JP2008188576A - Method of removing nitrogen oxide from exhaust gas - Google Patents
Method of removing nitrogen oxide from exhaust gas Download PDFInfo
- Publication number
- JP2008188576A JP2008188576A JP2007052010A JP2007052010A JP2008188576A JP 2008188576 A JP2008188576 A JP 2008188576A JP 2007052010 A JP2007052010 A JP 2007052010A JP 2007052010 A JP2007052010 A JP 2007052010A JP 2008188576 A JP2008188576 A JP 2008188576A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- nox
- cac
- packed bed
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 15
- 239000007789 gas Substances 0.000 title claims description 44
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 title claims description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 7
- 239000005997 Calcium carbide Substances 0.000 claims abstract description 6
- CLZWAWBPWVRRGI-UHFFFAOYSA-N tert-butyl 2-[2-[2-[2-[bis[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]amino]-5-bromophenoxy]ethoxy]-4-methyl-n-[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]anilino]acetate Chemical compound CC1=CC=C(N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)C(OCCOC=2C(=CC=C(Br)C=2)N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)=C1 CLZWAWBPWVRRGI-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910000616 Ferromanganese Inorganic materials 0.000 claims abstract description 5
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000010426 asphalt Substances 0.000 claims description 6
- 239000004033 plastic Substances 0.000 claims description 5
- 229920003023 plastic Polymers 0.000 claims description 5
- 239000011295 pitch Substances 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims 1
- 238000002844 melting Methods 0.000 claims 1
- 230000008018 melting Effects 0.000 claims 1
- 238000005507 spraying Methods 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 17
- 239000003638 chemical reducing agent Substances 0.000 abstract description 16
- 239000003054 catalyst Substances 0.000 abstract description 13
- 229910052751 metal Inorganic materials 0.000 abstract description 13
- 239000002184 metal Substances 0.000 abstract description 13
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 abstract description 7
- 229910052717 sulfur Inorganic materials 0.000 abstract description 7
- 239000011593 sulfur Substances 0.000 abstract description 7
- 230000002829 reductive effect Effects 0.000 abstract description 5
- 229910000510 noble metal Inorganic materials 0.000 abstract description 4
- 239000000446 fuel Substances 0.000 abstract description 3
- 238000006722 reduction reaction Methods 0.000 description 18
- YTNIXZGTHTVJBW-SCRDCRAPSA-N FMNH2 Chemical compound OP(=O)(O)OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2NC2=C1NC(=O)NC2=O YTNIXZGTHTVJBW-SCRDCRAPSA-N 0.000 description 13
- 230000009467 reduction Effects 0.000 description 12
- 230000000694 effects Effects 0.000 description 10
- 239000011575 calcium Substances 0.000 description 9
- 239000010408 film Substances 0.000 description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 229910052748 manganese Inorganic materials 0.000 description 7
- 239000011572 manganese Substances 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000000576 coating method Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 150000003464 sulfur compounds Chemical class 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229940043430 calcium compound Drugs 0.000 description 1
- 150000001674 calcium compounds Chemical class 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- WTHDKMILWLGDKL-UHFFFAOYSA-N urea;hydrate Chemical compound O.NC(N)=O WTHDKMILWLGDKL-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Treating Waste Gases (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
本発明は内燃機関の排気ガスや燃焼炉の排出ガス中の窒素酸化物を還元し除去する技術に関する。 The present invention relates to a technique for reducing and removing nitrogen oxides in exhaust gas of an internal combustion engine and exhaust gas of a combustion furnace.
ジーゼルエンジンの排気ガスのように酸素が共存する場でNOxを還元するのは容易でなく、炭化水素(HC)を排気ガスに混合したり、白金族金属触媒を使って還元する方法について多数提案があるが完全な実用レベルには達していない。また最近になって尿素水を排気ガスに吹き込みアンモニアを生成させこのアンモニアによりNOxを還元する方法が進められているが、この方法においても白金族金属触媒を必要とする。 It is not easy to reduce NOx in the presence of oxygen, such as diesel engine exhaust gas, and many proposals have been made for mixing hydrocarbons (HC) into exhaust gas or using platinum group metal catalysts. However, it has not reached the full practical level. Recently, a method of blowing urea water into exhaust gas to generate ammonia and reducing NOx by this ammonia has been advanced, but this method also requires a platinum group metal catalyst.
以上述べた白金など貴金属を触媒とする方法は触媒自体が高価であるばかりでなく、これらの貴金属は他の重要な化学反応にとってなくてはならないもので自動車の排気ガスの処理などに使用すべきではないとする考え方もある。又、今後発展を見込まれる燃料電池用としてだけでもこれらの金属の不足が予測されている。このような白金族金属触媒の地球資源的な不足を踏まえれば今後は触媒を必要としないNOxの還元方法が注目される。 The above-described method using a noble metal such as platinum as a catalyst is not only expensive, but these noble metals are indispensable for other important chemical reactions and should be used for the treatment of automobile exhaust gas. Some people think that it is not. Moreover, the shortage of these metals is predicted only for fuel cells that are expected to develop in the future. Considering such a shortage of platinum group metal catalysts in terms of earth resources, attention will be focused on NOx reduction methods that do not require a catalyst in the future.
従来のNOx処理技術に対し触媒を用いず、それ自体がNOxの還元剤として働く金属炭化物特にマンガンや鉄の炭化物を含む高炭素フェロマンガンを排気ガスに接触させて還元反応を進める方法が提案されている。(特許文献 1 参照) In contrast to conventional NOx treatment technology, a method has been proposed in which a metal carbide that acts as a reducing agent for NOx itself, in particular high carbon ferromanganese containing manganese or iron carbide, is brought into contact with exhaust gas to advance the reduction reaction. ing. (See Patent Document 1)
特許文献1においてはMn、Fe、Niなどの侵入型炭化物によるNOxの直接還元方法の提案であるが、本発明はこの方法を改良進歩させるために行ったもので排気ガス中のNOxの除去率の向上と還元反応継続時間の延長を目的とするものである。 Patent Document 1 proposes a direct reduction method of NOx with interstitial carbides such as Mn, Fe, Ni, etc., but the present invention was made in order to improve and advance this method, and the removal rate of NOx in exhaust gas. The purpose is to improve the reaction time and extend the duration of the reduction reaction.
白金族金属触媒を利用しないNOxの直接還元反応の還元剤として新たにアルカリ土類金属の炭化物例えば炭化カルシウム(CaC2)を用いると100℃以下の温度においてもNOx還元反応が円滑に進行することを見出した。When a new alkaline earth metal carbide such as calcium carbide (CaC 2 ) is used as a reducing agent for the direct reduction reaction of NOx without using a platinum group metal catalyst, the NOx reduction reaction proceeds smoothly even at a temperature of 100 ° C. or lower. I found.
白金族金属触媒を利用するNOx還元反応が300℃付近の温度が確保されないと確実な反応の進行が維持され難い点と比べると著しく低い温度での反応開始である。即ち、CaC2はNOx還元に関する限り白金族金属触媒よりも又、FMnHよりも反応活性が優れていると言える。この反応の機作については詳細は不明であるが、排気ガス中の水蒸気がCaC2と反応してアセチレン(C2H2)が生成することとNOxと反応しやすいカルシウム化合物の存在が関与しているためと考えられる。The NOx reduction reaction using a platinum group metal catalyst is a reaction start at a temperature significantly lower than the point where it is difficult to maintain the progress of a reliable reaction unless a temperature around 300 ° C. is secured. That is, it can be said that CaC 2 is more reactive than FMnH than the platinum group metal catalyst as far as NOx reduction is concerned. Although the details of the mechanism of this reaction are unknown, it involves the presence of a calcium compound that easily reacts with NOx and that water vapor in the exhaust gas reacts with CaC 2 to produce acetylene (C 2 H 2 ). It is thought that it is because.
CaC2はNOxや水蒸気と反応するとCaO、Ca(OH)2、Ca(NO3)2や残留炭素などの粉末を生成し還元剤充填層の排気ガスの流通を悪化し、これが反応の進行を妨げたり、終には粉塵を排出する結果を招く恐れがあるのでCaC2を単独で用いるよりも特許文献1の高炭素フェロマンガン(FMnH)と混合して用いると上記弊害を減少させることが出来る。又、反応温度を200℃以上にすれば容積変化が大きく且つ粉化するCa(OH)2とはならず、見かけ上CaC2と変りのないCaOとなるのでガス流通の阻害も起こらずダスト排出の問題も解決される。When CaC 2 reacts with NOx or water vapor, it produces powders such as CaO, Ca (OH) 2 , Ca (NO 3 ) 2 and residual carbon, and deteriorates the flow of exhaust gas in the reducing agent packed bed, which causes the reaction to proceed. This may reduce the above-mentioned adverse effects when mixed with high carbon ferromanganese (FMnH) of Patent Document 1 rather than using CaC 2 alone, because it may interfere with or result in discharging dust. . Further, if the reaction temperature is set to 200 ° C. or higher, the volume change is large and the powdered Ca (OH) 2 does not appear, and CaC 2 is apparently unchanged and CaO is unchanged, so the gas flow is not hindered and dust is discharged. The problem is also solved.
排気ガス中の水蒸気とCaC2と反応して生成するC2H2はNOxを還元分解するばかりでなくNOxと反応して生成するFMnHの表面の酸化皮膜を還元するのでFMnHの還元能力の回復、維持に役立つ。C 2 H 2 produced by reacting with water vapor and CaC 2 in the exhaust gas not only reduces and decomposes NOx, but also reduces the oxide film on the surface of FMnH produced by reacting with NOx, so that the reduction ability of FMnH is restored. Helps maintain.
FMnHとCaC2を容積比で1:1(重量比で4:1)に混合した還元剤充填層へジーゼル排気ガスを送入したところ200℃において確実にNOxが還元分解され又、300℃以上の条件下では充填層の還元能力は長時間低下しないことが確認できた。When diesel exhaust gas was fed into a reducing agent packed bed in which FMnH and CaC 2 were mixed at a volume ratio of 1: 1 (weight ratio of 4: 1), NOx was reliably reduced and decomposed at 200 ° C., and more than 300 ° C. It was confirmed that the reducing ability of the packed bed did not decrease for a long time under the above conditions.
CaC2はNOxとの反応性に優れていることが確認されたが、大気中の水分と容易に反応してC2H2ガスを発生し分解消化するのでその貯蔵には密閉容器を必要とするなど宿命的な使用上の不便が伴う。貯蔵性と前記低温度反応時の消化(粉化)の問題を解決するためにCaC2粒の表面をアスファルトやピッチ或いはプラスチック類の薄膜でコーティングする方法を考案した。CaC 2 has been confirmed to be excellent in reactivity with NOx, but it reacts easily with moisture in the atmosphere to generate C 2 H 2 gas for digestion and digestion, so a sealed container is required for its storage. This is accompanied by fateful inconvenience in use. In order to solve the problem of storability and digestion (pulverization) during the low temperature reaction, a method of coating the surface of CaC 2 grains with asphalt, pitch or a thin film of plastics was devised.
加熱溶融したアスファルト又はピッチ又はプラスチック類をCaC2粒の表面にスプレーするか又はCaC2粒を上記溶融体に浸漬した後引上げるとCaC2粒の表面に密着したこれ等の材料の皮膜が形成される。又、アスファルト、ピッチ、プラスチック類をケロシンなど適正な溶剤でカットバックして流動性の良好な溶液として用いるとコーティングの作業性が改善されるし均一で薄い皮膜を形成することが出来る。欠陥のない皮膜は大気中の水分の浸入を防ぐことが出来るので貯蔵が簡素化される。Coating of heated and melted asphalt or pitch or plastics it like materials that do or CaC 2 grains close contact with the pulling Ru and CaC 2 grain surfaces after immersion in the melt is sprayed CaC 2 grain surface is formed Is done. In addition, when asphalt, pitch, and plastics are cut back with an appropriate solvent such as kerosene and used as a solution having good fluidity, the workability of the coating is improved and a uniform and thin film can be formed. Defect-free coatings can prevent storage of moisture in the atmosphere, thus simplifying storage.
上記コーティング処理されたままのCaC2粒はガスとの接触が遮断されているのでNOxとの反応に先立って次のような処理をする必要がある。即ち、コーティングされたままのCaC2粒は、先ず空気を遮断した容器中で加熱する。低沸点の物質や溶剤が揮散した後250℃を越える頃からアスファルトなどは重縮合が始まり400〜500℃に加熱すると分解が進み最終的には炭化皮膜となる。この炭化皮膜は硬く強度もあり又細かい亀裂(クラック)が多数形成されているので内部のCaC2は排気ガス中のNOxとの反応が可能であり又反応生成物であるCaO,Ca(OH)2などのダスト化が防止される。CaC2粒はガス透過性の炭素質シェルの中に保護された状態である。Since the CaC 2 grains that have been subjected to the coating treatment are blocked from contact with the gas, it is necessary to perform the following treatment prior to the reaction with NOx. That is, the as-coated CaC 2 particles are first heated in a container that is shielded from air. Asphalt and the like begin to polycondensate from about 250 ° C. after the low-boiling substances and solvents are volatilized, and when heated to 400 to 500 ° C., the decomposition progresses to a final carbonized film. Since this carbonized film is hard and strong, and many fine cracks are formed, the internal CaC 2 can react with NOx in the exhaust gas, and the reaction products CaO and Ca (OH). 2 is prevented from becoming dust. The CaC 2 grains are protected in a gas permeable carbonaceous shell.
炭化皮膜でコーティングされたCaC2粒は単独で排気ガス中のNOx還元分解反応を進めることは勿論可能であるが、前記したようにFMnH粒と混合して用いると充填層の形状が安定すると同時にCaC2からのC2H2がMnやFeの酸化皮膜を還元するので充填層のNOx還元能力が長時間維持される。Of course, it is possible for CaC 2 particles coated with a carbonized film to proceed with the NOx reduction and decomposition reaction in the exhaust gas alone. However, as described above, when mixed with FMnH particles, the shape of the packed bed becomes stable. C 2 H 2 from CaC 2 the NOx reduction ability of the packed bed so reducing the oxide film of Mn and Fe is maintained for a long time.
排気ガス中のNOx低減に関する従来の主なる技術は何れも貴金属触媒の存在によって初めて成り立つものであり、しかもこれ等の触媒を利用しても尚且つエンジン排出直後に近い温度を保持しないとNOxの還元分解反応が円滑に進行しないのに比べると本発明においては金属炭化物自体がNOxの還元剤として作用し、特にCaC2の場合は極端に言えば常温においてすらNOx還元反応は進行する。これは排気ガス中の水蒸気がCaC2と反応してアセチレン(C2H2)ガスを生成し、その化学的活性が他の炭化水素よりも大きくNOxを還元するからである。All of the conventional main technologies related to NOx reduction in exhaust gas are established for the first time by the presence of a noble metal catalyst, and even if these catalysts are used and the temperature close to immediately after engine exhaust is not maintained, metal carbide itself in the present invention as compared to reductive decomposition reaction does not proceed smoothly acts as a reducing agent for NOx, particularly in the case of CaC 2 is NOx reduction reaction even at room temperature extremely speaking progresses. This is because water vapor in the exhaust gas reacts with CaC 2 to produce acetylene (C 2 H 2 ) gas, and its chemical activity is greater than that of other hydrocarbons, reducing NOx.
又、MnやFeの炭化物の表面は結合相手を失った原子の集合であり、この表面の活性がNOx還元の原動力となる一方、CaC2と混合して用いるとCaC2からのC2H2がMnやFeの酸化膜を還元するので還元剤全体のNOx還元ポテンシャルを長く維持することが出来る。The surface of the carbide of Mn and Fe is a set of lost binding partner atoms, whereas the activity of the surface is the driving force for NOx reduction, C 2 H 2 from CaC 2 when used as a mixture with CaC 2 Reduces the oxide film of Mn and Fe, so that the NOx reduction potential of the entire reducing agent can be maintained for a long time.
本発明の方法においては反応容器を予めウォームアップする必要はなくエンジン始動の初期からNOxの還元が円滑に進行する点が技術面における特徴であり有利な効果であるる。 In the method of the present invention, it is not necessary to warm up the reaction vessel in advance, and NOx reduction proceeds smoothly from the initial stage of engine starting, which is a technical feature and advantageous effect.
本発明の経済的効果は、還元剤が安価で資源的に全く問題なく豊富なためコスト的に有利な点である。このことは貴金属とFMnHやCaC2の価格を比較してみれば容易に理解できる。The economic effect of the present invention is advantageous in terms of cost since the reducing agents are inexpensive and abundant in terms of resources. This can be easily understood Come to compare the prices of the precious metals and FMnH and CaC 2.
本発明のNOx還元剤の有する特性の一つに排気ガス中の硫黄分の除去効果を挙げることができる。Ca,Mn,Feは何れも硫黄化合物との反応性が大きく夫々の硫化物や硫酸塩を容易に形成し硫黄分を固定化するので硫黄分の含有量の高い燃料の使用も可能となる。 One of the characteristics of the NOx reducing agent of the present invention is the effect of removing sulfur in the exhaust gas. Ca, Mn, and Fe are all highly reactive with sulfur compounds and easily form their respective sulfides and sulfates to immobilize the sulfur content. Therefore, it is possible to use fuel with a high sulfur content.
本発明は固体と気体の反応であるから両者が接触する機会が多いほど反応は円滑に進行する。通常この型の反応においては還元剤である金属炭化物の粒の充填層へ排気ガスを送入する方式で反応を進めるが、排気ガスの流通抵抗を小さくするため車載用の場合、金属炭化物は大凡20mm〜5mmの大きさに破砕し、CaC2は炭化シェルで保護処理し、これ等を配合してステンレス金網の円筒籠の中に充填し且つ仕切り板などにより二つ以上のコンパートメントに仕切っておくのがよい。充填層の大きさは対象とするエンジンによって決められるが通常の車載用として収まる程度の小型化が可能である。Since the present invention is a reaction between a solid and a gas, the reaction proceeds more smoothly as the opportunity for contact between the two increases. Normally, in this type of reaction, the exhaust gas is fed into a packed bed of metal carbide particles as a reducing agent. However, in order to reduce the flow resistance of exhaust gas, metal carbide is generally used for in-vehicle use. It is crushed to a size of 20 mm to 5 mm, CaC 2 is protected with a carbonized shell, and these are blended and filled into a stainless steel wire cylinder and partitioned into two or more compartments by a partition plate or the like. It is good. The size of the packed bed is determined by the target engine, but it can be reduced to a size that can be accommodated for ordinary in-vehicle use.
還元剤はCaC2とFMnHを混合して使用する。CaC2は反応性に優れており単味で使用することが可能であるが、充填層の形状安定性及び還元ポテンシャル維持のために混合使用が望ましい。CaC2は常温でもNOxを還元分解できるので充填層の予熱は必要ないがCa(OH)2の生成を避けるため出来るだけ早く200℃以上に昇温することが望ましい。The reducing agent is used by mixing CaC 2 and FMnH. CaC 2 is excellent in reactivity and can be used as a simple substance. However, it is desirable to use the mixture in order to maintain the shape stability of the packed bed and the reduction potential. Since CaC 2 can reduce and decompose NOx even at room temperature, preheating of the packed bed is not necessary, but it is desirable to raise the temperature to 200 ° C. or more as soon as possible to avoid the formation of Ca (OH) 2 .
CaC2は反応の進行につれて次第に消耗しCaO,Ca(OH)2が残る。FMnHの炭素分はCO2となって排出されMnやFeは酸化皮膜を形成する。この酸化皮膜はCaC2からのC2H2によって還元され元に回復するが次第に活性を失うのはやむを得ない。一定期間使用すれば新しいものとの交換が必要となるが予備の充填層を備えておいて排気ガス流路を切り替えるのが最も簡単である。使用済みの還元剤はステンレス金網の円筒籠のまま酸に浸漬すればカルシウム系のものは容易に溶出するし、FMnH表面の酸化皮膜は溶解剥離し、新しい面が再生するので5mm以上の大きさの部分は繰り返し使用可能である。CaC 2 is gradually consumed as the reaction proceeds, leaving CaO, Ca (OH) 2 . The carbon content of FMnH is discharged as CO 2 and Mn and Fe form an oxide film. The oxide film lose C 2 will be restored to the original is reduced with H 2 gradually activity from CaC 2 is unavoidable. If it is used for a certain period of time, it is necessary to replace it with a new one, but it is easiest to provide a spare packed bed and switch the exhaust gas flow path. If the used reducing agent is immersed in an acid with a stainless steel wire mesh cylinder, the calcium-based material is easily eluted, the oxide film on the surface of FMnH dissolves and peels off, and a new surface is regenerated. This part can be used repeatedly.
NOx還元実験は2184ccのジーゼルエンジン搭載のバン型車の排気ガスを用いて行った。排気ガス中の成分はNOxのみに注目し、エンジンが1500rpm一定回転時ではNOx濃度が120±5ppmにおさまることを確認したので排気ガスNOx濃度基準を120ppmとした。NOx濃度の測定は(株)日本サーモ製NOx−O2濃度計MODEL5100−0を使用した。The NOx reduction experiment was conducted using the exhaust gas of a van type car equipped with a 2184cc diesel engine. Focusing only on NOx as a component in the exhaust gas, it was confirmed that the NOx concentration was kept at 120 ± 5 ppm when the engine was rotating at a constant 1500 rpm, so the exhaust gas NOx concentration reference was set to 120 ppm. The NOx concentration was measured using a NOx-O 2 concentration meter MODEL5100-0 manufactured by Nippon Thermo.
還元剤はFMnHと炭化シェル処理CaC2を重量比で4対1の割合に配合混合して使用した。粒径は両者とも破砕したままで15〜5mm篩上のものである。As the reducing agent, FMnH and carbonized shell-treated CaC 2 were mixed and used in a weight ratio of 4: 1. The particle size is on a 15-5 mm sieve with both crushed.
この混合還元剤を1mm目のステンレス金網で作った3種類の円筒籠へ装入し3種類の充填層とした。充填層の径は何れも28mm、長さが夫々A 150,B 100,C 75mmである。排気ガスの流速は2L/min一定としたので充填層空間速度H−1は夫々A 1306 B 1935 C 2612 と計算される。This mixed reducing agent was charged into three types of cylindrical rods made of 1 mm stainless wire mesh to form three types of packed beds. The packed bed has a diameter of 28 mm and lengths of A 150, B 100, and C 75 mm, respectively. Since the exhaust gas flow rate is constant at 2 L / min, the packed bed space velocity H −1 is calculated as A 1306 B 1935 C 2612 respectively.
充填層はニクロム線加熱電気炉の中の磁製管(30φ×600)の中央にセットし所定温度に加熱する。充填層の上流側にステンレス繊維を充填して排気ガスの予熱帯とした。実験温度はCa(OH)2の生成を避けゆるため220℃と300℃で行った。反応後の排気ガスのNOx濃度は上記磁製管の排出口内部で採取したガスについて測定した。実験開始後10分毎に6回の測定値の平均値を代表値とした。The packed bed is set at the center of a magnetic tube (30φ × 600) in a nichrome wire heating electric furnace and heated to a predetermined temperature. The upstream side of the packed bed was filled with stainless fiber to make the exhaust gas pre-tropical. The experimental temperatures were 220 ° C. and 300 ° C. to avoid the formation of Ca (OH) 2 . The NOx concentration of the exhaust gas after the reaction was measured for the gas collected inside the outlet of the magnetic pipe. The average value of 6 measurements every 10 minutes after the start of the experiment was used as a representative value.
実験結果を第1表に示す。
The experimental results are shown in Table 1.
FMnH単味による脱硝実験(特許文献−1)に対してFMnH−CaC2混合実験では反応後の排気ガスのNOx濃度レベルが低く、CaC2混合の効果は明らかである。脱硝率に注目すると反応温度や空間速度の要因効果があるように見えるがNOx濃度レベルが全体として低い点を考慮すると、この実験の範囲内では各要因間に有意な差があるとはいえないが、この実験の結果は本発明の実用化の可能性を裏付けるものである。Compared to the denitration experiment with FMnH alone (Patent Document 1), the NOx concentration level of the exhaust gas after reaction is low in the FMnH-CaC 2 mixing experiment, and the effect of CaC 2 mixing is clear. Looking at the denitration rate, it seems that there is a factor effect of reaction temperature and space velocity, but considering the low NOx concentration level as a whole, it cannot be said that there is a significant difference between each factor within the scope of this experiment. However, the results of this experiment confirm the possibility of practical application of the present invention.
本発明は高価な稀少貴金属触媒を使用せず、安価で豊富な金属炭化物からなる還元剤によってNOxを直接還元する方法に関する提案であるから、単に自動車の排気ガス処理のみならず、船舶、ジーゼル機関車、発電機その他各種燃焼炉などNOxを排出するすべての装置に適用できる。 The present invention is a proposal relating to a method for directly reducing NOx with a reducing agent made of abundant metal carbide without using an expensive rare precious metal catalyst. It can be applied to all devices that emit NOx, such as cars, generators, and various combustion furnaces.
特に排気ガス規制の対象となっていない船舶のジーゼル機関からは大都市周辺において多大のNOxを排出し、これが光化学スモッグ発生の大きな原因の一つにも挙げられている点に鑑み、船舶への本発明の適用は環境浄化に大きな効果をもたらす。本発明の還元剤を構成しているCaC2,FMnHの作用は排気ガス中の硫黄分に妨害されることなく、寧ろ各種硫黄化合物と反応して硫黄分を固定することが出来るのでNOxと同時に排気ガス中のSoxも除去出来るポテンシャルに注目する必要がある。以上述べた有利性から広い分野における本発明の普及が期待される。In particular, ship diesel engines that are not subject to exhaust gas regulations emit a large amount of NOx around large cities, and this is one of the major causes of photochemical smog. The application of the present invention has a great effect on environmental purification. The action of CaC 2 and FMnH constituting the reducing agent of the present invention is not hindered by the sulfur content in the exhaust gas, but rather can react with various sulfur compounds to fix the sulfur content, so that NOx is simultaneously used. It is necessary to pay attention to the potential for removing Sox in the exhaust gas. From the advantages described above, the spread of the present invention in a wide range of fields is expected.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007052010A JP2008188576A (en) | 2007-02-02 | 2007-02-02 | Method of removing nitrogen oxide from exhaust gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007052010A JP2008188576A (en) | 2007-02-02 | 2007-02-02 | Method of removing nitrogen oxide from exhaust gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008188576A true JP2008188576A (en) | 2008-08-21 |
Family
ID=39749186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007052010A Pending JP2008188576A (en) | 2007-02-02 | 2007-02-02 | Method of removing nitrogen oxide from exhaust gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008188576A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010269238A (en) * | 2009-05-21 | 2010-12-02 | Kyoto Univ | Substances that remove environmentally hazardous substances |
DE102021100046B4 (en) | 2020-03-10 | 2024-12-12 | Toyota Jidosha Kabushiki Kaisha | vehicle exit assistance device |
-
2007
- 2007-02-02 JP JP2007052010A patent/JP2008188576A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010269238A (en) * | 2009-05-21 | 2010-12-02 | Kyoto Univ | Substances that remove environmentally hazardous substances |
DE102021100046B4 (en) | 2020-03-10 | 2024-12-12 | Toyota Jidosha Kabushiki Kaisha | vehicle exit assistance device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4873580B2 (en) | Method and apparatus for selectively reducing NOx with catalyst | |
KR100354847B1 (en) | Getter Materials for Cracking Ammonia | |
US20100146948A1 (en) | Exhaust system promoting decomposition of reductants into gaseous products | |
ES2330573T3 (en) | PROCEDURE AND DEVICE FOR REDUCING THE PROVISION OF NITROGEN OXIDES IN THE EXHAUST GAS OF AN INTERNAL COMBUSTION ENGINE. | |
WO2007011062A1 (en) | Composite material, composite material base, composite material dispersion liquid, and methods for producing those | |
JP2005230809A (en) | Composition and method for hydrogen storage and recovery | |
CN102844449A (en) | Process for production of sintered mineral | |
JP2022537924A (en) | Ship exhaust gas purification device and method | |
CN102773069B (en) | Desulfurizing agent and preparation method thereof | |
EP3940209A1 (en) | Ship exhaust gas cleaning apparatus and method | |
US20070297962A1 (en) | Process using microwave energy and a catalyst to decompose nitrogen oxides | |
JPH10501860A (en) | Exhaust gas purification device containing solid particles, device design for neutralizing released toxic gas, and method of manufacturing this device | |
JP3992083B2 (en) | Method and apparatus for flue gas denitration using solid reducing agent | |
JP2008188576A (en) | Method of removing nitrogen oxide from exhaust gas | |
JPH03293032A (en) | Composition having air cleanability and its production | |
JP2000504265A (en) | Fuel filter and manufacturing method | |
JPH06123406A (en) | Method for removing nitrous oxide from combustion gas | |
JPH06502378A (en) | Treatment of metals for coating or activation | |
JP2674428B2 (en) | Catalyst for removing nitrogen oxides and method for removing nitrogen oxides | |
CN102223950A (en) | Component having a catalytic surface, method for the production thereof, and use of said component | |
JP2002210369A (en) | Exhaust gas purification catalyst and method for producing the same | |
Ivanova et al. | The influence of the active component and support nature, gas mixture composition on physicochemical and catalytic properties of catalysts for soot oxidation | |
JP2010201278A (en) | Reforming small catalyst ball, and device for reforming object to be reformed employing the same | |
JP2005125300A (en) | Method for removing nitrogen oxide by using metal carbide | |
CN101405082A (en) | Catalyst for exhaust gas purification and process for producing the same |