JP2008182783A - Coil switching device and switching method of three-phase ac motor - Google Patents
Coil switching device and switching method of three-phase ac motor Download PDFInfo
- Publication number
- JP2008182783A JP2008182783A JP2007012370A JP2007012370A JP2008182783A JP 2008182783 A JP2008182783 A JP 2008182783A JP 2007012370 A JP2007012370 A JP 2007012370A JP 2007012370 A JP2007012370 A JP 2007012370A JP 2008182783 A JP2008182783 A JP 2008182783A
- Authority
- JP
- Japan
- Prior art keywords
- winding
- phase
- turned
- semiconductor switch
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 6
- 239000004065 semiconductor Substances 0.000 claims abstract description 107
- 238000004804 winding Methods 0.000 claims description 160
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 11
- 230000001360 synchronised effect Effects 0.000 claims description 10
- 230000002159 abnormal effect Effects 0.000 claims description 5
- 239000003990 capacitor Substances 0.000 claims description 3
- 230000005856 abnormality Effects 0.000 abstract description 6
- 230000006866 deterioration Effects 0.000 abstract description 2
- 230000001052 transient effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 230000002457 bidirectional effect Effects 0.000 description 4
- 230000002411 adverse Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
Images
Landscapes
- Control Of Ac Motors In General (AREA)
Abstract
Description
本発明は、3相交流電動機の巻線を切替えることによって、速度制御範囲を拡大する3相交流電動機の巻線切替装置に関するものであり、車両駆動、工作機械主軸駆動、サーボ装置を含む産業分野を対象とするものである。 The present invention relates to a winding switching device for a three-phase AC motor that expands the speed control range by switching the windings of the three-phase AC motor, and includes industrial fields including vehicle drive, machine tool spindle drive, and servo device. It is intended for.
従来から、電動機の半導体を用いた巻線切替の考え方は存在している。従来の技術例として、三相の整流ダイオードブリッジからなる整流部と、整流部によって作られた直流を短絡または開放する半導体スイッチからなるスイッチ部と、スイッチ部のスイッチング動作によって発生するサージエネルギーを吸収するスナバ部からなる電子スイッチがある。(例えば、特許文献1参照)。また、これとは異なり、スイッチ部を交流側に設置して実現しているものもある(例えば、特許文献2参照)。
図4において、1はインバータ、2は交流電動機、12は巻線切替部である。交流電動機2の巻線は低速運転用巻線と高速運転用巻線があり、巻線の中間と終端にタップを出し、これを巻線切替部12に接続する。巻線切替部12のSW1およびSW2をオンまたはオフすることで、低速運転用巻線と高速運転用巻線の切替が可能になる。
図5において、1はインバータ、2は交流電動機、12は巻線切替部である。交流電動機2の巻線は低速運転用巻線と高速運転用巻線があり、巻線の中間と終端にタップを出し、インバータ1と交流電動機2の間に双方向半導体スイッチで構成された巻線切替部12を設ける。巻線切替部の双方向半導体スイッチは、インバータ1および交流電動機2の各相に接続される。高速運転用巻線に接続された3つの双方向半導体スイッチと低速運転用巻線に接続された3つの双方向半導体スイッチをオンまたはオフさせることで、低速運転用巻線と高速運転用巻線の切替が可能になる。
このように、従来の装置は、半導体スイッチを用いて交流電動機の巻線切替を実現するものである。
In FIG. 4, 1 is an inverter, 2 is an AC motor, and 12 is a winding switching unit. The AC motor 2 has a low-speed operation winding and a high-speed operation winding. Taps are provided at the middle and the end of the winding and connected to the winding switching unit 12. By switching SW1 and SW2 of the winding switching unit 12 on or off, switching between the low speed operation winding and the high speed operation winding becomes possible.
In FIG. 5, 1 is an inverter, 2 is an AC motor, and 12 is a winding switching unit. The winding of the AC motor 2 includes a winding for low speed operation and a winding for high speed operation, taps are provided at the middle and the end of the winding, and a winding constituted by a bidirectional semiconductor switch between the inverter 1 and the AC motor 2. A line switching unit 12 is provided. The bidirectional semiconductor switch of the winding switching unit is connected to each phase of the inverter 1 and the AC motor 2. By turning on or off the three bidirectional semiconductor switches connected to the high-speed operation winding and the three bidirectional semiconductor switches connected to the low-speed operation winding, the low-speed operation winding and the high-speed operation winding Can be switched.
As described above, the conventional device realizes the switching of the winding of the AC motor using the semiconductor switch.
従来の巻線切替装置は、巻線切替スイッチを半導体素子で構成しており、高速の切替が可能である。しかし、半導体スイッチの導通損失が問題になり、特に大容量化したときの損失による効率低下が問題であった。
本発明はこのような問題点に鑑みてなされたものであり、半導体スイッチと機械的スイッチを組み合わせることで、半導体スイッチの特長である高速の切替を実現しつつ、問題点である導通損失による効率低下を解決できる巻線切替装置と方法を提供することを目的とする。また巻線切替信号そのものはインバータ主回路に用いるIGBTの駆動に用いるゲート信号と同じ構成の信号生成手段を用いてゲートドライブ回路の統一化を図る。またインバータ装置に異常を検出した場合でも瞬時に永久磁石形同期電動機が拘束状態となることを防止し負荷機械に悪影響を及ぼさないようにすることを目的とする。
In the conventional winding switching device, the winding switching switch is formed of a semiconductor element, and high-speed switching is possible. However, the conduction loss of the semiconductor switch becomes a problem, and in particular, the efficiency reduction due to the loss when the capacity is increased.
The present invention has been made in view of such problems. By combining a semiconductor switch and a mechanical switch, high-speed switching, which is a feature of the semiconductor switch, is achieved, and efficiency due to conduction loss, which is a problem. An object of the present invention is to provide a winding switching device and method capable of solving the degradation. Further, the winding switching signal itself uses a signal generating means having the same configuration as the gate signal used for driving the IGBT used in the inverter main circuit, thereby unifying the gate drive circuit. It is another object of the present invention to prevent a permanent magnet synchronous motor from being in a restrained state instantaneously even when an abnormality is detected in an inverter device so as not to adversely affect a load machine.
上記問題を解決するため、本発明は、次のように構成したのである。
各相の巻線が複数の巻線からなり、前記複数の巻線を互いに連結した連結端子と各相巻線の両端子とをモータ外部に設けた交流電動機と、前記連結端子を適宜切替える巻線切替部と、前記交流電動機に可変周波の可変電圧を供給するインバータと、前記巻線切替部が、前記各相巻線の一端を前記インバータに接続し、他端と前記連結端子とを各相毎に各々3相整流部の交流側入力端子に接続した複数の3相整流部と、前記複数の3相整流部の直流出力側の両端を開閉するように設けた半導体スイッチと、前記半導体スイッチを駆動するドライブ回路と、前記複数の3相整流部の各々の直流出力側の一端に、前記半導体スイッチがオフの時に前記3相整流部から流れる電流がスナバ回路に流れ、前記半導体スイッチがオンの時に、前記スナバ回路から前記半導体スイッチに逆流しない方向に設けられたダイオードを介して前記3相整流部の直流出力側を前記スナバ回路に接続した3相交流電動機の巻線切替装置において、
前記連結端子をそれぞれ開閉できるように3相整流部入力と並列接続した機械的スイッチ(MSW1、MSW2)と、
前記機械的スイッチ(MSW1、MSW2)を開閉するための駆動信号生成部(114)とを備えたことを特徴とするものである。
また請求項1において、前記機械的スイッチ(MSW1、MSW2)はインバータ部の筐体に内蔵したことを特徴とするものである。
また請求項1において、前記機械的スイッチは電磁接触端子部をガスで密封したことを特徴とするものである。
また請求項1において、前記駆動信号生成部(114)は、前記連結端子を切替える場合に、オンの場合はまず前記連結端子を開閉する半導体スイッチをオンさせ、ある一定時間の後に前記連結端子を開閉する機械的スイッチをオンさせ、オフの場合はまず前記機械的スイッチをオフさせ、ある一定時間の後に半導体スイッチをオフさせる動作シーケンスを生成する機能を有したことを特徴とするものである。
また請求項1において、前記駆動信号生成部(114)は、3相交流電動機の低速運転をする低速巻線から高速運転をする高速巻線に切り替える際は、半導体スイッチ(SSW1)をオンし、ある遅れの後に前記半導体スイッチ(SSW1)と同一の連結端子に設けた機械的スイッチ(MSW1)をオンし、その後半導体スイッチ(SSW1)をオフし、3相交流電動機の高速運転をする高速巻線から低速運転をする低速巻線に切り替える際は、通電していた機械的スイッチ(MSW1)をオフすると同時に半導体スイッチ(SSW2)をオンし、ある遅れの後に機械的スイッチ(MSW2)をオンし、その後半導体スイッチ(SSW2)をオフする信号を生成することを特徴とするものである。
また請求項1において、前記スナバ回路は、抵抗とコンデンサとの並列回路としたものである。
また請求項1において、前記交流電動機を界磁磁石を回転子鉄心内部に埋め込んだ同期電動機としたものである。
また請求項1において、前記駆動信号生成部(114)は、前記連結端子を低速巻線から高速巻線に切り替える場合、オフしていた低速巻線側の半導体スイッチ(SSW2)をオンさせ、この時点では半導体スイッチ(SSW2)と機械的スイッチ(MSW2)が両方ともオンしている状態とし、その後機械的スイッチ(MSW2)をオフさせ、一旦半導体スイッチ(SSW2)だけで導通している状態とし、その後半導体スイッチ(SSW2)をオフさせると同時に半導体スイッチ(SSW1)をオンさせ、その後機械的スイッチ(MSW1)をオンし、その後半導体スイッチ(SSW1)をオフすることを特徴とするものである。
また請求項1において、前記駆動信号生成部(114)は、前記連結端子を高速巻線から低速巻線に切り替える場合、オフしていた高速巻線側の半導体スイッチ(SSW1)をオンさせ、この時点では半導体スイッチ(SSW1)と機械的スイッチ(MSW1)が両方ともオンしている状態とし、その後機械的スイッチ(MSW1)をオフさせ、一旦半導体スイッチ(SSW1)だけで導通している状態とし、その後半導体スイッチ(SSW1)をオフさせると同時に半導体スイッチ(SSW2)をオンさせ、その後機械的スイッチ(MSW2)をオンし、その後半導体スイッチ(SSW2)をオフすることを特徴とするものである。
また請求項1において、前記交流電動機が永久磁石形同期電動機の場合に巻線切替装置が異常状態を検出すると直ちに前記連結端子を開閉する前記半導体スイッチ(SSW1、SSW2)と前記機械的スイッチ(MSW1、MSW2)を全て開放することを特徴とするものである。
また請求項10において、前記異常状態はインバータ部主回路のスイッチング素子の上下短絡、地絡故障、商用電源の停電のいずれかであることを特徴とするものである。
また、各相の巻線が複数の巻線からなり、前記複数の巻線を互いに連結した連結端子と各相巻線の両端子とをモータ外部に設けた交流電動機と、前記連結端子を適宜切替える巻線切替部と、前記交流電動機に可変周波の可変電圧を供給するインバータと、前記巻線切替部が、前記各相巻線の一端を前記インバータに接続し、他端と前記連結端子とを各相毎に各々3相整流部の交流側入力端子に接続した複数の3相整流部と、前記複数の3相整流部の直流出力側の両端を開閉するように設けた半導体スイッチと、前記半導体スイッチを駆動するドライブ回路と、前記複数の3相整流部の各々の直流出力側の一端に、前記半導体スイッチがオフの時に前記3相整流部から流れる電流がスナバ回路に流れ、前記半導体スイッチがオンの時に、前記スナバ回路から前記半導体スイッチに逆流しない方向に設けられたダイオードを介して前記3相整流部の直流出力側を前記スナバ回路に接続した3相交流電動機の巻線切替装置の巻線切替方法において、
前記連結端子をそれぞれ開閉できるように機械的スイッチ(MSW1、MSW2)を3相整流部入力と並列接続し、
駆動信号生成部(114)から前記前記機械的スイッチ(MSW1、MSW2)へ開閉するための駆動信号を出力することを特徴とするものである。
In order to solve the above problem, the present invention is configured as follows.
Each phase winding is composed of a plurality of windings, and a connecting terminal that connects the plurality of windings to each other and an AC motor that has both terminals of each phase winding provided outside the motor, and a winding that switches the connecting terminals as appropriate. A line switching unit, an inverter for supplying a variable voltage of a variable frequency to the AC motor, and the winding switching unit connects one end of each phase winding to the inverter, and connects the other end and the connection terminal to each other. A plurality of three-phase rectifiers each connected to an AC-side input terminal of a three-phase rectifier for each phase; a semiconductor switch provided to open and close both ends on the DC output side of the plurality of three-phase rectifiers; and the semiconductor A current that flows from the three-phase rectifier when the semiconductor switch is off flows to a snubber circuit at one end on the DC output side of each of the drive circuit that drives the switch and the plurality of three-phase rectifiers, When on, said snubber times In winding switching device of the three-phase AC motor connected to the DC output side of the three-phase rectifier unit in the snubber circuit via a diode which is provided in a direction which does not flow back to the semiconductor switch from,
Mechanical switches (MSW1, MSW2) connected in parallel with the three-phase rectifier input so that the connection terminals can be opened and closed, respectively;
And a drive signal generator (114) for opening and closing the mechanical switches (MSW1, MSW2).
Further, in the present invention, the mechanical switches (MSW1, MSW2) are built in the casing of the inverter unit.
The mechanical switch is characterized in that the electromagnetic contact terminal portion is sealed with gas.
Further, in claim 1, when switching the connection terminal, the drive signal generation unit (114) first turns on a semiconductor switch that opens and closes the connection terminal when the connection terminal is on, and turns on the connection terminal after a certain period of time. A mechanical switch that opens and closes is turned on. When the mechanical switch is turned off, the mechanical switch is turned off first, and a function of generating an operation sequence for turning off the semiconductor switch after a certain period of time is provided.
Further, in claim 1, the drive signal generator (114) turns on the semiconductor switch (SSW1) when switching from the low-speed winding for low-speed operation of the three-phase AC motor to the high-speed winding for high-speed operation, After a certain delay, the mechanical switch (MSW1) provided at the same connection terminal as the semiconductor switch (SSW1) is turned on, and then the semiconductor switch (SSW1) is turned off to perform high-speed operation of the three-phase AC motor. When switching from low speed winding to low speed winding, turn off the mechanical switch (MSW1) that was energized, turn on the semiconductor switch (SSW2) at the same time, turn on the mechanical switch (MSW2) after a certain delay, Thereafter, a signal for turning off the semiconductor switch (SSW2) is generated.
The snubber circuit may be a parallel circuit of a resistor and a capacitor.
Further, in claim 1, the AC motor is a synchronous motor in which a field magnet is embedded in a rotor core.
Further, in claim 1, when the connection terminal is switched from the low-speed winding to the high-speed winding, the drive signal generation unit (114) turns on the semiconductor switch (SSW2) on the low-speed winding that has been turned off. At that time, both the semiconductor switch (SSW2) and the mechanical switch (MSW2) are in the on state, and then the mechanical switch (MSW2) is turned off, and only the semiconductor switch (SSW2) is in a conductive state. Thereafter, the semiconductor switch (SSW2) is turned off and at the same time the semiconductor switch (SSW1) is turned on, then the mechanical switch (MSW1) is turned on, and then the semiconductor switch (SSW1) is turned off.
Further, in claim 1, when the connection terminal is switched from the high-speed winding to the low-speed winding, the drive signal generation unit (114) turns on the semiconductor switch (SSW1) on the high-speed winding that has been turned off. At that time, both the semiconductor switch (SSW1) and the mechanical switch (MSW1) are turned on, then the mechanical switch (MSW1) is turned off, and the semiconductor switch (SSW1) is once turned on. Thereafter, the semiconductor switch (SSW1) is turned off, and at the same time, the semiconductor switch (SSW2) is turned on, then the mechanical switch (MSW2) is turned on, and then the semiconductor switch (SSW2) is turned off.
Further, in claim 1, when the AC motor is a permanent magnet type synchronous motor, the semiconductor switch (SSW1, SSW2) and the mechanical switch (MSW1) that open and close the connection terminal as soon as the winding switching device detects an abnormal state. , MSW2) are all opened.
In addition, in
Further, each phase winding is composed of a plurality of windings, and a connection terminal that connects the plurality of windings to each other and both terminals of each phase winding are provided outside the motor, and the connection terminal is appropriately connected A winding switching unit that switches, an inverter that supplies a variable voltage of a variable frequency to the AC motor, and the winding switching unit connects one end of each phase winding to the inverter, and the other end and the connection terminal A plurality of three-phase rectification units connected to the AC side input terminals of the three-phase rectification units for each phase, and a semiconductor switch provided so as to open and close both ends on the DC output side of the plurality of three-phase rectification units, A current that flows from the three-phase rectifier when the semiconductor switch is off flows to a snubber circuit at one end on the DC output side of each of the drive circuit that drives the semiconductor switch and the plurality of three-phase rectifiers, and the semiconductor When the switch is on, In the winding switching method of the winding switching unit of the three-phase AC motor connected to the DC output side of the three-phase rectifier unit in the snubber circuit via a diode provided from bus circuit in a direction that does not flow back to the semiconductor switch,
Mechanical switches (MSW1, MSW2) are connected in parallel with the three-phase rectifier input so that the connection terminals can be opened and closed,
A drive signal for opening and closing the mechanical switch (MSW1, MSW2) is output from the drive signal generation unit (114).
本発明によると、高速運転用巻線と低速運転用巻線を有する交流電動機の巻線切替を、その速度に応じてインバータ内部で設定することができるとともに、切替信号そのものはインバータ主回路に用いるIGBTの駆動に用いるゲート信号と同じ構成の信号生成手段を用いることができ、回路の統一化を図ることができる。
また、半導体スイッチと機械的スイッチを組み合わせることで、半導体スイッチの特長である高速の切替を実現しつつ、問題点である導通損失による効率低下を解決できる巻線切替装置を具備した3相交流電動機の巻線切替装置を実現できる。
また、交流電動機が同期電動機の場合に、インバータが何らかの不具合によって同期電動機が拘束状態となるような異常状態を、巻線切替部を全て開放することで回避することができる。
According to the present invention, the switching of the AC motor having the high-speed operation winding and the low-speed operation winding can be set inside the inverter according to the speed, and the switching signal itself is used for the inverter main circuit. Signal generating means having the same configuration as the gate signal used for driving the IGBT can be used, and the circuit can be unified.
In addition, by combining a semiconductor switch and a mechanical switch, a three-phase AC motor equipped with a winding switching device that can solve the problem of reduced efficiency due to conduction loss while realizing high-speed switching, which is a feature of the semiconductor switch. Can be realized.
In addition, when the AC motor is a synchronous motor, an abnormal state in which the synchronous motor becomes in a restrained state due to some malfunction of the inverter can be avoided by opening all the winding switching units.
以下、本発明の実施の形態について図を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は、本発明のインバータ装置で低速運転用巻線と高速運転用巻線を有する交流電動機を駆動する際の構成図である。図において1はインバータ部、2は交流電動機、12は巻線切替部である。Pはインバータ部1の正側入力端子、Nは負側入力端子であり、PN間には直流電源が接続される。交流電動機2の巻線は低速運転用巻線と高速運転用巻線がある。巻線の中間(TU2、TV2、TW2)と両端に端子(TU1、TV1、TW1、TU3、TV3、TW3)を出し、中間端子(TU2、TV2、TW2)と交流電動機の巻線の一端(TU3、TV3、TW3)を巻線切替部12のそれぞれの三相整流部(3、4)の交流側へ接続する。端子U1−U3,V1−V3,W1−W3間の巻線全てを使う場合が低速運転用巻線となる。一方、端子U1−U2,V1−V2,W1−W2間の巻線だけを使う場合が高速運転用巻線となる。永久磁石形同期電動機の誘起電圧は速度に比例して大きくなるため、高速運転するためには誘起電圧を小さくする必要があるためである。低速運転用巻線の場合は中間端子(TU2、TV2、TW2)を全て開放すると共に端子(TU3、TV3、TW3)を全て接続しY結線を構成する。他方、高速運転用巻線の場合は端子(TU3、TV3、TW3)を全て開放すると共に中間端子(TU2、TV2、TW2)を全て接続しY結線を構成する。 FIG. 1 is a configuration diagram when an AC motor having a low-speed operation winding and a high-speed operation winding is driven by the inverter device of the present invention. In the figure, 1 is an inverter unit, 2 is an AC motor, and 12 is a winding switching unit. P is a positive input terminal of the inverter unit 1, N is a negative input terminal, and a DC power source is connected between PN. The AC motor 2 has a low-speed operation winding and a high-speed operation winding. Intermediate terminals (TU2, TV2, TW2) and terminals (TU1, TV1, TW1, TU3, TV3, TW3) are provided at both ends of the winding, and intermediate terminals (TU2, TV2, TW2) and one end of the AC motor winding (TU3) , TV3, TW3) are connected to the AC side of each of the three-phase rectification units (3, 4) of the winding switching unit 12. The case where all the windings between the terminals U1-U3, V1-V3, W1-W3 are used is the low-speed operation winding. On the other hand, when only the windings between the terminals U1-U2, V1-V2, and W1-W2 are used, the winding for high-speed operation is used. This is because the induced voltage of the permanent magnet type synchronous motor increases in proportion to the speed, so that it is necessary to reduce the induced voltage for high speed operation. In the case of a low-speed operation winding, all intermediate terminals (TU2, TV2, TW2) are opened and all terminals (TU3, TV3, TW3) are connected to form a Y connection. On the other hand, in the case of a winding for high speed operation, all terminals (TU3, TV3, TW3) are opened and all intermediate terminals (TU2, TV2, TW2) are connected to form a Y connection.
インバータ部1および巻線切替部12を駆動するための制御回路部100は、CPU110、巻線切替信号生成部111、PWM信号生成部112、ゲートドライブ回路113、機械的スイッチMSW1、MSW2の駆動信号を生成する駆動信号生成部114から構成される。機械的スイッチMSW1、MSW2は例えば、3相各相を同時に開閉する電磁接触器である。接触端子部の劣化を防止し信頼性を向上させた電磁接触端子部をガスで密封したものを使うこともできる。機械的スイッチ(MSW1、MSW2)の構成はインバータ部の筐体に内蔵させ、巻線切替装置全体をより小形に構成できる。
またゲートドライブ回路113はインバータ部1の主回路スイッチング素子であるIGBTと巻線切替部12の半導体スイッチSSW1およびSSW2の駆動信号を生成し、主回路スイッチング素子と巻線切替部12の半導体スイッチSSW1およびSSW2のゲートへ出力する。また機械的スイッチMSW1、MSW2の駆動信号を生成する駆動信号生成部114は巻線切替部12の機械的スイッチMSW1およびMSW2の駆動信号を生成し、その駆動信号を機械的スイッチMSW1およびMSW2へ出力する。
なお、各種用途に応じてインバータ装置の上位制御装置の指令に従って、CPU100は巻線切替信号生成部111へ巻線切替信号を出力する。インバータ装置自身がアプリケーションプログラムソフトウェアを備えている場合は上位制御装置を持たずにインバータ装置が交流電動機の位置や速度情報を基にして巻線切替信号生成部111へ巻線切替信号を出力する。
The control circuit unit 100 for driving the inverter unit 1 and the winding switching unit 12 includes a
The
Note that the CPU 100 outputs a winding switching signal to the winding switching
本発明が従来技術と異なる部分は巻線切替部12において、半導体スイッチSSW1、SSW2だけでなく機械的スイッチMSW1、MSW2を巻線の中間端子(TU2、TV2、TW2)と巻線の一端(TU3、TV3、TW3)をそれぞれ直接短絡できるように三相整流部入力と並列接続した部分とこれら機械的スイッチMSW1、MSW2を駆動するためのMSW1、MSW2駆動信号生成部114を備えた部分である。
巻線切替部12は、三相整流部(3、4)、三相整流部出力端を開閉する半導体スイッチ(SSW1、SSW2)、スナバ回路(5、6)、スナバ回路(5、6)から半導体スイッチ(SSW1、SSW2)への逆流電流防止のためのダイオード(7〜10)、機械的スイッチ(MSW1、MSW2)から構成される。スナバ回路(5、6)は、抵抗とコンデンサとの並列回路で構成される。
The present invention is different from the prior art in a winding switching unit 12 in which not only the semiconductor switches SSW1 and SSW2 but also mechanical switches MSW1 and MSW2 are connected to intermediate terminals (TU2, TV2, TW2) of the winding and one end of the winding (TU3). , TV3, TW3) are connected in parallel with the input of the three-phase rectifier so that they can be directly short-circuited, and are provided with MSW1, MSW2
The winding switching unit 12 includes a three-phase rectification unit (3, 4), a semiconductor switch (SSW1, SSW2) that opens and closes the output terminal of the three-phase rectification unit, a snubber circuit (5, 6), and a snubber circuit (5, 6). It comprises a diode (7-10) for preventing a backflow current to the semiconductor switches (SSW1, SSW2) and mechanical switches (MSW1, MSW2). The snubber circuit (5, 6) is composed of a parallel circuit of a resistor and a capacitor.
また、図1は交流電動機の巻線が2分割された状態の場合を示しているが、分割数が増える場合は、それに対応した数の巻線切替部を増設することで対応でき、図1の2分割の構成に限定するものではない。また交流電動機は誘導電動機、永久磁石を用いた同期電動機(回転子鉄心内部に磁石を埋め込んだタイプ、回転子表面に磁石を配置したタイプ)どちらでも本発明は適用できる。 FIG. 1 shows a case where the winding of the AC motor is divided into two. However, when the number of divisions increases, it can be dealt with by adding a corresponding number of winding switching units. However, the present invention is not limited to the two-divided configuration. In addition, the present invention can be applied to either an induction motor or a synchronous motor using a permanent magnet (a type in which a magnet is embedded in a rotor core, or a type in which a magnet is arranged on a rotor surface).
図2は本発明のインバータ装置における、巻線切替動作時のシーケンスを示す。一般に、半導体スイッチ(SSW1、SSW2)がゲート(ベース)信号を入力して数μsオーダで動作するのに対し、機械的スイッチでは数ms〜数百msの動作遅れが発生するため、まずオンするべき巻線に対応した半導体スイッチをオンし、ある遅れの後に機械的スイッチをオンする。図の例では、低速巻線から高速巻線に切り替える際、まず時刻t1で半導体スイッチSSW1をオンし、ある遅れの後に時刻t2でMSW1をオンする。機械的スイッチMSW1を時刻t2でオンした後、半導体スイッチSSW1を時刻t3でオフすることで、半導体スイッチSSW1で発生する導通損失をなくすことができる。
次に高速巻線から低速巻線に切り替える際、まずこれまで通電していた機械的スイッチMSW1を時刻t4でオフする。時刻t4で同時に半導体スイッチSSW2をオンし、ある遅れの後に機械的スイッチMSW2が時刻t5でオンする。機械的スイッチMSW2を時刻t5でオンした後、半導体スイッチSSW2を時刻t6でオフすることで半導体スイッチSSW2で発生する導通損失をなくすことができる。
FIG. 2 shows a sequence during the coil switching operation in the inverter device of the present invention. In general, the semiconductor switches (SSW1, SSW2) operate in the order of several μs by inputting gate (base) signals, whereas mechanical switches cause an operation delay of several ms to several hundred ms. The semiconductor switch corresponding to the power winding is turned on, and the mechanical switch is turned on after a certain delay. In the example shown in the figure, when switching from the low-speed winding to the high-speed winding, first, the semiconductor switch SSW1 is turned on at time t1, and MSW1 is turned on at time t2 after a certain delay. After the mechanical switch MSW1 is turned on at time t2, the semiconductor switch SSW1 is turned off at time t3, so that conduction loss generated in the semiconductor switch SSW1 can be eliminated.
Next, when switching from the high-speed winding to the low-speed winding, first, the mechanical switch MSW1 that has been energized so far is turned off at time t4. At time t4, the semiconductor switch SSW2 is turned on at the same time, and after a certain delay, the mechanical switch MSW2 is turned on at time t5. After the mechanical switch MSW2 is turned on at time t5, the semiconductor switch SSW2 is turned off at time t6, so that the conduction loss generated in the semiconductor switch SSW2 can be eliminated.
図3は本発明のインバータ装置における、巻線切替動作時の別のシーケンスを示す。図2の動作が基本的な動作であるが、機械的スイッチMSW1およびMSW2をオフするときの動作遅れを考慮する場合、図3のシーケンスにすることで、機械的スイッチMSW1およびMSW2のオフ時の動作遅れの問題を解決できる。図の例では、低速巻線から高速巻線に切り替える際、オフしていた低速巻線側の半導体スイッチSSW2を時刻t1でオンさせ、この時点(時刻t1)では半導体スイッチSSW2と機械的スイッチMSW2が両方ともオンしている状態となる。ここで先に時刻t2で機械的スイッチMSW2をオフさせ、一旦半導体スイッチSSW2だけで導通している状態(区間[t2,t3])にする。この後、半導体スイッチSSW2を時刻t3でオフさせると同時に半導体スイッチSSW1をオンさせることで、半導体スイッチのみによる切り替えが可能になり、オフする際の機械的スイッチの動作遅れの問題を解決できる。その後時刻t4で機械的スイッチMSW1をオンし、その後時刻t5で半導体スイッチSSW1をオフする。 FIG. 3 shows another sequence during the winding switching operation in the inverter device of the present invention. The operation of FIG. 2 is a basic operation. However, when considering the operation delay when turning off the mechanical switches MSW1 and MSW2, the sequence shown in FIG. 3 is used to turn off the mechanical switches MSW1 and MSW2. Can solve the problem of operation delay. In the example of the figure, when switching from the low-speed winding to the high-speed winding, the semiconductor switch SSW2 on the low-speed winding side that was turned off is turned on at time t1, and at this time (time t1), the semiconductor switch SSW2 and the mechanical switch MSW2 Are both turned on. Here, the mechanical switch MSW2 is first turned off at the time t2, and the semiconductor switch SSW2 alone is once in a conductive state (section [t2, t3]). Thereafter, the semiconductor switch SSW2 is turned off at the time t3 and at the same time the semiconductor switch SSW1 is turned on, so that the switching can be performed only by the semiconductor switch, and the problem of the operation delay of the mechanical switch at the time of turning off can be solved. Thereafter, the mechanical switch MSW1 is turned on at time t4, and then the semiconductor switch SSW1 is turned off at time t5.
高速巻線から低速巻線に切り替える際にも、同様にして図3のように半導体スイッチのみで切り替える動作を行うことができる。すなわち、高速巻線から低速巻線に切り替える際、オフしていた高速巻線側の半導体スイッチSSW1を時刻t6でオンさせ、この時点(時刻t6)では半導体スイッチSSW1と機械的スイッチMSW1が両方ともオンしている状態となる。ここで先に時刻t7で機械的スイッチMSW1をオフさせ、一旦半導体スイッチSSW1だけで導通している状態(区間[t7,t8])にする。この後、半導体スイッチSSW1を時刻t8でオフさせると同時に半導体スイッチSSW2をオンさせることで、半導体スイッチのみによる切り替えが可能になり、オフする際の機械的スイッチの動作遅れの問題を解決できる。時刻t9で機械的スイッチMSW2をオンし、その後時刻t10で半導体スイッチSSW2をオフする。
このように、本発明では、巻線切替を必要とする交流電動機の駆動用のインバータ装置において、巻線切替部には半導体スイッチと機械的スイッチの両方を備えることで、半導体スイッチの高速切替動作と、機械的スイッチの低損失の両方の長所を併せ持つことができる。
Similarly, when switching from the high-speed winding to the low-speed winding, the switching operation can be performed only by the semiconductor switch as shown in FIG. That is, when switching from the high-speed winding to the low-speed winding, the semiconductor switch SSW1 on the high-speed winding side that was turned off is turned on at time t6, and at this time (time t6), both the semiconductor switch SSW1 and the mechanical switch MSW1 are It will be on. Here, at time t7, the mechanical switch MSW1 is first turned off, and the semiconductor switch SSW1 alone is once in a conductive state (section [t7, t8]). Thereafter, the semiconductor switch SSW1 is turned off at the time t8 and at the same time the semiconductor switch SSW2 is turned on, so that switching by only the semiconductor switch becomes possible, and the problem of the operation delay of the mechanical switch at the time of turning off can be solved. At time t9, the mechanical switch MSW2 is turned on, and then at time t10, the semiconductor switch SSW2 is turned off.
As described above, according to the present invention, in the inverter device for driving an AC motor that requires winding switching, the winding switching unit includes both the semiconductor switch and the mechanical switch, so that the high-speed switching operation of the semiconductor switch is performed. And the advantages of both low loss and mechanical switch.
また、本発明のインバータ装置において、巻線切替部を電動機の保護装置として動作させることができる。インバータ装置において発生する問題の多くは、主回路パワー半導体素子(IGBT)の故障であり、たとえば、ある相のIGBTの上下短絡が発生した場合、交流電動機2が永久磁石を内蔵する同期電動機であると、瞬時に電動機がロック状態になり、電動機が接続される機械側に悪影響を及ぼす。本インバータ装置では、一般的にインバータ装置で実用化されているIGBTの上下短絡防止機能が動作すると直ちに、CPU110を介して巻線切替部12中の半導体スイッチSSW1、SSW2、機械的スイッチMSW1、MSW2を全てオフ状態にすることで、電動機をフリーラン状態(回転子の慣性モーメントにより惰力で回転しているいわゆる惰走状態)にすることができ、電動機がロックすることなく安全に自然減速することができる。この保護機能は、IGBTの上下短絡時に限るものではなく、インバータ装置で何らかの異常が発生した場合に、CPU110を介して常に巻線切替部12における保護機能を有効にすることができる。たとえば、通常のインバータ装置であると、何らかの異常でインバータ部のIGBTがゲートブロック動作し、全ての素子が開放した瞬間、電動機巻線に蓄えられていたエネルギーは全てインバータ部に瞬時に回生され、インバータ部において直流母線電圧の急激上昇が発生する。本発明のインバータ装置のように、巻線切替部を備えるインバータ装置であると、異常の瞬間に巻線切替部を全てオフにして、電動機巻線を開放状態にすることができるので、上記の問題は発生しない。電動機をフリーラン状態にする場合のインバータ装置の異常としては、電動機の運転継続できないようなインバータ部1の主回路パワー半導体素子(IGBT)の上下短絡、地絡故障、商用電源の停電、その他インバータ装置で備えている各種保護動作が想定される。
Further, in the inverter device of the present invention, the winding switching unit can be operated as a motor protection device. Many of the problems that occur in the inverter device are failures of the main circuit power semiconductor element (IGBT). For example, when a vertical short circuit of an IGBT of a certain phase occurs, the AC motor 2 is a synchronous motor in which a permanent magnet is incorporated. Then, the electric motor is instantly locked and adversely affects the machine side to which the electric motor is connected. In this inverter device, as soon as an IGBT vertical short circuit prevention function that is generally put into practical use in the inverter device operates, the semiconductor switches SSW1 and SSW2 and mechanical switches MSW1 and MSW2 in the winding switching unit 12 are connected via the
本発明は、巻線切替を必要とする交流電動機を駆動するインバータ装置の、特に巻き線切替部に関するものである。これは、回転形の交流電動機に限定されるものではなく、リニアモータの巻線切替にも適用できる。 The present invention relates to an inverter device that drives an AC motor that requires winding switching, and more particularly to a winding switching unit. This is not limited to a rotary AC motor, and can also be applied to switching of a winding of a linear motor.
1 インバータ部
2 交流電動機
3、4 3相整流部
5、6 スナバ回路
7〜10 ダイオード
12 巻線切替部
100 制御回路部
110 CPU
111 巻線切替信号生成部
112 PWM信号生成部
113 ゲートドライブ回路
114 MSW1、MSW2駆動信号生成部
SSW1、SSW2 半導体スイッチ
MSW1、MSW2 機械的スイッチ
P インバータの正側入力端子
N インバータの負側入力端子
P1 スナバ回路の正側端子
N1 スナバ回路の負側端子
P2 スナバ回路の正側端子
N2 スナバ回路の負側端子
DESCRIPTION OF SYMBOLS 1 Inverter part 2
111 Winding
SSW1, SSW2 Semiconductor switch MSW1, MSW2 Mechanical switch P Inverter positive input terminal N Inverter negative input terminal P1 Snubber circuit positive terminal N1 Snubber circuit negative terminal P2 Snubber circuit positive terminal N2 Snubber circuit positive terminal Negative terminal
Claims (12)
前記連結端子をそれぞれ開閉できるように3相整流部入力と並列接続した機械的スイッチ(MSW1、MSW2)と、
前記機械的スイッチ(MSW1、MSW2)を開閉するための駆動信号生成部(114)とを備えたことを特徴とする3相交流電動機の巻線切替装置。 Each phase winding is composed of a plurality of windings, and a connecting terminal that connects the plurality of windings to each other and an AC motor that has both terminals of each phase winding provided outside the motor, and a winding that switches the connecting terminals as appropriate. A line switching unit, an inverter for supplying a variable voltage of a variable frequency to the AC motor, and the winding switching unit connects one end of each phase winding to the inverter, and connects the other end and the connection terminal to each other. A plurality of three-phase rectifiers each connected to an AC-side input terminal of a three-phase rectifier for each phase; a semiconductor switch provided to open and close both ends on the DC output side of the plurality of three-phase rectifiers; and the semiconductor A current that flows from the three-phase rectifier when the semiconductor switch is off flows to a snubber circuit at one end on the DC output side of each of the drive circuit that drives the switch and the plurality of three-phase rectifiers, When on, said snubber times In winding switching device of the three-phase AC motor connected to the DC output side of the three-phase rectifier unit in the snubber circuit via a diode which is provided in a direction which does not flow back to the semiconductor switch from,
Mechanical switches (MSW1, MSW2) connected in parallel with the three-phase rectifier input so that the connection terminals can be opened and closed, respectively;
A winding switching device for a three-phase AC motor, comprising a drive signal generator (114) for opening and closing the mechanical switches (MSW1, MSW2).
前記連結端子をそれぞれ開閉できるように機械的スイッチ(MSW1、MSW2)を3相整流部入力と並列接続し、
駆動信号生成部(114)から前記前記機械的スイッチ(MSW1、MSW2)へ開閉するための駆動信号を出力することを特徴とする3相交流電動機の巻線切替方法。 Each phase winding is composed of a plurality of windings, and a connecting terminal that connects the plurality of windings to each other and an AC motor that has both terminals of each phase winding provided outside the motor, and a winding that switches the connecting terminals as appropriate. A line switching unit, an inverter for supplying a variable voltage of a variable frequency to the AC motor, and the winding switching unit connects one end of each phase winding to the inverter, and connects the other end and the connection terminal to each other. A plurality of three-phase rectifiers each connected to an AC-side input terminal of a three-phase rectifier for each phase; a semiconductor switch provided to open and close both ends on the DC output side of the plurality of three-phase rectifiers; and the semiconductor A current that flows from the three-phase rectifier when the semiconductor switch is off flows to a snubber circuit at one end on the DC output side of each of the drive circuit that drives the switch and the plurality of three-phase rectifiers, When on, said snubber times In the winding switching method of the winding switching unit of the three-phase AC motor via a provided a diode in a direction that does not flow back to connect the DC output side of the three-phase rectifier unit in the snubber circuit to the semiconductor switch from,
Mechanical switches (MSW1, MSW2) are connected in parallel with the three-phase rectifier input so that the connection terminals can be opened and closed,
A winding switching method for a three-phase AC motor, wherein a driving signal for opening and closing is output from the driving signal generation unit (114) to the mechanical switches (MSW1, MSW2).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007012370A JP4752772B2 (en) | 2007-01-23 | 2007-01-23 | AC motor winding switching device and winding switching system thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007012370A JP4752772B2 (en) | 2007-01-23 | 2007-01-23 | AC motor winding switching device and winding switching system thereof |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2008182783A true JP2008182783A (en) | 2008-08-07 |
JP2008182783A5 JP2008182783A5 (en) | 2011-03-10 |
JP4752772B2 JP4752772B2 (en) | 2011-08-17 |
Family
ID=39726257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007012370A Expired - Fee Related JP4752772B2 (en) | 2007-01-23 | 2007-01-23 | AC motor winding switching device and winding switching system thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4752772B2 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009273348A (en) * | 2008-04-07 | 2009-11-19 | Mitsubishi Electric Corp | Motor drive device, refrigerating air conditioner and motor drive method |
JP2010207010A (en) * | 2009-03-05 | 2010-09-16 | Yaskawa Electric Corp | Coil switching device of three-phase ac motor drive system |
JP2012227979A (en) * | 2011-04-14 | 2012-11-15 | Yaskawa Electric Corp | Coil switching device for ac motor and ac motor drive system |
JP2013099068A (en) * | 2011-10-31 | 2013-05-20 | Juki Corp | Controller of stepping motor |
CN103281034A (en) * | 2013-05-03 | 2013-09-04 | 哈尔滨工业大学 | Multi-phase motor winding switching circuit |
JP2014007823A (en) * | 2012-06-22 | 2014-01-16 | Toshiba Industrial Products Manufacturing Corp | Driving device and switching method of winding of electric motor |
JP2015535170A (en) * | 2012-11-14 | 2015-12-07 | キューエム・パワー・インコーポレイテッドQm Power,Inc | Split phase AC synchronous motor controller |
EP3226407A1 (en) | 2016-03-28 | 2017-10-04 | Mitsubishi Heavy Industries, Ltd. | Motor control device and compressor |
EP3240185A1 (en) | 2015-12-15 | 2017-11-01 | Mitsubishi Heavy Industries, Ltd. | Motor driving control apparatus with winding changeover switch of motor, motor, compressor, and method of controlling winding changeover of motor |
KR20180060017A (en) * | 2016-11-28 | 2018-06-07 | 서울과학기술대학교 산학협력단 | Multi- stage transmission system and method for controlling thereof |
CN109804552A (en) * | 2016-10-13 | 2019-05-24 | 三菱电机株式会社 | Motor drive, electric motor system and refrigerating circulatory device |
WO2020021681A1 (en) * | 2018-07-26 | 2020-01-30 | 三菱電機株式会社 | Electric motor drive device and refrigeration-cycle application device |
WO2020179008A1 (en) * | 2019-03-06 | 2020-09-10 | 三菱電機株式会社 | Electric motor driving device and air conditioner |
JP2020162194A (en) * | 2019-03-25 | 2020-10-01 | 株式会社日立製作所 | Rotating machine winding switching device, rotating machine drive system, and electric equipment |
CN113572390A (en) * | 2021-05-07 | 2021-10-29 | 联合汽车电子有限公司 | Driving method for noise suppression of brushless direct current motor |
CN114583993A (en) * | 2020-11-30 | 2022-06-03 | 广东美的制冷设备有限公司 | Drive control circuit, drive control method, circuit board and air conditioner |
JP7604590B2 (en) | 2020-01-30 | 2024-12-23 | テルモ カーディオバスキュラー システムズ コーポレイション | Stepping motor drive system and tubing occluder system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000350476A (en) * | 1999-06-02 | 2000-12-15 | Fuji Electric Co Ltd | DC-AC power conversion circuit |
JP2003111492A (en) * | 2001-10-03 | 2003-04-11 | Yaskawa Electric Corp | Coil switching device for three-phase ac motor |
-
2007
- 2007-01-23 JP JP2007012370A patent/JP4752772B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000350476A (en) * | 1999-06-02 | 2000-12-15 | Fuji Electric Co Ltd | DC-AC power conversion circuit |
JP2003111492A (en) * | 2001-10-03 | 2003-04-11 | Yaskawa Electric Corp | Coil switching device for three-phase ac motor |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009273348A (en) * | 2008-04-07 | 2009-11-19 | Mitsubishi Electric Corp | Motor drive device, refrigerating air conditioner and motor drive method |
JP2010207010A (en) * | 2009-03-05 | 2010-09-16 | Yaskawa Electric Corp | Coil switching device of three-phase ac motor drive system |
JP2012227979A (en) * | 2011-04-14 | 2012-11-15 | Yaskawa Electric Corp | Coil switching device for ac motor and ac motor drive system |
JP2013099068A (en) * | 2011-10-31 | 2013-05-20 | Juki Corp | Controller of stepping motor |
JP2014007823A (en) * | 2012-06-22 | 2014-01-16 | Toshiba Industrial Products Manufacturing Corp | Driving device and switching method of winding of electric motor |
JP2015535170A (en) * | 2012-11-14 | 2015-12-07 | キューエム・パワー・インコーポレイテッドQm Power,Inc | Split phase AC synchronous motor controller |
CN103281034A (en) * | 2013-05-03 | 2013-09-04 | 哈尔滨工业大学 | Multi-phase motor winding switching circuit |
EP3240185A1 (en) | 2015-12-15 | 2017-11-01 | Mitsubishi Heavy Industries, Ltd. | Motor driving control apparatus with winding changeover switch of motor, motor, compressor, and method of controlling winding changeover of motor |
EP3226407A1 (en) | 2016-03-28 | 2017-10-04 | Mitsubishi Heavy Industries, Ltd. | Motor control device and compressor |
EP3226407B1 (en) * | 2016-03-28 | 2023-08-23 | Mitsubishi Heavy Industries, Ltd. | Motor control device and compressor |
CN109804552A (en) * | 2016-10-13 | 2019-05-24 | 三菱电机株式会社 | Motor drive, electric motor system and refrigerating circulatory device |
CN109804552B (en) * | 2016-10-13 | 2022-08-30 | 三菱电机株式会社 | Motor drive device, motor system, and refrigeration cycle device |
KR20180060017A (en) * | 2016-11-28 | 2018-06-07 | 서울과학기술대학교 산학협력단 | Multi- stage transmission system and method for controlling thereof |
CN112438017A (en) * | 2018-07-26 | 2021-03-02 | 三菱电机株式会社 | Motor drive device and refrigeration cycle application apparatus |
JP6991336B2 (en) | 2018-07-26 | 2022-01-12 | 三菱電機株式会社 | Motor drive device and refrigeration cycle applicable equipment |
JPWO2020021681A1 (en) * | 2018-07-26 | 2021-03-11 | 三菱電機株式会社 | Motor drive device and refrigeration cycle applicable equipment |
CN112438017B (en) * | 2018-07-26 | 2023-11-14 | 三菱电机株式会社 | Motor driving device and refrigeration cycle application equipment |
WO2020021681A1 (en) * | 2018-07-26 | 2020-01-30 | 三菱電機株式会社 | Electric motor drive device and refrigeration-cycle application device |
JP7069400B2 (en) | 2019-03-06 | 2022-05-17 | 三菱電機株式会社 | Motor drive and air conditioner |
WO2020179008A1 (en) * | 2019-03-06 | 2020-09-10 | 三菱電機株式会社 | Electric motor driving device and air conditioner |
CN113491065A (en) * | 2019-03-06 | 2021-10-08 | 三菱电机株式会社 | Motor drive device and air conditioner |
CN113491065B (en) * | 2019-03-06 | 2023-10-20 | 三菱电机株式会社 | Motor driving device and air conditioner |
JPWO2020179008A1 (en) * | 2019-03-06 | 2021-09-30 | 三菱電機株式会社 | Motor drive and air conditioner |
JP2020162194A (en) * | 2019-03-25 | 2020-10-01 | 株式会社日立製作所 | Rotating machine winding switching device, rotating machine drive system, and electric equipment |
JP7262262B2 (en) | 2019-03-25 | 2023-04-21 | 株式会社日立製作所 | Winding switching device for rotating electrical machine, rotating electrical machine drive system, and electric equipment |
JP7604590B2 (en) | 2020-01-30 | 2024-12-23 | テルモ カーディオバスキュラー システムズ コーポレイション | Stepping motor drive system and tubing occluder system |
CN114583993A (en) * | 2020-11-30 | 2022-06-03 | 广东美的制冷设备有限公司 | Drive control circuit, drive control method, circuit board and air conditioner |
CN113572390A (en) * | 2021-05-07 | 2021-10-29 | 联合汽车电子有限公司 | Driving method for noise suppression of brushless direct current motor |
Also Published As
Publication number | Publication date |
---|---|
JP4752772B2 (en) | 2011-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4752772B2 (en) | AC motor winding switching device and winding switching system thereof | |
JP6169203B1 (en) | Electric motor control apparatus and electric motor control method | |
CN110383677B (en) | Motor drive device and refrigeration cycle applicable equipment | |
JP4662316B2 (en) | AC motor winding switching device and winding switching system thereof | |
JP6256597B2 (en) | Inverter control device | |
KR102066364B1 (en) | Power converter and electric power steering | |
JP2009303298A (en) | Ac motor device | |
JP2017175747A (en) | Power converter | |
Suppharangsan et al. | Experimental validation of a new switching technique for DC-link capacitor minimization in switched reluctance machine drives | |
Khwan-On et al. | Fault-tolerant, matrix converter, permanent magnet synchronous motor drive for open-circuit failures | |
WO2018078851A1 (en) | Electric motor drive device | |
JP6307983B2 (en) | Inverter control device | |
JP5396920B2 (en) | Winding switching device for three-phase AC motor drive system | |
JP5003173B2 (en) | AC motor winding switching device and winding switching system thereof | |
US20150028781A1 (en) | Method for actuating a bldc motor | |
JP2018098826A (en) | Power supply device for vehicle and control method of the same | |
JP4348929B2 (en) | Motor control device | |
JP5481088B2 (en) | Railway vehicle drive control device | |
JP4369500B2 (en) | Rotating electrical machine equipment | |
JP3999226B2 (en) | Electric motor control device | |
JP7002619B1 (en) | Power converter | |
JP7258654B2 (en) | Circuit board for motor drive and motor drive | |
JP7182641B2 (en) | Drive system and control method | |
EP3255779B1 (en) | Reconfigurable multi-permanent magnet generator based power generating system | |
JP5310882B2 (en) | Inverter device, air conditioner, and control method for inverter device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100119 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100119 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110120 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20110120 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20110203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110210 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110401 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110426 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110509 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140603 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4752772 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |