[go: up one dir, main page]

JP2008186897A - Method of manufacturing multilayer ceramic substrate - Google Patents

Method of manufacturing multilayer ceramic substrate Download PDF

Info

Publication number
JP2008186897A
JP2008186897A JP2007017652A JP2007017652A JP2008186897A JP 2008186897 A JP2008186897 A JP 2008186897A JP 2007017652 A JP2007017652 A JP 2007017652A JP 2007017652 A JP2007017652 A JP 2007017652A JP 2008186897 A JP2008186897 A JP 2008186897A
Authority
JP
Japan
Prior art keywords
ceramic substrate
laminate
multilayer ceramic
sheet
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2007017652A
Other languages
Japanese (ja)
Inventor
Toshinobu Miyakoshi
俊伸 宮越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2007017652A priority Critical patent/JP2008186897A/en
Publication of JP2008186897A publication Critical patent/JP2008186897A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the warpage of a multilayer ceramic substrate that is a special problem to the non-shrinkage baking method. <P>SOLUTION: This method is used to manufacture a multilayer ceramic substrate 5 by the following steps: a shrinkage suppressing sheet 2 is stacked on the outermost layer of a laminated green sheet to make a laminate 4; the laminate 4 is baked; and the baked substance 2a of the shrinkage suppressing sheet 2 is removed to complete the multilayer ceramic substrate 5. In this case, the outer periphery 4a of one main surface of the laminate 4 is crushed when forming the laminate 4, and the main surface of the crushed side is faced down and baked. Preferably, after a temporary laminated body 3 including a plurality of green sheets and the shrinkage suppressing sheet 2 is formed, it is packed in vacuum while its one main surface is still in contact with a flat plate 11, and it is pressed at hydrostatic pressure to form the laminate 4. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、積層したグリーンシートの最外層に収縮抑制シートを配した状態で焼成を行う多層セラミック基板の製造方法に関する。   The present invention relates to a method for manufacturing a multilayer ceramic substrate in which firing is performed in a state in which a shrinkage suppression sheet is disposed on the outermost layer of laminated green sheets.

電子機器等の分野においては、電子デバイスを実装するためのセラミック基板が広く用いられ、近年では、電子機器の小型軽量化や多機能化等の要望に応え、且つ高信頼性を有するセラミック基板として多層セラミック基板が提案され、実用化されている。多層セラミック基板は、複数のセラミック層を積層することにより構成されており、各セラミック層に配線導体や電子素子等を一体に作り込むことで回路基板の高密度化が可能となっている。   In the field of electronic equipment and the like, ceramic substrates for mounting electronic devices are widely used. In recent years, as a ceramic substrate having high reliability in response to requests for downsizing and weight reduction of electronic equipment and multifunctional functions. Multilayer ceramic substrates have been proposed and put into practical use. The multilayer ceramic substrate is formed by laminating a plurality of ceramic layers, and the circuit board can be densified by integrally forming a wiring conductor, an electronic element, or the like in each ceramic layer.

前記多層セラミック基板は、複数のグリーンシートを積層し、これを脱バインダし、焼成することにより形成される。そして、前記グリーンシートは、この焼成工程等における焼結に伴って必ず収縮し、多層セラミック基板の寸法精度を低下させる大きな要因となっている。具体的には、前記収縮に伴って収縮バラツキが発生し、最終的に得られる多層セラミック基板においては、寸法精度は0.5%程度に留まっている。また、グリーンシートの収縮により、多層セラミック基板の最表面に形成された導体パターンが位置ずれを起こすことも問題となっている。   The multilayer ceramic substrate is formed by laminating a plurality of green sheets, removing the binder, and firing. The green sheet is surely contracted with the sintering in the firing step or the like, which is a major factor for reducing the dimensional accuracy of the multilayer ceramic substrate. Specifically, shrinkage variation occurs with the shrinkage, and the finally obtained multilayer ceramic substrate has a dimensional accuracy of about 0.5%. Another problem is that the conductor pattern formed on the outermost surface of the multilayer ceramic substrate is displaced due to the shrinkage of the green sheet.

このような状況から、多層セラミック基板の焼成工程において、グリーンシートの面内方向の収縮を抑制し、厚さ方向にのみ収縮させる、いわゆる無収縮焼成方法が提案されている(例えば、特許文献1等を参照)。特許文献1等にも記載されるように、前記焼成温度でも収縮しないシートをグリーンシートの積層体に貼り付け、この状態で焼成を行うと、前記面内方向の収縮が抑制され、厚さ方向にのみ収縮する。この方法によれば、多層セラミック基板の面内方向の寸法精度を例えば0.05%程度にまで改善することが可能である。また、多層セラミック基板の最表面の導体パターンの位置ずれを防ぐこともできる。
特許第3471571号公報
Under such circumstances, a so-called non-shrinkage firing method that suppresses shrinkage in the in-plane direction of the green sheet and shrinks only in the thickness direction in the firing process of the multilayer ceramic substrate has been proposed (for example, Patent Document 1). Etc.). As described in Patent Document 1 and the like, when a sheet that does not shrink even at the firing temperature is attached to a laminate of green sheets and firing is performed in this state, shrinkage in the in-plane direction is suppressed, and the thickness direction Only shrinks. According to this method, it is possible to improve the dimensional accuracy in the in-plane direction of the multilayer ceramic substrate to, for example, about 0.05%. Further, it is possible to prevent displacement of the conductor pattern on the outermost surface of the multilayer ceramic substrate.
Japanese Patent No. 3471571

ところで、前述の無収縮焼成方法は、次のように行われる。先ず、複数のグリーンシート101の両面に収縮抑制シート102を配した仮積層体103を形成し、これを図6(a)に示すように、プレス面が平坦な金型121によってプレス処理する。この結果、図6(b)に示すように、各面が互いに直交した積層体104が得られる。これを図6(c)に示すように例えばセッター111,112で上下方向から挟み込んだ状態で焼成し、図6(d)に示すように収縮抑制シート102aの焼成物を除去することで、多層セラミック基板105が得られる。   By the way, the non-shrinkage firing method described above is performed as follows. First, the temporary laminated body 103 which has arrange | positioned the shrinkage | contraction suppression sheet | seat 102 on both surfaces of the several green sheet 101 is formed, and this is press-processed with the metal mold | die 121 with a flat press surface, as shown to Fig.6 (a). As a result, as shown in FIG. 6B, a laminate 104 in which the surfaces are orthogonal to each other is obtained. As shown in FIG. 6 (c), for example, the setters 111 and 112 are fired in a state of being sandwiched from above and below, and the fired product of the shrinkage suppression sheet 102a is removed as shown in FIG. 6 (d). A ceramic substrate 105 is obtained.

しかしながら、前述の方法により得られた多層セラミック基板105を詳細に観察すると、図7に示すように、反りと呼ばれる特有の変形が発生していることがわかる。すなわち、焼成後の多層セラミック基板105においては、セッター111と対向していた側の面すなわち下面はほぼ平坦とされているものの、他方の面すなわち上面が凹状に湾曲した形状を有している。その結果、多層セラミック基板105の上面においては中央部分に比べて外周縁部の高さが高くなるが、中央部分からの高さ(反り量)が所定範囲を超えた部分については、不要領域として切断、除去しなければならない。すなわち、反り量が大きいと、それに応じて外周縁部の不要領域を広く設定する必要があるため、有効な基板領域が減少するという不都合が生じる。   However, when the multilayer ceramic substrate 105 obtained by the above-described method is observed in detail, it can be seen that a specific deformation called warping occurs as shown in FIG. That is, in the fired multilayer ceramic substrate 105, the surface on the side facing the setter 111, that is, the lower surface is substantially flat, but the other surface, that is, the upper surface has a concavely curved shape. As a result, the height of the outer peripheral edge portion is higher on the upper surface of the multilayer ceramic substrate 105 than the central portion, but the portion where the height from the central portion (warping amount) exceeds a predetermined range is an unnecessary region. Must be cut and removed. That is, if the amount of warpage is large, it is necessary to set a large unnecessary area in the outer peripheral edge accordingly, so that there is a disadvantage that the effective substrate area is reduced.

本発明はこのような従来の実情に鑑みて提案されたものであり、いわゆる無収縮焼成方法に特有の問題である多層セラミック基板の反りを抑制することが可能な多層セラミック基板の製造方法を提供することを目的とする。   The present invention has been proposed in view of such conventional circumstances, and provides a method for manufacturing a multilayer ceramic substrate capable of suppressing warpage of the multilayer ceramic substrate, which is a problem peculiar to the so-called non-shrinkage firing method. The purpose is to do.

前述の課題を解決するために、本発明に係る多層セラミック基板の製造方法は、積層したグリーンシートの最外層に収縮抑制シートを積層して積層体を形成し、前記積層体を焼成した後、前記収縮抑制シートの焼成物を除去して多層セラミック基板を製造する方法であって、前記積層体を形成する際に積層体の少なくとも一方の主面の外周縁部を押し潰し、押し潰された側の主面を下方に向けて前記焼成を行うことを特徴とする。   In order to solve the above-described problem, the method for producing a multilayer ceramic substrate according to the present invention includes forming a laminate by laminating a shrinkage suppression sheet on the outermost layer of the laminated green sheets, and firing the laminate. A method of manufacturing a multilayer ceramic substrate by removing the fired product of the shrinkage suppression sheet, wherein when forming the laminate, the outer peripheral edge of at least one main surface of the laminate is crushed and crushed The firing is performed with the main surface on the side facing downward.

多層セラミック基板の無収縮焼成方法では、グリーンシートの側面が内側に引き込まれるように収縮するため、中央部に比較して外周縁部における厚みが大きくなる。その結果、従来の焼成方法では、厚みが大きくなった外周縁部により積層体が支持されて中央部が持ち上がり、結果として上面側に大きな反りが発生する。本発明では、予め積層体の外周縁部を押し潰しておき、押し潰された側の主面を下方に向けた状態で焼成を行うので、焼成時に外周縁部が積層体を持ち上げることが防止される。このため、多層セラミック基板の一方の面(上面)における反り量すなわち中央部と外周縁部との高さ差は小さくなり、その結果外周縁部における不要領域を狭くすることができる。   In the non-shrinkage firing method of the multilayer ceramic substrate, the side surface of the green sheet is shrunk so as to be drawn inward, so that the thickness at the outer peripheral edge is larger than that at the center. As a result, in the conventional firing method, the laminated body is supported by the outer peripheral edge portion having an increased thickness and the central portion is lifted, resulting in a large warp on the upper surface side. In the present invention, the outer peripheral edge of the laminate is previously crushed, and firing is performed with the crushed main surface facing downward, so that the outer peripheral edge is prevented from lifting the laminate during firing. Is done. For this reason, the warpage amount on one surface (upper surface) of the multilayer ceramic substrate, that is, the height difference between the center portion and the outer peripheral edge portion is reduced, and as a result, an unnecessary region in the outer peripheral edge portion can be narrowed.

本発明によれば、いわゆる無収縮焼成方法に特有の問題である反りの発生を抑制することができる。したがって、本発明によれば、基板の寸法精度や導体パターンの位置精度を確保しつつ、多層セラミック基板の外周縁部における除去幅を狭くすることができ、有効な基板領域を拡大することができる。   According to the present invention, it is possible to suppress the occurrence of warpage, which is a problem peculiar to the so-called non-shrinkage firing method. Therefore, according to the present invention, it is possible to reduce the removal width at the outer peripheral edge of the multilayer ceramic substrate while ensuring the dimensional accuracy of the substrate and the positional accuracy of the conductor pattern, and it is possible to expand the effective substrate area. .

以下、本発明を適用した多層セラミック基板の製造方法について、図面を参照して詳細に説明する。   Hereinafter, a method for producing a multilayer ceramic substrate to which the present invention is applied will be described in detail with reference to the drawings.

多層セラミック基板を作製するには、先ず、図1(a)に示すように、焼成後に各セラミック層となるグリーンシート1を用意する。グリーンシート1は、セラミック粉末と有機ビヒクルとを混合してスラリー状の誘電体ペーストを作り、これを例えばポリエチレンテレフタレート(PET)シート等の支持体上にドクターブレード法等によって成膜することにより形成する。多層セラミック基板として低温焼成可能なガラスセラミック基板を作製する場合には、前記誘電体ペーストにおいて、セラミック粉末とガラス粉末とを併用する。前記セラミック粉末、ガラス粉末、有機ビヒクルとしては、公知のものがいずれも使用可能である。   In order to produce a multilayer ceramic substrate, first, as shown in FIG. 1A, a green sheet 1 that becomes each ceramic layer after firing is prepared. The green sheet 1 is formed by mixing a ceramic powder and an organic vehicle to form a slurry-like dielectric paste, which is formed on a support such as a polyethylene terephthalate (PET) sheet by a doctor blade method or the like. To do. When producing a glass ceramic substrate that can be fired at a low temperature as a multilayer ceramic substrate, ceramic powder and glass powder are used in combination in the dielectric paste. Any known ceramic powder, glass powder, and organic vehicle can be used.

前記グリーンシート1には、所望の回路に応じて、導体パターン(配線パターンや電極パッド、ビアホール等)を形成しておく。さらには、必要に応じて電子素子(インダクタやキャパシタ等)を作り込んでおいてもよい。   Conductive patterns (wiring patterns, electrode pads, via holes, etc.) are formed on the green sheet 1 in accordance with a desired circuit. Furthermore, electronic elements (inductors, capacitors, etc.) may be built in as necessary.

前記導体パターンは、例えば導電ペーストを所定のパターンで印刷することにより形成されるが、使用する導電ペーストは、Ag、Ag−Pd合金、Cu、Ni等の各種導電性金属や合金からなる導電材料と有機ビヒクルとを混練することにより調製されるものである。有機ビヒクルは、バインダと溶剤を主たる成分とするものであり、前記導電材料との配合比等は任意であるが、通常はバインダ1〜15質量%、溶剤が10〜50質量%となるように導電材料に対して配合される。導電ペーストには、必要に応じて各種分散剤や可塑剤等から選択される添加物が添加されていてもよい。   The conductive pattern is formed, for example, by printing a conductive paste in a predetermined pattern, and the conductive paste used is a conductive material made of various conductive metals and alloys such as Ag, Ag-Pd alloy, Cu, and Ni. And an organic vehicle. The organic vehicle has a binder and a solvent as main components, and the mixing ratio of the conductive material is arbitrary, but usually the binder is 1 to 15% by mass, and the solvent is 10 to 50% by mass. It is blended with the conductive material. Additives selected from various dispersants, plasticizers, and the like may be added to the conductive paste as necessary.

また、多層セラミック基板の面内方向の収縮を抑制するための、収縮抑制シート2を用意する。収縮抑制シート2は、前記グリーンシート1の焼成温度では収縮しない材料、例えばトリジマイトやクリストバライト、さらには石英、溶融石英、アルミナ、ムライト、ジルコニア、窒化アルミニウム、窒化ホウ素、酸化マグネシウム、炭化ケイ素、炭酸カルシウム等を含む組成物をスラリー状にペースト化し、これをPETシート等の支持体上にドクターブレード法等によって成膜することにより形成する。   Moreover, the shrinkage | contraction suppression sheet | seat 2 for suppressing the shrinkage | contraction of the in-plane direction of a multilayer ceramic substrate is prepared. The shrinkage suppression sheet 2 is a material that does not shrink at the firing temperature of the green sheet 1, such as tridymite or cristobalite, and also quartz, fused quartz, alumina, mullite, zirconia, aluminum nitride, boron nitride, magnesium oxide, silicon carbide, calcium carbonate. The composition containing the above is formed into a slurry and formed by forming a film on a support such as a PET sheet by a doctor blade method or the like.

次に、図1(b)に示すように、仮積層工程において、複数のグリーンシート1を積層するとともに、積層したグリーンシート1の最外層に収縮抑制シート2を積層して仮積層体3を形成する。   Next, as shown in FIG. 1B, in the temporary stacking step, a plurality of green sheets 1 are stacked, and a shrinkage suppression sheet 2 is stacked on the outermost layer of the stacked green sheets 1 to form a temporary stack 3. Form.

次に、本積層工程において仮積層体3を加圧処理し、所定形状の積層体4を作製する。本実施形態では、本積層工程は、袋詰め工程(図2(a))、真空パック工程(図2(b))、及び静水圧プレス工程(図2(c))により構成される。   Next, the temporary laminate 3 is subjected to pressure treatment in the main lamination step to produce a laminate 4 having a predetermined shape. In the present embodiment, the stacking process includes a bagging process (FIG. 2A), a vacuum packing process (FIG. 2B), and a hydrostatic press process (FIG. 2C).

前記袋詰め工程では、図2(a)に示すように、仮積層体3を平板11の上に置くことにより仮積層体3の一主面を平板11に接した状態とし、これらを袋12に入れる。袋12は可撓性を有するフィルムにより形成されている。   In the bag filling step, as shown in FIG. 2A, the temporary laminate 3 is placed on the flat plate 11 so that one main surface of the temporary laminate 3 is in contact with the flat plate 11, and these are formed in the bag 12. Put in. The bag 12 is formed of a flexible film.

真空パック工程では、図2(b)に示すように、袋12の内部を真空引きして密封する。   In the vacuum packing process, as shown in FIG. 2B, the inside of the bag 12 is evacuated and sealed.

静水圧プレス工程では、図2(c)に示すように、真空パックされた仮積層体3を静水圧プレス装置13で加圧処理する。静水圧プレス装置13は、70℃〜80℃の液体を圧力媒体として用いる温間静水圧プレス(WIP)装置であることが好ましい。温間静水圧プレス装置を用いることで、冷間静水圧プレス装置に比較して積層体4におけるシート間の密着性を向上させることができる。   In the hydrostatic pressure pressing step, as shown in FIG. 2C, the vacuum-packed temporary laminate 3 is subjected to pressure treatment by a hydrostatic pressure pressing device 13. It is preferable that the isostatic press 13 is a warm isostatic press (WIP) apparatus that uses a liquid at 70 ° C. to 80 ° C. as a pressure medium. By using a warm isostatic pressing apparatus, the adhesion between the sheets in the laminate 4 can be improved as compared to a cold isostatic pressing apparatus.

次に、積層体取り出し工程において、本積層工程後の積層体4を袋12から取り出す(図2(d))。取り出した積層体4を詳細に観察すると、静水圧プレス処理によって平板11に接していない側の主面の外周縁部4aが押し潰され、曲面状とされている。   Next, in the laminated body taking-out step, the laminated body 4 after the main laminating step is taken out from the bag 12 (FIG. 2D). When the laminated body 4 taken out is observed in detail, the outer peripheral edge 4a of the main surface on the side not in contact with the flat plate 11 is crushed and formed into a curved surface by an isostatic pressing process.

次に、焼成工程において積層体4を焼成する(図2(e))。焼成工程においては、押し潰された外周縁部4a側の主面が下方を向くように、セッター21に載せた状態で積層体4の焼成を行う。なお、図2(e)では積層体4の上にもセッター22を配して焼成を行っている。前記焼成に際しては、焼成温度は任意であるが、例えばグリーンシート1にAgを導電材料とする導体パターンを形成した場合には、Agの融点(約960℃)以下の温度で焼成を行うことが好ましい。この場合の好ましい焼成温度は、850℃〜950℃である。   Next, the laminate 4 is fired in the firing step (FIG. 2E). In the firing step, the laminate 4 is fired in a state of being placed on the setter 21 so that the crushed main surface on the outer peripheral edge 4a side faces downward. In FIG. 2 (e), the setter 22 is also disposed on the laminate 4 for firing. In the firing, the firing temperature is arbitrary. For example, when a conductive pattern using Ag as a conductive material is formed on the green sheet 1, the firing is performed at a temperature lower than the melting point of Ag (about 960 ° C.). preferable. A preferable firing temperature in this case is 850 ° C to 950 ° C.

焼成後、図2(f)に示すように、収縮抑制シート2の焼成物2aを除去することで多層セラミック基板5が得られる。積層したグリーンシート1の両側に配した収縮抑制シート2の働きにより、グリーンシート1は面内方向への収縮が抑制され厚み方向のみに収縮するので、基板寸法精度や最表面に形成された導体パターンの位置精度に優れた多層セラミック基板5が得られる。   After firing, as shown in FIG. 2 (f), the multilayer ceramic substrate 5 is obtained by removing the fired product 2 a of the shrinkage suppression sheet 2. Due to the action of the shrinkage suppression sheets 2 disposed on both sides of the laminated green sheet 1, the green sheet 1 is restrained from shrinking in the in-plane direction and shrinks only in the thickness direction. A multilayer ceramic substrate 5 having excellent pattern positional accuracy is obtained.

ここで、従来のように、プレス面が平坦な金型を用いて積層体を形成し、これを焼成すると、下記のようにして多層セラミック基板に反りが発生すると推測される。すなわち、図3(a)に示すようにグリーンシート101を複数積層するとともに収縮抑制シート102を最外層に配した積層体103を用意し、上下にセッター111、112を配置した状態で焼成を行うと、図3(b)に示すように、積層体103の両面は凹状に湾曲し、積層体103の外周縁部における厚みが中央部より大きくなる。外周縁部における厚みが大きくなる理由は、収縮抑制シート102が配されていないグリーンシート101の側面が積層体103の内側に引き込まれるように収縮することによる。このため、積層体103の中央部は下側のセッター111に接する外周縁部により支持されて一時的に持ち上げられ、セッター111との間に隙間が形成されるが、積層体103の中央部は時間経過に伴って自重により沈み込む。その結果、図3(c)に示すように、上面側が凹形状を有するような変形が発生する。ここで、多層セラミック基板104の上面には、上面における本来の変形だけでなく、セッター111と対向する面における一時的な変形も反映されている。したがって、多層セラミック基板104の最終的な反り量、すなわち中央部と外周縁部との高さ差が必然的に大きくなるものと推測される。   Here, when a laminated body is formed using a mold having a flat press surface as in the prior art and fired, it is presumed that the multilayer ceramic substrate is warped as follows. That is, as shown in FIG. 3A, a laminate 103 in which a plurality of green sheets 101 are laminated and a shrinkage suppression sheet 102 is arranged in the outermost layer is prepared, and firing is performed with setters 111 and 112 arranged above and below. And as shown in FIG.3 (b), both surfaces of the laminated body 103 curve in a concave shape, and the thickness in the outer periphery part of the laminated body 103 becomes larger than a center part. The reason why the thickness at the outer peripheral edge is increased is that the side surface of the green sheet 101 on which the shrinkage suppression sheet 102 is not disposed is shrunk so as to be drawn inside the laminate 103. For this reason, the center part of the laminated body 103 is supported by the outer peripheral edge part in contact with the lower setter 111 and is temporarily lifted to form a gap with the setter 111. It sinks due to its own weight over time. As a result, as shown in FIG. 3C, deformation occurs such that the upper surface side has a concave shape. Here, the upper surface of the multilayer ceramic substrate 104 reflects not only the original deformation on the upper surface but also the temporary deformation on the surface facing the setter 111. Therefore, it is estimated that the final warpage amount of the multilayer ceramic substrate 104, that is, the height difference between the central portion and the outer peripheral edge portion inevitably increases.

これに対し、本発明では、図2(d)に示すように積層体4の少なくとも一方の主面の外周縁部4aを押し潰し、図2(e)に示すように押し潰した外周縁部4aを有する主面を下に向けて焼成を行う。このとき、グリーンシート1の側面が内側に引き込まれるように収縮するので外周縁部における厚みが大きくなるものの、図4に示すように、押し潰された側の外周縁部4aを下方に向けているため、外周縁部4aにより積層体4が持ち上げられることがない。このため、積層体3の下に隙間を生じないので、従来の積層体を焼成する場合に比較して、多層セラミック基板の一方の面(上面)における反り量を従来に比較して小さくすることができる。   On the other hand, in the present invention, as shown in FIG. 2 (d), the outer peripheral edge 4a of at least one main surface of the laminate 4 is crushed, and the outer peripheral edge is crushed as shown in FIG. 2 (e). Firing is performed with the main surface having 4a facing down. At this time, since the side surface of the green sheet 1 is contracted so as to be drawn inward, the thickness at the outer peripheral edge increases, but as shown in FIG. 4, the outer peripheral edge 4a on the crushed side is directed downward. Therefore, the laminated body 4 is not lifted by the outer peripheral edge 4a. For this reason, since no gap is generated under the laminate 3, the amount of warpage on one surface (upper surface) of the multilayer ceramic substrate is made smaller than in the conventional case, as compared with the case of firing the conventional laminate. Can do.

なお、前述の説明では、積層体4の外周縁部4aを押し潰す方法として、平板11に接触させた仮積層体3を真空パックした後に静水圧プレスする方法を例に挙げたが、積層体の少なくとも一方の主面側の外周縁部を押し潰すことができるのであれば、前述の方法に限らず種種の方法を用いることができる。   In the above description, the method of crushing the outer peripheral edge 4a of the laminate 4 is exemplified by the method of vacuum-packing the temporary laminate 3 brought into contact with the flat plate 11 and then pressing it hydrostatically. As long as the outer peripheral edge of at least one of the main surfaces can be crushed, not only the above-described method but also various methods can be used.

例えば、図5(a)に示すように、金型14を用いてプレス処理することにより、積層体4の一方の主面側の外周縁部4aを押し潰してもよい。この金型14の上型のプレス面には外周縁部に沿って凸部15が設けられ、図5(b)に示すように積層体4の一方の主面側の外周縁部を押し潰し、平坦な傾斜面を形成するようになっている。以上のように、金型14によるプレス処理により積層体の少なくとも一方の外周縁部を押し潰した場合も、焼成し(図5(c))、収縮抑制シート2の焼成物2aを除去する(図5(d))ことで、静水圧プレスを用いた場合と同様に、反り量の小さい多層セラミック基板5を得ることができる。   For example, as shown in FIG. 5A, the outer peripheral edge 4 a on one main surface side of the laminate 4 may be crushed by pressing using a mold 14. A convex portion 15 is provided on the press surface of the upper die of the mold 14 along the outer peripheral edge portion, and the outer peripheral edge portion on one main surface side of the laminate 4 is crushed as shown in FIG. A flat inclined surface is formed. As described above, even when at least one outer peripheral edge portion of the laminate is crushed by the press treatment by the mold 14, the firing is performed (FIG. 5C), and the fired product 2a of the shrinkage suppression sheet 2 is removed ( As shown in FIG. 5D, the multilayer ceramic substrate 5 having a small amount of warpage can be obtained as in the case of using the hydrostatic press.

また、前述の説明では、積層体の一方の主面側の外周縁部のみを押し潰しているが、両主面側の外周縁部を押し潰した場合も、本発明の効果を得ることができる。   Further, in the above description, only the outer peripheral edge portion on one main surface side of the laminate is crushed, but the effect of the present invention can also be obtained when the outer peripheral edge portions on both main surface sides are crushed. it can.

以下、本発明を適用した具体的な実施例について、実験結果に基づいて説明する。
(グリーンシートの作製)
セラミック材料としてアルミナ−ガラス系誘電体材料を準備し、有機バインダ、可塑剤及び有機溶剤と混合して誘電体ペーストを調製した後、ドクターブレード法によりシート化して、縦56mm、横65mm、厚さ125μmのグリーンシートを作製した。
Hereinafter, specific examples to which the present invention is applied will be described based on experimental results.
(Production of green sheets)
Alumina-glass-based dielectric material is prepared as a ceramic material, mixed with an organic binder, a plasticizer, and an organic solvent to prepare a dielectric paste, and then formed into a sheet by a doctor blade method, 56 mm in length, 65 mm in width, thickness A 125 μm green sheet was prepared.

(収縮抑制シートの作製)
収縮抑制材料としてトリジマイト及び石英を準備し、有機バインダ、可塑剤、分散剤及び有機溶剤と混合して収縮抑制材料ペーストを調製した後、ドクターブレード法によりシート化して、縦56mm、横65mm、厚さ125μmの収縮抑制シートを作製した。
(Preparation of shrinkage suppression sheet)
Tridymite and quartz were prepared as shrinkage suppression materials, mixed with an organic binder, a plasticizer, a dispersant and an organic solvent to prepare a shrinkage suppression material paste, and then formed into a sheet by a doctor blade method, 56 mm in length, 65 mm in width, thickness A shrinkage suppression sheet having a thickness of 125 μm was produced.

(実施例)
作製したグリーンシートを15枚積層し、その両面にそれぞれ収縮抑制シートを配して仮積層体を形成した。次に、仮積層体を平板の上に載せ、これらを可撓性を有するフィルムからなる袋に入れ、真空パックした。次に、温度70℃にて温間静水圧プレス装置により加圧処理した。加圧処理後、積層体を袋から取り出し、詳細に観察したところ、平板と反対側の面における外周縁部が押し潰され、曲面とされていた。次に、得られた積層体を上下からセッターで挟み込み、900℃で焼成した。このとき、外周縁部が押し潰された側の主面が下方を向くように積層体を配置した。焼成後、収縮抑制シートの焼成物を除去し、多層セラミック基板を得た。
(Example)
Fifteen produced green sheets were laminated, and a shrinkage suppression sheet was arranged on each of both surfaces to form a temporary laminate. Next, the temporary laminate was placed on a flat plate, placed in a bag made of a flexible film, and vacuum packed. Next, pressure treatment was performed at a temperature of 70 ° C. using a warm isostatic press. After the pressure treatment, the laminate was taken out of the bag and observed in detail. As a result, the outer peripheral edge on the surface opposite to the flat plate was crushed to form a curved surface. Next, the obtained laminate was sandwiched from above and below by a setter and fired at 900 ° C. At this time, the laminated body was disposed so that the main surface on the side where the outer peripheral edge portion was crushed faced downward. After firing, the fired product of the shrinkage suppression sheet was removed to obtain a multilayer ceramic substrate.

(比較例)
前記実施例と同様に仮積層体を形成し、その後、プレス面が平坦な金型を用いて仮積層体をプレスすることにより、積層体を得た。得られた積層体を前記実施例と同様の条件で焼成し、多層セラミック基板を得た。
(Comparative example)
The temporary laminated body was formed similarly to the said Example, and the laminated body was obtained by pressing a temporary laminated body using a metal mold | die with a flat press surface after that. The obtained laminate was fired under the same conditions as in the above example to obtain a multilayer ceramic substrate.

(評価)
実施例及び比較例の多層セラミック基板の反り量を調べ、これに基づいて外周縁部に沿って設けられる切り代(不要領域)の幅を設定した。具体的には先ず、得られた多層セラミック基板を焼成時の上下方向を維持したまま平坦な台上に置き、多層セラミック基板の表面を対角線に沿って探針で走査することにより、高さを調べた。そして、基板中央部を基準(0μm)とし、これに比較した高さ、すなわち反り量が20μmを超えた位置より外側を切り代として設定した。その結果、実施例においては、多層セラミック基板の切り代の幅を7mmに設定する必要があった。すなわち、実施例において、切り代の内側に形成される有効領域は縦42mm、横51mmであった。一方、比較例の多層セラミック基板においては、切り代の幅を9mmに設定する必要があった。すなわち、比較例の基板の有効領域は、縦38mm、横47mmであった。以上の検討結果より、本発明の方法によって基板の外周縁部における反りが改善され、基板の有効領域を拡大できることが示された。
(Evaluation)
The amount of warpage of the multilayer ceramic substrates of the example and the comparative example was examined, and based on this, the width of the cutting margin (unnecessary region) provided along the outer peripheral edge was set. Specifically, first, the obtained multilayer ceramic substrate is placed on a flat table while maintaining the vertical direction at the time of firing, and the surface of the multilayer ceramic substrate is scanned along a diagonal line with a probe to adjust the height. Examined. Then, the center part of the substrate was set as a reference (0 μm), and the height compared to this, that is, the outside from the position where the warpage amount exceeded 20 μm was set as a cutting margin. As a result, in the example, it was necessary to set the width of the cutting allowance of the multilayer ceramic substrate to 7 mm. That is, in the example, the effective area formed inside the cutting allowance was 42 mm long and 51 mm wide. On the other hand, in the multilayer ceramic substrate of the comparative example, it was necessary to set the width of the cutting margin to 9 mm. That is, the effective area of the substrate of the comparative example was 38 mm long and 47 mm wide. From the above examination results, it was shown that the warpage at the outer peripheral edge of the substrate was improved by the method of the present invention, and the effective area of the substrate could be expanded.

多層セラミック基板の製造方法の概要を示す断面図であり、(a)はシート準備工程、(b)は仮積層工程を示す。It is sectional drawing which shows the outline | summary of the manufacturing method of a multilayer ceramic substrate, (a) shows a sheet | seat preparation process, (b) shows a temporary lamination process. 本発明の本積層工程及び焼成工程の一例を説明する図であり、(a)は袋詰め工程、(b)は真空パック工程、(c)は静水圧プレス工程、(d)は取り出し工程、(e)は焼成工程、(f)は収縮抑制シート除去工程を示す。It is a figure explaining an example of this lamination | stacking process and baking process of this invention, (a) is a bagging process, (b) is a vacuum packing process, (c) is an isostatic pressing process, (d) is a taking-out process, (E) shows a firing step, and (f) shows a shrinkage suppression sheet removing step. 従来の焼成過程における積層体の変形メカニズムを説明する断面図であり、(a)は焼成前、(b)は焼成中、(c)は焼成後を示す。It is sectional drawing explaining the deformation | transformation mechanism of the laminated body in the conventional baking process, (a) is before baking, (b) is during baking, (c) shows after baking. 本発明の焼成過程における積層体の変形メカニズムを説明するための要部拡大断面図である。It is a principal part expanded sectional view for demonstrating the deformation | transformation mechanism of the laminated body in the baking process of this invention. 本発明の本積層工程及び焼成工程の他の例を説明する図であり、(a)は金型プレス装置による本積層工程、(b)は積層体、(c)は焼成工程、(d)は収縮抑制シート除去工程を示す。It is a figure explaining the other example of this lamination process of this invention, and a baking process, (a) is this lamination process by a die-press apparatus, (b) is a laminated body, (c) is a baking process, (d) Indicates a shrinkage suppression sheet removing step. 従来の多層セラミック基板の製造方法を示す断面図であり、(a)は金型プレス装置による本積層工程、(b)は積層体、(c)は焼成工程、(d)は収縮抑制シート除去工程を示す。It is sectional drawing which shows the manufacturing method of the conventional multilayer ceramic substrate, (a) is this lamination | stacking process by a die press apparatus, (b) is a laminated body, (c) is a baking process, (d) is a shrinkage | contraction suppression sheet removal. A process is shown. 従来の製造方法により製造された多層セラミック基板を示す断面図である。It is sectional drawing which shows the multilayer ceramic substrate manufactured by the conventional manufacturing method.

符号の説明Explanation of symbols

1 グリーンシート、2 収縮抑制シート、3 仮積層体、4 積層体、5 多層セラミック基板、11 平板、12 袋、13 静水圧プレス装置、14 金型、15 凸部、21,22 セッター DESCRIPTION OF SYMBOLS 1 Green sheet, 2 Shrinkage suppression sheet, 3 Temporary laminated body, 4 Laminated body, 11 Multi-layer ceramic substrate, 11 Flat plate, 12 bag, 13 Hydrostatic press, 14 Mold, 15 Convex part, 21, 22 Setter

Claims (4)

積層したグリーンシートの最外層に収縮抑制シートを積層して積層体を形成し、前記積層体を焼成した後、前記収縮抑制シートの焼成物を除去して多層セラミック基板を製造する方法であって、
前記積層体を形成する際に積層体の少なくとも一方の主面の外周縁部を押し潰し、押し潰された側の主面を下方に向けて前記焼成を行うことを特徴とする多層セラミック基板の製造方法。
A method for producing a multilayer ceramic substrate by laminating a shrinkage suppression sheet on the outermost layer of a laminated green sheet to form a laminate, firing the laminate, and then removing the fired product of the shrinkage suppression sheet. ,
A multilayer ceramic substrate characterized by crushing an outer peripheral edge portion of at least one main surface of a laminated body when forming the laminated body, and performing the firing with a principal surface on a crushed side facing downward. Production method.
複数の前記グリーンシートと前記収縮抑制シートとを含む仮積層体を形成した後、前記仮積層体の一方の主面を平板に接触させた状態で真空パックし、静水圧プレスを行うことにより前記積層体を形成することを特徴とする請求項1記載の多層セラミック基板の製造方法。   After forming a temporary laminate including a plurality of the green sheets and the shrinkage suppression sheet, vacuum packing is performed in a state where one main surface of the temporary laminate is in contact with a flat plate, and the hydrostatic press is performed. 2. A method for producing a multilayer ceramic substrate according to claim 1, wherein a laminate is formed. 前記静水圧プレスが温間静水圧プレスであることを特徴とする請求項2記載の多層セラミック基板の製造方法。   The method for producing a multilayer ceramic substrate according to claim 2, wherein the hydrostatic press is a warm isostatic press. 複数の前記グリーンシートと前記収縮抑制シートとを含む仮積層体を形成した後、プレス面の外周縁部に沿って凸部を有する金型を用いてプレス処理を行い、前記積層体を形成することを特徴とする請求項1記載の多層セラミック基板の製造方法。
After forming a temporary laminate including a plurality of the green sheets and the shrinkage suppression sheet, press processing is performed using a mold having a convex portion along the outer peripheral edge portion of the press surface to form the laminate. The method for producing a multilayer ceramic substrate according to claim 1.
JP2007017652A 2007-01-29 2007-01-29 Method of manufacturing multilayer ceramic substrate Abandoned JP2008186897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007017652A JP2008186897A (en) 2007-01-29 2007-01-29 Method of manufacturing multilayer ceramic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007017652A JP2008186897A (en) 2007-01-29 2007-01-29 Method of manufacturing multilayer ceramic substrate

Publications (1)

Publication Number Publication Date
JP2008186897A true JP2008186897A (en) 2008-08-14

Family

ID=39729748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007017652A Abandoned JP2008186897A (en) 2007-01-29 2007-01-29 Method of manufacturing multilayer ceramic substrate

Country Status (1)

Country Link
JP (1) JP2008186897A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095843A1 (en) * 2019-11-15 2021-05-20 デンカ株式会社 Ceramic substrate, composite substrate, circuit board, method for producing ceramic substrate, method for producing composite substrate, method for producing circuit board, and method for producing plurality of circuit boards
WO2021095844A1 (en) * 2019-11-15 2021-05-20 デンカ株式会社 Ceramic substrate, composite substrate, circuit board, method for producing ceramic substrate, method for producing composite substrate, method for producing circuit board, and method for producing plurality of circuit boards
CN115073148A (en) * 2022-07-21 2022-09-20 瓷金科技(河南)有限公司 A kind of ceramic package base and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4059912A4 (en) * 2019-11-15 2023-01-04 Denka Company Limited Ceramic substrate, composite substrate, circuit board, method for producing ceramic substrate, method for producing composite substrate, method for producing circuit board, and method for producing plurality of circuit boards
JPWO2021095843A1 (en) * 2019-11-15 2021-05-20
WO2021095844A1 (en) * 2019-11-15 2021-05-20 デンカ株式会社 Ceramic substrate, composite substrate, circuit board, method for producing ceramic substrate, method for producing composite substrate, method for producing circuit board, and method for producing plurality of circuit boards
JPWO2021095844A1 (en) * 2019-11-15 2021-05-20
CN114667806A (en) * 2019-11-15 2022-06-24 电化株式会社 Ceramic substrate, composite substrate, circuit substrate, method for manufacturing ceramic substrate, method for manufacturing composite substrate, method for manufacturing circuit substrate, and method for manufacturing plurality of circuit substrates
CN114830837A (en) * 2019-11-15 2022-07-29 电化株式会社 Ceramic substrate, composite substrate, circuit substrate, method for manufacturing ceramic substrate, method for manufacturing composite substrate, method for manufacturing circuit substrate, and method for manufacturing plurality of circuit substrates
JP7168795B2 (en) 2019-11-15 2022-11-09 デンカ株式会社 Ceramic substrate, composite substrate, circuit substrate, method for manufacturing ceramic substrate, method for manufacturing composite substrate, method for manufacturing circuit substrate, and method for manufacturing a plurality of circuit substrates
JP7168796B2 (en) 2019-11-15 2022-11-09 デンカ株式会社 Ceramic substrate, composite substrate, circuit substrate, method for manufacturing ceramic substrate, method for manufacturing composite substrate, method for manufacturing circuit substrate, and method for manufacturing a plurality of circuit substrates
WO2021095843A1 (en) * 2019-11-15 2021-05-20 デンカ株式会社 Ceramic substrate, composite substrate, circuit board, method for producing ceramic substrate, method for producing composite substrate, method for producing circuit board, and method for producing plurality of circuit boards
CN114667806B (en) * 2019-11-15 2024-04-02 电化株式会社 Ceramic substrate, composite substrate, circuit substrate, and method for manufacturing ceramic substrate, method for manufacturing composite substrate, method for manufacturing circuit substrate, and method for manufacturing multiple circuit substrates
CN114830837B (en) * 2019-11-15 2024-04-02 电化株式会社 Ceramic substrate, composite substrate, circuit substrate and manufacturing method of ceramic substrate, composite substrate manufacturing method, circuit substrate manufacturing method and multiple circuit substrate manufacturing methods
CN115073148A (en) * 2022-07-21 2022-09-20 瓷金科技(河南)有限公司 A kind of ceramic package base and preparation method thereof
CN115073148B (en) * 2022-07-21 2023-08-08 瓷金科技(河南)有限公司 Ceramic packaging base and preparation method thereof

Similar Documents

Publication Publication Date Title
US8105453B2 (en) Method for producing multilayer ceramic substrate
JP3709802B2 (en) Manufacturing method of multilayer ceramic substrate
JP2001230548A (en) Method for manufacturing multil ayer ceramic substrate
JP3757788B2 (en) Multilayer ceramic substrate and manufacturing method thereof
JP2008186897A (en) Method of manufacturing multilayer ceramic substrate
JP4000050B2 (en) Manufacturing method of ceramic laminate
JP4565383B2 (en) Multilayer ceramic substrate with cavity and method for manufacturing the same
JP3922079B2 (en) Manufacturing method of multilayer ceramic substrate with cavity
JPH0766076A (en) Manufacture of laminated chip component and laminated chip component
JP2004179348A (en) Manufacturing method of ceramic laminate
JP2729731B2 (en) Manufacturing method of ceramic multilayer substrate
JP2005191409A (en) Manufacturing method of multilayer ceramic capacitor
JP2006108483A (en) Multilayered ceramic board having cavity and its manufacturing method
JP2001144437A (en) Multilayer ceramic board and method of production
JPH06350254A (en) Production of multilayer ceramic board
JP4599706B2 (en) Manufacturing method of multilayer ceramic substrate
JP4089356B2 (en) Manufacturing method of multilayer ceramic substrate
JP4773485B2 (en) Manufacturing method of ceramic laminate
JP2004186342A (en) Ceramic laminate and manufacturing method thereof
JP2008182136A (en) Manufacturing method of multilayer ceramic substrate
JP4084696B2 (en) Low temperature fired multilayer ceramic wiring board manufacturing method
JP4551330B2 (en) Strain control of hot pressed ceramic
JP3872283B2 (en) Manufacturing method of glass ceramic substrate
JP2001257473A (en) Multilayer ceramic board and manufacturing method thereof
JP2011018783A (en) Method of manufacturing multilayer ceramic substrate

Legal Events

Date Code Title Description
A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20090225