[go: up one dir, main page]

JP2008184906A - Heat recovery system in internal combustion engine - Google Patents

Heat recovery system in internal combustion engine Download PDF

Info

Publication number
JP2008184906A
JP2008184906A JP2007016443A JP2007016443A JP2008184906A JP 2008184906 A JP2008184906 A JP 2008184906A JP 2007016443 A JP2007016443 A JP 2007016443A JP 2007016443 A JP2007016443 A JP 2007016443A JP 2008184906 A JP2008184906 A JP 2008184906A
Authority
JP
Japan
Prior art keywords
cooling water
heat
internal combustion
combustion engine
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007016443A
Other languages
Japanese (ja)
Inventor
Junichiro Kasuya
潤一郎 粕谷
Yasuaki Kano
靖明 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2007016443A priority Critical patent/JP2008184906A/en
Publication of JP2008184906A publication Critical patent/JP2008184906A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat recovery system in an internal combustion engine enabling miniaturization and weight reduction of the heat recovery system, while allowing a cooling-water circuit and a Rankine cycle circuit to appropriately perform functions. <P>SOLUTION: This heat recovery system comprises an internal combustion engine (6) cooled by cooling water, a heat exchanger (22) for heating the cooling water by conducting the heat exchange between the cooling water and a heating medium, a cooling-water circuit (8) in which the cooling water at a rate of flow corresponding to operation conditions of the internal combustion engine is circulated through the internal combustion engine and the heat exchanger in order, an evaporator (10) for heating a working fluid by heat-exchange between the fluid and the cooling water passed through the heat exchanger, an expansion device (12), and a condenser (14). In the heat recovery system, a Rankine cycle circuit (4) is provided in which the working fluid having been passed through the condenser is passed through the evaporator, the cooling-water circuit is provided with a means for controlling a heat-absorption quantity by which the heat-absorption quantity absorbed by the cooling water in the heat exchanger is restricted in accordance with the operation condition of the internal combustion engine. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の廃熱利用装置に係り、詳しくは、車両に好適な内燃機関の廃熱利用装置に関する。   The present invention relates to an internal combustion engine waste heat utilization device, and more particularly to an internal combustion engine waste heat utilization device suitable for a vehicle.

内燃機関の廃熱利用装置としては、例えば車両用エンジンにおいて、冷凍サイクルの構成部品を利用してランキンサイクル回路を形成することで内燃機関の廃熱を動力回収し、その回収した動力でエンジンの軸出力をアシストする技術が知られている。
そして、エンジン本体を冷却した後の高温冷却水をエンジンの排ガスの熱で更に加熱し、この過熱冷却水を冷凍サイクルの蒸発器に送ることでエンジンの廃熱を回収するランキンサイクル回路が公知である(例えば、特許文献1参照)。
特開昭57−99222号公報
As a waste heat utilization device for an internal combustion engine, for example, in a vehicle engine, a Rankine cycle circuit is formed using components of a refrigeration cycle to recover power of the waste heat of the internal combustion engine, and the recovered power is used to recover the engine power. A technique for assisting axis output is known.
A Rankine cycle circuit that recovers engine waste heat by further heating the high-temperature cooling water after cooling the engine body with the heat of the exhaust gas from the engine and sending this superheated cooling water to the evaporator of the refrigeration cycle is known. Yes (see, for example, Patent Document 1).
JP-A-57-99222

ところで、エンジンの最大出力時には、エンジン本体が最も高温となるため、エンジンの冷却性能を確保すべく、過熱冷却水を上記蒸発器において充分に吸熱しなければならない。
しかしながら、上記従来技術では、エンジンの最大出力時を想定すると、過熱冷却水の吸熱がなされる蒸発器と、この蒸発器を経た冷却水を膨張機で膨張させて動力回収した後、膨張した冷却水を凝縮させる凝縮器との熱容量を大きくせざるを得ず、蒸発器及び凝縮器を含むランキンサイクル回路、ひいては廃熱利用装置の小型化、軽量化が実現できないとの問題がある。
By the way, at the time of the maximum output of the engine, the engine main body becomes the highest temperature. Therefore, in order to ensure the cooling performance of the engine, the superheated cooling water must be sufficiently absorbed by the evaporator.
However, in the above prior art, assuming the maximum output of the engine, the evaporator that absorbs the superheated cooling water, and the cooling water that has passed through the evaporator is expanded by an expander to recover the power, and then the expanded cooling is performed. There is a problem that the heat capacity of the condenser for condensing water must be increased, and the Rankine cycle circuit including the evaporator and the condenser, and thus the waste heat utilization device cannot be reduced in size and weight.

本発明は、このような課題に鑑みてなされたもので、冷却水回路及びランキンサイクル回路を適正に機能させながら、廃熱利用装置の小型化、軽量化を実現できる内燃機関の廃熱利用装置を提供することを目的とする。   The present invention has been made in view of such a problem, and is a waste heat utilization device for an internal combustion engine capable of realizing a reduction in size and weight of the waste heat utilization device while properly functioning a cooling water circuit and a Rankine cycle circuit. The purpose is to provide.

上記の目的を達成するべく、請求項1記載の内燃機関の廃熱利用装置は、冷却水により冷却される内燃機関と、冷却水を熱媒体と熱交換させて冷却水を加熱する熱交換器を有し、内燃機関の作動状態に応じた流量の冷却水が内燃機関、熱交換器を順次経由して循環する冷却水回路と、熱交換器を経由した冷却水と熱交換して作動流体を加熱する蒸発器、蒸発器を経由した作動流体を膨張させて駆動力を発生する膨張機、膨張機を経由した作動流体を凝縮させる凝縮器を含み、凝縮器を経由した作動流体が蒸発器を経由して循環するランキンサイクル回路とを備え、冷却水回路は、熱交換器において冷却水が熱媒体から吸熱する吸熱量を内燃機関の作動状態に応じて制限する吸熱量制御手段を有することを特徴としている。   To achieve the above object, an internal combustion engine waste heat utilization apparatus according to claim 1 is an internal combustion engine cooled by cooling water, and a heat exchanger that heats cooling water by exchanging heat between the cooling water and a heat medium. A cooling water circuit in which cooling water having a flow rate according to the operating state of the internal combustion engine circulates sequentially through the internal combustion engine and the heat exchanger, and a working fluid that exchanges heat with the cooling water through the heat exchanger An evaporator that heats the working fluid, an expander that generates a driving force by expanding the working fluid that passes through the evaporator, and a condenser that condenses the working fluid that passes through the expander. And a Rankine cycle circuit that circulates via the heat sink, and the cooling water circuit has an endothermic amount control means that limits the amount of heat absorbed by the cooling water from the heat medium in the heat exchanger according to the operating state of the internal combustion engine. It is characterized by.

また、請求項2記載の発明では、吸熱量制御手段は、内燃機関の作動状態を検出する検出端と、検出端からの信号に応じて吸熱量を制限する操作端とからなり、
ランキンサイクル回路は、作動流体を循環させるべく駆動されるポンプを更に含み、吸熱量制御手段は、検出端で検出された内燃機関の作動状態が内燃機関の暖機を要求するものであるとき、ポンプの駆動を停止し、且つ吸熱量が大きくなるように操作端を駆動させることを特徴としている。
In the invention according to claim 2, the endothermic amount control means comprises a detection end for detecting the operating state of the internal combustion engine and an operation end for limiting the endothermic amount in accordance with a signal from the detection end,
The Rankine cycle circuit further includes a pump that is driven to circulate the working fluid, and the heat absorption amount control means is such that when the operating state of the internal combustion engine detected at the detection end requires warming up of the internal combustion engine, The operation end is driven so that the driving of the pump is stopped and the heat absorption amount is increased.

更に、請求項3記載の発明では、冷却水回路は、蒸発器をバイパスする蒸発器バイパス路と、蒸発器バイパス路と蒸発器の下流との合流点に設置され、合流点における冷却水の温度が所定の温度設定値以上のときには冷却水を蒸発器に通水させる機械式の切換弁とを更に含み、検出端は、冷却水回路を循環する冷却水の温度を検出する温度センサであって、操作端は、温度センサで検出された冷却水温度が所定の第2温度設定値より大きいとき吸熱量が小さくなるように駆動されるとともに、第2温度設定値は温度設定値以上に設定されることを特徴としている。   Furthermore, in the invention according to claim 3, the cooling water circuit is installed at an evaporator bypass path that bypasses the evaporator, and at a junction point between the evaporator bypass path and the downstream of the evaporator, and the temperature of the cooling water at the junction point. And a mechanical switching valve for passing cooling water through the evaporator when the temperature is equal to or higher than a predetermined temperature set value, and the detection end is a temperature sensor for detecting the temperature of the cooling water circulating in the cooling water circuit. The operation end is driven so that the endothermic amount becomes smaller when the coolant temperature detected by the temperature sensor is larger than a predetermined second temperature set value, and the second temperature set value is set to be equal to or higher than the temperature set value. It is characterized by that.

更にまた、請求項4記載の発明では、検出端は、熱媒体の温度を検出する第2温度センサであって、操作端は、第2温度センサで検出された熱媒体の温度に応じて駆動されることを特徴としている。
また、請求項5記載の発明では、冷却水回路は熱交換器をバイパスする熱交換器バイパス路を更に含み、操作端は、検出端からの信号に応じて、内燃機関を経由した冷却水を熱交換器バイパス路と熱交換器とに配分して流入させ、熱交換器へ流入する冷却水量を制限すべく冷却水量配分制御を実施するリニア三方弁であることを特徴としている。
Furthermore, in the invention according to claim 4, the detection end is a second temperature sensor for detecting the temperature of the heat medium, and the operation end is driven according to the temperature of the heat medium detected by the second temperature sensor. It is characterized by being.
In the invention according to claim 5, the cooling water circuit further includes a heat exchanger bypass passage for bypassing the heat exchanger, and the operation end supplies the cooling water via the internal combustion engine in accordance with a signal from the detection end. It is a linear three-way valve that controls the distribution of the cooling water amount so as to distribute the flow into the heat exchanger bypass and the heat exchanger and limit the amount of cooling water flowing into the heat exchanger.

更に、請求項6記載の発明では、熱交換器は、内燃機関の排ガスを熱媒体とし、排ガスの流れる排ガス管内に設置される排ガス熱交換器であって、操作端は、検出端からの信号に応じて、排ガスを排ガス管内において熱交換器側と反熱交換器側とに配分して流入させ、熱交換器で熱交換される排ガス量を制限すべく排ガス量配分制御を実施するリニアダンパであることを特徴としている。   Furthermore, in the invention described in claim 6, the heat exchanger is an exhaust gas heat exchanger installed in an exhaust gas pipe through which exhaust gas flows using the exhaust gas of the internal combustion engine as a heat medium, and the operation end is a signal from the detection end. The exhaust gas is distributed to the heat exchanger side and the counter heat exchanger side in the exhaust gas pipe, and the exhaust gas amount distribution control is performed to limit the amount of exhaust gas heat exchanged by the heat exchanger. It is characterized by being.

従って、請求項1記載の本発明の内燃機関の廃熱利用装置によれば、冷却水回路の吸熱量制御手段は、熱交換器において冷却水が熱媒体から吸熱する吸熱量を内燃機関の作動状態に応じて制限する。これにより、内燃機関の冷却要求が最も高い内燃機関の最大出力時においては、冷却水が熱媒体から吸熱しないようにすることでランキンサイクル回路の蒸発器及び凝縮器の熱容量を小さくすることができる。従って、冷却水回路及びランキンサイクル回路を適正に機能させながら、蒸発器及び凝縮器を含むランキンサイクル回路、ひいては、廃熱利用装置の小型化、軽量化が実現できる。   Therefore, according to the waste heat utilization apparatus for an internal combustion engine of the first aspect of the present invention, the heat absorption amount control means of the cooling water circuit determines the heat absorption amount that the cooling water absorbs heat from the heat medium in the heat exchanger. Restrict according to the state. Thereby, at the time of the maximum output of the internal combustion engine having the highest cooling request of the internal combustion engine, the heat capacity of the evaporator and the condenser of the Rankine cycle circuit can be reduced by preventing the cooling water from absorbing heat from the heat medium. . Therefore, the Rankine cycle circuit including the evaporator and the condenser and the waste heat utilization device can be reduced in size and weight while properly functioning the cooling water circuit and the Rankine cycle circuit.

また、請求項2記載の発明によれば、内燃機関の暖機時には、ランキンサイクル回路の機能を停止して蒸発器における冷却水からの吸熱を実施しないため、内燃機関の暖機を迅速に実施でき、冷却水回路及びランキンサイクル回路を更に適正に機能させることができる。
更に、請求項3記載の発明によれば、操作端は、温度センサで検出された冷却水温度が第2温度設定値より大きいとき吸熱量が小さくなるように駆動されるとともに、第2温度設定値は切換弁の温度設定値以上に設定される。すなわち、冷却水からの吸熱量を小さくする要求があるときには、吸熱量制御手段による制御を切換弁の制御より優先させて制御同士の干渉を防止し、吸熱量制御手段をより確実に機能させることができる。
According to the second aspect of the present invention, when the internal combustion engine is warmed up, the Rankine cycle circuit function is stopped and heat absorption from the cooling water in the evaporator is not performed, so the internal combustion engine is warmed up quickly. The cooling water circuit and the Rankine cycle circuit can function more appropriately.
Further, according to the invention of claim 3, the operating end is driven so that the endothermic amount becomes small when the coolant temperature detected by the temperature sensor is larger than the second temperature set value, and the second temperature set. The value is set to be equal to or higher than the temperature setting value of the switching valve. That is, when there is a request to reduce the heat absorption amount from the cooling water, the control by the heat absorption amount control means is prioritized over the control of the switching valve to prevent interference between the controls and to make the heat absorption amount control means function more reliably. Can do.

更にまた、請求項4記載の発明によれば、吸熱制御手段は熱媒体からの冷却水の吸熱を制限するものであり、この吸熱量制御手段おいて内燃機関の作動状態を検出する検出端を熱媒体の温度を検出する第2温度センサとし、この第2温度センサの出力に応じて操作端を駆動すれば、検出された冷却水温度に応じて操作端を駆動する場合に比して吸熱量制御の制御応答性を大幅に向上できる。   Furthermore, according to the invention of claim 4, the heat absorption control means limits the heat absorption of the cooling water from the heat medium, and the detection end for detecting the operating state of the internal combustion engine in the heat absorption amount control means is provided. If a second temperature sensor that detects the temperature of the heat medium is used, and the operation end is driven according to the output of the second temperature sensor, the suction is performed as compared with the case where the operation end is driven according to the detected coolant temperature. The control response of heat quantity control can be greatly improved.

また、請求項5記載の発明によれば、操作端たるリニア3方弁は、冷却水を熱交換器バイパス路と熱交換器とに配分して流入させ、冷却水回路における冷却水の循環を維持しながら熱交換器へ流入する冷却水の流量を制限する冷却水量配分制御を実施している。これにより、冷却水回路を循環する冷却水の流量が増大したとしても、冷却水の吸熱量をランキンサイクル回路の熱容量に合わせて適正に制御しながら、冷却水の増大分を熱交換器へ流さずに熱交換器バイパス路に流すことにより蒸発器における冷却水の通水抵抗によって冷却水の循環が阻害されることを防止できる。従って、吸熱量制御手段による制御を実施しながら内燃機関の冷却性能を維持することができる。   According to the invention described in claim 5, the linear three-way valve as the operation end distributes and flows the cooling water to the heat exchanger bypass and the heat exchanger, and circulates the cooling water in the cooling water circuit. Cooling water amount distribution control is performed to limit the flow rate of cooling water flowing into the heat exchanger while maintaining it. As a result, even if the flow rate of the cooling water circulating in the cooling water circuit increases, the increased amount of cooling water is sent to the heat exchanger while properly controlling the heat absorption amount of the cooling water according to the heat capacity of the Rankine cycle circuit. Without flowing through the heat exchanger bypass, the circulation of the cooling water can be prevented from being hindered by the flow resistance of the cooling water in the evaporator. Therefore, the cooling performance of the internal combustion engine can be maintained while performing the control by the endothermic amount control means.

更に、請求項6記載の発明によれば、操作端たるリニアダンパは、排ガスを冷却水と熱交換する熱交換器側と排ガスを冷却水と熱交換しないで外部に排出する反熱交換器側とに配分して排ガス管内に流入させ、排ガス熱交換器へ流入する熱媒体である排ガス自体の流量を直接に制限する排ガス量配分制御を実施している。これにより、冷却水の吸熱量をランキンサイクル回路の熱容量に合わせてより正確に且つ迅速に制御でき、吸熱量制御手段の制御精度及び制御応答性を大幅に向上できる。   Furthermore, according to the invention described in claim 6, the linear damper as the operation end includes a heat exchanger side for exchanging heat of the exhaust gas with the cooling water, and a counter heat exchanger side for discharging the exhaust gas to the outside without performing heat exchange with the cooling water. The exhaust gas amount distribution control is performed to directly limit the flow rate of the exhaust gas itself which is the heat medium flowing into the exhaust gas heat exchanger. Thereby, the heat absorption amount of the cooling water can be controlled more accurately and quickly in accordance with the heat capacity of the Rankine cycle circuit, and the control accuracy and control response of the heat absorption amount control means can be greatly improved.

以下、図面により本発明の実施形態について説明する。
先ず、第1実施形態について説明する。
図1は本実施形態の内燃機関の廃熱利用装置2の構成を示す模式図であって、この廃熱利用装置2は、ランキンサイクル回路4と、例えば車両のエンジン(内燃機関)6を冷却する冷却水が循環する冷却水回路8とを含んで構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, the first embodiment will be described.
FIG. 1 is a schematic diagram showing a configuration of a waste heat utilization device 2 for an internal combustion engine according to the present embodiment. The waste heat utilization device 2 cools a Rankine cycle circuit 4 and, for example, a vehicle engine (internal combustion engine) 6. And a cooling water circuit 8 through which the cooling water is circulated.

ランキンサイクル回路4は、蒸発器10、膨張機12、凝縮器14、受液器16、及びポンプ18を含んで構成され、ポンプ18の作動によって作動流体が蒸発器10、膨張機12、凝縮器14、受液器16を順次流れて循環する。
蒸発器10は、ポンプ18から送出される作動流体と冷却水回路8を流通する高温の冷却水との間で熱交換することにより作動流体を加熱する熱交換器である。蒸発器10内には、いずれも図示しないが、冷却水を導く冷却水経路と、作動流体を導く作動流体経路とを備え、冷却水経路と作動流体経路と間には冷却水経路と作動流体経路とを区画する境界壁が設けられている。
The Rankine cycle circuit 4 includes an evaporator 10, an expander 12, a condenser 14, a receiver 16, and a pump 18, and the working fluid is converted into the evaporator 10, the expander 12, and the condenser by the operation of the pump 18. 14 circulates sequentially through the liquid receiver 16.
The evaporator 10 is a heat exchanger that heats the working fluid by exchanging heat between the working fluid delivered from the pump 18 and the high-temperature cooling water flowing through the cooling water circuit 8. Although not shown, the evaporator 10 includes a cooling water path that guides the cooling water and a working fluid path that guides the working fluid. The cooling water path and the working fluid are provided between the cooling water path and the working fluid path. A boundary wall that divides the route is provided.

膨張機12は、蒸発器10で加熱され過熱蒸気の状態となる作動流体の膨張によって回転等に係る駆動力を発生させる流体機器である。また、膨張機12には例えば発電機20が接続され、発電機20を介して膨張機12で発生した駆動力を廃熱利用装置2の外部で使用可能である。
凝縮器14は、膨張機12から吐出される作動流体を外気との熱交換によって凝縮液化する熱交換器である。具体的には、凝縮器14は電動ファン15を備えており、このファン15は外気温度Toと作動流体固有の凝縮温度Tcとの温度差ΔTが所定の温度差設定値ΔTs以上となると駆動され、作動流体を外気と積極的に熱交換させる。
The expander 12 is a fluid device that generates a driving force related to rotation or the like by expansion of a working fluid that is heated by the evaporator 10 and is in a superheated steam state. Further, for example, a generator 20 is connected to the expander 12, and the driving force generated in the expander 12 via the generator 20 can be used outside the waste heat utilization apparatus 2.
The condenser 14 is a heat exchanger that condenses and liquefies the working fluid discharged from the expander 12 by heat exchange with the outside air. Specifically, the condenser 14 includes an electric fan 15 that is driven when the temperature difference ΔT between the outside air temperature To and the condensing temperature Tc specific to the working fluid becomes equal to or greater than a predetermined temperature difference set value ΔTs. The working fluid is actively exchanged heat with the outside air.

受液器16は、凝縮器14で凝縮された作動流体を気液二層に分離するレシーバであり、ここで分離された液化作動流体のみがポンプ18側に流出され、この液化作動流体がポンプ18の作動によって蒸発器10に再び流入することにより閉回路としてのランキンサイクル回路4が形成される。
一方、冷却水回路8は、排ガス熱交換器(熱交換器)22、サーモスタット(切換弁)24、ポンプ26を含んで構成され、ポンプ26の作動によって冷却水がエンジン6、排ガス熱交換器22、蒸発器10、サーモスタット24を順次流れて循環し、エンジン6を冷却した後の高温冷却水が排ガス熱交換器22で更に加熱された後、蒸発器10においてランキンサイクル回路4の作動流体に吸熱されて冷却される。
The liquid receiver 16 is a receiver that separates the working fluid condensed by the condenser 14 into two layers of gas and liquid. Only the liquefied working fluid separated here is discharged to the pump 18 side, and this liquefied working fluid is pumped. The Rankine cycle circuit 4 as a closed circuit is formed by re-entering the evaporator 10 by the operation of 18.
On the other hand, the cooling water circuit 8 includes an exhaust gas heat exchanger (heat exchanger) 22, a thermostat (switching valve) 24, and a pump 26, and the cooling water is supplied to the engine 6 and the exhaust gas heat exchanger 22 by the operation of the pump 26. The high-temperature cooling water after circulating through the evaporator 10 and the thermostat 24 in order and cooling the engine 6 is further heated by the exhaust gas heat exchanger 22, and then the evaporator 10 absorbs heat into the working fluid of the Rankine cycle circuit 4. To be cooled.

排ガス熱交換器22は、エンジン6の排ガス(熱媒体)が流出される排ガス管28内に設けられ、エンジン6で加熱された冷却水と排ガス管28を流れる排ガスとの間で熱交換することにより冷却水が更に加熱される。
サーモスタット24は、2つの入口ポートと1つの出口ポートとを有し、通水される冷却水の冷却水温度に応じて入口ポートを切り換え、或いは各入口ポートに通水される冷却水の流量を配分制御可能な機械式の切換弁である。サーモスタット24の一方の入口ポートには、蒸発器10を迂回し、蒸発器10とポンプ26との間に形成される冷却水回路8の流路8aに合流するバイパス路(蒸発器バイパス路)30が接続されている。
The exhaust gas heat exchanger 22 is provided in the exhaust gas pipe 28 through which the exhaust gas (heat medium) of the engine 6 flows out, and performs heat exchange between the cooling water heated by the engine 6 and the exhaust gas flowing through the exhaust gas pipe 28. Thus, the cooling water is further heated.
The thermostat 24 has two inlet ports and one outlet port, and switches the inlet port according to the cooling water temperature of the cooling water to be passed or sets the flow rate of the cooling water to be passed to each inlet port. This is a mechanical switching valve capable of distribution control. A bypass path (evaporator bypass path) 30 that bypasses the evaporator 10 and joins the flow path 8 a of the cooling water circuit 8 formed between the evaporator 10 and the pump 26 is provided at one inlet port of the thermostat 24. Is connected.

これより、サーモスタット24は、冷却水温度に応じて蒸発器10及びバイパス路30を流れる冷却水の流量を調整して蒸発器10で吸熱される冷却水の吸熱量を制御し、エンジン6の本体温度Teを略一定に保持している。具体的には、サーモスタット24は冷却水の温度が所定の温度設定値Tt以上となるとき、蒸発器10が接続される側の入口ポートに冷却水を通水させるように予め設定されている。   Thus, the thermostat 24 adjusts the flow rate of the cooling water flowing through the evaporator 10 and the bypass passage 30 according to the cooling water temperature to control the heat absorption amount of the cooling water absorbed by the evaporator 10. The temperature Te is kept substantially constant. Specifically, the thermostat 24 is set in advance such that when the temperature of the cooling water is equal to or higher than a predetermined temperature set value Tt, the cooling water is allowed to flow through the inlet port to which the evaporator 10 is connected.

ポンプ26は、エンジン6に装着され、エンジン6の回転数に応じて作動することにより冷却水回路8に冷却水を循環させる。
なお、図示しないラジエータを蒸発器10と直列に設置し、外気との熱交換により冷却水の冷却を補助的に促進するようにしても良い。
ところで、エンジン6と排ガス熱交換器22との間にはリニア三方弁(操作端)32が設置されている。この三方弁32は、1つの入口ポートと2つの出口ポートとを有する電動弁であって、三方弁32の駆動部に入力される入力信号に比例して1つの弁体を連続的に可変駆動することにより、入口ポートに流入する冷却水を各出口ポートに配分して流出させるとともに、これら各配分流量を微調整可能に構成されている。
The pump 26 is attached to the engine 6 and operates according to the rotational speed of the engine 6 to circulate the cooling water in the cooling water circuit 8.
Note that a radiator (not shown) may be installed in series with the evaporator 10 so as to assist cooling of the cooling water by heat exchange with the outside air.
By the way, a linear three-way valve (operation end) 32 is installed between the engine 6 and the exhaust gas heat exchanger 22. The three-way valve 32 is an electric valve having one inlet port and two outlet ports, and continuously drives one valve body in a variable manner in proportion to an input signal input to the drive unit of the three-way valve 32. By doing so, the cooling water flowing into the inlet port is distributed and discharged to each outlet port, and these distributed flow rates can be finely adjusted.

詳しくは、三方弁32はエンジン6と熱交換器22との間の冷却水回路8の流路8bに介挿されており、入口ポートには流路8bのうちのエンジン6側が接続され、一方の出口ポートには流路8bのうちの熱交換器22側が接続されている。これに対し、他方の出口ポートには、流路8bから三方弁32を介して分岐されるとともに、熱交換器22を迂回して熱交換器22と蒸発器10との間の流路8cに合流するバイパス路(熱交換器バイパス路)34が接続されている。なお、バイパス路34は蒸発器10のバイパス路30と一部が共用されている。   Specifically, the three-way valve 32 is inserted in the flow path 8b of the cooling water circuit 8 between the engine 6 and the heat exchanger 22, and the engine 6 side of the flow path 8b is connected to the inlet port. The heat exchanger 22 side of the flow path 8b is connected to the outlet port. On the other hand, the other outlet port is branched from the flow path 8b via the three-way valve 32, and bypasses the heat exchanger 22 to the flow path 8c between the heat exchanger 22 and the evaporator 10. A joining bypass path (heat exchanger bypass path) 34 is connected. The bypass path 34 is partly shared with the bypass path 30 of the evaporator 10.

これより、流路8bを流れる冷却水は、三方弁32によってバイパス路34と流路8cとに配分される(冷却水量配分制御)。ここで、流路8bを流れる冷却水流量を全流量Ft、バイパス路34を流れる冷却水流量をバイパス路配分流量Fb、流路8cを流れる冷却水流量を熱交換器配分流量Fheとすると、全流量Ft=バイパス路配分流量Fb+熱交換器配分流量Fheの関係式が略成立し、三方弁32は冷却水回路8の全体からみて大きな圧力損失要素とはならない構造となっている。   Accordingly, the cooling water flowing through the flow path 8b is distributed to the bypass path 34 and the flow path 8c by the three-way valve 32 (cooling water amount distribution control). Here, if the cooling water flow rate flowing through the flow path 8b is the total flow rate Ft, the cooling water flow rate flowing through the bypass path 34 is the bypass flow distribution flow rate Fb, and the cooling water flow rate flowing through the flow path 8c is the heat exchanger distribution flow rate Fhe, The relational expression of flow rate Ft = bypass passage distribution flow rate Fb + heat exchanger distribution flow rate Fhe is substantially established, and the three-way valve 32 has a structure that does not become a large pressure loss element when viewed from the whole cooling water circuit 8.

一方、流路8aにはエンジン6に流入する冷却水の温度Twを検出する冷却水温度センサ(検出端,温度センサ)36が設けられ、排ガス管28にはエンジン6から排出される排ガスの温度Tgを検出する排ガス温度センサ(検出端,第2温度センサ)38が設けられている。また、他のセンサとしては、エンジン6本体の温度Teを直接検出するエンジン温度センサ40やエンジン6の回転数を検出するエンジン回転数センサ(検出端)42がエンジン6に装着されている。   On the other hand, a cooling water temperature sensor (detection end, temperature sensor) 36 for detecting the temperature Tw of the cooling water flowing into the engine 6 is provided in the flow path 8a, and the temperature of the exhaust gas discharged from the engine 6 is provided in the exhaust gas pipe 28. An exhaust gas temperature sensor (detection end, second temperature sensor) 38 for detecting Tg is provided. As other sensors, an engine temperature sensor 40 that directly detects the temperature Te of the main body of the engine 6 and an engine rotation speed sensor (detection end) 42 that detects the rotation speed of the engine 6 are mounted on the engine 6.

これら検出端たる各センサ36,38,40,42、及び操作端たる三方弁32は車両及び廃熱利用装置2の総合的な制御を行う電子コントロールユニット(ECU)44に電気的に接続されており、ECU44は、これら各センサから検出される入力信号に基づいて、三方弁32の所望の出口ポートを所望の開度に駆動制御すべく信号を出力する。
詳しくは、温度センサ36で検出される冷却水温度Twに応じて三方弁32を駆動する冷却水の吸熱量制御たるサブ制御ルーチンが実行され、このサブ制御ルーチンは、温度センサ40で検出されるエンジン6本体の温度Teに応じて吸熱量制御の実行、停止を制御するエンジン暖機制御たるメイン制御ルーチンに支配されており、これら制御ルーチンはECU44内で処理される(吸熱量制御手段)。
These sensors 36, 38, 40, 42 serving as detection ends and the three-way valve 32 serving as an operation end are electrically connected to an electronic control unit (ECU) 44 that performs overall control of the vehicle and the waste heat utilization device 2. The ECU 44 outputs a signal to drive and control a desired outlet port of the three-way valve 32 to a desired opening based on the input signals detected from these sensors.
Specifically, a sub-control routine for controlling the heat absorption amount of the cooling water that drives the three-way valve 32 is executed according to the cooling water temperature Tw detected by the temperature sensor 36, and this sub-control routine is detected by the temperature sensor 40. The control is controlled by a main control routine which is engine warm-up control for controlling execution and stop of the heat absorption amount according to the temperature Te of the engine 6 body, and these control routines are processed in the ECU 44 (heat absorption amount control means).

以下、図2に示されるフローチャートを参照してエンジン暖機制御について説明する。
先ず、S0(以下、Sはステップを表す)でエンジン暖機制御が開始されると、S1に移行する。
S1では、温度センサ40で検出されたエンジン6本体の温度Teが所定の温度設定値TL1以下であるか否かを判定する。判定結果が真(Yes)で温度Teが温度設定値TL1以下と判定された場合にはS2に移行し、判定結果が偽(No)で温度Teが温度設定値TL1より大きいと判定された場合にはS3に移行する。
Hereinafter, engine warm-up control will be described with reference to the flowchart shown in FIG.
First, when engine warm-up control is started in S0 (hereinafter, S represents a step), the process proceeds to S1.
In S1, it is determined whether or not the temperature Te of the engine 6 body detected by the temperature sensor 40 is equal to or lower than a predetermined temperature set value TL1. When the determination result is true (Yes) and the temperature Te is determined to be equal to or lower than the temperature set value TL1, the process proceeds to S2, and when the determination result is false (No) and the temperature Te is determined to be greater than the temperature set value TL1. To S3.

S2に移行した場合には、実行されている吸熱量制御を停止し、既に停止している吸熱量制御はそのまま停止したままでS4に移行する。
S4では、ランキンサイクル回路4のポンプ18を停止してS5に移行する。
S5では、三方弁32を熱交換器22側に強制的に全開させると同時にバイパス路34側に全閉させる。
When the process proceeds to S2, the currently executed heat absorption amount control is stopped, and the already stopped heat absorption amount control is stopped and the process proceeds to S4.
In S4, the pump 18 of the Rankine cycle circuit 4 is stopped and the process proceeds to S5.
In S5, the three-way valve 32 is forcibly fully opened to the heat exchanger 22 side and simultaneously closed to the bypass path 34 side.

一方、S1においてS3に移行した場合には、停止している吸熱量制御を起動させ、既に起動している吸熱量制御はそのまま起動させたままとする。
このようにして、S0においてエンジン暖機制御に係るメイン制御ルーチンが開始されると、S1からS5、またはS1及びS3の一連の制御ルーチンが繰り返し実行される。
以下、図3に示されるフローチャートを参照して上記S3において実行される吸熱量制御について説明する。
On the other hand, when the process proceeds to S3 in S1, the stopped heat absorption amount control is activated, and the already activated heat absorption amount control is left activated.
Thus, when the main control routine related to engine warm-up control is started in S0, a series of control routines of S1 to S5, or S1 and S3 are repeatedly executed.
Hereinafter, the endothermic control executed in S3 will be described with reference to the flowchart shown in FIG.

先ず、S00で吸熱量制御が開始されると、ポンプ18を運転してS10に移行する。
S10では、温度センサ36で検出された冷却水温度Twが所定の温度設定値TL2以下であるか否かを判定する。判定結果が真(Yes)で温度Twが温度設定値TL2以下と判定された場合にはS20に移行し、判定結果が偽(No)で温度Twが温度設定値TL2より大きいと判定された場合にはS30に移行する。
First, when the endothermic control is started in S00, the pump 18 is operated and the process proceeds to S10.
In S10, it is determined whether or not the coolant temperature Tw detected by the temperature sensor 36 is equal to or lower than a predetermined temperature set value TL2. When the determination result is true (Yes) and the temperature Tw is determined to be equal to or lower than the temperature set value TL2, the process proceeds to S20, and when the determination result is false (No) and the temperature Tw is determined to be greater than the temperature set value TL2. To S30.

S20に移行した場合には、三方弁32を熱交換器22側に開駆動させると同時にバイパス路34側に閉駆動させる。
一方、S10においてS30に移行した場合には、三方弁34をバイパス路34側に開駆動させると同時に熱交換器22側に閉駆動させる。
ここで、S10では、冷却水温度センサ36の代わりに排ガス温度センサ38を検出端とし、排ガス温度センサ38で検出された排ガス温度Tgが所定の温度設定値TL3以下であるか否かを判定しても良い。また、冷却水温度Twの温度設定値TL2はサーモスタット24の温度設定値Tt以上に設定される。
When the process proceeds to S20, the three-way valve 32 is driven to open on the heat exchanger 22 side and simultaneously closed on the bypass path 34 side.
On the other hand, when the process proceeds to S30 in S10, the three-way valve 34 is driven to open toward the bypass path 34 and simultaneously closed to the heat exchanger 22 side.
Here, in S10, the exhaust gas temperature sensor 38 is used as a detection end instead of the cooling water temperature sensor 36, and it is determined whether or not the exhaust gas temperature Tg detected by the exhaust gas temperature sensor 38 is equal to or lower than a predetermined temperature set value TL3. May be. Further, the temperature setting value TL2 of the cooling water temperature Tw is set to be equal to or higher than the temperature setting value Tt of the thermostat 24.

このようにして、S00において吸熱量制御に係るサブ制御ルーチンが開始されると、S10及びS20、又はS10及びS30の一連の制御ルーチンが繰り返し実行される。
以上のように、本実施形態では、冷却水回路8において冷却水の吸熱量制御を実行することにより、エンジン6に流入する冷却水温度Twが温度設定値TL2以下になるように三方弁32が駆動制御され、熱交換器22において冷却水が排ガスから吸熱する吸熱量をエンジン6の作動状態に応じて制限している。
In this way, when the sub control routine related to the heat absorption amount control is started in S00, a series of control routines of S10 and S20 or S10 and S30 are repeatedly executed.
As described above, in the present embodiment, the three-way valve 32 is controlled so that the cooling water temperature Tw flowing into the engine 6 becomes equal to or lower than the temperature set value TL2 by executing the heat absorption amount control of the cooling water in the cooling water circuit 8. Drive control is performed, and the amount of heat absorbed by the cooling water from the exhaust gas in the heat exchanger 22 is limited according to the operating state of the engine 6.

一方、ランキンサイクル回路4は、冷却水回路8を循環する冷却水を介して、エンジン6の本体とエンジン6から排出される排ガスとの両方から蒸発器10において吸熱し、エンジン6の廃熱を回収、利用している。ここで、上記吸熱量制御によって排ガスからの吸熱量を制限することで、ランキンサイクル回路4、すなわち蒸発器10における冷却水からの吸熱をエンジン6の本体を冷却した後の高温冷却水のみからに制限できる。   On the other hand, the Rankine cycle circuit 4 absorbs heat in the evaporator 10 from both the main body of the engine 6 and the exhaust gas discharged from the engine 6 through the cooling water circulating in the cooling water circuit 8, and the waste heat of the engine 6 is removed. Collected and used. Here, by limiting the amount of heat absorbed from the exhaust gas by controlling the amount of heat absorbed, the heat absorbed from the cooling water in the Rankine cycle circuit 4, that is, the evaporator 10, is only from the high-temperature cooling water after cooling the main body of the engine 6. Can be limited.

これにより、エンジン6の最大出力時にエンジン6で加熱された高温冷却水に要求される吸熱量のみを最大吸熱量として蒸発器10及び凝縮器14の熱容量を設定することができ、排ガスからの吸熱量を考慮しなくて良いため、蒸発器10及び凝縮器14の熱容量を小さくすることができる。従って、冷却水回路8及びランキンサイクル回路4を適正に機能させながら、ランキンサイクル回路4、ひいては廃熱利用装置2の小型化、軽量化が実現できる。   As a result, the heat capacities of the evaporator 10 and the condenser 14 can be set with only the endothermic amount required for the high-temperature cooling water heated by the engine 6 at the maximum output of the engine 6 as the maximum endothermic amount. Since it is not necessary to consider the amount of heat, the heat capacities of the evaporator 10 and the condenser 14 can be reduced. Therefore, it is possible to reduce the size and weight of the Rankine cycle circuit 4 and thus the waste heat utilization device 2 while causing the coolant circuit 8 and the Rankine cycle circuit 4 to function properly.

しかも、この吸熱量制御がエンジン暖機制御に支配されていることにより、エンジン6の本体温度Teが温度設定値TL1以下になってエンジン6の暖機が要求される場合には、吸熱量制御を停止するとともに、ポンプ18を停止してランキンサイクル回路4を機能させないようにし、三方弁32を熱交換器22側に全開とする。これにより、エンジン6の暖機時に冷却水回路4を循環する冷却水がランキンサイクル回路4で吸熱されることが防止されるとともに、排ガスの熱で冷却水を積極的に加熱することができ、エンジン6の暖機を迅速に行うことができる。   In addition, since this heat absorption amount control is governed by the engine warm-up control, when the body temperature Te of the engine 6 becomes equal to or lower than the temperature set value TL1, and the engine 6 needs to be warmed up, the heat absorption amount control is performed. And the pump 18 is stopped so that the Rankine cycle circuit 4 does not function, and the three-way valve 32 is fully opened to the heat exchanger 22 side. Thereby, the cooling water circulating through the cooling water circuit 4 when the engine 6 is warmed up is prevented from being absorbed by the Rankine cycle circuit 4, and the cooling water can be positively heated by the heat of the exhaust gas. The engine 6 can be warmed up quickly.

更には、三方弁32の駆動条件となる冷却水の温度設定値TL2をサーモスタット24で設定されている温度設定値Tt以上とすることで、サーモスタット24による制御が吸熱量制御と干渉することが防止され、吸熱量制御及びエンジン暖機制御をより確実に機能させることができる。
更にまた、吸熱量制御の検出端として、冷却水温度センサ36の代わりに排ガス温度センサ38を使用すれば、蒸発器10に流入する冷却水の最大吸熱量を蒸発器10の熱容量を超えない範囲内に制御するという吸熱量制御の趣旨に鑑みると、温度センサ36を検出端として冷却水温度Twに応じて三方弁32を駆動制御する場合に比して吸熱量制御の制御応答性を大幅に向上させることができる。
Furthermore, by making the temperature setting value TL2 of the cooling water, which is the driving condition of the three-way valve 32, equal to or higher than the temperature setting value Tt set by the thermostat 24, the control by the thermostat 24 is prevented from interfering with the heat absorption amount control. Thus, the heat absorption amount control and the engine warm-up control can be functioned more reliably.
Furthermore, if the exhaust gas temperature sensor 38 is used instead of the cooling water temperature sensor 36 as a detection end of the heat absorption control, the maximum heat absorption amount of the cooling water flowing into the evaporator 10 does not exceed the heat capacity of the evaporator 10. In view of the purpose of the heat absorption amount control in which the heat absorption amount control is performed, the control response of the heat absorption amount control is greatly increased compared to the case where the temperature sensor 36 is used as the detection end and the three-way valve 32 is driven and controlled according to the cooling water temperature Tw. Can be improved.

ところで、エンジン6の最大出力時では冷却水の全流量Ftが増大するが、この全流量Ftの増大によって熱交換器22が冷却水回路8における圧力損失要素となり、冷却水の通水抵抗が増大し、ひいては冷却水回路8における冷却水の循環が阻害され、エンジン6の冷却性能が低下する。
しかし、本実施形態では、いわば冷却水量配分制御を実施することにより、エンジン6の最大出力時に熱交換器22をバイパスすることにより、熱交換器配分流量Fheを略一定或いはそれ以下に制限することができる。従って、熱交換器22における冷却水の通水抵抗によって冷却水回路8の冷却水の循環が阻害されることはなく、エンジン6の冷却性能を維持することができる。
By the way, the total flow rate Ft of the cooling water increases at the maximum output of the engine 6, but the increase in the total flow rate Ft causes the heat exchanger 22 to become a pressure loss element in the cooling water circuit 8 and increase the flow resistance of the cooling water. As a result, the circulation of the cooling water in the cooling water circuit 8 is hindered, and the cooling performance of the engine 6 is deteriorated.
However, in this embodiment, the heat exchanger distribution flow rate Fhe is limited to a substantially constant value or less by bypassing the heat exchanger 22 at the maximum output of the engine 6 by performing the cooling water amount distribution control. Can do. Therefore, the cooling water circulation resistance in the heat exchanger 22 does not hinder the circulation of the cooling water in the cooling water circuit 8, and the cooling performance of the engine 6 can be maintained.

なお、熱交換器22に冷却水が滞留すると滞留した冷却水が排ガス熱で加熱されて沸騰し、冷却水回路8全体に悪影響を及ぼすため、熱交換器配分流量Fheをゼロにせずに所定量を確保することが好ましい。
また、凝縮器14のファン15はECU44に電気的に接続され、外気温度Toと作動流体固有の凝縮温度Tcとの温度差ΔTが温度差設定値ΔTs以上となると駆動される。よって、車速によりΔTがΔTsより小さくなる場合はファン15を停止することにより、ファン15の駆動に係る発電量を低減でき、廃熱利用装置2の省エネ化が促進されて好適である。
If the cooling water stays in the heat exchanger 22, the staying cooling water is heated by the exhaust gas heat and boils and adversely affects the entire cooling water circuit 8. Therefore, the heat exchanger distribution flow rate Fhe is not set to zero, and a predetermined amount is obtained. Is preferably ensured.
The fan 15 of the condenser 14 is electrically connected to the ECU 44, and is driven when the temperature difference ΔT between the outside air temperature To and the condensation temperature Tc inherent to the working fluid becomes equal to or higher than the temperature difference set value ΔTs. Therefore, when ΔT is smaller than ΔTs depending on the vehicle speed, it is preferable to stop the fan 15 to reduce the amount of power generation related to the driving of the fan 15 and promote energy saving of the waste heat utilization device 2.

次に、第2実施形態について説明する。
図4に示すように、当第2実施形態の廃熱利用装置46は、リニア三方弁34に代わる操作端としてリニアダンパ(操作端)48を使用するとともに、バイパス路34を除外したものであり、これらを除いて上記第1実施形態と同一の構成をなしているため、主としてこれら上記第1実施形態と異なる点について説明する。
Next, a second embodiment will be described.
As shown in FIG. 4, the waste heat utilization device 46 of the second embodiment uses a linear damper (operation end) 48 as an operation end instead of the linear three-way valve 34 and excludes the bypass path 34. Except for these, the configuration is the same as that of the first embodiment, and therefore, differences from the first embodiment will be mainly described.

ダンパ48は、排ガス管28内に設けられ、排ガス管28内を熱交換器22が設置される側の通路28a(熱交換器側)と熱交換器22をバイパスする側のバイパス路28b(反熱交換器側)とに区画する仕切壁48aに駆動部48bを介して接続されている。駆動部48bはECU44に電気的に接続されており、ダンパ48は駆動部48bに入力される入力信号に比例して連続的に可変駆動され、熱交換器22における冷却水経路であるチューブと接触する排ガス量を微調整可能に構成されるとともに、冷却水の吸熱量制御の操作端として機能している(排ガス量配分制御)。   The damper 48 is provided in the exhaust gas pipe 28, and the exhaust gas pipe 28 has a passage 28 a (heat exchanger side) on the side where the heat exchanger 22 is installed and a bypass path 28 b (on the side bypassing the heat exchanger 22). It is connected to a partition wall 48a partitioned into a heat exchanger side) via a drive unit 48b. The drive unit 48b is electrically connected to the ECU 44, and the damper 48 is continuously variably driven in proportion to an input signal input to the drive unit 48b, and is in contact with a tube which is a cooling water path in the heat exchanger 22. The exhaust gas amount to be adjusted is finely adjustable and functions as an operation end for controlling the endothermic amount of the cooling water (exhaust gas amount distribution control).

以下、図5,6に示されるフローチャートを参照してECU44で実行される本実施形態のエンジン暖機制御、吸熱量制御について説明する。なお、これら制御の制御ルーチンにおいて第1実施形態と異なるステップはS5,S20,S30のみであり、これら各ステップに代わるステップをそれぞれS5’,S20’,S30’として主に説明し、その他のステップについては説明を省略する。   Hereinafter, the engine warm-up control and the heat absorption amount control of the present embodiment executed by the ECU 44 will be described with reference to the flowcharts shown in FIGS. In the control routine of these controls, the steps different from the first embodiment are only S5, S20, and S30. Steps that replace these steps are mainly described as S5 ′, S20 ′, and S30 ′, respectively, and other steps. Description of is omitted.

エンジン暖機制御においては、S0,S1,S2を経てS4でポンプ18を停止してからS5’に移行する。
S5’では、ダンパ48の可動部48bを通路28a側の流路が最大、すなわち全開となるように強制的に駆動させると同時にバイパス路28b側の流路を全閉するように駆動させる。
In engine warm-up control, after passing through S0, S1, and S2, the pump 18 is stopped in S4, and then the process proceeds to S5 ′.
In S5 ′, the movable portion 48b of the damper 48 is forcibly driven so that the flow path on the passage 28a side is maximum, that is, fully opened, and at the same time, the flow path on the bypass path 28b side is driven to be fully closed.

一方、吸熱量制御においては、S00を経てS10で判定結果が真(Yes)で温度Twが温度設定値TL2以下と判定された場合にはS20’に移行し、判定結果が偽(No)で温度Twが温度設定値TL2より大きいと判定された場合にはS30’に移行する。
S20’に移行した場合には、ダンパ48を通路28a側の流路が開となる方向に駆動させると同時にバイパス通路28b側の流路が閉となる方向に駆動させる。
On the other hand, in the endothermic control, if the determination result is true (Yes) in S10 after S00 and the temperature Tw is determined to be equal to or lower than the temperature set value TL2, the process proceeds to S20 ′, and the determination result is false (No). When it is determined that the temperature Tw is higher than the temperature set value TL2, the process proceeds to S30 ′.
When the process proceeds to S20 ′, the damper 48 is driven in the direction in which the flow path on the side of the passage 28a is opened, and at the same time, the damper 48 is driven in the direction in which the flow path on the side of the bypass path 28b is closed.

一方、S10においてS30’に移行した場合には、ダンパ48をバイパス通路28b側の流路が開となる方向に駆動させると同時に通路28a側の流路が閉となる方向に駆動させる。
このようにして、S0においてエンジン暖機制御に係るメイン制御ルーチンが開始されると、S1からS5’、またはS1及びS3の一連の制御ルーチンが繰り返し実行され、S3において吸熱量制御が実行されると、S00で吸熱量制御に係るサブ制御ルーチンが開始され、S10及びS20’、又はS10及びS30’の一連の制御ルーチンが繰り返し実行される(吸熱量制御手段)。
On the other hand, when the process proceeds to S30 ′ in S10, the damper 48 is driven in a direction in which the flow path on the bypass passage 28b side is opened, and at the same time, is driven in a direction in which the flow path on the passage 28a side is closed.
Thus, when the main control routine related to engine warm-up control is started in S0, a series of control routines of S1 to S5 ′ or S1 and S3 are repeatedly executed, and the heat absorption amount control is executed in S3. Then, a sub control routine related to the heat absorption amount control is started in S00, and a series of control routines of S10 and S20 ′ or S10 and S30 ′ are repeatedly executed (heat absorption amount control means).

このように、上記第1実施形態と同様、第2実施形態に係る廃熱利用装置46においても、ダンパ48を操作端とした吸熱量制御を実行することにより、エンジン6の最大出力時にエンジン6で加熱された冷却水に要求される吸熱量のみを最大吸熱量として蒸発器10及び凝縮器14の熱容量に設定することができる。
また、上記第1実施形態と同様に、吸熱量制御がエンジン暖機制御に支配されていることにより、エンジン6の暖機を迅速に行うことができるとともに、サーモスタット24による制御と吸熱量制御との干渉を防止することで、吸熱量制御をより確実に機能させることができる。
As described above, in the waste heat utilization apparatus 46 according to the second embodiment as well as in the first embodiment, the heat absorption amount control using the damper 48 as the operation end is executed, so that the engine 6 is at the maximum output of the engine 6. It is possible to set the heat capacities of the evaporator 10 and the condenser 14 as the maximum heat absorption amount only for the heat absorption amount required for the cooling water heated in step S2.
Further, as in the first embodiment, the heat absorption control is controlled by the engine warm-up control, so that the engine 6 can be warmed up quickly, and the control by the thermostat 24 and the heat absorption control are performed. By preventing the interference, it is possible to make the heat absorption amount control function more reliably.

特に本実施形態では、いわば排ガス量配分制御を実施することにより、上記第1実施形態の冷却水量配分制御を実施する場合に比して、冷却水の吸熱量をランキンサイクル回路4の蒸発器10の熱容量に合わせてより正確に且つ迅速に制御でき、吸熱量制御の制御精度及び制御応答性を大幅に向上できる。
従って、冷却水回路8及びランキンサイクル回路4を更に適正に機能させながら、蒸発器10及び凝縮器14を含むランキンサイクル回路4、ひいては廃熱利用装置2の小型化、軽量化が実現できる。
In particular, in the present embodiment, the exhaust gas amount distribution control is performed, so that the endothermic amount of the cooling water is converted into the evaporator 10 of the Rankine cycle circuit 4 as compared with the case where the cooling water amount distribution control of the first embodiment is performed. Therefore, it is possible to control more accurately and quickly according to the heat capacity, and to greatly improve the control accuracy and control response of the heat absorption control.
Therefore, the Rankine cycle circuit 4 including the evaporator 10 and the condenser 14 and the waste heat utilization apparatus 2 can be reduced in size and weight while further functioning the cooling water circuit 8 and the Rankine cycle circuit 4 more appropriately.

以上で本発明の実施形態についての説明を終えるが、本発明は上記各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
例えば、上記各実施形態では、操作端である三方弁32やダンパ48は、検出端である冷却水温度センサ36或いは排ガス温度センサ38、及びエンジン温度センサ40の出力に応じて駆動制御されるが、温度センサ36,38,40の代わりにエンジン回転数センサ42を使用しても良く、一般的に回転数センサ42の信号はECU44に既に取り込まれているため、この信号を利用するだけの簡単な構成で吸熱量制御を実行でき、温度センサ36,38,40が不要となって廃熱利用装置2のコスト削減を図ることができる。
Although the description of the embodiment of the present invention has been completed above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.
For example, in each of the above embodiments, the three-way valve 32 and the damper 48 that are operation ends are driven and controlled according to the outputs of the cooling water temperature sensor 36 or the exhaust gas temperature sensor 38 and the engine temperature sensor 40 that are detection ends. The engine speed sensor 42 may be used in place of the temperature sensors 36, 38, and 40. Generally, since the signal of the speed sensor 42 is already taken into the ECU 44, it is easy to use only this signal. The heat absorption amount control can be executed with a simple configuration, and the temperature sensors 36, 38, 40 are not required, and the cost of the waste heat utilization apparatus 2 can be reduced.

本発明の第1実施形態に係る内燃機関の廃熱利用装置を示した模式図である。It is the schematic diagram which showed the waste-heat utilization apparatus of the internal combustion engine which concerns on 1st Embodiment of this invention. 図1のECUで実行されるエンジン暖機制御の制御ルーチンを示したフローチャートである。3 is a flowchart showing a control routine for engine warm-up control executed by the ECU of FIG. 1. 図1のECUで実行される吸熱量制御の制御ルーチンを示したフローチャートである。2 is a flowchart showing a control routine of heat absorption control executed by the ECU of FIG. 1. 本発明の第2実施形態に係る内燃機関の廃熱利用装置を示した模式図である。It is the schematic diagram which showed the waste-heat utilization apparatus of the internal combustion engine which concerns on 2nd Embodiment of this invention. 図4のECUで実行されるエンジン暖機制御の制御ルーチンを示したフローチャートである。5 is a flowchart showing a control routine for engine warm-up control executed by the ECU of FIG. 4. 図4のECUで実行される吸熱量制御の制御ルーチンを示したフローチャートである。5 is a flowchart showing a control routine of heat absorption amount control executed by the ECU of FIG. 4.

符号の説明Explanation of symbols

2,46 廃熱利用装置
4 ランキンサイクル回路
6 エンジン(内燃機関)
8 冷却水回路
10 蒸発器
12 膨張機
14 凝縮器
22 排ガス熱交換器(熱交換器)
24 サーモスタット(切換弁)
28 排ガス管
30 バイパス路(蒸発器バイパス路)
32 リニア三方弁(操作端)
34 バイパス路(熱交換器バイパス路)
36 冷却水温度センサ(温度センサ,検出端)
38 排ガス温度センサ(第2温度センサ,検出端)
42 エンジン回転数センサ(検出端)
48 リニアダンパ(操作端)
2,46 Waste heat utilization equipment 4 Rankine cycle circuit 6 Engine (internal combustion engine)
8 Cooling water circuit 10 Evaporator 12 Expander 14 Condenser 22 Exhaust gas heat exchanger (heat exchanger)
24 Thermostat (switching valve)
28 Exhaust gas pipe 30 Bypass path (evaporator bypass path)
32 Linear three-way valve (operating end)
34 Bypass (heat exchanger bypass)
36 Cooling water temperature sensor (temperature sensor, detection end)
38 Exhaust gas temperature sensor (second temperature sensor, detection end)
42 Engine speed sensor (detection end)
48 Linear damper (operating end)

Claims (6)

冷却水により冷却される内燃機関と、
前記冷却水を熱媒体と熱交換させて前記冷却水を加熱する熱交換器を有し、前記内燃機関の作動状態に応じた流量の冷却水が前記内燃機関、前記熱交換器を順次経由して循環する冷却水回路と、
前記熱交換器を経由した前記冷却水と熱交換して作動流体を加熱する蒸発器、該蒸発器を経由した作動流体を膨張させて駆動力を発生する膨張機、該膨張機を経由した作動流体を凝縮させる凝縮器を含み、該凝縮器を経由した作動流体が前記蒸発器を経由して循環するランキンサイクル回路とを備え、
前記冷却水回路は、前記熱交換器において前記冷却水が前記熱媒体から吸熱する吸熱量を前記内燃機関の作動状態に応じて制限する吸熱量制御手段を有することを特徴とする内燃機関の廃熱利用装置。
An internal combustion engine cooled by cooling water;
A heat exchanger that heats the cooling water by exchanging heat between the cooling water and a heat medium, and the cooling water having a flow rate according to an operating state of the internal combustion engine sequentially passes through the internal combustion engine and the heat exchanger. A circulating cooling water circuit,
An evaporator that heats the working fluid by exchanging heat with the cooling water via the heat exchanger, an expander that generates a driving force by expanding the working fluid that passes through the evaporator, and an operation that passes through the expander A Rankine cycle circuit including a condenser for condensing the fluid, and a working fluid passing through the condenser is circulated through the evaporator,
The cooling water circuit includes an endothermic amount control means for limiting an amount of heat absorbed by the cooling water from the heat medium in the heat exchanger according to an operating state of the internal combustion engine. Heat utilization device.
前記吸熱量制御手段は、前記内燃機関の作動状態を検出する検出端と、該検出端からの信号に応じて前記吸熱量を制限する操作端とからなり、
前記ランキンサイクル回路は、前記作動流体を循環させるべく駆動されるポンプを更に含み、
前記吸熱量制御手段は、前記検出端で検出された前記内燃機関の作動状態が該内燃機関の暖機を要求するものであるとき、前記ポンプの駆動を停止し、且つ前記吸熱量が大きくなるように前記操作端を駆動させることを特徴とする請求項1に記載の内燃機関の廃熱利用装置。
The endothermic amount control means includes a detection end for detecting an operating state of the internal combustion engine, and an operation end for limiting the endothermic amount according to a signal from the detection end,
The Rankine cycle circuit further includes a pump driven to circulate the working fluid;
The heat absorption amount control means stops the driving of the pump and increases the amount of heat absorption when the operating state of the internal combustion engine detected at the detection end requires warming up of the internal combustion engine. 2. The waste heat utilization apparatus for an internal combustion engine according to claim 1, wherein the operation end is driven as described above.
前記冷却水回路は、前記蒸発器をバイパスする蒸発器バイパス路と、該蒸発器バイパス路と前記蒸発器の下流との合流点に設置され、該合流点における冷却水の温度が所定の温度設定値以上のときには前記冷却水を前記蒸発器に通水させる機械式の切換弁とを更に含み、
前記検出端は、前記冷却水回路を循環する冷却水の温度を検出する温度センサであって、
前記操作端は、前記温度センサで検出された冷却水温度が前記所定の温度設定値以上に設定された所定の第2温度設定値より大きいとき前記吸熱量が小さくなるように駆動されることを特徴とする請求項2に記載の内燃機関の廃熱利用装置。
The cooling water circuit is installed at an evaporator bypass passage that bypasses the evaporator, and a junction between the evaporator bypass passage and the downstream of the evaporator, and the temperature of the cooling water at the junction is set to a predetermined temperature. A mechanical switching valve that allows the cooling water to flow through the evaporator when the value is equal to or greater than the value;
The detection end is a temperature sensor that detects the temperature of cooling water circulating in the cooling water circuit,
The operation end is driven so that the endothermic amount becomes small when a coolant temperature detected by the temperature sensor is larger than a predetermined second temperature set value set to be equal to or higher than the predetermined temperature set value. The waste heat utilization apparatus for an internal combustion engine according to claim 2,
前記検出端は、前記熱媒体の温度を検出する第2温度センサであって、
前記操作端は、前記第2温度センサで検出された前記熱媒体の温度に応じて駆動されることを特徴とする請求項2に記載の内燃機関の廃熱利用装置。
The detection end is a second temperature sensor that detects the temperature of the heat medium,
The waste heat utilization device for an internal combustion engine according to claim 2, wherein the operating end is driven in accordance with the temperature of the heat medium detected by the second temperature sensor.
前記冷却水回路は前記熱交換器をバイパスする熱交換器バイパス路を更に含み、
前記操作端は、前記検出端からの信号に応じて、前記内燃機関を経由した冷却水を前記熱交換器バイパス路と前記熱交換器とに配分して流入させ、前記熱交換器へ流入する冷却水量を制限すべく冷却水量配分制御を実施するリニア三方弁であることを特徴とする請求項2から4のいずれか一項に記載の内燃機関の廃熱利用装置。
The cooling water circuit further includes a heat exchanger bypass that bypasses the heat exchanger,
The operating end distributes and flows cooling water that has passed through the internal combustion engine to the heat exchanger bypass and the heat exchanger in accordance with a signal from the detection end, and flows into the heat exchanger The waste heat utilization apparatus for an internal combustion engine according to any one of claims 2 to 4, wherein the apparatus is a linear three-way valve that performs cooling water amount distribution control so as to limit the cooling water amount.
前記熱交換器は、前記内燃機関の排ガスを前記熱媒体とし、前記排ガスの流れる排ガス管内に設置される排ガス熱交換器であって、
前記操作端は、前記検出端からの信号に応じて、前記排ガスを前記排ガス管内において前記熱交換器側と反熱交換器側とに配分して流入させ、前記熱交換器で熱交換される排ガス量を制限すべく排ガス量配分制御を実施するリニアダンパであることを特徴とする請求項2から4のいずれか一項に記載の内燃機関の廃熱利用装置。
The heat exchanger is an exhaust gas heat exchanger installed in an exhaust gas pipe through which the exhaust gas flows, using the exhaust gas of the internal combustion engine as the heat medium,
The operation end distributes the exhaust gas to the heat exchanger side and the counter heat exchanger side in the exhaust gas pipe in accordance with a signal from the detection end, and exchanges heat with the heat exchanger. The waste heat utilization apparatus for an internal combustion engine according to any one of claims 2 to 4, wherein the apparatus is a linear damper that performs exhaust gas amount distribution control to limit the exhaust gas amount.
JP2007016443A 2007-01-26 2007-01-26 Heat recovery system in internal combustion engine Pending JP2008184906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007016443A JP2008184906A (en) 2007-01-26 2007-01-26 Heat recovery system in internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007016443A JP2008184906A (en) 2007-01-26 2007-01-26 Heat recovery system in internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008184906A true JP2008184906A (en) 2008-08-14

Family

ID=39728134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007016443A Pending JP2008184906A (en) 2007-01-26 2007-01-26 Heat recovery system in internal combustion engine

Country Status (1)

Country Link
JP (1) JP2008184906A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120111003A1 (en) * 2008-08-26 2012-05-10 Sanden Corporation Waste Heat Utilization Device for Internal Combustion Engine
CN103423038A (en) * 2013-08-28 2013-12-04 曲有才 Automobile gasoline evaporator and fuel conveying device using same
CN106403361A (en) * 2015-10-18 2017-02-15 李华玉 Type V thermally driven compression-absorption heat pump
WO2018117365A1 (en) * 2016-12-19 2018-06-28 한국전력공사 Waste heat recovery apparatus and control method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120111003A1 (en) * 2008-08-26 2012-05-10 Sanden Corporation Waste Heat Utilization Device for Internal Combustion Engine
US8881523B2 (en) * 2008-08-26 2014-11-11 Sanden Corporation Waste heat utilization device for internal combustion engine
CN103423038A (en) * 2013-08-28 2013-12-04 曲有才 Automobile gasoline evaporator and fuel conveying device using same
CN106403361A (en) * 2015-10-18 2017-02-15 李华玉 Type V thermally driven compression-absorption heat pump
WO2018117365A1 (en) * 2016-12-19 2018-06-28 한국전력공사 Waste heat recovery apparatus and control method therefor
KR101871151B1 (en) * 2016-12-19 2018-07-02 한국전력공사 Waste heat recovery apparatus and controlling method thereof
US10774721B2 (en) 2016-12-19 2020-09-15 Korea Electric Power Corporation Waste heat recovery apparatus and control method therefor

Similar Documents

Publication Publication Date Title
WO2009133620A1 (en) Waste heat utilization device for internal combustion
JP5281587B2 (en) Waste heat utilization device for internal combustion engine
JP5008441B2 (en) Waste heat utilization device for internal combustion engine
JP2009287433A (en) Waste heat utilizing device for internal combustion engine
JP5338730B2 (en) Waste heat regeneration system
US8333068B2 (en) Exhaust heat recovery device
JP2009236014A (en) Waste heat recovery system
JP5338731B2 (en) Waste heat regeneration system
JP5053922B2 (en) Waste heat utilization device for internal combustion engine
JP2008231980A (en) Waste heat utilization device for internal combustion engine
JP2005036787A (en) System for recovering waste heat of heating unit
JP2011102577A (en) Waste heat regeneration system
JP2005201067A (en) Rankine cycle system
JP2009133266A (en) Waste heat utilization device for internal combustion engine
WO2013065371A1 (en) Waste-heat recovery system
JP2007327668A (en) Refrigerating device comprising waste heat utilization device
WO2012039225A1 (en) Rankine cycle device
JP2008184906A (en) Heat recovery system in internal combustion engine
WO2009133619A1 (en) Waste heat utilization device for internal combustion
JP2013113192A (en) Waste heat regeneration system
JP4140543B2 (en) Waste heat utilization equipment
JP2008133728A (en) Waste heat utilization device for internal combustion engine
WO2013002018A1 (en) Rankine cycle
JP6495608B2 (en) Waste heat recovery device
JP5084233B2 (en) Waste heat utilization device for internal combustion engine