[go: up one dir, main page]

JP2008191219A - Method and device of manufacturing alignment layer, and optical element using the same - Google Patents

Method and device of manufacturing alignment layer, and optical element using the same Download PDF

Info

Publication number
JP2008191219A
JP2008191219A JP2007022839A JP2007022839A JP2008191219A JP 2008191219 A JP2008191219 A JP 2008191219A JP 2007022839 A JP2007022839 A JP 2007022839A JP 2007022839 A JP2007022839 A JP 2007022839A JP 2008191219 A JP2008191219 A JP 2008191219A
Authority
JP
Japan
Prior art keywords
light
resin layer
light source
liquid crystal
alignment film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007022839A
Other languages
Japanese (ja)
Inventor
Satoru Hirose
悟 広瀬
Koji Hamaguchi
浩二 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2007022839A priority Critical patent/JP2008191219A/en
Publication of JP2008191219A publication Critical patent/JP2008191219A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Optical Head (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily and highly precisely align a liquid crystal material when an alignment layer is manufactured, used for an optical element and the like used as a birefringence correcting element of an optical disk in an optical pickup and coming in contact with a surface layer of a liquid crystal to align the liquid crystal in a prescribed direction. <P>SOLUTION: When a resin layer 7 containing a photoreactive functional group aligned in a light incident direction is layered on a substrate 3 and a point light source 4 is turned on to align the photoreactive functional group, a portion of the resin layer except a direct under part of the point light source 4 and an outer peripheral side is irradiated with oblique light by using a light shielding member 5 having a ring-shaped aperture 5a and the outer peripheral side of the resin layer is irradiated with nearly parallel light by using a ring-shaped mirror 6. When thus formed alignment layer is brought into contact with a liquid crystal layer to align the liquid crystal, the liquid crystal can be radially extended nearly from an optical axis as a base point, can fall in a face direction in the vicinity of the optical axis and can be raised in a thickness direction as separated from the optical axis and the liquid crystal can be easily and highly accurately aligned so that birefringent anisotropy is canceled. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光学ピックアップの光学素子などに用いられる配向膜の製造方法および装置ならびにそれを用いる光学素子に関する。   The present invention relates to an alignment film manufacturing method and apparatus used for an optical element of an optical pickup and the like, and an optical element using the same.

一般に、光ディスクの光学系では、光源から発せられた直線偏光の光は、ビームスプリッタを素通し、1/4波長板を通過することで円偏光となった後、集光レンズで集光されて前記光ディスクに照射され、反射光は、入射光路を逆に辿り、1/4波長板を通過後、入射光とは90度回転した直線偏光となり、偏光ビームスプリッタで入射光路とは別の方向に反射されて受光器で受光されるようになっている。   In general, in an optical system of an optical disk, linearly polarized light emitted from a light source passes through a beam splitter, passes through a quarter-wave plate, becomes circularly polarized light, and then is collected by a condenser lens. Irradiated onto the optical disk, the reflected light traces the incident optical path in the reverse direction, passes through the quarter-wave plate, becomes linearly polarized light rotated 90 degrees from the incident light, and is reflected in a direction different from the incident optical path by the polarizing beam splitter The light is received by the light receiver.

その系において、光ディスクには入射光は集光光として入射するので、光軸から離れた外側程入射角度が大きく、光ディスクが不要の複屈折異方性を持つと、前記外側程複屈折が大きくなり、円偏光で入射した光が、反射後楕円偏光になってしまう。これによって、光量の低下だけでなく、スポット光のサイズが大きくなり、分解能を低下させる。そこで、そのような複屈折異方性を打ち消すような、外側程光の位相が進む複屈折補正素子が、前記1/4波長板と光ディスクとの間に介在される。このような光学ピックアップの構造および機能は、特許文献1などに詳しく説明されている。
特開2005−332435号公報
In that system, incident light enters the optical disk as condensed light, and the incident angle increases toward the outer side away from the optical axis. If the optical disk has unnecessary birefringence anisotropy, the birefringence increases toward the outer side. Thus, the light incident as circularly polarized light becomes elliptically polarized light after reflection. This not only reduces the amount of light but also increases the size of the spot light, thereby reducing the resolution. Therefore, a birefringence correction element in which the phase of light advances toward the outside so as to cancel such birefringence anisotropy is interposed between the quarter-wave plate and the optical disk. The structure and function of such an optical pickup is described in detail in Patent Document 1 and the like.
JP 2005-332435 A

上述の従来技術では、複屈折補正機能は、液晶を配向させることで実現しており、その配向は、選択的なラビング、液晶材料の選択、液晶への印加電圧の調整によって実現されている。したがって、マスクラビング法のようなリソグラフィ工程を用いると、工数が掛かり、大量生産時にはコストがかかるとともに、ラビングを適用できる形状には制約があり、完全な放射状や同心状にできないという問題がある。   In the above-described prior art, the birefringence correction function is realized by aligning the liquid crystal, and the alignment is realized by selective rubbing, selection of the liquid crystal material, and adjustment of the voltage applied to the liquid crystal. Therefore, when a lithography process such as a mask rubbing method is used, man-hours are required, and there is a problem in that it is expensive at the time of mass production, and there are restrictions on the shape to which rubbing can be applied, and it cannot be made completely radial or concentric.

本発明の目的は、簡易かつ高精度に一軸の屈折率異方性を有する材料を配光させることができる配向膜の製造方法および装置ならびにそれを用いる光学素子を提供することである。   An object of the present invention is to provide a method and apparatus for producing an alignment film capable of distributing light with a uniaxial refractive index anisotropy with high accuracy and an optical element using the same.

本発明の配向膜の製造方法は、一軸の屈折率異方性を有する材料を含む屈折率異方性層に接触して前記材料を配向させる配向膜の製造方法において、光の入射方向に配向する光反応官能基をもつ化合物を含む樹脂層を基板上に積層する工程と、前記樹脂層に軸対称の入射角で光を照射する工程とを含むことを特徴とする。   The alignment film manufacturing method of the present invention is an alignment film manufacturing method in which a material having a uniaxial refractive index anisotropy is brought into contact with the refractive index anisotropic layer to align the material. And a step of laminating a resin layer containing a compound having a photoreactive functional group on the substrate, and a step of irradiating the resin layer with light at an axially symmetric incident angle.

また、本発明の配向膜の製造装置は、一軸の屈折率異方性を有する材料を含む屈折率異方性層に接触して前記材料を配向させる配向膜の製造装置において、光の入射方向に配向する光反応官能基をもつ化合物を含む樹脂層を積層する基板と、前記樹脂層の中心上に配置されて前記樹脂層に光照射を行う光源と、前記光源からの光を前記樹脂層に軸対称の入射角で照射し、ミラーと遮光部材と凸レンズとの少なくとも何れか1つとを含むことを特徴とする。   The alignment film manufacturing apparatus according to the present invention is an alignment film manufacturing apparatus that contacts a refractive index anisotropic layer containing a material having uniaxial refractive index anisotropy to align the material, and the incident direction of light. A substrate on which a resin layer containing a compound having a photoreactive functional group oriented to the substrate is laminated; a light source disposed on the center of the resin layer to irradiate light to the resin layer; and light from the light source to the resin layer Is irradiated with an incident angle that is axially symmetric, and includes at least one of a mirror, a light shielding member, and a convex lens.

上記の構成によれば、光学ピックアップにおける光ディスクの複屈折補正素子として用いられる光学素子などに用いられ、液晶などの一軸の屈折率異方性を有する材料を含む屈折率異方性層の表層に接触して前記材料を所定の方向に配向させる(プレチルト角を与える)ための配向膜を作製するにあたって、光の入射方向に配向する光反応官能基をもつ化合物を含む樹脂を用い、その樹脂による層を、ガラス、石英、プラスチック等の基板上にスピンコート、流延、スクリーン印刷等の任意の手法で積層した後、前記樹脂層に軸対称の入射角で光を照射して、前記光反応官能基を配向させる。前記光反応官能基としては、N=N結合およびC=C結合から選ばれた少なくとも1つの二重結合を有し、光照射によって反応を起こすものであり、これを含む樹脂としては、ビニル重合体、縮合重合体、付加重合体等を用いることができる。   According to the above configuration, the surface layer of the refractive index anisotropy layer is used for an optical element used as a birefringence correction element of an optical disc in an optical pickup and includes a material having uniaxial refractive index anisotropy such as liquid crystal. In preparing an alignment film for contacting and orienting the material in a predetermined direction (giving a pretilt angle), a resin containing a compound having a photoreactive functional group that is oriented in the incident direction of light is used. After laminating a layer on a substrate such as glass, quartz, or plastic by any method such as spin coating, casting, or screen printing, the resin layer is irradiated with light at an axially symmetric incident angle, and the photoreaction is performed. Orient the functional groups. The photoreactive functional group has at least one double bond selected from an N═N bond and a C═C bond, and causes a reaction upon irradiation with light. A polymer, a condensation polymer, an addition polymer, or the like can be used.

また、前記のような光照射方法としては、光源を前記樹脂層の中心上に配置し、その光源からの光を、ミラーと遮光部材と凸レンズとの少なくとも何れか1つを用いて前記樹脂層に照射することで、軸対称の入射角で照射するようにして行う。好ましくは、前記軸対称の入射角が、軸からの距離によって異なる部分を有するようにする。   Further, as the light irradiation method as described above, a light source is disposed on the center of the resin layer, and the light from the light source is transmitted to the resin layer using at least one of a mirror, a light shielding member, and a convex lens. Irradiating at an axially symmetric incident angle. Preferably, the axisymmetric incident angle has different portions depending on the distance from the axis.

たとえば、点光源からの光を、リング状の開口を有す遮光部材を介して樹脂層へ照射するとともに、その点光源からの光をリング状のミラーで反射させて樹脂層へ照射することで実現でき、樹脂層には、リング状のミラーによって外周部付近は略垂直(深い入射角)に光が入射し、その内周側は点光源から斜め(浅い入射角)に光を入射させることができ、光軸付近は遮光することができる。或いは、円板状の前記第2の樹脂の層よりも外方側に配置した光源を用いることで斜光を発生させ、さらにその光の一部をミラーで樹脂層の方向へ反射することで前記略垂直光を発生させるとともに、前記リングの中心となる位置を軸として円板状の樹脂層を回転させ、または光源およびミラーを円板状の樹脂層の周囲を周回させることで実現することができる。なお、前記軸対称の入射角で光を照射する工程と、光軸付近を除き斜光を照射する工程とは、同時に、または逆の順序で行われてもよい。さらにまた、凹面形状のミラーを点光源に対して基板とは反対側に設けるとともに、必要に応じて凸レンズを設け、前記樹脂層を、そのミラーや凸レンズの焦点からずれて配置することで、樹脂層には、外周部付近は斜め(浅い入射角)に光を入射させることができ、内周側は略垂直(深い入射角)に入射させることができる。   For example, by irradiating the resin layer with light from a point light source through a light shielding member having a ring-shaped opening, the light from the point light source is reflected by a ring-shaped mirror and irradiated onto the resin layer. In the resin layer, light is incident near the outer periphery by a ring-shaped mirror in a substantially vertical direction (deep incident angle), and light is incident obliquely (shallow incident angle) from the point light source on the inner peripheral side. And the vicinity of the optical axis can be shielded. Alternatively, oblique light is generated by using a light source disposed on the outer side of the disk-shaped second resin layer, and a part of the light is reflected by a mirror in the direction of the resin layer. It can be realized by generating substantially vertical light and rotating the disk-shaped resin layer around the center position of the ring, or rotating the light source and the mirror around the disk-shaped resin layer. it can. Note that the step of irradiating light at the axis-symmetric incident angle and the step of irradiating oblique light except near the optical axis may be performed simultaneously or in the reverse order. Furthermore, a concave mirror is provided on the side opposite to the substrate with respect to the point light source, and a convex lens is provided as necessary, and the resin layer is arranged so as to be shifted from the focal point of the mirror or convex lens. In the layer, light can be incident obliquely (shallow incident angle) near the outer periphery, and can be incident substantially perpendicular (deep incident angle) on the inner periphery.

したがって、このような配向膜を一軸の屈折率異方性を有する材料を含む屈折率異方性層に接触させて前記材料を配向させる(プレチルト角を与える)と、該材料を、大略的に光軸を基点として放射状に延びて、かつ光軸付近で面方向に倒れ、前記光軸から離れる程厚み方向に起立させてゆくことができる。こうして、簡易かつ高精度に一軸の屈折率異方性を有する材料を配向させることができ、該配向膜を前記複屈折補正素子に用いた場合には、通過する光ビームの光軸側よりも外周側での位相が進み、光ディスクの複屈折による影響を打ち消すことができ、分解能を向上できる光学素子を実現することができる。   Therefore, when such an alignment film is brought into contact with a refractive index anisotropic layer containing a material having a uniaxial refractive index anisotropy to orient the material (giving a pretilt angle), the material is roughly It extends radially from the optical axis, falls in the plane direction near the optical axis, and can stand up in the thickness direction as it is farther from the optical axis. In this way, a material having uniaxial refractive index anisotropy can be easily and accurately aligned, and when the alignment film is used for the birefringence correction element, it is more than the optical axis side of the passing light beam. The phase on the outer peripheral side advances, and the optical element that can cancel the influence of the birefringence of the optical disk and improve the resolution can be realized.

また、本発明の光学素子は、対を成す基板の少なくとも一方の対向面側に前記の製造方法で作製された配向膜を有し、前記一軸の屈折率異方性を有する材料は液晶であり、光ディスクの複屈折補正素子として用いられ、リング状の電極で電界を印加することで、前記液晶の軸を、中心部分で面方向に、外方側になるにつれて厚み方向に起立させてゆき、その状態で固形化した樹脂によって固定化されていることを特徴とする。   Moreover, the optical element of the present invention has an alignment film produced by the above-described manufacturing method on at least one opposing surface side of a pair of substrates, and the material having the uniaxial refractive index anisotropy is a liquid crystal. The liquid crystal is used as a birefringence correction element of an optical disk, and by applying an electric field with a ring-shaped electrode, the liquid crystal axis is erected in the thickness direction as it goes outward in the plane direction, It is characterized by being fixed by the resin solidified in that state.

上記の構成によれば、前記一軸の屈折率異方性を有する材料として液晶を用い、光学ピックアップにおいて光ディスクの複屈折補正素子として用いられる光学素子において、前記の配向膜を用いるとともに、リング状の電極、好ましくは光出射側をべた電極、入射側を前記リング状の電極で電界を印加することで、前記液晶の軸を、中心部分で面方向に、外方側になるにつれて厚み方向に起立させてゆくことができる。そして、前記樹脂を光硬化性の樹脂で実現して光硬化させるなどしてその状態で固形化させ、必要に応じて前記電極を撤去するなどして前記光学素子を完成させる。   According to the above configuration, the liquid crystal is used as the material having the uniaxial refractive index anisotropy, and in the optical element used as the birefringence correction element of the optical disc in the optical pickup, the alignment film is used, and the ring-shaped By applying an electric field with an electrode, preferably a solid electrode on the light emission side, and an annular side electrode on the incident side, the liquid crystal axis stands in the plane direction at the center and in the thickness direction as it goes outward. I can let you. Then, the optical element is completed by realizing the resin with a photo-curable resin and solidifying the resin in such a state, and removing the electrode as necessary.

したがって、光ビームの光軸側よりも外周側での位相が進み、光ディスクの複屈折による影響を打ち消すことができ、分解能を向上できる光学素子を実現することができる。   Therefore, the phase of the light beam on the outer peripheral side rather than the optical axis side advances, and the influence of the birefringence of the optical disc can be canceled, and an optical element that can improve the resolution can be realized.

本発明の配向膜の製造方法および装置は、以上のように、光学ピックアップにおける光ディスクの複屈折補正素子として用いられる光学素子などに用いられ、液晶などの一軸の屈折率異方性を有する材料を含む屈折率異方性層の表層に接触して前記材料を所定の方向に配向させる(プレチルト角を与える)ための配向膜を作製するにあたって、光の入射方向に配向する光反応官能基をもつ化合物を含む樹脂を用い、その樹脂による層を基板に積層した後、軸対称の入射角で光を照射して、前記光反応官能基を配向させる。   As described above, the method and apparatus for producing an alignment film of the present invention is used for an optical element used as a birefringence correction element of an optical disk in an optical pickup, and is made of a material having a uniaxial refractive index anisotropy such as liquid crystal. A photoreactive functional group that orients in the direction of incidence of light when producing an orientation film for orienting the material in a predetermined direction (giving a pretilt angle) in contact with the surface layer of the refractive index anisotropic layer After using a resin containing a compound and laminating a layer of the resin on the substrate, the photoreactive functional group is oriented by irradiating light at an axially symmetric incident angle.

それゆえ、このような配向膜を一軸の屈折率異方性を有する材料を含む屈折率異方性層に接触させて前記材料を配向させると、該材料を、大略的に光軸を基点として放射状に延びて、かつ光軸付近で面方向に倒れ、前記光軸から離れる程厚み方向に起立させてゆくことができ、簡易かつ高精度に一軸の屈折率異方性を有する材料を配向させることができる。   Therefore, when such an alignment film is brought into contact with a refractive index anisotropic layer containing a material having a uniaxial refractive index anisotropy and the material is oriented, the material is roughly based on the optical axis. A material that extends radially and tilts in the plane direction near the optical axis and can stand up in the thickness direction away from the optical axis, and easily and accurately orients a material having uniaxial refractive index anisotropy. be able to.

また、本発明の光学素子は、以上のように、前記一軸の屈折率異方性を有する材料として液晶を用い、光学ピックアップにおいて光ディスクの複屈折補正素子として用いられる光学素子において、前記の配向膜を用いるとともに、リング状の電極、好ましくは光出射側をべた電極、入射側を前記リング状の電極で電界を印加することで、前記液晶の軸を、中心部分で面方向に、外方側になるにつれて厚み方向に起立させてゆくことができ、その状態で前記樹脂を固形化させ、必要に応じて前記電極を撤去するなどして前記光学素子を完成させる。   In addition, as described above, the optical element of the present invention uses a liquid crystal as the material having the uniaxial refractive index anisotropy, and the optical element used as a birefringence correction element of an optical disk in an optical pickup includes the alignment film. And applying an electric field with a ring-shaped electrode, preferably a solid electrode on the light emitting side, and an incident side with the ring-shaped electrode, the liquid crystal axis in the plane direction at the central portion, outward Then, the optical element can be erected in the thickness direction. In this state, the resin is solidified, and the electrode is removed as necessary to complete the optical element.

それゆえ、光ビームの光軸側よりも外周側での位相が進み、光ディスクの複屈折による影響を打ち消すことができ、分解能を向上できる光学素子を実現することができる。   Therefore, the phase of the light beam on the outer peripheral side rather than the optical axis side advances, the influence of the birefringence of the optical disc can be canceled, and an optical element that can improve the resolution can be realized.

[実施の形態1]
図1は、本発明の実施の第1の形態に係る配向膜の製造装置1および製造方法を説明するための断面図である。この製造装置1は、基台2と、前記基台2上に搭載される円板状の基板3と、前記基板3の中心上に配置される点光源4と、前記点光源4と基板3との間に介在され、リング状の開口5aを有する遮光部材5と、前記遮光部材5よりも大径のリング状に形成され、前記点光源4を外囲するように配置されるミラー6とを備え、光軸8に対して対称に構成される。前記基板3は、ガラス、石英、プラスチック等から成り、基台2から着脱自在であり、取外された状態で、スピンコート、流延、スクリーン印刷等の任意の手法で、配向膜となる樹脂層7が積層される。
[Embodiment 1]
FIG. 1 is a cross-sectional view for explaining an alignment film manufacturing apparatus 1 and a manufacturing method according to a first embodiment of the present invention. The manufacturing apparatus 1 includes a base 2, a disk-shaped substrate 3 mounted on the base 2, a point light source 4 disposed on the center of the substrate 3, the point light source 4 and the substrate 3. A light shielding member 5 having a ring-shaped opening 5a, and a mirror 6 formed in a ring shape having a larger diameter than the light shielding member 5 and arranged to surround the point light source 4 And is configured symmetrically with respect to the optical axis 8. The substrate 3 is made of glass, quartz, plastic, etc., and is detachable from the base 2, and in the removed state, a resin that becomes an alignment film by any method such as spin coating, casting, and screen printing. Layer 7 is laminated.

その後、前記基板3を基台2にセットした後、前記点光源4を点灯させて前記樹脂層7に光照射を行い、該樹脂層7の前記光反応官能基を配向させる。ここで、遮光部材5は、その平面を図2で示すように、上述のようにリング状の開口5aを有する。したがって、点光源4からの光は、図1で示すように、点光源4の直下(光軸8付近)では内周側の第1の遮光板5bによって遮光され、基台2の外周付近では第2の遮光板5cによって遮光され、樹脂層7側に照射されるのはそれらの間の領域だけとなり、樹脂層7には斜めに光が入射することになる。   Thereafter, after setting the substrate 3 on the base 2, the point light source 4 is turned on to irradiate the resin layer 7 with light, and the photoreactive functional groups of the resin layer 7 are oriented. Here, as shown in FIG. 2, the light shielding member 5 has the ring-shaped opening 5a as described above. Therefore, as shown in FIG. 1, the light from the point light source 4 is shielded by the first light shielding plate 5b on the inner peripheral side immediately below the point light source 4 (near the optical axis 8), and near the outer periphery of the base 2. Only the area between them is shielded by the second light-shielding plate 5 c and irradiated to the resin layer 7 side, and light is incident on the resin layer 7 obliquely.

一方、図3で示す前記ミラー6は、図2の遮光部材5と比較して明らかなように、遮光部材5よりも大径のリング状に形成され、図1で示すように前記点光源4を外囲するように配置される。そして、基板3(樹脂層7)に対しては点光源4とほぼ等しい高さで、かつ前記点光源4からの光を基板3側にリング状の略平行光として反射するように、その高さに応じた角度に設置される。   On the other hand, the mirror 6 shown in FIG. 3 is formed in a ring shape having a diameter larger than that of the light shielding member 5 as apparent from the light shielding member 5 shown in FIG. It is arranged so as to surround. The height of the substrate 3 (resin layer 7) is substantially the same as that of the point light source 4 and the light from the point light source 4 is reflected to the substrate 3 side as ring-shaped substantially parallel light. It is installed at an angle according to the height.

このように構成することで、樹脂層7には、リング状のミラー6によって外周部付近は略垂直(深い入射角)に光が入射し、その内周側は点光源4から斜め(浅い入射角)に光を入射させることができ、光軸8付近は遮光することができる。これによって、図4で示すように、光反応官能基7aは、大略的に光軸8を基点として放射状に延びて、かつ光軸8付近で面方向に倒れ、前記光軸8から離れる程厚み方向に起立させてゆくことができる。図4(a)は光照射後の樹脂層7の平面図であり、図4(b)は断面図である。こうして、簡易かつ高精度に光反応官能基7aを配向させることができる。   With this configuration, light is incident on the resin layer 7 in a substantially vertical direction (deep incident angle) near the outer peripheral portion by the ring-shaped mirror 6, and the inner peripheral side is obliquely (shallow incident) from the point light source 4. Light can be incident on the corner), and the vicinity of the optical axis 8 can be shielded. As a result, as shown in FIG. 4, the photoreactive functional group 7a extends radially from the optical axis 8 as a starting point, falls in the plane direction in the vicinity of the optical axis 8, and becomes thicker as the distance from the optical axis 8 increases. You can stand up in the direction. 4A is a plan view of the resin layer 7 after light irradiation, and FIG. 4B is a cross-sectional view. Thus, the photoreactive functional group 7a can be oriented easily and with high accuracy.

上述の説明では、単一の点光源4を用いて、遮光部材5によってリング状の斜光を発生し、ミラー6によってリング状の略平行光を発生し、同時に照射するようにしたけれども、たとえばミラー6の代りにリング状の光源を用いるなどして、個別に照射するようにしてもよく、その場合、何れか一方を先に照射し、他方を後に照射するようにしてもよい。   In the above description, a single point light source 4 is used to generate ring-shaped oblique light by the light shielding member 5 and ring-shaped substantially parallel light is generated by the mirror 6 and simultaneously irradiated. Alternatively, a ring-shaped light source may be used in place of 6, and irradiation may be performed individually. In that case, either one may be irradiated first and the other may be irradiated later.

[実施の形態2]
図5は、本発明の実施の第2の形態に係る配向膜の製造装置11および製造方法を説明するための断面図である。この製造装置11は、前述の製造装置1に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。注目すべきは、この製造装置11では、前記点光源4の直下にはプリズム12が設けられており、そのプリズム12の外周部に前述の遮光部材5の第1の遮光板5bに対応する遮光部材15の第1の遮光板15bが嵌め込まれ、軸線8方向の断面で5角形の頂部が面取りされた形状に形成されるプリズム12のその面取りされた部分に、前述の第2の遮光板5cに対応する第2の遮光板15cが貼付けられていることである。そして、前記点光源4からの光は前記5角形の底部から入射し、斜面から出射して樹脂層7に斜めに入射し、前記点光源4の直下は第1の遮光板15bで遮光され、基台2の外周付近では第2の遮光板15cによって遮光される。
[Embodiment 2]
FIG. 5 is a cross-sectional view for explaining an alignment film manufacturing apparatus 11 and a manufacturing method according to the second embodiment of the present invention. This manufacturing apparatus 11 is similar to the above-described manufacturing apparatus 1, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. It should be noted that in this manufacturing apparatus 11, a prism 12 is provided immediately below the point light source 4, and the light shielding corresponding to the first light shielding plate 5 b of the light shielding member 5 is provided on the outer periphery of the prism 12. The first light-shielding plate 15b of the member 15 is fitted, and the second light-shielding plate 5c described above is formed in the chamfered portion of the prism 12 formed in a shape in which the top of the pentagon is chamfered in the section in the direction of the axis 8. The second light-shielding plate 15c corresponding to is attached. Then, the light from the point light source 4 enters from the bottom of the pentagon, exits from the inclined surface and enters the resin layer 7 obliquely, and the light directly below the point light source 4 is shielded by the first light shielding plate 15b. In the vicinity of the outer periphery of the base 2, the light is shielded by the second light shielding plate 15 c.

このように構成することで、樹脂層7に入射する斜光の角度を決定する遮光部材5と点光源4との高さ調整を容易に行うことができるとともに、入射角を高精度に制御することができ、或いは樹脂層7、すなわち配向膜の大きさが異なる場合に、容易に対応することができる。   With this configuration, the height of the light shielding member 5 and the point light source 4 that determines the angle of oblique light incident on the resin layer 7 can be easily adjusted, and the incident angle can be controlled with high accuracy. Or when the size of the resin layer 7, that is, the alignment film is different, can be easily handled.

[実施の形態3]
図6および図7は、本発明の実施の第3の形態に係る配向膜の製造装置21および製造方法を説明するための断面図および平面図である。この製造装置21は、前述の製造装置1に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。注目すべきは、この製造装置21では、前記遮光部材5が設けられておらず、代りに前記基台2に対応するターンテーブル22の外方側に配置した光源24およびミラー25を用いることで前記ターンテーブル22の内周側および外周側を除く中間領域にスリット状の前記斜光を発生させ、さらにその光の一部をターンテーブル22の外周上に配置したミラー26で樹脂層7の方向へ反射することで前記略平行光を発生させるとともに、前記の光軸8に一致する軸を回転軸28として、モータ23によって、前記ターンテーブル22、したがって基板3および樹脂層7を回転させることで、前記略平行光および斜光をリング状に照射することである。
[Embodiment 3]
6 and 7 are a sectional view and a plan view for explaining an alignment film manufacturing apparatus 21 and a manufacturing method according to the third embodiment of the present invention. This manufacturing apparatus 21 is similar to the manufacturing apparatus 1 described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. It should be noted that in this manufacturing apparatus 21, the light shielding member 5 is not provided, and instead, a light source 24 and a mirror 25 arranged on the outer side of the turntable 22 corresponding to the base 2 are used. The oblique light in the slit shape is generated in an intermediate region excluding the inner peripheral side and the outer peripheral side of the turntable 22, and a part of the light is further directed toward the resin layer 7 by a mirror 26 disposed on the outer periphery of the turntable 22. The substantially parallel light is generated by reflection, and the turntable 22 and thus the substrate 3 and the resin layer 7 are rotated by the motor 23 using the axis that coincides with the optical axis 8 as the rotation axis 28. Irradiating the substantially parallel light and oblique light in a ring shape.

このように構成してもまた、簡易かつ高精度に光反応官能基7aを配向させることができる。また、前述の遮光部材5,15、プリズム12およびミラー6は、光軸8に対して傾くと、樹脂層7に対して偏心して(非対象に)光照射が行われてしまうのに対して、ターンテーブル22によって回転させながら光照射を行うことで、均一な(対象な)光照射を行うことができる。また、図示していないけれども、前述の遮光部材5やプリズム12を樹脂層7上に支持するには、点光源4から樹脂層7の照射領域までの間に、それを横切るステーなどが必要になるのに対して、ターンテーブル22の外方側に光源24、ミラー25およびミラーを配置することで、図7で示すように、それらを支持する支持部材28による陰の発生を抑える構造とすることができる。また、たとえ陰が発生したとしても、回転させながら光照射を行うことで、照射むらとなることを抑えることができ、前記支持部材28を強化(太くするなど)して、照射位置の精度を高めることもできる。   Even if comprised in this way, the photoreactive functional group 7a can be orientated simply and with high precision. Further, when the light shielding members 5, 15, the prism 12, and the mirror 6 described above are inclined with respect to the optical axis 8, the light irradiation is performed eccentrically (untargeted) with respect to the resin layer 7. By performing light irradiation while rotating by the turntable 22, uniform (target) light irradiation can be performed. Although not shown, in order to support the light shielding member 5 and the prism 12 on the resin layer 7, a stay crossing the point light source 4 to the irradiation region of the resin layer 7 is required. On the other hand, by arranging the light source 24, the mirror 25, and the mirror on the outer side of the turntable 22, as shown in FIG. 7, a structure that suppresses the generation of shadows by the support member 28 that supports them is provided. be able to. Further, even if shadowing occurs, by performing light irradiation while rotating, uneven irradiation can be suppressed, and the support member 28 is strengthened (thickened, etc.), and the irradiation position accuracy is improved. It can also be increased.

なお、前述の製造装置1,11のように光軸8の中心側から光照射を行う場合と、この製造装置21のように外方側から光照射を行う場合とで、前記光反応官能基7aの配向方向は、特に樹脂層7の外周側で逆相となる。しかしながら、微小な長さの前記光反応官能基7aによって、後述するように配向される液晶の光透過の作用には、大きな差が生じることはない。また、基板3および樹脂層7側を回転させるのではなく、前記ターンテーブル22を前述の基台2とし、該基台2の周囲に敷設した環状の軌条上を、光源24、ミラー25およびミラー26を搭載した台車が周回して光照射を行うようにしてもよい。   The photoreactive functional group is used when light is irradiated from the center side of the optical axis 8 as in the manufacturing apparatuses 1 and 11 and when light is irradiated from the outer side as in the manufacturing apparatus 21. The orientation direction of 7a becomes a reverse phase especially on the outer peripheral side of the resin layer 7. However, the photoreactive functional group 7a having a very small length does not cause a large difference in the light transmission effect of the liquid crystal aligned as described later. Instead of rotating the substrate 3 and the resin layer 7 side, the turntable 22 is used as the base 2 described above, and the light source 24, the mirror 25, and the mirror are arranged on the annular rail laid around the base 2. The trolley | bogie which mounts 26 may circulate, and you may make it perform light irradiation.

[実施の形態4]
図8は、本発明の実施の第4の形態に係る配向膜の製造装置31および製造方法を説明するための断面図である。この製造装置31は、前述の製造装置1に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。注目すべきは、この製造装置31では、前記点光源4と樹脂層37との間にはリング状の遮光部材35が介在され、点光源4に対して基板3とは反対側にはミラー36が配置され、これらに合わせて前記樹脂層37としては、光の入射方向とは交差する方向に配向するネガ型の光反応官能基を含む樹脂が用いられることである。
[Embodiment 4]
FIG. 8 is a cross-sectional view for explaining an alignment film manufacturing apparatus 31 and a manufacturing method according to the fourth embodiment of the present invention. The manufacturing apparatus 31 is similar to the manufacturing apparatus 1 described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. It should be noted that in this manufacturing apparatus 31, a ring-shaped light shielding member 35 is interposed between the point light source 4 and the resin layer 37, and a mirror 36 is provided on the opposite side of the point light source 4 from the substrate 3. In accordance with these, the resin layer 37 is made of a resin containing a negative photoreactive functional group oriented in a direction crossing the light incident direction.

そして、ミラー36は、前記光軸8での断面が放物線形状であり、該ミラー36による反射光は、焦点34において一旦集光した後に分散してゆき、光軸8付近では垂直(深い入射角)に近い角度で、光軸8から離れる程斜め(浅い入射角)に入射させることができ、また点光源4からの直達光は前記遮光部材5によって光軸8付近だけに絞ることができる。このように構成することで、前記ネガ型の光反応官能基を、前述の図4で示す光反応官能基7aと同様に、大略的に光軸8を基点として放射状に延びて、かつ光軸8付近で面方向に倒れ、前記光軸8から離れる程厚み方向に起立させてゆくことができる。   The mirror 36 has a parabolic cross section at the optical axis 8, and the light reflected by the mirror 36 is once condensed at the focal point 34 and then dispersed, and near the optical axis 8 it is vertical (deep incident angle). ) At an angle close to the optical axis 8 and can be incident obliquely (shallow incident angle) away from the optical axis 8, and direct light from the point light source 4 can be narrowed only to the vicinity of the optical axis 8 by the light shielding member 5. By configuring in this way, the negative photoreactive functional group extends substantially radially from the optical axis 8 as in the photoreactive functional group 7a shown in FIG. It can be tilted in the plane direction near 8 and can be raised in the thickness direction as the distance from the optical axis 8 increases.

前記ミラー36は、光軸8に対して対称で、かつ樹脂層37上の照射すべき領域で極端に明暗の差が生じない形状であればよく、その形状および樹脂層37の面積(大きさ)などに合わせて該樹脂層37の配置位置を適宜調整すればよい。たとえば、図9で示す製造装置31aでは、ミラー36aは、光軸8での断面が楕円の一方の焦点34a側を切り落としたような形状で、前記点光源4が他方の焦点側に配置され、一方の焦点34a位置よりも手前(点光源4)側、すなわち前ピン位置に樹脂層37が配置されている。この場合も前記図8で示す製造装置31と比べて、樹脂層37における光反応官能基は逆相に配向されるけれども、液晶の光透過の作用には、大きな差が生じることはない。   The mirror 36 may have any shape that is symmetric with respect to the optical axis 8 and that does not cause an extreme difference in brightness in the region to be irradiated on the resin layer 37. The shape and the area (size) of the resin layer 37 are not particularly limited. ) And the like, the arrangement position of the resin layer 37 may be adjusted as appropriate. For example, in the manufacturing apparatus 31a shown in FIG. 9, the mirror 36a has a shape in which the cross section at the optical axis 8 is cut off from one focal point 34a side of the ellipse, and the point light source 4 is disposed on the other focal point side. A resin layer 37 is disposed on the near side (point light source 4) side of one focal point 34a, that is, on the front pin position. Also in this case, the photoreactive functional groups in the resin layer 37 are aligned in the opposite phase as compared with the manufacturing apparatus 31 shown in FIG. 8, but there is no great difference in the light transmission effect of the liquid crystal.

また、図10で示す製造装置31bでは、同じミラー36aが使用され、一方の焦点34a位置よりも後方(点光源4とは反対)側、すなわち後ピン位置に樹脂層37が配置されている。   In the manufacturing apparatus 31b shown in FIG. 10, the same mirror 36a is used, and the resin layer 37 is arranged on the rear side (opposite to the point light source 4) from the position of one focal point 34a, that is, at the rear pin position.

さらにまた、図11で示す製造装置41では、ミラー46の焦点位置に点光源4が配置され、該ミラー46から樹脂層37側へは平行光が放射されて、その平行光が凸レンズ43によって集光され、その凸レンズ43の焦点44位置よりも後方(点光源4とは反対)側、すなわち後ピン位置に樹脂層37が配置されている。同様に、図12で示す製造装置41aでは、前記ミラー46に凸レンズ43を使用して、ミラー46の焦点44位置よりも前方(点光源4)側、すなわち前ピン位置に樹脂層37が配置されている。前記後ピン位置に樹脂層37が配置される製造装置41の場合、凸レンズ43の代りにズームレンズを採用するとともに、絞り45を設け、絞り径一定で焦点距離を変えることで、開口数を変化させることができる。すなわち、樹脂層37の外周側での光の入射角度を変えることができる。   Furthermore, in the manufacturing apparatus 41 shown in FIG. 11, the point light source 4 is disposed at the focal position of the mirror 46, and parallel light is emitted from the mirror 46 toward the resin layer 37, and the parallel light is collected by the convex lens 43. The resin layer 37 is disposed on the rear side (opposite to the point light source 4) of the convex lens 43, that is, on the rear pin position. Similarly, in the manufacturing apparatus 41a shown in FIG. 12, the convex lens 43 is used for the mirror 46, and the resin layer 37 is arranged on the front side (point light source 4) side of the focal point 44 position of the mirror 46, that is, the front pin position. ing. In the case of the manufacturing apparatus 41 in which the resin layer 37 is disposed at the rear pin position, a zoom lens is used instead of the convex lens 43, and a diaphragm 45 is provided, and the numerical aperture is changed by changing the focal length with a constant diaphragm diameter. Can be made. That is, the incident angle of light on the outer peripheral side of the resin layer 37 can be changed.

このように本発明では、樹脂層7,37の面方向の中心位置に光軸8が略一致し、かつ前記光軸8上で前記樹脂層7,37表面から離間して焦点が位置するように、非偏光の集光光または分散光をリング状の遮光部材35を介して照射するようにすればよい。   Thus, in the present invention, the optical axis 8 substantially coincides with the center position in the surface direction of the resin layers 7 and 37, and the focal point is located on the optical axis 8 away from the surface of the resin layers 7 and 37. In addition, the non-polarized condensed light or dispersed light may be irradiated through the ring-shaped light shielding member 35.

[実施の形態5]
図13および図14は、本発明の実施の第5の形態に係る光学素子50の製造工程を説明するための模式的な断面図である。この光学素子50は、前述の図1〜図12で示す製造装置1,11,21,31,31a,31b,41,41aによって、樹脂層7,37に光照射することによって作製された配向膜51,52を用いて、以下のようにして構成される。この光学素子50は、前記特許文献1で示すような光学ピックアップに搭載され、前記光ディスクの複屈折補正素子として用いられる。
[Embodiment 5]
13 and 14 are schematic cross-sectional views for explaining a manufacturing process of the optical element 50 according to the fifth embodiment of the present invention. This optical element 50 is an alignment film produced by irradiating the resin layers 7 and 37 with the manufacturing apparatuses 1, 11, 21, 31, 31a, 31b, 41 and 41a shown in FIGS. 51 and 52 are used as follows. The optical element 50 is mounted on an optical pickup as shown in Patent Document 1 and used as a birefringence correction element for the optical disc.

注目すべきは、この光学素子50では、対を成す基板53,54の対向面側に前記の配向膜51,52をそれぞれ有し、それらの間には液晶を含有した光硬化樹脂55および適宜図示しないスペーサが充填されとともに、外周部がシール部材56によって気密に封止された後、前記光硬化樹脂55が以下に示すようにして硬化されることである。   It should be noted that this optical element 50 has the alignment films 51 and 52 on the facing surfaces of the pair of substrates 53 and 54, respectively, and a photo-curing resin 55 containing liquid crystal and an appropriate liquid crystal between them. The spacer (not shown) is filled and the outer peripheral portion is hermetically sealed by the seal member 56, and then the photo-curing resin 55 is cured as described below.

すなわち、図13で示すように、前記基板53,54の外表面側(配向膜51,52とは反対側)には、電極57,58が形成されたダミー基板59,60がそれぞれ積層され、前記電極57,58間に電源61から電圧が印加され、該電極57,58間に電界が発生している状態で前記光硬化樹脂55に紫外線が照射されて固形化される。前記ダミー基板59および電極57と、前記ダミー基板60と電極58との内、少なくとも一方は前記紫外線に対して透明であり、その透明である側の基板側から前記紫外線照射が行われる。また、前記基板53,54は、前記光ディスクへの照射光に対して透明である。前記光硬化樹脂55に代えて、熱硬化樹脂が用いられてもよい。   That is, as shown in FIG. 13, dummy substrates 59 and 60 on which electrodes 57 and 58 are formed are laminated on the outer surface side (the side opposite to the alignment films 51 and 52) of the substrates 53 and 54, respectively. A voltage is applied from the power source 61 between the electrodes 57 and 58, and the photocurable resin 55 is irradiated with ultraviolet rays and solidified while an electric field is generated between the electrodes 57 and 58. At least one of the dummy substrate 59 and the electrode 57 and the dummy substrate 60 and the electrode 58 is transparent to the ultraviolet rays, and the ultraviolet irradiation is performed from the transparent substrate side. Further, the substrates 53 and 54 are transparent to the irradiation light to the optical disc. Instead of the photocurable resin 55, a thermosetting resin may be used.

前記電極57,58の一方(図13および図14では57)は基板53,54の外周縁に臨んで形成されるリング状の電極であり、前記電極57,58の他方(図13および図14では58)はべた電極である。そして、電源61は、所定期間は交流を印加して液晶を活性化させた後、前記の光硬化中および光硬化前の所定時間に亘っては直流を印加する。前記の形状の電極57,58間に電圧を印加することで、図15において参照符号62で示すような電界が生じる。そして、その電界は、電極57,58が対向している該光学素子50の周縁部側で強く、中心部側で弱くなる。   One of the electrodes 57 and 58 (57 in FIGS. 13 and 14) is a ring-shaped electrode formed facing the outer peripheral edge of the substrates 53 and 54, and the other of the electrodes 57 and 58 (FIGS. 13 and 14). Then 58) is a solid electrode. The power supply 61 applies alternating current for a predetermined period to activate the liquid crystal, and then applies direct current for a predetermined time during the photocuring and before the photocuring. By applying a voltage between the electrodes 57 and 58 having the above-described shape, an electric field as indicated by reference numeral 62 in FIG. 15 is generated. The electric field is strong on the peripheral side of the optical element 50 facing the electrodes 57 and 58 and weak on the central side.

したがって、先ず、前述のようにして作製された配向膜51,52を一軸の屈折率異方性を有する材料である液晶分子55aを含む前記光硬化樹脂55に接触させることで、図15および図16で示すように、前記液晶分子55aを、大略的に光軸8を基点として放射状に延びて、かつ光軸8付近で面方向に倒れ、前記光軸8から離れる程、同心円状に傾きを揃えて、厚み方向に起立させてゆく(プレチルト角を与える)ことができ、さらに上述のような電界62を印加することで、該液晶分子55aを、より一層強力に配向させることができる。   Therefore, first, the alignment films 51 and 52 manufactured as described above are brought into contact with the photo-curing resin 55 including the liquid crystal molecules 55a which are materials having uniaxial refractive index anisotropy. 16, the liquid crystal molecules 55 a extend radially from the optical axis 8 as a base point, fall in the plane direction near the optical axis 8, and concentrically incline as the distance from the optical axis 8 increases. The liquid crystal molecules 55a can be aligned even more strongly by applying the electric field 62 as described above.

この状態で直流を印加して液晶分子55aの動きを止め、前記紫外線を照射して硬化させた後、図14および図16で示すように前記電極57,58と共にダミー基板59,60を除去すると、光学素子50が完成する。このような光学素子50を、リング状の電極57が形成されていた基板53側を光源側の光入射側とし、べた電極58が形成されていた基板54側を光ディスク側の光出射側として用いることで、光ビームの光軸側よりも外周側での位相を進ませることができる。こうして、簡易かつ高精度に液晶分子55aを配向させることができ、この光学素子50を光学ピックアップに用いることで、通過する光ビームの光軸側よりも外周側での位相を進ませ、光ディスクの複屈折による影響を打ち消すことができ、分解能を向上することができる。たとえば、特開平6−324337号公報に示されるような配向膜にラビングもしくはリソグラフィで放射形状を形成するマスクラビング法に比べて、補正精度のよい構成を安価に製造することができる。   In this state, a direct current is applied to stop the movement of the liquid crystal molecules 55a, and after being cured by irradiating the ultraviolet rays, the dummy substrates 59 and 60 are removed together with the electrodes 57 and 58 as shown in FIGS. The optical element 50 is completed. In such an optical element 50, the substrate 53 side on which the ring-shaped electrode 57 is formed is used as the light incident side on the light source side, and the substrate 54 side on which the solid electrode 58 is formed is used as the light emitting side on the optical disc side. Thus, it is possible to advance the phase of the light beam on the outer peripheral side rather than the optical axis side. In this way, the liquid crystal molecules 55a can be aligned easily and with high precision. By using this optical element 50 for an optical pickup, the phase of the light beam passing therethrough is advanced on the outer peripheral side rather than the optical axis side, and the optical disk The influence of birefringence can be canceled and the resolution can be improved. For example, a configuration with high correction accuracy can be manufactured at a low cost as compared with a mask rubbing method in which a radial shape is formed on an alignment film by rubbing or lithography as disclosed in JP-A-6-324337.

前記樹脂層7,37は、光の入射方向に配向する光反応官能基をもつ化合物を含む樹脂から成り、前記光反応官能基としては、N=N結合およびC=C結合から選ばれた少なくとも1つの二重結合を有し、非偏光の光照射によって反応を起こす光異性反応構成単位を含む材料があり、これを含む樹脂としては、ビニル重合体、縮合重合体、付加重合体等を用いることができる。このような光の入射方向に配向する光異性反応構成単位を含む材料および配向方法については、特開平11−95223号公報に詳しく説明されている。そして、その非偏光の光照射後に、加熱して配向を安定化させることが望ましい。そのような場合、光異性反応構成単位を含む材料またはこれを含む樹脂層7,37に、液晶熱重合開始剤を入れておくと、より長期間安定させることができる。   The resin layers 7 and 37 are made of a resin containing a compound having a photoreactive functional group oriented in the light incident direction, and the photoreactive functional group is at least selected from N = N bond and C = C bond. There are materials that contain a photoisomerization structural unit that has one double bond and reacts when irradiated with non-polarized light. As the resin containing this, a vinyl polymer, a condensation polymer, an addition polymer, or the like is used. be able to. A material including such a photoisomer reaction structural unit that is aligned in the light incident direction and an alignment method are described in detail in JP-A-11-95223. And it is desirable to stabilize the alignment by heating after the non-polarized light irradiation. In such a case, if a liquid crystal thermal polymerization initiator is added to the material containing the photoisomerization structural unit or the resin layers 7 and 37 containing the photoisomerization structural unit, it can be stabilized for a longer period of time.

また、前記光異性反応構成単位を含む材料に非偏光の光を照射する以外に、低分子アゾ色素誘導体の樹脂膜を塗布し、紫外線を照射する方法を用いてもよい。その場合も、前記低分子アゾ色素に、もしくはこれを含む樹脂膜に前記液晶熱重合開始剤を入れておき、紫外線照射後に加熱することで、より長期間安定させることができる。また、他の方法として、特開2000−284288号公報の従来例に記載のように、ポリイミド膜に偏光レーザを照射する方法でも、同様の効果を得ることができる。   In addition to irradiating the material containing the photoisomerization structural unit with non-polarized light, a method of applying a resin film of a low molecular azo dye derivative and irradiating with ultraviolet rays may be used. Even in this case, the liquid crystal thermal polymerization initiator is put in the low molecular azo dye or a resin film containing the low molecular weight azo dye and heated after irradiation with ultraviolet rays, so that it can be stabilized for a longer period of time. As another method, as described in the conventional example of Japanese Patent Laid-Open No. 2000-284288, the same effect can be obtained by a method of irradiating a polyimide laser with a polarized laser.

なお、光学素子50は、必ずしも固形化していなくてもよく、図17の光学素子70で示すように、常時交流電界を印加しておくための電極57,57および電源72が設けられている構成であれば、固形化していなくても同様の複屈折補正効果を得ることができる。その場合、ベタ電極58はITOなどの透明電極で構成される。また、電極58が必ずしもベタ電極である必要はなく、電極57と同様にリング状であってもよく、その場合は電極57,58が形成されている部分と形成されていない部分とで電界の変化が急になるので、前述の液晶分子55aの配向方向の変化が急になる。   Note that the optical element 50 does not necessarily have to be solidified, and as shown by the optical element 70 in FIG. 17, a configuration in which electrodes 57 and 57 and a power source 72 for constantly applying an alternating electric field are provided. If so, the same birefringence correction effect can be obtained without solidification. In that case, the solid electrode 58 is formed of a transparent electrode such as ITO. Further, the electrode 58 is not necessarily a solid electrode, and may be ring-shaped like the electrode 57. In that case, an electric field is generated between a portion where the electrodes 57 and 58 are formed and a portion where the electrodes 57 and 58 are not formed. Since the change becomes steep, the change in the alignment direction of the liquid crystal molecules 55a described above becomes steep.

前述の製造装置1,11,21,31,31a,31b,41,41aによって作製された配向膜51,52は、光学素子50に限らず、液晶表示装置などにおいて、たとえば前記特開平6−324337号公報に示される配向膜に代えて用いることができ、その場合には広い視野角の液晶装置を実現することができる。   The alignment films 51 and 52 produced by the manufacturing apparatuses 1, 11, 21, 31, 31a, 31b, 41, and 41a are not limited to the optical element 50, but are used in, for example, the liquid crystal display device, for example, the above-mentioned Japanese Patent Laid-Open No. 6-324337. In this case, a liquid crystal device having a wide viewing angle can be realized.

本発明の実施の第1の形態に係る配向膜の製造装置および製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing apparatus and manufacturing method of the alignment film which concern on the 1st Embodiment of this invention. 前記製造装置における遮光部材の形状を説明するための平面図である。It is a top view for demonstrating the shape of the light-shielding member in the said manufacturing apparatus. 前記製造装置におけるミラーの形状を説明するための平面図である。It is a top view for demonstrating the shape of the mirror in the said manufacturing apparatus. 光照射後の樹脂層における光反応官能基の配向状態を模式的に示す図である。It is a figure which shows typically the orientation state of the photoreactive functional group in the resin layer after light irradiation. 本発明の実施の第2の形態に係る配向膜の製造装置および製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing apparatus and manufacturing method of the alignment film which concern on the 2nd Embodiment of this invention. 本発明の実施の第3の形態に係る配向膜の製造装置および製造方法を説明するための側面図である。It is a side view for demonstrating the manufacturing apparatus and manufacturing method of the alignment film which concern on the 3rd Embodiment of this invention. 本発明の実施の第3の形態に係る配向膜の製造装置および製造方法を説明するための平面図である。It is a top view for demonstrating the manufacturing apparatus and manufacturing method of the alignment film which concern on the 3rd Embodiment of this invention. 本発明の実施の第4の形態に係る配向膜の製造装置および製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing apparatus and manufacturing method of the alignment film which concern on the 4th Embodiment of this invention. 本発明の実施の第4の形態に係る配向膜の製造装置および製造方法の他の例を説明するための断面図である。It is sectional drawing for demonstrating the other example of the manufacturing apparatus and manufacturing method of the alignment film which concerns on the 4th Embodiment of this invention. 本発明の実施の第4の形態に係る配向膜の製造装置および製造方法のさらに他の例を説明するための断面図である。It is sectional drawing for demonstrating the further another example of the manufacturing apparatus and manufacturing method of the alignment film which concerns on the 4th Embodiment of this invention. 本発明の実施の第4の形態に係る配向膜の製造装置および製造方法の他の例を説明するための断面図である。It is sectional drawing for demonstrating the other example of the manufacturing apparatus and manufacturing method of the alignment film which concerns on the 4th Embodiment of this invention. 本発明の実施の第4の形態に係る配向膜の製造装置および製造方法のさらに他の例を説明するための断面図である。It is sectional drawing for demonstrating the further another example of the manufacturing apparatus and manufacturing method of the alignment film which concerns on the 4th Embodiment of this invention. 本発明の実施の第5の形態に係る光学素子の製造工程を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the manufacturing process of the optical element which concerns on the 5th Embodiment of this invention. 本発明の実施の第5の形態に係る光学素子の製造工程を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the manufacturing process of the optical element which concerns on the 5th Embodiment of this invention. 図13および図14で示す光学素子における液晶分子の配向方向を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the orientation direction of the liquid crystal molecule in the optical element shown in FIG. 13 and FIG. 図13および図14で示す光学素子における液晶分子の配向方向を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the orientation direction of the liquid crystal molecule in the optical element shown in FIG. 13 and FIG. 本発明の実施の第5の形態に係る光学素子の他の例の模式的な断面図である。It is typical sectional drawing of the other example of the optical element which concerns on the 5th Embodiment of this invention.

符号の説明Explanation of symbols

1,11,21,31,31a,31b,41,41a 製造装置
2 基台
3 基板
4 点光源
5,15,35 遮光部材
6,26 ミラー
8 光軸
7,37 樹脂層
7a 光反応官能基
12 プリズム
22 ターンテーブル
23 モータ
24 光源
25,36,36a,46 ミラー
28 回転軸
34,34a,44 焦点
43 凸レンズ
45 絞り
50 光学素子
51,52 配向膜
53,54 基板
55 光硬化樹脂
55a 液晶分子
56 シール部材
57,58 電極
59,60 ダミー基板
61 電源
1, 11, 21, 31, 31a, 31b, 41, 41a Manufacturing apparatus 2 Base 3 Substrate 4 Point light source 5, 15, 35 Light shielding member 6, 26 Mirror 8 Optical axis 7, 37 Resin layer 7a Photoreactive functional group 12 Prism 22 Turntable 23 Motor 24 Light source 25, 36, 36 a, 46 Mirror 28 Rotating shaft 34, 34 a, 44 Focus 43 Convex lens 45 Aperture 50 Optical element 51, 52 Alignment film 53, 54 Substrate 55 Photocurable resin 55 a Liquid crystal molecule 56 Seal Members 57 and 58 Electrodes 59 and 60 Dummy substrate 61 Power supply

Claims (8)

一軸の屈折率異方性を有する材料を含む屈折率異方性層に接触して前記材料を配向させる配向膜の製造方法において、
光の入射方向に配向する光反応官能基をもつ化合物を含む樹脂層を基板上に積層する工程と、
前記樹脂層に軸対称の入射角で光を照射する工程とを含むことを特徴とする配向膜の製造方法。
In the method for producing an alignment film in which the material is aligned in contact with a refractive index anisotropic layer including a material having uniaxial refractive index anisotropy,
Laminating a resin layer containing a compound having a photoreactive functional group oriented in a light incident direction on a substrate;
Irradiating the resin layer with light at an axially symmetric incident angle.
前記軸対称の入射角は、軸からの距離によって異なる部分を有することを特徴とする請求項1記載の配向膜の製造方法。   The alignment film manufacturing method according to claim 1, wherein the axially symmetric incident angle has a portion that varies depending on a distance from the axis. 対を成す基板の少なくとも一方の対向面側に前記請求項1または2記載の製造方法で作製された配向膜を有し、前記一軸の屈折率異方性を有する材料は液晶であり、光ディスクの複屈折補正素子として用いられ、リング状の電極で電界を印加することで、前記液晶の軸を、中心部分で面方向に、外方側になるにつれて厚み方向に起立させてゆき、その状態で固形化した樹脂によって固定化されていることを特徴とする光学素子。   The alignment film produced by the manufacturing method according to claim 1 or 2 is provided on at least one opposing surface side of a pair of substrates, and the material having the uniaxial refractive index anisotropy is a liquid crystal, Used as a birefringence correction element, by applying an electric field with a ring-shaped electrode, the axis of the liquid crystal is erected in the plane direction in the center portion and in the thickness direction as it goes outward, and in that state An optical element which is fixed by a solidified resin. 一軸の屈折率異方性を有する材料を含む屈折率異方性層に接触して前記材料を配向させる配向膜の製造装置において、
光の入射方向に配向する光反応官能基をもつ化合物を含む樹脂層を積層する基板と、
前記樹脂層の中心上に配置されて前記樹脂層に光照射を行う光源と、
前記光源からの光を前記樹脂層に軸対称の入射角で照射し、ミラーと遮光部材と凸レンズとの少なくとも何れか1つとを含むことを特徴とする配向膜の製造装置。
In an apparatus for manufacturing an alignment film that contacts a refractive index anisotropic layer including a material having uniaxial refractive index anisotropy and aligns the material,
A substrate on which a resin layer containing a compound having a photoreactive functional group oriented in the light incident direction is laminated;
A light source disposed on the center of the resin layer for irradiating the resin layer with light;
An apparatus for producing an alignment film, wherein the resin layer is irradiated with light from the light source at an axially symmetric incident angle and includes at least one of a mirror, a light shielding member, and a convex lens.
前記ミラーは、光源に対して基板とは反対側に設けられ、凹面形状を有することを特徴とする請求項4記載の配向膜の製造装置。   5. The alignment film manufacturing apparatus according to claim 4, wherein the mirror is provided on the opposite side of the substrate from the light source and has a concave shape. 前記基板を前記軸回りに回転させることで、前記光源からの光を前記樹脂層に軸対称の入射角で照射させるターンテーブルをさらに備えることを特徴とする請求項4または5記載の配向膜の製造装置。   The alignment film according to claim 4, further comprising a turntable that irradiates light from the light source to the resin layer at an axis-symmetric incident angle by rotating the substrate about the axis. Manufacturing equipment. 前記ミラーは光軸方向断面が楕円状に形成され、前記光源は点光源であり、その楕円の一方の焦点に配置され、前記基板に積層された樹脂層は、他方の焦点からずれて配置されることを特徴とする請求項5記載の配向膜の製造装置。   The mirror has an elliptical cross section in the optical axis direction, the light source is a point light source, and is disposed at one focal point of the ellipse, and the resin layer laminated on the substrate is disposed offset from the other focal point. 6. The apparatus for producing an alignment film according to claim 5, wherein 前記ミラーは光軸方向断面が半円弧状に形成され、前記光源は点光源であり、その円弧の焦点に配置され、前記点光源からの光は前記ミラーによって略平行光で反射され、その略平行光が凸レンズを介して集光され、前記基板に積層された樹脂層は前記凸レンズの焦点からずれて配置されることを特徴とする請求項5記載の配向膜の製造装置。   The mirror has a cross section in the optical axis direction formed in a semicircular arc shape, the light source is a point light source, and is disposed at the focal point of the arc, and the light from the point light source is reflected by the parallel light by the mirror. 6. The alignment film manufacturing apparatus according to claim 5, wherein the parallel light is condensed through a convex lens, and the resin layer laminated on the substrate is arranged so as to be shifted from a focal point of the convex lens.
JP2007022839A 2007-02-01 2007-02-01 Method and device of manufacturing alignment layer, and optical element using the same Pending JP2008191219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007022839A JP2008191219A (en) 2007-02-01 2007-02-01 Method and device of manufacturing alignment layer, and optical element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007022839A JP2008191219A (en) 2007-02-01 2007-02-01 Method and device of manufacturing alignment layer, and optical element using the same

Publications (1)

Publication Number Publication Date
JP2008191219A true JP2008191219A (en) 2008-08-21

Family

ID=39751414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007022839A Pending JP2008191219A (en) 2007-02-01 2007-02-01 Method and device of manufacturing alignment layer, and optical element using the same

Country Status (1)

Country Link
JP (1) JP2008191219A (en)

Similar Documents

Publication Publication Date Title
JP5264219B2 (en) Spatial deformation liquid crystal wave plate
JP5651753B2 (en) Method and related apparatus for making a liquid crystal polarizing grating on a substrate
JP5885348B2 (en) Method for producing patterned retardation film
JP5383601B2 (en) LCD lens
JP5825161B2 (en) Scanning display device
KR20140001093A (en) Method of making a phase difference film
JP2006196156A (en) Liquid crystal element for birefringence correction of optical information recording medium, optical pickup and optical recording and / or reproducing apparatus including the same
TWI459097B (en) Graded index birefringent component and manufacturing method thereof
KR20140061227A (en) Method for producing phase difference plate and phase difference plate produced thereby
US20060187547A1 (en) Polarized light irradiation apparatus polarized light irradiation method, photo alignment film, and retardation film
TWI504995B (en) Liquid crystal lens and method for making the same
KR20050091755A (en) Controllable two layer birefringent optical component
JP3781273B2 (en) Aberration correction element and aberration correction unit
US7599276B2 (en) Optical head device and optical information recording/reproduction apparatus
JP2004139048A (en) Method and system for fabricating optical film by using exposure light source and reflective surface
JPH1172791A (en) Optical aligning device and method
JP2008191219A (en) Method and device of manufacturing alignment layer, and optical element using the same
WO2017204131A1 (en) Method for manufacturing liquid crystal display device
JP4603387B2 (en) Manufacturing apparatus for optical elements for liquid crystal display devices
JP2004138900A (en) Aberration correction element, aberration correction device, information recording and reproducing apparatus, and aberration correction method
JP2007250168A (en) Optical head device
JP2011081104A (en) Liquid crystal element and method for manufacturing the same
JP2008059626A (en) Optical correction element, optical element, optical unit, optical pickup device, and manufacturing method of optical correction element
JP2008176174A (en) Alignment layer, and liquid crystal display device and optical element using the same
KR20240126614A (en) Method for recording orientation pattern at alignment layer making liquid crystal element and for manufacturing liquid crystal element using alignment layer recorded by the same