudinal vibrations and bending vibrations of a vibration body having a low vibration loss with a vibration transducer using a vibration transducer. It is to provide.
この課題を解決するために本発明は、縦振動源によって駆動される円形等の振動体間に音速の異なる縦振動と垂直な面方向の厚さを変化させた円形等の薄板(以下円板という)を挿入して縦振動させることにより円板を通過する縦振動波は振動体と音速の異なる斜め切断した円板の音速の差により円板厚さに応じて空間的位相差・振動速度差を生じ、円板の厚さ方向にのみ曲げ振動が励起されることを見出してなされたものである。 In order to solve this problem, the present invention provides a thin circular plate or the like (hereinafter referred to as a circular plate) in which the thickness in the plane direction perpendicular to the vertical vibrations having different sound speeds is changed between the circular vibrating bodies driven by the longitudinal vibration source. The longitudinal vibration wave that passes through the disc by inserting and vibrating it is a spatial phase difference / vibration velocity depending on the disc thickness due to the difference in sound velocity between the vibrating body and the obliquely cut disc with different sound velocity. It was made by finding that a bending vibration is excited only in the thickness direction of the disc by making a difference.
請求項1の発明は、縦振動源によって駆動される振動体間に振動体と音速の異なる縦振動と垂直な面方向の厚さを変化させた円板を挿入して縦振動させることにより円板を通過する縦振動波は振動体と音速の異なる斜め切断した円板の音速の差により円板厚さに応じて空間的位相差・振動速度差を生じ、円板の厚さ方向に振動体と垂直な駆動力が生じ厚さ変化方向にのみ曲げ振動が励起される超音波複合振動装置である。 According to the first aspect of the present invention, a circular plate having a thickness in the plane direction perpendicular to a vibrating body and a longitudinal vibration having a different sound velocity is inserted between the vibrating bodies driven by the longitudinal vibration source to cause longitudinal vibration. The longitudinal vibration wave that passes through the plate causes a spatial phase difference / vibration speed difference depending on the disc thickness due to the difference in sound velocity between the vibrating body and the obliquely cut disc with different sound velocity, and vibrates in the thickness direction of the disc. This is an ultrasonic composite vibration device in which a driving force perpendicular to the body is generated and bending vibration is excited only in the thickness changing direction.
請求項2の発明は、請求項1の発明において更に、前記厚さを変化させた音速の異なる円板2枚を斜め切断面を対向させて組み合わせ、端面が平行な円板または中央にねじ締結用の貫通穴を設けた短円柱または短円筒(以下円環対という)とした構造としたもので、両者を接合または粉末冶金等で一体構造とすることにより振動体間に容易に挿入し安定に駆動可能としたものである。 According to a second aspect of the present invention, in the first aspect of the present invention, the two discs having different sound speeds with different thicknesses are combined with the diagonally cut surfaces facing each other, and the end surfaces are parallel to each other or screwed to the center. A short cylinder or short cylinder (hereinafter referred to as an annular pair) with a through hole for use, which is easily inserted between the vibrators and stabilized by joining or integrating them with powder metallurgy. Can be driven.
請求項3の発明は、請求項1の発明において更に、前記厚さを変化させた音速の異なる端面が平行な円環対を用い、振動体端面で縦振動と近接した共振周波数の励起した曲げ振動を結合させて楕円から円形の振動軌跡を振動体先端側面に生じさせ、振動面に垂直な振動成分のない超音波複合水平振動を曲げ振動方向と平行な面内に生じさせるものである。 According to a third aspect of the present invention, in the first aspect of the invention, the bending of the resonant frequency excited at the end face of the vibrating body is close to the longitudinal vibration by using an annular pair whose end faces having different sound speeds having different thicknesses are parallel. By combining the vibrations, an elliptical to circular vibration locus is generated on the side surface of the vibration body tip, and an ultrasonic composite horizontal vibration having no vibration component perpendicular to the vibration surface is generated in a plane parallel to the bending vibration direction.
請求項4の発明は、請求項1の発明において更に、前記厚さを変化させた音速の異なる端面が平行な円環対2組または数組を曲げ振動を励振する方向を変化させて設置し、振動体端面で縦振動と近接した共振周波数の励起した曲げ振動を結合させて楕円から円形の振動軌跡を振動体先端側面に生じさせ、さらに近接した周波数の複数の曲げ振動を振動体周辺方向に励振して超音波回転装置等を構成するものである。 According to a fourth aspect of the present invention, in addition to the first aspect of the present invention, two or a plurality of pairs of circular rings in which the end surfaces with different sound speeds with different thicknesses are parallel are installed with the bending excitation direction changed. The bending vibration excited by the resonance frequency close to the longitudinal vibration on the vibration body end face is combined to generate a circular vibration locus from the ellipse to the side surface of the vibration body. And an ultrasonic rotating device or the like.
圧電セラミック等を用いた縦振動源によって駆動される振動体間に振動体と音速の異なる縦振動と垂直な面方向に斜め切断し厚さを変化させた音速の異なる円板1枚または2枚を挿入して縦振動させることにより円板部を通過する縦振動波は振動体と音速の異なる斜め切断した円板との音速の差により空間的位相差・振動速度差を生じ、円板の厚さ方向に振動体と垂直な駆動力が生じ厚さ変化方向にのみ曲げ振動が励起され、曲げ振動の共振周波数を振動体太さ等を変化させて駆動した縦振動周波数と近接させて、両周波数差を位相差がほぼ90°となるように設定して縦振動と曲げ振動を複合させることにより円形に近い振動軌跡が得られる。円板の厚さ変化方向と垂直方向には曲げ振動は駆動されないので、複合振動面と垂直な振動は励振されない。 One or two discs with different sound speeds that are obliquely cut in the plane direction perpendicular to the vertical vibrations with different vibration speeds between the vibrators and driven by a longitudinal vibration source using piezoelectric ceramics, etc. The longitudinal vibration wave that passes through the disk part by inserting and moving the disk causes a spatial phase difference / vibration speed difference due to the difference in sound speed between the vibrating body and the obliquely cut disk with different sound speeds. A driving force perpendicular to the vibrating body is generated in the thickness direction, bending vibration is excited only in the thickness changing direction, and the resonance frequency of the bending vibration is brought close to the longitudinal vibration frequency driven by changing the vibrating body thickness, A vibration locus close to a circle can be obtained by setting both frequency differences so that the phase difference is approximately 90 ° and combining longitudinal vibration and bending vibration. Since bending vibration is not driven in the direction perpendicular to the thickness change direction of the disk, vibration perpendicular to the composite vibration surface is not excited.
音速の異なる端面が平行な円環対2組を曲げ振動を励振する方向を90°としてねじ締結等により設置し、振動体端面で縦振動と近接した共振周波数の励起した曲げ振動を結合させて楕円から円形の振動軌跡を振動体先端側面に生じさせ、さらに近接した周波数の複数の曲げ振動を振動体周辺方向に励振して超音波回転振動を励振するものである。 Two pairs of circular rings with parallel end faces with different sound velocities are installed by screw fastening, etc., with the direction of exciting the bending vibration being 90 °, and the bending vibration excited at the resonance frequency close to the longitudinal vibration is coupled on the vibration body end face. A circular vibration locus from an ellipse is generated on the side surface of the front end of the vibrating body, and a plurality of bending vibrations having frequencies close to each other are excited in the peripheral direction of the vibrating body to excite ultrasonic rotational vibration.
従って、この振動丸棒の先端に目的に応じた超音波複合水平振動加工用または回転振動加工用の工具・スライダ等を設置する、または変換器を介して直接工具等を設置することにより、各種の超音波複合振動加工機・移動装置等を提供することが出来る。 Therefore, by installing a tool / slider etc. for ultrasonic composite horizontal vibration processing or rotational vibration processing according to the purpose at the tip of this vibration round bar, or by installing a tool etc. directly through a transducer, It is possible to provide an ultrasonic composite vibration processing machine / moving device.
図1は本発明の超音波複合振動装置の原理を示す概念図、振動棒断面、縦−曲げ振動変換円環対、図2は振動系の構成例を示す外観図、図3は振動丸棒に沿った曲げ振動励振方向および直交した方向の曲げ振動分布を示す実測図である。図4は縦−曲げ振動変換円環対2組を用いた超音波回転装置。図5は縦振動および曲げ振動を複合させた振動軌跡、直交した曲げ振動を複合させた振動軌跡の例、図6は縦振動、2つの曲げ振動を結合させた超音波回転装置全体の電気端子側から測定した振動特性・自由アドミッタンスループ例を示す。 1 is a conceptual diagram showing the principle of an ultrasonic composite vibration device of the present invention, a cross section of a vibration bar, a longitudinal-bending vibration conversion ring pair, FIG. 2 is an external view showing an example of the configuration of a vibration system, and FIG. FIG. 6 is an actual measurement diagram showing a bending vibration excitation direction along and a bending vibration distribution in an orthogonal direction. FIG. 4 shows an ultrasonic rotating device using two pairs of longitudinal-bending vibration conversion ring pairs. FIG. 5 shows an example of a vibration locus in which longitudinal vibration and bending vibration are combined, and an example of a vibration locus in which orthogonal bending vibrations are combined. FIG. 6 shows an electrical terminal of the entire ultrasonic rotating apparatus in which longitudinal vibration and two bending vibrations are combined. An example of vibration characteristics and free admittance loop measured from the side is shown.
一様媒質の振動棒中のz軸方向の縦波の入射波および反射波の縦振動速度uzは波動方程式の一般解から
uz=kA cos(ωt−kz)+kA cos(ωt+kz) k=c/ω
=(d/ω)[A cos(ωt−(c/ω)z)+A cos(ωt+kz)]
ω=2πf 角周波数 f 周波数 t 時間
k=c/ω 波長定数 c 音速 z 位置
ここでkzは空間的な位相である。The longitudinal vibration velocity u z of the incident wave and the reflected wave of the longitudinal wave in the z-axis direction in the uniform medium vibrating rod is obtained from the general solution of the wave equation: u z = kA cos (ωt−kz) + kA cos (ωt + kz) k = c / ω
= (D / ω) [A cos (ωt− (c / ω) z) + A cos (ωt + kz)]
ω = 2πf angular frequency f frequency t time k = c / ω wavelength constant c sound speed z position where kz is a spatial phase.
図1において縦振動源で駆動された振動棒中の縦振動波は斜め切断された音速の異なる部分▲2▼へ入射し、振動棒上部を距離ΔLを伝搬する縦振動波の位相差はk1×ΔL、振動棒下部で挿入した音速の異なる斜め切断した変換器中を距離ΔL伝搬する縦振動の位相変化はk2×ΔLとなる。振動棒上部および下部を伝搬する縦振動波の最大位相差は上式から
Δθ=(k1−k2)×ΔL=(c1−c2)ΔL/ω=Δc×ΔL/ω (c1−c2)=±Δc
となり、振動棒の中心から上下で±Δc×ΔL/2ωとなる。
振動変位振幅の位相差も同じであるから、同様に変位は位相差により振動棒中心から上下で±Δξl変化する。In FIG. 1, the longitudinal vibration wave in the vibration rod driven by the longitudinal vibration source is incident on the obliquely cut portion (2) having a different sound velocity, and the phase difference of the longitudinal vibration wave propagating through the distance ΔL is k. The phase change of the longitudinal vibration propagating through the distance ΔL through the transducer cut at an angle of 1 × ΔL, which is inserted at the lower part of the vibrating rod and is obliquely different, is k 2 × ΔL. The maximum phase difference of the longitudinal vibration wave propagating through the upper and lower parts of the vibrating bar is obtained from the above equation: Δθ = (k 1 −k 2 ) × ΔL = (c 1 −c 2 ) ΔL / ω = Δc × ΔL / ω (c 1 −c 2 ) = ± Δc
Thus, ± Δc × ΔL / 2ω is obtained in the vertical direction from the center of the vibrating rod.
Since the phase difference of the vibration displacement amplitude is also the same, similarly, the displacement changes ± Δξ 1 up and down from the center of the vibration bar due to the phase difference.
上記変位に材料のヤング率E、中心からの距離を掛けて断面積全体で積分した値F=ηEΔξlが曲げ振動の交番駆動力となる。ηは断面形状により異なる。
ヤング率Eは大で曲げ振動方向でも変化が無いと考えると、曲げ振動のノード部の表面変位はほぼ±Δξtと考えられるので、これに対応した変位の曲げ振動が励振される。A value F = ηEΔξ l obtained by multiplying the displacement by the Young's modulus E of the material and the distance from the center and integrated over the entire cross-sectional area is an alternating driving force of bending vibration. η varies depending on the cross-sectional shape.
If it is considered that the Young's modulus E is large and there is no change in the bending vibration direction, the surface displacement of the node portion of the bending vibration is considered to be approximately ± Δξ t, and the bending vibration of the displacement corresponding to this is excited.
振動棒全体の縦振動共振周波数f0は中心部分の共振周波数と考えられるので、中心部のz方向の往復伝搬時間tcは斜め切断した変換器以外の部分、距離L−ΔL/2区間の平均音速C1、および変換器部分距離ΔL/2区間の音速c2=c1±Δc、の和であるから、縦振動が1波長共振しているとして
f0=1/tc=1/[2(L−ΔL/2)/c1+(2×ΔL/2)/c2]
=C1/[2L+(c1/c2−1)ΔL]
となり、縦振動および曲げ振動はこの周波数近傍で駆動する。Since the longitudinal vibration resonance frequency f 0 of the entire vibrating rod is considered to be the resonance frequency of the center portion, the round-trip propagation time t c in the z direction of the center portion is the portion other than the diagonally cut transducer, the distance L−ΔL / 2 section. Since it is the sum of the average sound velocity C 1 and the sound velocity c 2 = c 1 ± Δc of the converter partial distance ΔL / 2, it is assumed that the longitudinal vibration is resonated by one wavelength, and f 0 = 1 / t c = 1 / [2 (L−ΔL / 2) / c 1 + (2 × ΔL / 2) / c 2 ]
= C 1 / [2L + (c 1 / c 2 −1) ΔL]
Thus, longitudinal vibration and bending vibration are driven in the vicinity of this frequency.
振動棒端部で楕円から円形の振動軌跡を得るために振動位相差を90°とすると縦振動f1および曲げ振動f1の共振の鋭さQuality factorQ=f0/(f1〜ft)=f0/Δfがほぼ等しいとすると周波数差をΔf=f0/Q程度に調整すれば良い。通常Qの値は500から2000以上で極めて大きい。If the vibration phase difference is 90 ° in order to obtain a circular vibration locus from an ellipse at the end of the vibration bar, the resonance sharpness of the longitudinal vibration f 1 and the bending vibration f 1 Quality factorQ = f 0 / (f 1 to f t ) = If f 0 / Δf is substantially equal, the frequency difference may be adjusted to about Δf = f 0 / Q. Usually, the value of Q is very large from 500 to 2000 or more.
縦振動共振周波数は振動棒長さによってほぼ一定で、曲げ振動共振周波数は図1(2)の振動棒断面形状4により変化し、振動棒断面が円形の場合には振動棒1,1’の一部または全体の半径Rを変える、長方形として厚さを変える、または振動棒全体または一部を円筒形とする(端部側中心に適当な深さの穴を加工する)等により調整可能である。 The longitudinal vibration resonance frequency is substantially constant depending on the length of the vibration bar, and the bending vibration resonance frequency changes according to the vibration bar cross-sectional shape 4 in FIG. 1 (2). Adjustable by changing the radius R of a part or the whole, changing the thickness as a rectangle, or making the whole or a part of the vibration rod cylindrical (processing a hole with an appropriate depth at the center of the end). is there.
図1(3)は振動系に変換器部を容易に設置可能とするため、斜め切断した音速の異なる円環2個2,7を斜め切断面を対向させて組み合わせ、中心に貫通ねじによる固定用穴を設けた振動系と接合する両端面を平行とした短円筒状の振動体間に設置容易な縦振動−曲げ振動変換用円環対を示す。 Fig. 1 (3) shows that the transducer part can be easily installed in the vibration system, so that two
図2は試作した圧電セラミック(PZT)を用いた縦振動駆動源および段付きホーン(速度変成比4)により厚さ6.0mmの円環対変換器(材質:真鍮および鉄、音速3480m/sおよび5120m/s)を介してステンレス鋼製丸棒を駆動する150kHzの複合振動装置の構成図である。 Fig. 2 shows a toroidal transducer with a thickness of 6.0 mm (material: brass and iron, sound speed of 3480 m / s) by a longitudinal vibration drive source using a prototype piezoelectric ceramic (PZT) and a stepped horn (speed transformation ratio 4). And 5120 m / s) is a configuration diagram of a 150 kHz composite vibration device that drives a stainless steel round bar.
図3は試作した150kHzの複合振動装置の複合振動棒の長さに沿ってレーザドップラ振動計で測定したy方向およびx方向振動分布を示す。円環対変換器によりy方向に曲げ振動しx方向には曲げ振動していないことが分かる。 FIG. 3 shows the y-direction and x-direction vibration distributions measured with a laser Doppler vibrometer along the length of the composite vibration bar of the prototype 150 kHz composite vibration device. It can be seen that the ring-pair transducer causes bending vibration in the y direction and no bending vibration in the x direction.
図4は試作した直径15mmの圧電セラミック(PZT)を用いた縦振動駆動源および円環対変換器2組(厚さ14.8mm、材質:真鍮および鉄)を介してステンレス鋼製丸棒を駆動する約70kHzの超音波回転装置の構成図である。 Fig. 4 shows a stainless steel round bar with a longitudinal vibration drive source using a 15 mm diameter piezoelectric ceramic (PZT) and two pairs of annular transducers (thickness: 14.8 mm, material: brass and iron). It is a block diagram of the ultrasonic rotating apparatus of about 70 kHz to drive.
図5(1)は近接した周波数の縦振動および曲げ振動を結合させた振動棒端面のz軸に平行で自由端面に垂直な楕円形の振動軌跡をレーザドップラ振動計2台を用いた実測図である。 FIG. 5 (1) is an actual measurement diagram using two laser Doppler vibrometers of an elliptical vibration locus parallel to the z-axis and perpendicular to the free end face of the vibration rod end face combined with longitudinal vibration and bending vibration of close frequencies. It is.
図5(2)は近接した2周波数の曲げ振動を結合させた自由端のz軸周りの楕円形の振動軌跡をレーザドップラ振動計2台を用いた実測図である。 FIG. 5 (2) is an actual measurement diagram using two laser Doppler vibrometers of an elliptical vibration locus around the z-axis at the free end where two adjacent bending vibrations of two frequencies are combined.
図6は共振周波数が十分近接した縦振動および2つの曲げ振動を励振して結合させた超音波回転装置全体の振動特性を電気端子側から駆動周波数を変化して測定した自由アドミッタンスループの測定結果で、各周波数が近接しているためロータの有無に関わらず単一のループであり良好に動作することを示している。 FIG. 6 is a measurement result of a free admittance loop in which the vibration characteristics of the entire ultrasonic rotating apparatus in which the longitudinal vibration and the two bending vibrations having sufficiently close resonance frequencies are excited and coupled are measured by changing the driving frequency from the electric terminal side. Thus, since the frequencies are close to each other, it is shown that the single loop operates well regardless of the presence or absence of the rotor.
振動変換用の円環対は縦振動系のどの部分に設置しても良いが、振動ループ位置付近に設置すれば振動応力が小となりより安定に設置される。 The ring pair for vibration conversion may be installed in any part of the longitudinal vibration system, but if it is installed in the vicinity of the position of the vibration loop, the vibration stress becomes small and the vibration pair is installed more stably.
円環対の音速は振動体より大でも小でも良いが、音速の大で大強度の超硬合金等と接合可能な鉄鋼、ステンレス鋼等と組み合わせることにより強度の大な複合振動変換器が得られる。 The sound velocity of the ring pair may be larger or smaller than that of the vibrating body, but a combined vibration transducer with high strength can be obtained by combining it with steel, stainless steel, etc. that can be joined to high-strength, high-strength cemented carbide. It is done.
以上、本発明の実施の形態を図面により詳述したが、本発明の具体的な構成はこの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更があっても本発明に含まれる。例えば、振動体断面形状を変化させ振動速度を増加させる(段付き振動体、カテノイダルホーン等)ことにより、より大振動振幅を得ることが可能である。 The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration of the present invention is not limited to this embodiment, and there are design changes within a scope not departing from the gist of the present invention. Are also included in the present invention. For example, it is possible to obtain a larger vibration amplitude by changing the cross-sectional shape of the vibrating body to increase the vibration speed (stepped vibrating body, catenoidal horn, etc.).
任意の音速の異なる斜め切断した金属円環または金属円環対は複数位置に設置すれば変換効果を高めることが出来る。 If a metal ring or a pair of metal rings that are cut obliquely at different sound speeds is installed at a plurality of positions, the conversion effect can be enhanced.
2組の金属円環対を角度を変えて設置使用する場合は共通の材料を隣接させて任意角度で一体加工し接合面を減少できる。もちろん一体加工した円環を振動体に直接設置することも可能である。 When two sets of metal ring pairs are installed and used at different angles, a common material can be placed adjacent to each other and integrally processed at an arbitrary angle to reduce the joint surface. Of course, it is also possible to install an integrally processed ring directly on the vibrating body.
電気信号を機械振動に変換する圧電セラミックを斜め切断し振動位相差および駆動力を変えることで同様な効果を得ることができる。もちろん圧電セラミックを直径方向に傾斜分極させても同様な効果が得られる。 A similar effect can be obtained by obliquely cutting a piezoelectric ceramic that converts an electrical signal into mechanical vibration and changing the vibration phase difference and the driving force. Of course, the same effect can be obtained even if the piezoelectric ceramic is subjected to gradient polarization in the diameter direction.
以上のように本発明によれば、振動体の剛性に富んだ構成が容易な超音波複合水平振動装置および回転振動装置を得ることができる。 As described above, according to the present invention, it is possible to obtain an ultrasonic composite horizontal vibration device and a rotary vibration device in which the configuration of the vibrating body rich in rigidity is easy.
1、1’、7 振動体
2 音速の異なる振動体
3、3’ 振動位相差、振動変位分布
4 振動体断面形状
5、6 縦および曲げ振動分布
5’,6’ 振動体端面の縦振動、曲げ振動
8 ねじ締結用中心貫通穴
9、9’ 斜め切断した円環を組み合わせた短円筒型の変換器の平行面
Δc 縦振動波の音速差
Δξl 縦振動の振動変位差
Δξt 曲げ振動ノード部の表面振動変位1, 1 ', 7 Vibrating
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007096841A JP2008212916A (en) | 2007-03-05 | 2007-03-05 | Ultrasonic composite vibrator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007096841A JP2008212916A (en) | 2007-03-05 | 2007-03-05 | Ultrasonic composite vibrator |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008212916A true JP2008212916A (en) | 2008-09-18 |
Family
ID=39833594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007096841A Pending JP2008212916A (en) | 2007-03-05 | 2007-03-05 | Ultrasonic composite vibrator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008212916A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018138919A (en) * | 2018-03-27 | 2018-09-06 | 辻野 次郎丸 | Vibration detector of ultrasonic composite vibration processing equipment |
CN111168484A (en) * | 2020-01-14 | 2020-05-19 | 南京航空航天大学 | Single-excitation ultrasonic elliptical vibration auxiliary grinding device and operation process thereof |
WO2023097803A1 (en) * | 2021-12-02 | 2023-06-08 | 大连理工大学 | Novel three-dimensional ultrasonic elliptical vibration cutting device |
CN116251731A (en) * | 2023-04-13 | 2023-06-13 | 华中科技大学 | Ultrasonic elliptical vibration cutting system and method coupled with flexible hinge mechanism |
CN117754013A (en) * | 2024-01-19 | 2024-03-26 | 北京航空航天大学 | Local separation continuous high-speed ultrasonic vibration processing method |
-
2007
- 2007-03-05 JP JP2007096841A patent/JP2008212916A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018138919A (en) * | 2018-03-27 | 2018-09-06 | 辻野 次郎丸 | Vibration detector of ultrasonic composite vibration processing equipment |
CN111168484A (en) * | 2020-01-14 | 2020-05-19 | 南京航空航天大学 | Single-excitation ultrasonic elliptical vibration auxiliary grinding device and operation process thereof |
WO2023097803A1 (en) * | 2021-12-02 | 2023-06-08 | 大连理工大学 | Novel three-dimensional ultrasonic elliptical vibration cutting device |
JP2024535092A (en) * | 2021-12-02 | 2024-09-26 | 大連理工大学 | New 3D ultrasonic elliptical vibration cutting device |
CN116251731A (en) * | 2023-04-13 | 2023-06-13 | 华中科技大学 | Ultrasonic elliptical vibration cutting system and method coupled with flexible hinge mechanism |
CN117754013A (en) * | 2024-01-19 | 2024-03-26 | 北京航空航天大学 | Local separation continuous high-speed ultrasonic vibration processing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3200086B2 (en) | Rotary ultrasonic horn | |
JP5020962B2 (en) | Disc-shaped cutting tool and cutting device | |
JP6758715B2 (en) | Vibration excitation method, ultrasonic processing method and ultrasonic transmission method of Langevin type ultrasonic oscillator | |
Ide et al. | A low-profile design for the noncontact ultrasonically levitated stage | |
JP4755102B2 (en) | Ultrasonic horn mount | |
JP2008212916A (en) | Ultrasonic composite vibrator | |
JP2004529002A (en) | Symmetrical ultrasonic rotating horn | |
JPH01119200A (en) | ultrasonic transducer | |
JP6716082B2 (en) | Excitation method of longitudinal and torsional vibration of Langevin type ultrasonic transducer | |
Seemann | A linear ultrasonic traveling wave motor of the ring type | |
JP5036124B2 (en) | Ultrasonic composite vibrator and method of forming the vibrator | |
JP2003290719A (en) | Large-capacity ultrasonic composite vibration device | |
JP2006205140A (en) | Ultrasonic machining apparatus | |
JP4624750B2 (en) | Ultrasonic composite vibrator | |
JP5175434B2 (en) | Support device for ultrasonic flexural vibrator | |
JP4082982B2 (en) | Method for supporting ultrasonic flexural vibrator | |
US20240200575A1 (en) | Rotating apparatus, motor, and pump | |
JP4041725B2 (en) | Ultrasonic vibration radiator | |
JP2024007286A (en) | Ultrasonic probe | |
JPS6135176A (en) | Piezoelectric motor | |
Huber et al. | Noncontact modal excitation of small structures using ultrasound radiation force | |
JP3006433B2 (en) | Ultrasonic transmitter | |
Zhang et al. | Design and experimental verification of high frequency elliptical vibration cutting system | |
JP2024096655A (en) | Method of supporting ultrasonic vibrator | |
JP2006088135A (en) | Ultrasonic vibration table |