[go: up one dir, main page]

JP2008180479A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2008180479A
JP2008180479A JP2007015979A JP2007015979A JP2008180479A JP 2008180479 A JP2008180479 A JP 2008180479A JP 2007015979 A JP2007015979 A JP 2007015979A JP 2007015979 A JP2007015979 A JP 2007015979A JP 2008180479 A JP2008180479 A JP 2008180479A
Authority
JP
Japan
Prior art keywords
heat exchange
header
refrigerant
tank
row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007015979A
Other languages
Japanese (ja)
Inventor
Hironaka Sasaki
広仲 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2007015979A priority Critical patent/JP2008180479A/en
Publication of JP2008180479A publication Critical patent/JP2008180479A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger capable of adjusting the dividing state of a refrigerant flow to heat exchange tubes. <P>SOLUTION: A refrigerant inlet header portion 1 and an intermediate header portion 2 are disposed at a front side of an upper header tank 31, and similarly, a refrigerant outlet header portion 3 and an intermediate header portion 4 are disposed at its rear side. The refrigerant inlet header portion 1 and the refrigerant outlet header portion 3 are positioned at the same side. Front and rear two heat exchange tube arrays 10, 11 are disposed between both of the upper and lower header tanks 31. The total heat exchange tubes 33 communicated with the intermediate header portion 2 of the upper header tank 31 in the rear-side heat exchange tube array 10 constitute a first heat exchange tube group 12 for allowing the refrigerant to flow from top down, and the total heat exchange tubes 33 communicated with the refrigerant outlet header portion 3 constitute a second heat exchange tube group 13 for allowing the refrigerant to flow from bottom up. A length of the refrigerant outlet header portion 3 is longer than a length of the intermediate header portion 4 of the rear-side header portion array 6. Cross-sectional areas of flow channels of the heat exchange tubes 33 are equal to each other, and the number of heat exchange tubes 33 of the second heat exchange tube group 13 is more than the number of heat exchange tubes 33 of the first heat exchange tube group 12. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、熱交換器に関し、さらに詳しくは、たとえばCO(二酸化炭素)などの超臨界冷媒が用いられる超臨界冷凍サイクルのエバポレータに好適に使用される熱交換器に関する。 The present invention relates to a heat exchanger, and more particularly to a heat exchanger suitably used for an evaporator of a supercritical refrigeration cycle in which a supercritical refrigerant such as CO 2 (carbon dioxide) is used.

この明細書および特許請求の範囲において、「超臨界冷凍サイクル」とは、高圧側において、冷媒が臨界圧力を超えた超臨界状態となる冷凍サイクルを意味するものとし、「超臨界冷媒」とは、超臨界冷凍サイクルに用いられる冷媒を意味するものとする。また、この明細書および特許請求の範囲において、図1および図2の上下、左右を上下、左右というものとし、隣接する熱交換管どうしの間の通風間隙を流れる空気の下流側(図1に矢印Xで示す方向)を前、これと反対側を後というものとする。   In this specification and claims, the term “supercritical refrigeration cycle” means a refrigeration cycle in which the refrigerant is in a supercritical state exceeding the critical pressure on the high pressure side, and “supercritical refrigerant” It shall mean a refrigerant used in a supercritical refrigeration cycle. Further, in this specification and claims, the upper, lower, left, and right sides of FIGS. 1 and 2 are referred to as the upper and lower sides and the left and right sides, respectively, and the downstream side of the air flowing in the ventilation gap between adjacent heat exchange tubes (in FIG. The direction indicated by arrow X) is the front, and the opposite side is the rear.

たとえばカーエアコンとして使用される超臨界冷凍サイクルのエバポレータに用いられる熱交換器として、本出願人は、先に、上下方向に間隔をおいて配置された左右方向にのびる1対のヘッダタンクと、両ヘッダタンク間に並列状に配置されかつ上下両端部がそれぞれ両ヘッダタンクに接続された複数の熱交換管とを備えているとともに、上ヘッダタンクに冷媒入口および冷媒出口が形成されており、上ヘッダタンクに、左右方向に並んだ2つのヘッダ部からなるヘッダ部列が前後方向に間隔をおいて2列設けられ、前側ヘッダ部列の一方のヘッダ部が冷媒入口ヘッダ部となっているとともに冷媒入口ヘッダ部に冷媒入口が通じ、後側ヘッダ部列における冷媒入口ヘッダ部と同一側の一方のヘッダ部が冷媒出口ヘッダ部となっているとともに冷媒出口ヘッダ部に冷媒出口が通じ、上ヘッダタンクの両ヘッダ部列の他方のヘッダ部が中間ヘッダ部となっているとともに両中間ヘッダ部の内部が相互に通じさせられ、下ヘッダタンクの前後両側に、それぞれ上ヘッダタンクの前後両ヘッダ部列の2つのヘッダ部に跨るように1つの中間ヘッダ部が設けられ、上下両ヘッダタンク間に、左右方向に並んだ複数の熱交換管からなりかつ2列の熱交換管列が前後方向に並んで設けられ、熱交換管の両端部が、ヘッダ部内に通じるように上下両ヘッダタンクに接続され、前側熱交換管列に、冷媒入口ヘッダ部に通じかつ冷媒が上から下に流れる複数の熱交換管からなる第1熱交換管群と、前側ヘッダ部列の中間ヘッダ部に通じかつ冷媒が下から上に流れる複数の熱交換管からなる第2熱交換管群とが設けられ、後側熱交換管列に、後側ヘッダ部列の中間ヘッダ部に通じかつ冷媒が上から下に流れる複数の熱交換管からなる第1熱交換管群と、冷媒出口ヘッダ部に通じかつ冷媒が下から上に流れる複数の熱交換管からなる第2熱交換管群とが設けられており、冷媒入口から流入した冷媒がすべての熱交換管およびヘッダ部を通過して冷媒出口から流出するようになされ、各熱交換管群を構成する全熱交換管の総流路断面積が等しくなっている熱交換器を提案した(特許文献1参照)。   For example, as a heat exchanger used in an evaporator of a supercritical refrigeration cycle used as a car air conditioner, the present applicant has previously made a pair of header tanks extending in the left-right direction and spaced apart in the vertical direction, A plurality of heat exchange pipes arranged in parallel between both header tanks and whose upper and lower ends are respectively connected to both header tanks, and a refrigerant inlet and a refrigerant outlet are formed in the upper header tank, The upper header tank is provided with two header part rows formed of two header parts arranged in the left-right direction at intervals in the front-rear direction, and one header part of the front header part row serves as a refrigerant inlet header part. In addition, the refrigerant inlet header portion leads to the refrigerant inlet, and one header portion on the same side as the refrigerant inlet header portion in the rear header portion row is a refrigerant outlet header portion. The refrigerant outlet communicates with the refrigerant outlet header part, the other header part of both header part rows of the upper header tank serves as an intermediate header part, and the inside of both intermediate header parts communicate with each other, so that the front and rear of the lower header tank On both sides, one intermediate header part is provided so as to straddle the two header parts of the front and rear header part rows of the upper header tank, and consists of a plurality of heat exchange tubes arranged in the left-right direction between the upper and lower header tanks. And two rows of heat exchange pipes are provided side by side in the front-rear direction, and both ends of the heat exchange pipe are connected to the upper and lower header tanks so as to communicate with the header part, and the refrigerant inlet header part is connected to the front side heat exchange pipe line. And a first heat exchange tube group consisting of a plurality of heat exchange tubes through which the refrigerant flows from top to bottom, and a plurality of heat exchange tubes which communicate with the intermediate header portion of the front header section row and through which the refrigerant flows from bottom to top Second heat exchange tube A first heat exchange tube group consisting of a plurality of heat exchange tubes that communicate with the intermediate header portion of the rear header portion row and from which the refrigerant flows from top to bottom, and a refrigerant outlet header. And a second heat exchange tube group comprising a plurality of heat exchange tubes through which the refrigerant flows from the bottom to the top, and the refrigerant flowing from the refrigerant inlet passes through all the heat exchange tubes and the header portion. A heat exchanger has been proposed which flows out from the refrigerant outlet and has the same total cross-sectional area of all the heat exchange tubes constituting each heat exchange tube group (see Patent Document 1).

一般に、カーエアコンのエバポレータにおいて、カーエアコンが搭載された車両の車室内の快適性を向上させることを目的として、隣接する熱交換管どうしの間の通風間隙を通過してきた吹き出し空気温度をエバポレータの各部において均一にすることが望まれるが、そのために、隣り合う熱交換管どうしの間の通風間隙を流れる空気の風速分布に応じて、各熱交換管への冷媒分流状態を調整する必要がある。   Generally, in an evaporator of a car air conditioner, the temperature of the blown air that has passed through the ventilation gap between adjacent heat exchange pipes is improved for the purpose of improving the comfort of the interior of a vehicle equipped with the car air conditioner. Although it is desirable to make it uniform in each part, for that purpose, it is necessary to adjust the refrigerant distribution state to each heat exchange pipe according to the wind velocity distribution of the air flowing through the ventilation gap between adjacent heat exchange pipes. .

しかしながら、本発明者が鋭意研究した結果、特許文献1記載の熱交換器の場合、各熱交換管列の第2熱交換管群、特に後側熱交換列の冷媒出口ヘッダ部に通じる第2熱交換管群の熱交換管を冷媒が流れる際の圧力損失が、第1熱交換管群の熱交換管を冷媒が流れる際の圧力損失よりもかなり大きくなり、その結果第2熱交換管群の熱交換管を流れる冷媒量が、第1熱交換管群の熱交換管を流れる冷媒量よりも減少する。したがって、各熱交換管列の第1熱交換管群の熱交換管および第2熱交換管群の熱交換管への冷媒分流状態を調整し、各熱交換管列のすべての熱交換管内を流れる冷媒量の均一化を図ることが困難になるおそれがある。
特開2005−300135号公報
However, as a result of intensive studies by the inventors, in the case of the heat exchanger described in Patent Document 1, the second heat exchange tube group of each heat exchange tube row, particularly the second outlet leading to the refrigerant outlet header portion of the rear heat exchange row. The pressure loss when the refrigerant flows through the heat exchange pipe of the heat exchange pipe group is considerably larger than the pressure loss when the refrigerant flows through the heat exchange pipe of the first heat exchange pipe group. As a result, the second heat exchange pipe group The amount of refrigerant flowing through the heat exchange tubes of the first heat exchange tube group is smaller than the amount of refrigerant flowing through the heat exchange tubes of the first heat exchange tube group. Therefore, the refrigerant distribution state to the heat exchange tubes of the first heat exchange tube group and the second heat exchange tube group of each heat exchange tube row is adjusted, and the inside of all heat exchange tubes of each heat exchange tube row is adjusted. There is a risk that it will be difficult to make the amount of flowing refrigerant uniform.
JP-A-2005-300135

この発明の目的は、上記問題を解決し、各熱交換管列の熱交換管への冷媒分流状態を調整しうる熱交換器を提供することにある。   An object of the present invention is to provide a heat exchanger that solves the above-described problems and can adjust the refrigerant distribution state to the heat exchange tubes of each heat exchange tube row.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)上下方向に間隔をおいて配置された左右方向にのびる1対のヘッダタンクと、両ヘッダタンク間に並列状に配置されかつ上下両端部がそれぞれ両ヘッダタンクに接続された複数の熱交換管とを備えているとともに、冷媒入口および冷媒出口を有しており、上下両ヘッダタンクのうちのいずれか一方の第1ヘッダタンクに、左右方向に並んだ複数のヘッダ部からなるヘッダ部列が前後方向に間隔をおいて複数列設けられ、同他方の第2ヘッダタンクにおける第1ヘッダタンクの各ヘッダ部列と対応する位置に、第1ヘッダタンクの各ヘッダ部列を構成するヘッダ部の数よりも1つ少ない数のヘッダ部が、第1ヘッダタンクの各ヘッダ部列の隣り合う2つのヘッダ部に跨るように設けられ、上下両ヘッダタンク間に、左右方向に並んだ複数の熱交換管からなりかつ第1ヘッダタンクのヘッダ部列と同数の熱交換管列が前後方向に並んで設けられ、熱交換管の両端部が、ヘッダ部内に通じるように上下両ヘッダタンクに接続され、各熱交換管列に、冷媒が上から下に流れる複数の熱交換管からなる第1熱交換管群と、冷媒が下から上に流れる複数の熱交換管からなる第2熱交換管群とが左右方向に交互に設けられており、冷媒入口から流入した冷媒がすべての熱交換管およびヘッダ部を通過して冷媒出口から流出するようになされている熱交換器において、
最も冷媒出口側に位置する最後の第2熱交換管群を構成する全熱交換管の総流路断面積が、当該第2熱交換管群の少なくとも左右いずれか一方に隣接する第1熱交換管群を構成する全熱交換管の総流路断面積よりも大きくなっている熱交換器。
1) A pair of header tanks extending in the left-right direction spaced apart in the vertical direction, and a plurality of heat exchanges arranged in parallel between both header tanks, with both upper and lower ends connected to both header tanks. A header portion row comprising a plurality of header portions arranged in the left-right direction in either one of the upper and lower header tanks, and having a refrigerant inlet and a refrigerant outlet. Are provided in a plurality of rows at intervals in the front-rear direction, and header portions constituting each header portion row of the first header tank at a position corresponding to each header portion row of the first header tank in the other second header tank A plurality of header portions that are one less than the number of the header portions are provided so as to straddle two adjacent header portions of each header portion row of the first header tank, and a plurality of header portions arranged in the left-right direction between the upper and lower header tanks. heat The same number of heat exchange tube rows as the header portion row of the first header tank are arranged in the front-rear direction, and both ends of the heat exchange tube are connected to the upper and lower header tanks so as to communicate with the header portion. In each heat exchange tube row, a first heat exchange tube group consisting of a plurality of heat exchange tubes where the refrigerant flows from top to bottom, and a second heat exchange tube group consisting of a plurality of heat exchange tubes where the refrigerant flows from bottom to top In the heat exchanger in which the refrigerant flowing in from the refrigerant inlet passes through all the heat exchange pipes and the header part and flows out from the refrigerant outlet,
The first heat exchange in which the total flow cross-sectional area of all the heat exchange tubes constituting the last second heat exchange tube group located closest to the refrigerant outlet side is adjacent to at least one of the left and right sides of the second heat exchange tube group A heat exchanger that is larger than the total flow passage cross-sectional area of all the heat exchange tubes constituting the tube group.

2)最後の第2熱交換管群を構成する全熱交換管の総流路断面積が、当該第2熱交換管群の少なくとも左右いずれか一方に隣接する第1熱交換管群を構成する全熱交換管の総流路断面積よりも1.1〜1.7倍大きくなっている上記1)記載の熱交換器。   2) The total flow cross-sectional area of all the heat exchange tubes constituting the last second heat exchange tube group constitutes the first heat exchange tube group adjacent to at least one of the left and right sides of the second heat exchange tube group. The heat exchanger according to 1) above, which is 1.1 to 1.7 times larger than the total flow passage cross-sectional area of the total heat exchange pipe.

3)各熱交換管の流路断面積が等しくなっており、最後の第2熱交換管群を構成する熱交換管の数が、当該第2熱交換管群の少なくとも左右いずれか一方に隣接する第1熱交換管群を構成する熱交換管の数よりも多くなっている上記1)または2)記載の熱交換器。   3) The cross-sectional area of each heat exchange pipe is equal, and the number of heat exchange pipes constituting the last second heat exchange pipe group is adjacent to at least one of the left and right sides of the second heat exchange pipe group The heat exchanger according to 1) or 2), wherein the number of heat exchange tubes constituting the first heat exchange tube group is larger.

4)最後の第2熱交換管群を構成する熱交換管の数、および当該第2熱交換管群の少なくとも左右いずれか一方に隣接する第1熱交換管群を構成する熱交換管の数が等しくなっており、最後の第2熱交換管群を構成する各熱交換管の流路断面積が、当該第2熱交換管群の少なくとも左右いずれか一方に隣接する第1熱交換管群を構成する各熱交換管の流路断面積よりも大きくなっている上記1)または2)記載の熱交換器。   4) The number of heat exchange tubes constituting the last second heat exchange tube group and the number of heat exchange tubes constituting the first heat exchange tube group adjacent to at least one of the left and right sides of the second heat exchange tube group The first heat exchange tube group in which the flow path cross-sectional area of each heat exchange tube constituting the last second heat exchange tube group is adjacent to at least one of the left and right sides of the second heat exchange tube group The heat exchanger as described in 1) or 2) above, which is larger than the flow path cross-sectional area of each heat exchange pipe constituting the heat exchanger tube.

5)上ヘッダタンクが第1ヘッダタンクになるとともに下ヘッダタンクが第2ヘッダタンクとなり、上ヘッダタンクに、それぞれ2つのヘッダ部からなるヘッダ部列が2列設けられ、前側ヘッダ部列の一方のヘッダ部が冷媒入口ヘッダ部となっているとともに冷媒入口ヘッダ部に冷媒入口が通じ、後側ヘッダ部列における冷媒入口ヘッダ部と同一側の一方のヘッダ部が冷媒出口ヘッダ部となっているとともに冷媒出口ヘッダ部に冷媒出口が通じ、上ヘッダタンクの両ヘッダ部列の他方のヘッダ部が中間ヘッダ部となっているとともに両中間ヘッダ部の内部が相互に通じさせられ、下ヘッダタンクの前後両側に、それぞれ上ヘッダタンクの前後両ヘッダ部列の2つのヘッダ部に跨るように1つの中間ヘッダ部が設けられ、上ヘッダタンクの冷媒出口ヘッダ部に通じる全熱交換管が最後の第2熱交換管群を構成し、冷媒出口ヘッダ部の長さが後側ヘッダ部列の中間ヘッダ部の長さよりも長くなっており、各熱交換管の流路断面積が等しく、冷媒出口ヘッダ部に通じる熱交換管の数が、後側ヘッダ部列の中間ヘッダ部に通じる熱交換管の数よりも多くなっている上記1)または2)記載の熱交換器。   5) The upper header tank serves as the first header tank and the lower header tank serves as the second header tank. The upper header tank is provided with two header sections each having two header sections, and one of the front header sections. The header portion is a refrigerant inlet header portion, the refrigerant inlet is connected to the refrigerant inlet header portion, and one header portion on the same side as the refrigerant inlet header portion in the rear header portion row is the refrigerant outlet header portion. In addition, the refrigerant outlet is connected to the refrigerant outlet header part, the other header part of both header part rows of the upper header tank is an intermediate header part, and the inside of both intermediate header parts is mutually communicated, so that the lower header tank One intermediate header portion is provided on each of the front and rear sides so as to straddle the two header portions of the front and rear header portion rows of the upper header tank. The total heat exchange pipe leading to the header portion constitutes the last second heat exchange pipe group, and the length of the refrigerant outlet header portion is longer than the length of the intermediate header portion of the rear header portion row. The above-mentioned 1) or 2), in which the cross-sectional areas of the pipes are equal and the number of heat exchange pipes leading to the refrigerant outlet header part is greater than the number of heat exchange pipes leading to the intermediate header part of the rear header part row The described heat exchanger.

6)上ヘッダタンクの前側ヘッダ部列の中間ヘッダ部の長さが冷媒入口ヘッダ部の長さよりも長くなっており、各熱交換管の流路断面積が等しく、上ヘッダタンクの前側ヘッダ部列の中間ヘッダ部に通じる全熱交換管が第2熱交換管群を構成し、上ヘッダタンクの前側ヘッダ部列の中間ヘッダ部に通じる熱交換管の数が、冷媒入口ヘッダ部に通じる熱交換管の数よりも多くなっている上記5)記載の熱交換器。   6) The length of the intermediate header portion of the front header portion row of the upper header tank is longer than the length of the refrigerant inlet header portion, and the cross-sectional area of each heat exchange pipe is equal, and the front header portion of the upper header tank The total heat exchange pipes that lead to the middle header section of the row constitute the second heat exchange pipe group, and the number of heat exchange pipes that lead to the middle header section of the front header section row of the upper header tank is the heat that leads to the refrigerant inlet header section. The heat exchanger as described in 5) above, which is larger than the number of exchange tubes.

7)下ヘッダタンクが第1ヘッダタンクになるとともに上ヘッダタンクが第2ヘッダタンクとなり、下ヘッダタンクに、それぞれ2つのヘッダ部からなるヘッダ部列が2列設けられ、前側ヘッダ部列の一方のヘッダ部が冷媒入口ヘッダ部となっているとともに冷媒入口ヘッダ部に冷媒入口が通じ、後側ヘッダ部列における冷媒入口ヘッダ部と同一側の一方のヘッダ部が冷媒出口ヘッダ部となっているとともに冷媒出口ヘッダ部に冷媒出口が通じ、下ヘッダタンクの両ヘッダ部列の他方のヘッダ部が中間ヘッダ部となっているとともに両中間ヘッダ部の内部が相互に通じさせられ、上ヘッダタンクの前後両側に、それぞれ下ヘッダタンクの前後両ヘッダ部列の2つのヘッダ部に跨るように1つの中間ヘッダ部が設けられ、下ヘッダタンクの後側ヘッダ部列の中間ヘッダ部に通じる全熱交換管が最後の第2熱交換管群を構成し、下ヘッダタンクの後側ヘッダ部列の中間ヘッダ部の長さが冷媒出口ヘッダ部の長さよりも長くなっており、各熱交換管の流路断面積が等しく、下ヘッダタンクの後側ヘッダ部列の中間ヘッダ部に通じる熱交換管の数が、冷媒出口ヘッダ部に通じる熱交換管の数よりも多くなっている上記1)または2)記載の熱交換器。   7) The lower header tank becomes the first header tank and the upper header tank becomes the second header tank, and the lower header tank is provided with two header portion rows each having two header portions, and one of the front header portion rows. The header portion is a refrigerant inlet header portion, the refrigerant inlet is connected to the refrigerant inlet header portion, and one header portion on the same side as the refrigerant inlet header portion in the rear header portion row is the refrigerant outlet header portion. In addition, the refrigerant outlet is connected to the refrigerant outlet header part, the other header part of both header part rows of the lower header tank is an intermediate header part, and the inside of both intermediate header parts is mutually communicated, and the upper header tank One intermediate header section is provided on both the front and rear sides so as to straddle the two header sections of the front and rear header section rows of the lower header tank. The total heat exchange pipe leading to the intermediate header section of the second section constitutes the last second heat exchange pipe group, and the length of the intermediate header section of the rear header section of the lower header tank is longer than the length of the refrigerant outlet header section. The heat exchange tubes connected to the intermediate header portion of the rear header portion row of the lower header tank are equal in number to the heat exchanger tubes connected to the refrigerant outlet header portion. The heat exchanger according to 1) or 2), wherein the heat exchanger is larger than the number.

8)下ヘッダタンクの冷媒入口ヘッダ部の長さが、前側ヘッダ部列の中間ヘッダ部の長さよりも長くなっており、各熱交換管の流路断面積が等しく、下ヘッダタンクの冷媒入口ヘッダ部に通じる全熱交換管が第2熱交換管群を構成し、下ヘッダタンクの冷媒入口ヘッダ部に通じる熱交換管の数が、前側ヘッダ部列の中間ヘッダ部に通じる熱交換管の数よりも多くなっている上記7)記載の熱交換器。   8) The length of the refrigerant inlet header section of the lower header tank is longer than the length of the intermediate header section of the front header section row, and the cross-sectional area of each heat exchange pipe is equal, and the refrigerant inlet of the lower header tank The total heat exchange pipes that lead to the header portion constitute the second heat exchange pipe group, and the number of heat exchange pipes that lead to the refrigerant inlet header part of the lower header tank is the number of heat exchange pipes that lead to the intermediate header part of the front header part row. The heat exchanger as described in 7) above, which is larger than the number.

9)各ヘッダタンクが、タンク形成部材と、タンク形成部材における熱交換管側を向いた面を覆う管接続用プレートとにより構成され、タンク形成部材が、ヘッダタンクの長さ方向に伸びるとともに熱交換管側を向いた面に開口した中空部を有し、当該中空部の熱交換管側を向いた開口が管接続用プレートにより塞がれることによりヘッダ部が形成されている上記1)〜8)のうちのいずれかに記載の熱交換器。   9) Each header tank is composed of a tank forming member and a pipe connecting plate that covers the surface of the tank forming member facing the heat exchange pipe, and the tank forming member extends in the length direction of the header tank and is heated. The above-described 1)-having a hollow portion opened on the surface facing the exchange tube side, and the header portion is formed by closing the opening facing the heat exchange tube side of the hollow portion with the tube connecting plate The heat exchanger according to any one of 8).

10)タンク形成部材が、第1プレートと、第1プレートと管接続用プレートとの間に介在させられた第2プレートとよりなり、第1プレートおよび第2プレートに跨ってヘッダ部の中空部が形成されている上記9)記載の熱交換器。   10) The tank forming member is composed of a first plate and a second plate interposed between the first plate and the pipe connecting plate, and the hollow portion of the header portion straddles the first plate and the second plate. The heat exchanger according to 9) above, wherein is formed.

11)タンク形成部材の第1プレートに、第1プレートの長さ方向に伸びる外方膨出部が形成され、外方膨出部の内部空間が、ヘッダ部の中空部の一部を形成するようになっている上記10)記載の熱交換器。   11) An outward bulging portion extending in the length direction of the first plate is formed in the first plate of the tank forming member, and the internal space of the outward bulging portion forms a part of the hollow portion of the header portion. The heat exchanger as described in 10) above.

12)圧縮機、ガスクーラ、エバポレータ、減圧器およびガスクーラから出てきた冷媒とエバポレータから出てきた冷媒とを熱交換させる中間熱交換器を備えており、かつ超臨界冷媒を用いる超臨界冷凍サイクルであって、エバポレータが上記1)〜11)のうちのいずれかに記載の熱交換器からなる超臨界冷凍サイクル。   12) A supercritical refrigeration cycle equipped with a compressor, gas cooler, evaporator, decompressor, and intermediate heat exchanger that exchanges heat between the refrigerant coming out of the gas cooler and the refrigerant coming out of the evaporator, and using a supercritical refrigerant. A supercritical refrigeration cycle comprising the heat exchanger according to any one of 1) to 11) above.

上記1)の熱交換器によれば、最も冷媒出口側に位置する最後の第2熱交換管群を構成する全熱交換管の総流路断面積が、当該第2熱交換管群の少なくとも左右いずれか一方に隣接する第1熱交換管群を構成する全熱交換管の総流路断面積よりも大きくなっているので、この第2熱交換管群の熱交換管を冷媒が流れる際の圧力損失と、これに隣接する第1熱交換管群の熱交換管を冷媒が流れる際の圧力損失とが均一化され、その結果両第2熱交換管群の熱交換管を流れる冷媒量と、第1熱交換管群の熱交換管を流れる冷媒量とが均一化される。したがって、各熱交換管列の第1熱交換管群の熱交換管および第2熱交換管群の熱交換管への冷媒分流状態を熱交換性能を向上させる上で好適なものに調整し、各熱交換管への冷媒の分流状態の均一化を図ることができる。   According to the heat exchanger of 1) above, the total flow cross-sectional area of all the heat exchange tubes constituting the last second heat exchange tube group located closest to the refrigerant outlet side is at least that of the second heat exchange tube group. When the refrigerant flows through the heat exchange pipe of the second heat exchange pipe group, the total flow passage area of the total heat exchange pipe constituting the first heat exchange pipe group adjacent to either the left or right side is larger. And the pressure loss when the refrigerant flows through the heat exchange pipe of the first heat exchange pipe group adjacent to the pressure loss of the first heat exchange pipe group are made uniform, and as a result, the amount of refrigerant flowing through the heat exchange pipes of both the second heat exchange pipe groups And the amount of refrigerant flowing through the heat exchange tubes of the first heat exchange tube group are made uniform. Therefore, the refrigerant distribution state to the heat exchange pipe of the first heat exchange pipe group and the heat exchange pipe of the second heat exchange pipe group of each heat exchange pipe row is adjusted to a suitable one for improving the heat exchange performance, It is possible to achieve a uniform flow state of the refrigerant to each heat exchange tube.

上記2)の熱交換器によれば、上記1)の効果が一層優れたものになる。   According to the heat exchanger of 2), the effect of 1) is further improved.

上記3)および4)の熱交換器によれば、最も冷媒出口側に位置する最後の第2熱交換管群を構成する全熱交換管の総流路断面積を、当該第2熱交換管群の少なくとも左右いずれか一方に隣接する第1熱交換管群を構成する全熱交換管の総流路断面積よりも、比較的簡単に大きくすることができる。   According to the heat exchangers of 3) and 4) above, the total flow cross-sectional area of all the heat exchange tubes constituting the last second heat exchange tube group located closest to the refrigerant outlet side is calculated as the second heat exchange tube. It can be relatively easily made larger than the total flow path cross-sectional area of all the heat exchange tubes constituting the first heat exchange tube group adjacent to at least one of the left and right sides of the group.

上記5)の熱交換器によれば、上ヘッダタンクの冷媒出口ヘッダ部に通じる後側熱交換管列の第2熱交換管群を構成する全熱交換管の総流路断面積が、後側ヘッダ部列の中間ヘッダ部に通じる後側熱交換管列の第1熱交換管群を構成する全熱交換管の総流路断面積よりも大きくなっているので、後側熱交換管列において、第2熱交換管群の熱交換管を冷媒が流れる際の圧力損失と、これに隣接する第1熱交換管群の熱交換管を冷媒が流れる際の圧力損失とが均一化され、その結果第2熱交換管群の熱交換管を流れる冷媒量と、第1熱交換管群の熱交換管を流れる冷媒量とが均一化される。したがって、後側熱交換管列の第1熱交換管群の熱交換管および第2熱交換管群の熱交換管への冷媒分流状態を熱交換性能を向上させる上で好適なものに調整し、各熱交換管への冷媒の分流状態の均一化を図ることができる。   According to the heat exchanger of 5) above, the total flow cross-sectional area of all the heat exchange tubes constituting the second heat exchange tube group of the rear heat exchange tube row leading to the refrigerant outlet header portion of the upper header tank is Since it is larger than the total flow path cross-sectional area of all the heat exchange tubes constituting the first heat exchange tube group of the rear heat exchange tube row that leads to the intermediate header portion of the side header portion row, the rear heat exchange tube row The pressure loss when the refrigerant flows through the heat exchange pipe of the second heat exchange pipe group and the pressure loss when the refrigerant flows through the heat exchange pipe of the first heat exchange pipe group adjacent to the second heat exchange pipe group, As a result, the amount of refrigerant flowing through the heat exchange tubes of the second heat exchange tube group and the amount of refrigerant flowing through the heat exchange tubes of the first heat exchange tube group are made uniform. Therefore, the refrigerant distribution state to the heat exchange pipe of the first heat exchange pipe group and the heat exchange pipe of the second heat exchange pipe group in the rear heat exchange pipe row is adjusted to be suitable for improving the heat exchange performance. In addition, it is possible to make the flow distribution state of the refrigerant to each heat exchange pipe uniform.

上記6)の熱交換器によれば、上記5)の熱交換器において、上ヘッダタンクの前側ヘッダ部列の中間ヘッダ部に通じる前側熱交換管列の第2熱交換管群を構成する全熱交換管の総流路断面積が、冷媒入口ヘッダ部に通じる前側熱交換管列の第1熱交換管群を構成する全熱交換管の総流路断面積よりも大きくなっているので、前側熱交換管列においても、この第2熱交換管群の熱交換管を冷媒が流れる際の圧力損失と、これに隣接する第1熱交換管群の熱交換管を冷媒が流れる際の圧力損失とが均一化され、その結果第2熱交換管群の熱交換管を流れる冷媒量と、第1熱交換管群の熱交換管を流れる冷媒量とが均一化される。したがって、前側熱交換管列の第1熱交換管群の熱交換管および第2熱交換管群の熱交換管への冷媒分流状態を熱交換性能を向上させる上で好適なものに調整し、各熱交換管への冷媒の分流状態の均一化を図ることができる。   According to the heat exchanger of 6) above, in the heat exchanger of 5), all the heat exchanger tube rows constituting the second heat exchange tube group of the front heat exchange tube row leading to the intermediate header portion of the front header portion row of the upper header tank Since the total flow path cross-sectional area of the heat exchange pipe is larger than the total flow path cross-sectional area of all the heat exchange pipes constituting the first heat exchange pipe group of the front heat exchange pipe row leading to the refrigerant inlet header portion, Also in the front heat exchange tube row, the pressure loss when the refrigerant flows through the heat exchange tubes of the second heat exchange tube group, and the pressure when the refrigerant flows through the heat exchange tubes of the first heat exchange tube group adjacent thereto. Loss is made uniform, and as a result, the amount of refrigerant flowing through the heat exchange tubes of the second heat exchange tube group and the amount of refrigerant flowing through the heat exchange tubes of the first heat exchange tube group are made uniform. Therefore, the refrigerant diversion state to the heat exchange pipe of the first heat exchange pipe group and the heat exchange pipe of the second heat exchange pipe group in the front heat exchange pipe row is adjusted to a suitable one for improving the heat exchange performance, It is possible to achieve a uniform flow state of the refrigerant to each heat exchange tube.

上記7)の熱交換器によれば、下ヘッダタンクの後側ヘッダ部列の中間ヘッダ部に通じる後側熱交換管列の第2熱交換管群を構成する全熱交換管の総流路断面積が、冷媒出口ヘッダ部に通じる後側熱交換管列の第1熱交換管群を構成する全熱交換管の総流路断面積よりも大きくなっているので、後側熱交換管列において、この第2熱交換管群の熱交換管を冷媒が流れる際の圧力損失と、これに隣接する第1熱交換管群の熱交換管を冷媒が流れる際の圧力損失とが均一化され、その結果第2熱交換管群の熱交換管を流れる冷媒量と、第1熱交換管群の熱交換管を流れる冷媒量とが均一化される。したがって、後側熱交換管列の第1熱交換管群の熱交換管および第2熱交換管群の熱交換管への冷媒分流状態を熱交換性能を向上させる上で好適なものに調整し、各熱交換管への冷媒の分流状態の均一化を図ることができる。   According to the heat exchanger of the above 7), the total flow path of all the heat exchange tubes constituting the second heat exchange tube group of the rear heat exchange tube row communicating with the intermediate header portion of the rear header portion row of the lower header tank Since the cross-sectional area is larger than the total flow cross-sectional area of all the heat exchange tubes constituting the first heat exchange tube group of the rear heat exchange tube row leading to the refrigerant outlet header portion, the rear heat exchange tube row The pressure loss when the refrigerant flows through the heat exchange pipe of the second heat exchange pipe group and the pressure loss when the refrigerant flows through the heat exchange pipe of the first heat exchange pipe group adjacent thereto are equalized. As a result, the amount of refrigerant flowing through the heat exchange tubes of the second heat exchange tube group and the amount of refrigerant flowing through the heat exchange tubes of the first heat exchange tube group are made uniform. Therefore, the refrigerant distribution state to the heat exchange pipe of the first heat exchange pipe group and the heat exchange pipe of the second heat exchange pipe group in the rear heat exchange pipe row is adjusted to be suitable for improving the heat exchange performance. In addition, it is possible to make the flow distribution state of the refrigerant to each heat exchange pipe uniform.

上記8)の熱交換器によれば、上記7)の熱交換器において、下ヘッダタンクの冷媒入口ヘッダ部に通じる前側熱交換管列の第2熱交換管群を構成する全熱交換管の総流路断面積が、前側ヘッダ部列の中間ヘッダ部に通じる前側熱交換管列の第1熱交換管群を構成する全熱交換管の総流路断面積よりも大きくなっているので、前側熱交換管列においても、この第2熱交換管群の熱交換管を冷媒が流れる際の圧力損失と、これに隣接する第1熱交換管群の熱交換管を冷媒が流れる際の圧力損失とが均一化され、その結果第2熱交換管群の熱交換管を流れる冷媒量と、第1熱交換管群の熱交換管を流れる冷媒量とが均一化される。したがって、前側熱交換管列の第1熱交換管群の熱交換管および第2熱交換管群の熱交換管への冷媒分流状態を熱交換性能を向上させる上で好適なものに調整し、各熱交換管への冷媒の分流状態の均一化を図ることができる。   According to the heat exchanger of the above 8), in the heat exchanger of the above 7), the total heat exchange tubes constituting the second heat exchange tube group of the front heat exchange tube row leading to the refrigerant inlet header portion of the lower header tank Since the total flow path cross-sectional area is larger than the total flow path cross-sectional area of the total heat exchange pipe constituting the first heat exchange pipe group of the front heat exchange pipe row leading to the intermediate header portion of the front header section row, Also in the front heat exchange tube row, the pressure loss when the refrigerant flows through the heat exchange tubes of the second heat exchange tube group, and the pressure when the refrigerant flows through the heat exchange tubes of the first heat exchange tube group adjacent thereto. Loss is made uniform, and as a result, the amount of refrigerant flowing through the heat exchange tubes of the second heat exchange tube group and the amount of refrigerant flowing through the heat exchange tubes of the first heat exchange tube group are made uniform. Therefore, the refrigerant diversion state to the heat exchange pipe of the first heat exchange pipe group and the heat exchange pipe of the second heat exchange pipe group in the front heat exchange pipe row is adjusted to a suitable one for improving the heat exchange performance, It is possible to achieve a uniform flow state of the refrigerant to each heat exchange tube.

以下、この発明の実施形態を、図面を参照して説明する。この実施形態は、この発明による熱交換器を超臨界冷凍サイクルのエバポレータに適用したものである。   Embodiments of the present invention will be described below with reference to the drawings. In this embodiment, the heat exchanger according to the present invention is applied to an evaporator of a supercritical refrigeration cycle.

なお、以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。また、全図面を通じて同一部分および同一物には同一符号を付して重複する説明を省略する。   In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum. Moreover, the same code | symbol is attached | subjected to the same part and the same thing through all drawings, and the overlapping description is abbreviate | omitted.

実施形態1
この実施形態は図1〜11に示すものである。
Embodiment 1
This embodiment is shown in FIGS.

図1〜図3はこの発明を適用したエバポレータの全体構成を示し、図4〜図10はエバポレータの要部の構成を示し、図11は図1のエバポレータにおける冷媒の流れを示す。   1 to 3 show the overall configuration of an evaporator to which the present invention is applied, FIGS. 4 to 10 show the configuration of the main part of the evaporator, and FIG. 11 shows the flow of refrigerant in the evaporator of FIG.

図1〜図3において、超臨界冷媒、たとえばCOを使用する超臨界冷凍サイクルのエバポレータ(30)は、上下方向に間隔をおいて配置されかつ左右方向に伸びる2つのヘッダタンク(31)(32)と、両ヘッダタンク(31)(32)間に、左右方向に間隔をおいて並列状に配置された上下方向にのびる複数の扁平状熱交換管(33)と、隣接する熱交換管(33)どうしの間の通風間隙、および左右両端の熱交換管(33)の外側に配置されて熱交換管(33)にろう付されたコルゲートフィン(34)と、左右両端のコルゲートフィン(34)の外側にそれぞれ配置されてコルゲートフィン(34)にろう付されたアルミニウムベア製サイドプレート(35)とを備えている。なお、この実施形態において、上側のヘッダタンク(31)を第1ヘッダタンク、下側のヘッダタンク(32)を第2ヘッダタンクというものとする。 1 to 3, an evaporator (30) of a supercritical refrigeration cycle using a supercritical refrigerant, for example, CO 2 , is provided with two header tanks (31) (31) ( 32) and a plurality of flat heat exchange tubes (33) extending in the vertical direction and arranged in parallel with a space in the left-right direction between both header tanks (31) (32), and adjacent heat exchange tubes (33) The ventilation gap between the corrugated fins (34) disposed outside the heat exchange pipes (33) on both the left and right ends and brazed to the heat exchange pipes (33), and the corrugated fins on the left and right ends ( And an aluminum bear side plate (35) brazed to the corrugated fin (34). In this embodiment, the upper header tank (31) is referred to as a first header tank, and the lower header tank (32) is referred to as a second header tank.

図2〜図8に示すように、第1ヘッダタンク(31)は、アルミニウム製タンク形成部材(36)と、両面にろう材層を有するブレージングシート、ここではアルミニウムブレージングシートから形成され、かつタンク形成部材(36)の下面を覆うようにタンク形成部材(36)にろう付された管接続用プレート(37)とを備えている。タンク形成部材(36)は、両面にろう材層を有するブレージングシート、ここではアルミニウムブレージングシートから形成され、かつ上側(外側)に配置された第1プレート(36A)と、金属ベア材、ここではアルミニウムベア材からなり、かつ第1プレート(36A)と管接続用プレート(37)との間に介在させられて両プレート(36A)(37)にろう付された第2プレート(36B)とにより構成されている。そして、第1ヘッダタンク(31)には、左右方向に間隔をおいて並ぶように形成された2つのヘッダ部(1)(2)および(3)(4)からなるヘッダ部列(5)(6)が前後方向に間隔をおいて2列設けられている(図1参照)。   As shown in FIGS. 2 to 8, the first header tank (31) is formed of an aluminum tank forming member (36) and a brazing sheet having a brazing filler metal layer on both sides, here an aluminum brazing sheet, and the tank. A pipe connecting plate (37) brazed to the tank forming member (36) so as to cover the lower surface of the forming member (36). The tank forming member (36) is formed of a brazing sheet having a brazing filler metal layer on both sides, here an aluminum brazing sheet, and disposed on the upper side (outside), and a metal bear material, here A second plate (36B) made of aluminum bare material and interposed between the first plate (36A) and the pipe connection plate (37) and brazed to both plates (36A) (37). It is configured. In the first header tank (31), a header section row (5) composed of two header sections (1), (2), (3) and (4) formed so as to be arranged at intervals in the left-right direction. (6) is provided in two rows at intervals in the front-rear direction (see FIG. 1).

第1ヘッダタンク(31)のタンク形成部材(36)の第1プレート(36A)の前側部分および後側部分に、それぞれ左右方向に伸びる2つの外方膨出部(39A)(39B)(39C)(39D)が左右方向に間隔をおいて形成されている。以下、この実施形態において、前側右部分の外方膨出部(39A)を第1外方膨出部、前側左部分の外方膨出部(39B)を第2外方膨出部、後側右部分の外方膨出部(39C)を第3外方膨出部、後側左部分の外方膨出部(39D)を第4外方膨出部というものとする。第2外方膨出部(39B)の左右方向の長さは第1外方膨出部(39A)の左右方向の長さよりも長く、第3外方膨出部(39C)の左右方向の長さは第4外方膨出部(39D)の左右方向の長さよりも長くなっている。また、各外方膨出部(39A)〜(39D)の膨出高さおよび幅は等しくなっている。第1プレート(36A)における第1〜第4外方膨出部(39A)〜(39D)の内部空間(39a)(39b)(39c)(39d)の下側を向いた開口は第2プレート(36B)により塞がれている。第1プレート(36A)は、両面にろう材層を有するアルミニウムブレージングシートにプレス加工を施することにより形成されている。   Two outwardly bulging portions (39A) (39B) (39C) extending in the left-right direction on the front side portion and the rear side portion of the first plate (36A) of the tank forming member (36) of the first header tank (31), respectively. ) (39D) are formed at intervals in the left-right direction. Hereinafter, in this embodiment, the outer bulging portion (39A) of the front right portion is the first outer bulging portion, the outer bulging portion (39B) of the front left portion is the second outer bulging portion, and the rear The outward bulging portion (39C) in the right side portion is referred to as a third outward bulging portion, and the outward bulging portion (39D) in the rear left portion is referred to as a fourth outward bulging portion. The length in the left-right direction of the second outer bulge portion (39B) is longer than the length in the left-right direction of the first outer bulge portion (39A), and the length in the left-right direction of the third outer bulge portion (39C). The length is longer than the length in the left-right direction of the fourth outward bulging portion (39D). Further, the bulge height and width of each of the outward bulge portions (39A) to (39D) are equal. The opening of the first plate (36A) facing the lower side of the internal space (39a) (39b) (39c) (39d) of the first to fourth outward bulges (39A) to (39D) is the second plate. It is blocked by (36B). The first plate (36A) is formed by pressing an aluminum brazing sheet having a brazing filler metal layer on both sides.

管接続用プレート(37)の前後両側部分に、それぞれ前後方向に長い複数の貫通状管挿入穴(41)が、左右方向に間隔をおいて形成されている。前列の右側の複数の管挿入穴(41)は、第1プレート(36A)の第1外方膨出部(39A)の左右方向の範囲内に形成され、前列の左側の複数の管挿入穴(41)は、第2外方膨出部(39B)の左右方向の範囲内に形成され、後列の右側の複数の管挿入穴(41)は、第3外方膨出部(39C)の左右方向の範囲内に形成され、後列の左側の複数の管挿入穴(41)は、第4外方膨出部(39D)の左右方向の範囲内に形成されている。また、各管挿入穴(41)の長さは、各外方膨出部(39A)〜(39D)の前後方向の幅よりも若干長く、管挿入穴(41)の前後両端部は各外方膨出部(39A)〜(39D)の前後両側縁よりも外方に突出している(図3参照)。また、管接続用プレート(37)の前後両側縁部に、それぞれ上方に突出して先端が第1プレート(36A)の外面まで至り、かつ第1プレート(36A)と第2プレート(36B)との境界部分を全長にわたって覆う被覆壁(42)が一体に形成され、第1プレート(36A)および第2プレート(36B)の前後両側面にろう付されている。各被覆壁(42)の突出端に、第1プレート(36A)の外面に係合する複数の係合部(43)が、左右方向に間隔をおいて一体に形成され、第1プレート(36A)にろう付されている。管接続用プレート(37)は、両面にろう材層を有するアルミニウムブレージングシートにプレス加工を施すことにより形成されている。   A plurality of through-tube insertion holes (41) that are long in the front-rear direction are formed in the front-rear side portions of the pipe connection plate (37), with a space in the left-right direction. The plurality of tube insertion holes (41) on the right side of the front row are formed in the left-right direction range of the first outer bulge portion (39A) of the first plate (36A), and the plurality of tube insertion holes on the left side of the front row (41) is formed within the range in the left-right direction of the second outer bulge portion (39B), and the plurality of tube insertion holes (41) on the right side of the rear row are formed on the third outer bulge portion (39C). The plurality of tube insertion holes (41) on the left side of the rear row are formed in the left-right range, and are formed in the left-right range of the fourth outward bulge portion (39D). In addition, the length of each tube insertion hole (41) is slightly longer than the width in the front-rear direction of each outward bulge portion (39A) to (39D), and both front and rear end portions of the tube insertion hole (41) are It protrudes outward from the front and rear side edges of the side bulges (39A) to (39D) (see FIG. 3). Also, the pipe connecting plate (37) protrudes upward and downward on both side edges, and the tip reaches the outer surface of the first plate (36A), and the first plate (36A) and the second plate (36B) A covering wall (42) covering the entire boundary is formed integrally, and is brazed to both the front and rear side surfaces of the first plate (36A) and the second plate (36B). A plurality of engaging portions (43) that engage with the outer surface of the first plate (36A) are integrally formed at the protruding end of each covering wall (42) at intervals in the left-right direction. ) Is brazed. The pipe connecting plate (37) is formed by pressing an aluminum brazing sheet having a brazing filler metal layer on both sides.

第1ヘッダタンク(31)のタンク形成部材(36)の第2プレート(36B)に、管接続用プレート(37)の管挿入穴(41)を第1プレート(36A)の外方膨出部(39A)〜(39D)の内部空間(39a)〜(39d)に通じさせる貫通状連通穴(44)が、管挿入穴(41)と同じ数だけ形成されている。連通穴(44)は管挿入穴(41)よりも一回り大きくなっている。そして、管接続用プレート(37)の前列の右側の複数の管挿入穴(41)は、第2プレート(36B)の前列の右側の複数の連通穴(44)を介して第1外方膨出部(39A)の内部空間(39a)に通じさせられ、同じく前列の左側の複数の管挿入穴(41)は、第2プレート(36B)の前列の右側の複数の連通穴(44)を介して第2外方膨出部(39B)の内部空間(39b)に通じさせられ、同じく後列の右側の複数の管挿入穴(41)は、第2プレート(36B)の後列の右側の複数の連通穴(44)を介して第3外方膨出部(39C)の内部空間(39c)に通じさせられ、同じく後列の左側の複数の管挿入穴(41)は、第2プレート(36B)の後側の左半部における複数の連通穴(44)を介して第4外方膨出部(39D)の内部空間(39d)に通じさせられている。   The pipe insertion hole (41) of the pipe connection plate (37) is formed on the second plate (36B) of the tank forming member (36) of the first header tank (31), and the outward bulge portion of the first plate (36A). The same number of penetrating communication holes (44) that communicate with the internal spaces (39a) to (39d) of (39A) to (39D) are formed as many as the tube insertion holes (41). The communication hole (44) is slightly larger than the tube insertion hole (41). The plurality of tube insertion holes (41) on the right side of the front row of the pipe connection plate (37) are connected to the first outward expansion via the plurality of communication holes (44) on the right side of the front row of the second plate (36B). The plurality of tube insertion holes (41) on the left side of the front row are connected to the inner space (39a) of the outlet (39A), and the plurality of communication holes (44) on the right side of the front row of the second plate (36B) Through the inner space (39b) of the second outer bulge portion (39B), and the plurality of tube insertion holes (41) on the right side of the rear row are also provided on the right side of the rear row of the second plate (36B). The plurality of tube insertion holes (41) on the left side of the rear row are connected to the second plate (36B) through the communication hole (44) of the third outer bulge portion (39C). ) Through the inner space (39d) of the fourth outwardly bulging portion (39D) through a plurality of communication holes (44) in the left half of the rear side.

タンク形成部材(36)の第2プレート(36B)における第1プレート(36A)の第1外方膨出部(39A)の内部空間(39a)に通じるすべての連通穴(44)、第2外方膨出部(39B)の内部空間(39b)に通じるすべての連通穴(44)および第3外方膨出部(39C)の内部空間(39c)に通じるすべての連通穴(44)は、それぞれ第2プレート(36B)における左右方向に隣り合う連通穴(44)間の前後方向中央部分を切除することにより形成された連通部(46)により連通させられている。そして、第1プレート(36A)の第1〜第3外方膨出部(39A)〜(39C)の内部空間(39a)〜(39c)に通じるすべての連通穴(44)を連通させる連通部(46)、および連通穴(44)の前後方向中央部(連通穴(44)における連通部(46)に対応する部分)によって、第2プレート(36B)に、第1プレート(36A)の第1〜第3外方膨出部(39A)〜(39C)の内部空間(39a)〜(39c)に通じかつ冷媒が左右方向に流れる冷媒流通部(40A)(40B)(40C)が形成されている。   All the communication holes (44) leading to the internal space (39a) of the first outer bulging portion (39A) of the first plate (36A) in the second plate (36B) of the tank forming member (36), the second outer All the communication holes (44) leading to the internal space (39b) of the side bulge portion (39B) and all the communication holes (44) leading to the internal space (39c) of the third outer bulge portion (39C) are Each of the second plates (36B) is communicated by a communicating portion (46) formed by cutting a central portion in the front-rear direction between communicating holes (44) adjacent in the left-right direction. And the communicating part which makes all the communicating holes (44) connected to the internal space (39a)-(39c) of the 1st-3rd outward bulging part (39A)-(39C) of a 1st plate (36A) communicate. (46) and the center part in the front-rear direction of the communication hole (44) (the part corresponding to the communication part (46) in the communication hole (44)), the second plate (36B) and the first plate (36A) Refrigerant circulation portions (40A), (40B), and (40C) that are connected to the inner spaces (39a) to (39c) of the first to third outer bulge portions (39A) to (39C) and in which the refrigerant flows in the left-right direction are formed. ing.

第2プレート(36B)における第1プレート(36A)の第4外方膨出部(39D)の内部空間(39d)に通じる各連通穴(44)と、左右方向に関して当該連通穴(44)と対応する位置にありかつ第2外方膨出部(39B)の内部空間(39b)に通じる各連通穴(44)とは、第2プレート(36B)における前後方向に隣り合う連通穴(44)間の部分を切除することにより形成された冷媒ターン用連通部(45)により連通させられ、これにより第1プレート(36A)の第2および第4外方膨出部(39B)(39D)の内部空間(39b)(39d)どうしが相互に通じ合っている。第2プレート(36B)は、アルミニウムベア材にプレス加工を施すことにより形成されている。   Each communication hole (44) communicating with the internal space (39d) of the fourth outward bulge portion (39D) of the first plate (36A) in the second plate (36B), and the communication hole (44) in the left-right direction, Each communication hole (44) that is in a corresponding position and communicates with the internal space (39b) of the second outward bulge portion (39B) is a communication hole (44) adjacent in the front-rear direction in the second plate (36B). It is made to communicate by the refrigerant | coolant turn communication part (45) formed by cutting off the part between these, Thereby, the 2nd and 4th outward bulge part (39B) (39D) of a 1st plate (36A) The internal spaces (39b) and (39d) communicate with each other. The second plate (36B) is formed by pressing an aluminum bare material.

3つのプレート(36A)(36B)(37)の右端部には、それぞれ前後方向に間隔をおいて2つの右方突出部(36a)(36b)(37a)が形成されている。第2プレート(36B)には、前後2つの外方突出部(36b)の先端から右端部の連通穴(44)に通じる切り欠き(47)が形成されており、これにより第1ヘッダタンク(31)の右端部に、第2プレート(36B)の前列右側の冷媒流通部(40A)および第1プレート(36A)の第1外方膨出部(39A)の内部空間(39a)に通じる冷媒入口(48)と、第2プレート(36B)の後列右側の冷媒流通部(40B)および第1プレート(36A)の第3外方膨出部(39C)の内部空間(39c)に通じる冷媒出口(49)とが形成されている。3つのプレート(36A)(36B)(37)の2つの右方突出部(36a)(36b)(37a)にまたがるように、冷媒入口(48)に通じる冷媒流入路(52)および冷媒出口(49)に通じる冷媒流出路(53)を有する冷媒入出部材(51)が、両面にろう材層を有するブレージングシート、ここではアルミニウムブレージングシート(57)により第1ヘッダタンク(31)にろう付されている。冷媒入出部材(51)は、金属ベア材、ここではアルミニウムベア材からなる。   Two right protrusions (36a) (36b) (37a) are formed at the right ends of the three plates (36A), (36B), and (37) at intervals in the front-rear direction. The second plate (36B) is formed with a notch (47) that leads from the front end of the two front and rear outward projections (36b) to the communication hole (44) at the right end, so that the first header tank ( 31) on the right end of the second plate (36B) on the right end of the second plate (36B) and the refrigerant communicating with the internal space (39a) of the first outwardly bulging portion (39A) of the first plate (36A) Refrigerant outlet communicating with the inlet (48) and the internal space (39c) of the third outer bulge part (39C) of the first plate (36A) and the refrigerant circulation part (40B) on the right side of the rear row of the second plate (36B) (49) is formed. The refrigerant inflow passage (52) and the refrigerant outlet (52) leading to the refrigerant inlet (48) span the two right protrusions (36a) (36b) (37a) of the three plates (36A) (36B) (37). 49) A refrigerant inlet / outlet member (51) having a refrigerant outlet passage (53) leading to 49) is brazed to the first header tank (31) by a brazing sheet having a brazing material layer on both sides, here an aluminum brazing sheet (57). ing. The refrigerant inlet / outlet member (51) is made of a metal bare material, here an aluminum bear material.

そして、第1ヘッダタンク(31)のタンク形成部材(36)を構成する2つのプレート(36A)(36B)および管接続用プレート(37)における第1外方膨出部(39A)と対応する部分により冷媒入口ヘッダ部(1)が形成され、同じく第1ヘッダタンク(31)のタンク形成部材(36)を構成する2つのプレート(36A)(36B)および管接続用プレート(37)における第2外方膨出部(39B)と対応する部分により前側中間ヘッダ部(2)が形成されており、入口ヘッダ部(1)および前側中間ヘッダ部(2)により前側のヘッダ部列(5)が構成されている。また、第1ヘッダタンク(31)のタンク形成部材(36)を構成する2つのプレート(36A)(36B)および管接続用プレート(37)における第3外方膨出部(39Cと対応する部分により出口ヘッダ部(2)が形成され、同じく第1ヘッダタンク(31)のタンク形成部材(36)を構成する2つのプレート(36A)(36B)および管接続用プレート(37)における第4外方膨出部(39D)と対応する部分により後側中間ヘッダ部(4)が形成されており、出口ヘッダ部(3)および後側中間ヘッダ部(4)により後側のヘッダ部列(6)が構成されている。第1ヘッダタンク(31)の前側ヘッダ部列(5)の中間ヘッダ部(2)の長さは入口ヘッダ部(1)の長さよりも長く、さらに第1ヘッダタンク(31)の出口ヘッダ部(3)の長さは後側ヘッダ部列(6)の中間ヘッダ部(4)の長さよりも長くなっている。   The two plates (36A) (36B) and the pipe connection plate (37) constituting the tank forming member (36) of the first header tank (31) correspond to the first outward bulging portion (39A). The refrigerant inlet header portion (1) is formed by the portion, and the two plates (36A) (36B) and the pipe connection plate (37) constituting the tank forming member (36) of the first header tank (31) are also formed. 2 The front intermediate header portion (2) is formed by the portion corresponding to the outward bulge portion (39B), and the front header row (5) is formed by the inlet header portion (1) and the front intermediate header portion (2). Is configured. In addition, the two plates (36A) (36B) and the pipe connection plate (37) constituting the tank forming member (36) of the first header tank (31) and the third outward bulging portion (portion corresponding to 39C) As a result, the outlet header portion (2) is formed, and the fourth outside of the two plates (36A) (36B) and the pipe connection plate (37) constituting the tank forming member (36) of the first header tank (31). A rear intermediate header portion (4) is formed by a portion corresponding to the side bulge portion (39D), and a rear header portion row (6) is formed by the outlet header portion (3) and the rear intermediate header portion (4). The length of the intermediate header portion (2) of the front header portion row (5) of the first header tank (31) is longer than the length of the inlet header portion (1), and the first header tank The length of the outlet header portion (3) of (31) is longer than the length of the intermediate header portion (4) of the rear header portion row (6).

図1〜図3および図8に示すように、第2ヘッダタンク(32)は、第1ヘッダタンク(31)とほぼ同様な構成であり、同一物および同一部分に同一符号を付す。両ヘッダタンク(31)(32)は、管接続用プレート(37)どうしが対向するように配置されている。第2ヘッダタンク(32)の第1ヘッダタンク(31)との相違点は以下に述べるとおりである。   As shown in FIGS. 1 to 3 and 8, the second header tank (32) has substantially the same configuration as the first header tank (31), and the same components and the same parts are denoted by the same reference numerals. Both header tanks (31) and (32) are arranged so that the pipe connecting plates (37) face each other. The difference between the second header tank (32) and the first header tank (31) is as described below.

第2ヘッダタンク(32)の第1プレート(36A)に、左右方向に伸びる2つの外方膨出部(54A)(54B)が前後方向に間隔をおいて形成されている。両外方膨出部(54A)(54B)は、それぞれ第1ヘッダタンク(31)の第1プレート(36A)の第1外方膨出部(39A)と第2外方膨出部(39B)、および第3外方膨出部(39C)と第4外方膨出部(39D)とにそれぞれまたがるように第1プレート(36A)の右端部から左端部にかけて形成されている。前後両外方膨出部(54A)(54B)の膨出高さおよび幅は、第1ヘッダタンク(31)の第1プレート(36A)の外方膨出部(39A)〜(39D)の膨出高さおよび幅と等しくなっている。前後両外方膨出部(54A)(54B)の内部空間(54a)(54b)は、それぞれCOを左右方向に流すようになっており、COは、前側外方膨出部(54A)の内部空間(54a)を右から左に流れ、後側外方膨出部(54B)の内部空間(54b)を左から右に流れるようになっている。なお、両外方膨出部(54A)(54B)は連通させられていない。 Two outward bulges (54A) (54B) extending in the left-right direction are formed in the first plate (36A) of the second header tank (32) at intervals in the front-rear direction. Both the outward bulge portions (54A) and (54B) are respectively the first outward bulge portion (39A) and the second outward bulge portion (39B) of the first plate (36A) of the first header tank (31). ), And the third outward bulge portion (39C) and the fourth outward bulge portion (39D), respectively, from the right end portion to the left end portion of the first plate (36A). The bulging height and width of the front and rear outer bulges (54A) (54B) are the same as those of the outer bulges (39A) to (39D) of the first plate (36A) of the first header tank (31). It is equal to the bulge height and width. The internal space of the front and rear outward bulging portion (54A) (54B) (54a ) (54b) is adapted to flow the CO 2 in the lateral direction, respectively, CO 2 is the front outward bulging portion (54A ) Flows from right to left, and flows from left to right in the inner space (54b) of the rear outward bulge portion (54B). Note that the both outwardly bulged portions (54A) and (54B) are not communicated with each other.

管接続用プレート(37)の前後両側部分に、それぞれ前後方向に長い複数の貫通状管挿入穴(41)が、左右方向に間隔をおいて形成されている。前側のすべての管挿入穴(41)は、第1プレート(36A)の前側外方膨出部(54A)の左右方向の範囲内に形成され、後側のすべての管挿入穴(41)は、後側外方膨出部(54B)の左右方向の範囲内に形成されている。   A plurality of through-tube insertion holes (41) that are long in the front-rear direction are formed in the front-rear side portions of the pipe connection plate (37), with a space in the left-right direction. All the tube insertion holes (41) on the front side are formed within the lateral direction of the front outward bulge portion (54A) of the first plate (36A), and all the tube insertion holes (41) on the rear side are The rear outer bulge portion (54B) is formed within the range in the left-right direction.

タンク形成部材(36)の第2プレート(36B)における管接続用プレート(37)の管挿入穴(41)と対応する位置に形成され、かつ管挿入穴(41)を各外方膨出部(54A)(54B)の内部空間(54a)(54b)に通じさせるすべての連通穴(44)は、第2プレート(36B)における左右方向に隣り合う連通穴(44)間の部分を切除することによって形成された連通部(46)により連通させられている。そして、第1プレート(36A)の前後両外方膨出部(54A)(54B)の内部空間(54a)(54b)に通じるすべての連通穴(44)を連通させる連通部(46)、および連通穴(44)の前後方向中央部(連通穴(44)における連通部(46)に対応する部分)によって、第2プレート(36B)に、第1プレート(36A)の前後両外方膨出部(54A)(54B)の内部空間(54a)(54b)に通じかつ冷媒が左右方向に流れる冷媒流通部(55A)(55B)が形成されている。   The tank forming member (36) is formed at a position corresponding to the pipe insertion hole (41) of the pipe connection plate (37) in the second plate (36B), and the pipe insertion hole (41) is formed in each outwardly bulging portion. All of the communication holes (44) communicating with the internal spaces (54a) and (54b) of (54A) and (54B) cut out portions between the communication holes (44) adjacent in the left-right direction in the second plate (36B). The communication part (46) formed by this is connected. And a communicating portion (46) for communicating all the communicating holes (44) leading to the internal spaces (54a) (54b) of the front and rear outwardly bulging portions (54A) (54B) of the first plate (36A), and The front and rear center of the communication hole (44) (the part corresponding to the communication part (46) in the communication hole (44)) causes the second plate (36B) to bulge both the front and rear sides of the first plate (36A). Refrigerant circulation portions (55A) and (55B) are formed which communicate with the internal spaces (54a) and (54b) of the portions (54A) and (54B) and through which the refrigerant flows in the left-right direction.

なお、第2ヘッダタンク(32)には冷媒入口(48)および冷媒出口(49)は形成されていない。   The second header tank (32) is not formed with the refrigerant inlet (48) and the refrigerant outlet (49).

そして、第2ヘッダタンク(32)のタンク形成部材(36)を構成する2つのプレート(36A)(36B)および管接続用プレート(37)における前後両外方膨出部(54A)(54B)と対応する部分により、前後2つの中間ヘッダ部(7)(8)が形成されている。   The front and rear outward bulges (54A) (54B) of the two plates (36A) (36B) and the pipe connection plate (37) constituting the tank forming member (36) of the second header tank (32) The two intermediate header portions (7) and (8) are formed by the corresponding portions.

熱交換管(33)は、金属のベア材、ここではアルミニウム製押出形材からなり、前後方向に幅広の扁平状で、その内部に長さ方向に伸びる複数の冷媒通路(33a)が並列状に形成されており、各熱交換管の流路断面積は等しくなっている。熱交換管(33)の両端部は、それぞれ両ヘッダタンク(31)(32)の管挿入穴(41)に挿入された状態で、管接続用プレート(37)のろう材層を利用して管接続用プレート(37)にろう付されている。熱交換管(33)の両端は第2プレート(36B)の厚さ方向の中間部まで連通穴(44)内に入り込んでいる。   The heat exchange pipe (33) is made of a bare metal material, here an aluminum extruded shape, and has a flat shape that is wide in the front-rear direction, and a plurality of refrigerant passages (33a) that extend in the length direction are arranged in parallel in the heat exchange pipe (33). The cross-sectional areas of the heat exchange tubes are equal. Both ends of the heat exchange pipe (33) are inserted into the pipe insertion holes (41) of the header tanks (31) and (32), respectively, using the brazing material layer of the pipe connection plate (37). It is brazed to the pipe connection plate (37). Both ends of the heat exchange pipe (33) enter the communication hole (44) up to the middle part in the thickness direction of the second plate (36B).

全熱交換管(33)は、左右方向に間隔をおいて並列状に配置された複数の熱交換管(33)からなりかつ第1ヘッダタンク(31)のヘッダ部列(5)(6)と同数、すなわち前後2列の熱交換管列(10)(11)に分けられている。前側熱交換管列(10)の右側部分に位置する複数の熱交換管(33)の上下両端部は、第1ヘッダタンク(31)の入口ヘッダ部(1)内(第1外方膨出部(39A)の内部空間(39a)および前列右側の冷媒流通部(40A))および第2ヘッダタンク(32)の前側中間ヘッダ部(7)内(前側外方膨出部(54A)の内部空間(54a)および前列の冷媒流通部(55A))の右側部分に通じるように両ヘッダタンク(31)(32)に接続され、同じく左側部分に位置する複数の熱交換管(33)の上下両端部は、第1ヘッダタンク(31)の前側ヘッダ部列(5)の前側中間ヘッダ部(2)内(第2外方膨出部(39B)の内部空間(39b)および前列左側の冷媒流通部(40B))および第2ヘッダタンク(32)の前側中間ヘッダ部(7)内(前側外方膨出部(54A)の内部空間(54a)および前列の冷媒流通部(55A))の左側部分に通じるように両ヘッダタンク(31)(32)に接続されている。また、後側熱交換管列(11)の右側部分に位置する複数の熱交換管(33)の上下両端部は、第1ヘッダタンク(31)の出口ヘッダ部(3)内(第3外方膨出部(39C)の内部空間(39c)および後列右側の冷媒流通部(40C))および第2ヘッダタンク(32)の後側中間ヘッダ部(8)内(後側外方膨出部(54B)の内部空間(54b)および後列の冷媒流通部(55B))の右側部分に通じるように両ヘッダタンク(31)(32)に接続され、同じく左側部分に位置する複数の熱交換管(33)の上下両端部は、第1ヘッダタンク(31)の後側ヘッダ部列(6)の左側中間ヘッダ部(4)内(第4外方膨出部(39D)の内部空間(39d)および当該内部空間(39d)に通じる連通穴(44))および第2ヘッダタンク(32)の後側中間ヘッダ部(8)内(後側外方膨出部(54B)の内部空間(54b)および後列の冷媒流通部(55B))の左側部分に通じるように両ヘッダタンク(31)(32)に接続されている。   The total heat exchange pipe (33) is composed of a plurality of heat exchange pipes (33) arranged in parallel at intervals in the left-right direction, and the header section row (5) (6) of the first header tank (31). Are divided into the same number, that is, two heat exchange tube rows (10) and (11). The upper and lower ends of the plurality of heat exchange pipes (33) located on the right side of the front heat exchange pipe row (10) are in the inlet header part (1) of the first header tank (31) (the first outward bulge). The inner space (39a) of the section (39A), the right side refrigerant circulation section (40A)), and the inside of the front intermediate header section (7) of the second header tank (32) (inside the front outer bulging section (54A)) Connected to both header tanks (31) and (32) so as to communicate with the right side of the space (54a) and the refrigerant circulation section (55A) in the front row, and above and below the plurality of heat exchange tubes (33) which are also located on the left side Both ends are located in the front intermediate header portion (2) of the front header portion row (5) of the first header tank (31) (the internal space (39b) of the second outer bulge portion (39B) and the refrigerant on the left side of the front row) Distribution section (40B)) and in the front intermediate header section (7) of the second header tank (32) (the inner space (54a) of the front outer bulge section (54A) and the refrigerant distribution section (55A) in the front row). Connect to both header tanks (31) and (32) so as to communicate with the left side It is. In addition, the upper and lower ends of the plurality of heat exchange tubes (33) located in the right part of the rear heat exchange tube row (11) are located in the outlet header portion (3) of the first header tank (31) (the third outer portion). The internal space (39c) of the side bulge portion (39C) and the right side rear refrigerant circulation portion (40C)) and the rear intermediate header portion (8) of the second header tank (32) (rear side outward bulge portion) A plurality of heat exchange tubes that are connected to both header tanks (31) and (32) so as to communicate with the right side portion of the internal space (54b) of the rear row (54B) and the refrigerant circulation portion (55B) of the rear row, and are also located on the left side portion The upper and lower ends of (33) are arranged in the left intermediate header part (4) of the rear header part row (6) of the first header tank (31) (the inner space (39d ) And a communication hole (44) communicating with the inner space (39d) and the inner space (54b of the rear outer bulge portion (54B) in the rear intermediate header portion (8) of the second header tank (32). ) And the left side of the refrigerant distribution section (55B) in the rear row) Connected to the link (31) (32).

そして、第1ヘッダタンク(31)の入口ヘッダ部(1)および第2ヘッダタンク(32)の前側中間ヘッダ部(7)に通じる熱交換管(33)、ならびに第1ヘッダタンク(31)の後側ヘッダ部列(6)の中間ヘッダ部(4)および第2ヘッダタンク(32)の後側中間ヘッダ部(8)に通じる熱交換管(33)により、それぞれ冷媒が上から下に流れる第1熱交換管群(12)が形成されている。また、第1ヘッダタンク(31)の出口ヘッダ部(3)および第2ヘッダタンク(32)の後側中間ヘッダ部(8)に通じる熱交換管(33)、ならびに第1ヘッダタンク(31)の前側ヘッダ部列(5)の中間ヘッダ部(2)および第2ヘッダタンク(32)の前側中間ヘッダ部(7)に通じる熱交換管(33)により、それぞれ冷媒が下から上に流れる第2熱交換管群(13)が形成されている。したがって、各熱交換管列(10)(11)には第1熱交換管群(12)と第2熱交換管群(13)とが左右方向に並んで設けられており、第1ヘッダタンク(31)の前側ヘッダ部列(5)の中間ヘッダ部(2)の長さが入口ヘッダ部(1)の長さよりも長いこと、および第1ヘッダタンク(31)の出口ヘッダ部(3)の長さが後側ヘッダ部列(6)の中間ヘッダ部(4)の長さよりも長いことによって、第2熱交換管群(13)を構成する熱交換管(33)の数が、第1熱交換管群(12)を構成する熱交換管(33)の数よりも多くなっている。その結果、各熱交換管(33)の流路断面積が等しくなっていることから、各第2熱交換管群(13)を構成する全熱交換管(33)の総流路断面積が、これに隣接する第1熱交換管群(12)を構成する全熱交換管(33)の総流路断面積よりも大きくなっており、たとえば1.1〜1.7倍大きくなっていることが好ましい。   The heat exchange pipe (33) leading to the inlet header portion (1) of the first header tank (31) and the front intermediate header portion (7) of the second header tank (32), and the first header tank (31) The refrigerant flows from top to bottom by the heat exchange pipe (33) that leads to the intermediate header section (4) of the rear header section row (6) and the rear intermediate header section (8) of the second header tank (32). A first heat exchange tube group (12) is formed. Also, a heat exchange pipe (33) leading to the outlet header section (3) of the first header tank (31) and the rear intermediate header section (8) of the second header tank (32), and the first header tank (31) The refrigerant flows from the bottom to the top by the heat exchange pipe (33) leading to the intermediate header section (2) of the front header section row (5) and the front intermediate header section (7) of the second header tank (32). Two heat exchange tube groups (13) are formed. Accordingly, the first heat exchange tube group (12) and the second heat exchange tube group (13) are provided in each heat exchange tube row (10) (11) side by side in the left-right direction, and the first header tank The length of the intermediate header part (2) of the front header part row (5) of (31) is longer than the length of the inlet header part (1), and the outlet header part (3) of the first header tank (31) Is longer than the length of the intermediate header part (4) of the rear header part row (6), the number of heat exchange pipes (33) constituting the second heat exchange pipe group (13) is It is larger than the number of heat exchange tubes (33) constituting one heat exchange tube group (12). As a result, since the cross-sectional area of each heat exchange pipe (33) is equal, the total cross-sectional area of the total heat exchange pipe (33) constituting each second heat exchange pipe group (13) is It is larger than the total flow passage cross-sectional area of the total heat exchange pipe (33) constituting the first heat exchange pipe group (12) adjacent thereto, for example, 1.1 to 1.7 times larger. It is preferable.

なお、熱交換管(33)としては、アルミニウム押出形材製のものに代えて、両面にろう材層を有するアルミニウムブレージングシートに圧延加工を施すことにより形成され、かつ連結部を介して連なった2つの平坦壁形成部と、各平坦壁形成部における連結部とは反対側の側縁より隆起状に一体成形された側壁形成部と、平坦壁形成部の幅方向に所定間隔をおいて両平坦壁形成部よりそれぞれ隆起状に一体成形された複数の仕切壁形成部とを備えた板を、連結部においてヘアピン状に曲げて側壁形成部どうしを突き合わせて相互にろう付し、仕切壁形成部により仕切壁を形成したものを用いてもよい。   The heat exchange pipe (33) was formed by rolling an aluminum brazing sheet having a brazing filler metal layer on both sides, instead of one made of an aluminum extruded profile, and continued through a connecting portion. Two flat wall forming portions, a side wall forming portion integrally formed in a raised shape from the side edge on the opposite side of the connecting portion in each flat wall forming portion, and a predetermined interval in the width direction of the flat wall forming portion. A plate having a plurality of partition wall forming portions integrally formed in a protruding shape from the flat wall forming portion is bent into a hairpin shape at the connecting portion, and the side wall forming portions are butted against each other to form a partition wall. You may use what formed the partition wall by the part.

コルゲートフィン(34)は両面にろう材層を有するアルミニウムブレージングシートを用いて波状に形成されたものであり、その波頭部と波底部を連結する連結部に、前後方向に並列状に複数のルーバが形成されている。コルゲートフィン(34)は前後両熱交換管列(10)(11)に共有されており、その前後方向の幅は前側熱交換管列(10)の熱交換管(33)の前側縁と後側熱交換管列(11)の熱交換管(33)の後側縁との間隔をほぼ等しくなっている。なお、1つのコルゲートフィン(34)が前後両熱交換管列(10)(11)に共有される代わりに、両熱交換管列(10)(11)の隣り合う熱交換管(33)どうしの間にそれぞれコルゲートフィンが配置されていてもよい。   The corrugated fin (34) is formed in a wave shape using an aluminum brazing sheet having a brazing filler metal layer on both sides, and a plurality of the corrugated fins (34) are connected in parallel in the front-rear direction to the connecting portion connecting the wave head and the wave bottom. A louver is formed. The corrugated fin (34) is shared by both the front and rear heat exchange tube rows (10) and (11), and the width in the front and rear direction is the front edge and the rear edge of the heat exchange tube (33) of the front heat exchange tube row (10). The distance between the side heat exchange tube row (11) and the rear edge of the heat exchange tube (33) is substantially equal. In addition, instead of sharing one corrugated fin (34) with both the front and rear heat exchange tube rows (10) and (11), the adjacent heat exchange tubes (33) between the heat exchange tube rows (10) and (11) are connected to each other. Corrugated fins may be arranged between the two.

両ヘッダタンク(31)(32)は、図9および図10に示すようにして製造されている。   Both header tanks (31) and (32) are manufactured as shown in FIGS.

まず、両面にろう材層を有するアルミニウムブレージングシートにプレス加工を施すことにより、外方膨出部(39A)(39B)(39C)(39D)(54A)(54B)を有する第1プレート(36A)を形成する。また、アルミニウムベア材にプレス加工を施すことにより、連通穴(44)、連通部(45)(46)および冷媒流通部(40A)(40B)(40C)(55A)(55B)を有する第2プレート(36B)を形成する。さらに、両面にろう材層を有するアルミニウムブレージングシートにプレス加工を施すことにより、管挿入穴(41)、被覆壁(42)および被覆壁(42)に真っ直ぐに連なった係合部形成用突片(43A)を有する管接続用プレート(37)を形成する。第1ヘッダタンク(31)の第1プレート(36A)、第2プレート(36B)および管接続用プレート(37)には、それぞれ右方突出部(36a)(36b)(37a)を形成し、さらに第2プレート(36B)には切り欠き(47)を形成しておく。   First, an aluminum brazing sheet having a brazing filler metal layer on both sides is pressed to form a first plate (36A) having outward bulges (39A) (39B) (39C) (39D) (54A) (54B). ). Further, by pressing the aluminum bear material, the second hole having the communication hole (44), the communication part (45) (46), and the refrigerant circulation part (40A) (40B) (40C) (55A) (55B) is provided. A plate (36B) is formed. Furthermore, by pressing the aluminum brazing sheet having the brazing filler metal layer on both sides, the engaging portion forming protrusion piece straightly connected to the tube insertion hole (41), the covering wall (42) and the covering wall (42). A pipe connecting plate (37) having (43A) is formed. The first plate (36A), the second plate (36B) and the pipe connection plate (37) of the first header tank (31) are respectively formed with right protrusions (36a) (36b) (37a), Further, a notch (47) is formed in the second plate (36B).

ついで、3つのプレート(36A)(36B)(37)を積層状に組み合わせた後、突片(43A)を曲げて係合部(43)を形成し、係合部(43)を第1プレート(36A)に係合させて仮止め体をつくる。その後、第1プレート(36A)のろう材層および管接続用プレート(37)のろう材層を利用して3つのプレート(36A)(36B)(37)を相互にろう付するとともに、被覆壁(42)を第2プレート(36B)および第1プレート(36A)の前後両側面にろう付し、さらに係合部(43)を第1プレート(36A)にろう付する。こうして、両ヘッダタンク(31)(32)が製造されている。   Next, after the three plates (36A), (36B), and (37) are combined in a laminated form, the protruding piece (43A) is bent to form the engaging portion (43), and the engaging portion (43) is the first plate. Engage with (36A) to make a temporary fix. Thereafter, the three plates (36A) (36B) (37) are brazed to each other using the brazing material layer of the first plate (36A) and the brazing material layer of the pipe connecting plate (37), and the covering wall (42) is brazed to the front and rear side surfaces of the second plate (36B) and the first plate (36A), and the engaging portion (43) is brazed to the first plate (36A). Thus, both header tanks (31) and (32) are manufactured.

エバポレータ(30)は、ヘッダタンク(31)(32)を製造する際の上述した2つの仮止め体と、複数の熱交換管(33)およびコルゲートフィン(34)とを用意すること、2つの仮止め体を、管接続用プレート(37)どうしが対向するように間隔をおいて配置すること、複数の熱交換管(33)とコルゲートフィン(34)とを交互に配置すること、熱交換管(33)の両端部をそれぞれ両仮止め体の管接続用プレート(37)の管挿入穴(41)内に挿入すること、両端のコルゲートフィン(34)の外側にサイドプレート(35)を配置すること、3つのプレート(36A)(36B)(37)にまたがるように、ブレージングシート(57)を介して冷媒入出部材(51)を配置すること、ならびに仮止め体の3つのプレート(36A)(36B)(37)を相互にろう付してヘッダタンク(31)(32)を形成すると同時に、熱交換管(33)をヘッダタンク(31)(32)に、フィン(34)を熱交換管(33)に、サイドプレート(35)をフィン(34)に、入出部材(51)を第1ヘッダタンク(31)にそれぞれろう付することによって製造される。   The evaporator (30) is prepared by preparing the above-mentioned two temporary fixing bodies when manufacturing the header tanks (31) and (32), a plurality of heat exchange pipes (33) and corrugated fins (34), Temporary fixing bodies are arranged at intervals so that the pipe connection plates (37) face each other, multiple heat exchange pipes (33) and corrugated fins (34) are arranged alternately, heat exchange Insert both ends of the pipe (33) into the pipe insertion holes (41) of the pipe connection plates (37) of both temporary fixing bodies, and attach the side plates (35) to the outside of the corrugated fins (34) at both ends. Arranging the refrigerant inlet / outlet member (51) through the brazing sheet (57) so as to straddle the three plates (36A) (36B) (37), and the three plates (36A ) (36B) (37) are brazed together to form the header tank (31) (32), and at the same time, the heat exchange pipe (33) is attached to the header tank (31) (32). The fins (34) heat exchange tubes (33) and the side plate (35) in the fins (34) are prepared by respectively brazed to and out member (51) the first header tank (31).

エバポレータ(30)は、圧縮機、ガスクーラ、減圧器およびガスクーラから出てきた冷媒とエバポレータから出てきた冷媒とを熱交換させる中間熱交換器とともに超臨界冷凍サイクルを構成し、カーエアコンとして車両、たとえば自動車に搭載される。   The evaporator (30) constitutes a supercritical refrigeration cycle together with an intermediate heat exchanger for exchanging heat between the refrigerant coming out of the compressor, the gas cooler, the decompressor and the gas cooler and the refrigerant coming out of the evaporator. For example, it is installed in a car.

上述したエバポレータ(30)において、図11に示すように、減圧器としての膨張弁を通過して減圧された液相のCO が、入出部材(51)の冷媒流入路(52)を通って冷媒入口(48)から第1ヘッダタンク(31)の入口ヘッダ部(1)内に入り、その内部を左方に流れながら分流して、前側熱交換管列(10)の第1熱交換管群(12)の熱交換管(33)の冷媒通路(33a)内に流入する。 In the above-described evaporator (30), as shown in FIG. 11, the liquid-phase CO 2 decompressed through the expansion valve as the decompressor passes through the refrigerant inflow passage (52) of the inlet / outlet member (51). The refrigerant enters the inlet header portion (1) of the first header tank (31) from the refrigerant inlet (48), and flows into the left side of the first header tank (31). It flows into the refrigerant passage (33a) of the heat exchange pipe (33) of the group (12).

前側熱交換管列(10)の第1熱交換管群(12)の熱交換管(33)の冷媒通路(33a)内に流入したCOは、冷媒通路(33a)内を下方に流れて第2ヘッダタンク(32)の前側中間ヘッダ部(7)内の右側部分流入し、その内部を左方に流れ、分流して前側熱交換管列(10)の第2熱交換管群(13)の熱交換管(33)の冷媒通路(33a)内に流入する。 The CO 2 flowing into the refrigerant passage (33a) of the heat exchange pipe (33) of the first heat exchange pipe group (12) of the front heat exchange pipe row (10) flows downward in the refrigerant passage (33a). The right part in the front intermediate header portion (7) of the second header tank (32) flows in, flows to the left in the inside, and divides the second heat exchange pipe group (13 in the front heat exchange pipe row (10)). ) Into the refrigerant passage (33a) of the heat exchange pipe (33).

前側熱交換管列(10)の第2熱交換管群(13)の熱交換管(33)の冷媒通路(33a)内に流入したCOは、流れ方向を変えて冷媒通路(33a)内を上方に流れて第1ヘッダタンク(31)の前側ヘッダ部列(5)の中間ヘッダ部(2)内に入り、その内部を左方に流れるとともに、第2プレート(36B)の冷媒ターン用連通部(45)を通って後側ヘッダ部列(6)の中間ヘッダ部(4)内に入る。後側ヘッダ部列(6)の中間ヘッダ部(4)内に流入したCOは、後側熱交換管列(11)の第1熱交換管群(12)の熱交換管(33)の冷媒通路(33a)内に流入し、流れ方向を変えて冷媒通路(33a)内を下方に流れて第2ヘッダタンク(32)の後側中間ヘッダ部(8)内の左側部分に流入し、その内部を右方に流れ、分流して後側熱交換管列(11)の第2熱交換管群(13)の熱交換管(33)の冷媒通路(33a)内に流入する。 The CO 2 flowing into the refrigerant passage (33a) of the heat exchange pipe (33) of the second heat exchange pipe group (13) of the front heat exchange pipe row (10) changes its flow direction and enters the refrigerant passage (33a). And flows into the middle header part (2) of the front header part row (5) of the first header tank (31), flows to the left inside the first header tank (31), and for the refrigerant turn of the second plate (36B) It passes through the communication part (45) and enters the intermediate header part (4) of the rear header part row (6). The CO 2 flowing into the intermediate header part (4) of the rear header part row (6) is transferred to the heat exchange pipe (33) of the first heat exchange pipe group (12) of the rear heat exchange pipe row (11). Flows into the refrigerant passage (33a), changes the flow direction, flows downward in the refrigerant passage (33a), flows into the left side portion of the rear intermediate header portion (8) of the second header tank (32), The inside flows to the right, divides, and flows into the refrigerant passage (33a) of the heat exchange pipe (33) of the second heat exchange pipe group (13) of the rear heat exchange pipe row (11).

後側熱交換管列(11)の第2熱交換管群(13)の熱交換管(33)の冷媒通路(33a)内に流入したCOは、流れ方向を変えて冷媒通路(33a)内を上方に流れて第1ヘッダタンク(31)の出口ヘッダ部(3)内に入り、その内部を右方に流れ、冷媒出口(49)および入出部材(51)の冷媒流出路(53)を通って流出する。そして、COが熱交換管(33)の冷媒通路(33a)内を流れる間に、通風間隙を図1および図11に矢印Xで示す方向に流れる空気と熱交換をし、気相となって流出する。 The CO 2 that has flowed into the refrigerant passage (33a) of the heat exchange pipe (33) of the second heat exchange pipe group (13) of the rear heat exchange pipe row (11) changes the flow direction and changes to the refrigerant passage (33a). The refrigerant flows out upward, enters the outlet header portion (3) of the first header tank (31), flows to the right inside thereof, and flows out of the refrigerant outlet (49) and the refrigerant outlet passage (53) of the inlet / outlet member (51). Spill through. While CO 2 flows in the refrigerant passage (33a) of the heat exchange pipe (33), heat exchange is performed between the air flowing in the direction indicated by the arrow X in FIGS. 1 and 11 to form a gas phase. Leaked.

このとき、後側熱交換管列(11)の第2熱交換管群(13)を構成する全熱交換管(33)の総流路断面積が、後側熱交換管列(11)の第1熱交換管群(12)を構成する全熱交換管(33)の総流路断面積よりも大きくなっているので、後側熱交換管列(11)において、第2熱交換管群(13)の熱交換管(33)を冷媒が流れる際の圧力損失と、これに隣接する第1熱交換管群(12)の熱交換管(33)を冷媒が流れる際の圧力損失とが均一化され、その結果第2熱交換管群(13)の熱交換管(33)を流れる冷媒量と、第1熱交換管群(12)の熱交換管(33)を流れる冷媒量とが均一化される。したがって、後側熱交換管列(11)の第1熱交換管群(12)の熱交換管(33)および第2熱交換管群(13)の熱交換管(33)への冷媒分流状態を熱交換性能を向上させる上で好適なものに調整し、各熱交換管(33)への冷媒の分流状態の均一化を図ることができる。また、前側熱交換管列(10)の第2熱交換管群(13)を構成する全熱交換管(33)の総流路断面積が、前側熱交換管列(10)の第1熱交換管群(12)を構成する全熱交換管(33)の総流路断面積よりも大きくなっているので、前側熱交換管列(10)においても、この第2熱交換管群(13)の熱交換管(33)を冷媒が流れる際の圧力損失と、これに隣接する第1熱交換管群(12)の熱交換管(33)を冷媒が流れる際の圧力損失とが均一化され、その結果第2熱交換管群(13)の熱交換管(33)を流れる冷媒量と、第1熱交換管群(12)の熱交換管(33)を流れる冷媒量とが均一化される。したがって、前側熱交換管列(10)の第1熱交換管群(12)の熱交換管(33)および第2熱交換管群(13)の熱交換管(33)への冷媒分流状態を熱交換性能を向上させる上で好適なものに調整し、各熱交換管(33)への冷媒の分流状態の均一化を図ることができる。   At this time, the total flow cross-sectional area of the total heat exchange pipe (33) constituting the second heat exchange pipe group (13) of the rear heat exchange pipe row (11) is equal to that of the rear heat exchange pipe row (11). Since the total cross-sectional area of the total heat exchange pipe (33) constituting the first heat exchange pipe group (12) is larger, the second heat exchange pipe group in the rear heat exchange pipe row (11) There is a pressure loss when the refrigerant flows through the heat exchange pipe (33) of (13) and a pressure loss when the refrigerant flows through the heat exchange pipe (33) of the first heat exchange pipe group (12) adjacent to the heat exchange pipe (33). As a result, the amount of refrigerant flowing through the heat exchange tube (33) of the second heat exchange tube group (13) and the amount of refrigerant flowing through the heat exchange tube (33) of the first heat exchange tube group (12) are It is made uniform. Therefore, the refrigerant distribution state to the heat exchange pipe (33) of the first heat exchange pipe group (12) and the heat exchange pipe (33) of the second heat exchange pipe group (13) of the rear heat exchange pipe row (11) Can be adjusted to be suitable for improving the heat exchanging performance, and the flow of refrigerant can be made uniform to each heat exchanging pipe (33). The total flow cross-sectional area of the total heat exchange tubes (33) constituting the second heat exchange tube group (13) of the front heat exchange tube row (10) is the first heat of the front heat exchange tube row (10). Since the total cross-sectional area of the total heat exchange pipe (33) constituting the exchange pipe group (12) is larger, the second heat exchange pipe group (13 The pressure loss when the refrigerant flows through the heat exchange pipe (33) of the first heat exchange pipe and the pressure loss when the refrigerant flows through the heat exchange pipe (33) of the first heat exchange pipe group (12) adjacent thereto are made uniform. As a result, the refrigerant quantity flowing through the heat exchange pipe (33) of the second heat exchange pipe group (13) and the refrigerant quantity flowing through the heat exchange pipe (33) of the first heat exchange pipe group (12) are made uniform. Is done. Therefore, the refrigerant distribution state to the heat exchange pipe (33) of the first heat exchange pipe group (12) and the heat exchange pipe (33) of the second heat exchange pipe group (13) of the front heat exchange pipe row (10) is changed. It can be adjusted to be suitable for improving the heat exchanging performance, and the distribution state of the refrigerant to each heat exchanging pipe (33) can be made uniform.

実施形態2
この実施形態は図12〜図16に示すものである。
Embodiment 2
This embodiment is shown in FIGS.

図12はこの発明を適用したエバポレータの全体構成を示し、図13〜図15はエバポレータの要部の構成を示し、図16は図12のエバポレータにおける冷媒の流れを示す。   FIG. 12 shows the overall configuration of an evaporator to which the present invention is applied, FIGS. 13 to 15 show the configuration of the main part of the evaporator, and FIG. 16 shows the flow of refrigerant in the evaporator of FIG.

図12において、超臨界冷媒、たとえばCOを使用する超臨界冷凍サイクルのエバポレータ(60)は、上下方向に間隔をおいて配置されかつ左右方向に伸びる2つのヘッダタンク(61)(62)と、両ヘッダタンク(61)(62)間に、左右方向に間隔をおいて並列状に配置された複数の扁平状熱交換管(33)と、隣接する熱交換管(33)どうしの間の通風間隙、および左右両端の熱交換管(33)の外側に配置されて熱交換管(33)にろう付されたコルゲートフィン(34)と、左右両端のコルゲートフィン(34)の外側にそれぞれ配置されてコルゲートフィン(34)にろう付されたアルミニウムベア製サイドプレート(35)とを備えている。なお、この実施形態において、上側のヘッダタンク(61)を第2ヘッダタンク、下側のヘッダタンク(62)を第1ヘッダタンクというものとする。 In FIG. 12, an evaporator (60) of a supercritical refrigeration cycle using a supercritical refrigerant, for example, CO 2 , has two header tanks (61) (62) arranged in the vertical direction and extending in the horizontal direction. Between the header tanks (61) (62), a plurality of flat heat exchange pipes (33) arranged in parallel with a space in the left-right direction, and between adjacent heat exchange pipes (33) Corrugated fins (34) placed outside the heat exchange pipes (33) at the left and right ends and brazed to the heat exchange pipes (33), and outside the corrugated fins (34) at the left and right ends, respectively. And an aluminum bear side plate (35) brazed to the corrugated fin (34). In this embodiment, the upper header tank (61) is referred to as a second header tank, and the lower header tank (62) is referred to as a first header tank.

第2ヘッダタンク(61)は、図13に示すように、実施形態1のエバポレータ(30)の第2ヘッダタンク(32)と同一構成のものを上下逆向きに配置したものである。   As shown in FIG. 13, the second header tank (61) is the same as the second header tank (32) of the evaporator (30) of Embodiment 1 and is arranged upside down.

第1ヘッダタンク(62)は、実施形態1のエバポレータ(30)の第1ヘッダタンク(31)と似た構成のものを上下逆向きに配置したものである。   The first header tank (62) has a configuration similar to that of the first header tank (31) of the evaporator (30) according to the first embodiment, which is disposed upside down.

第1ヘッダタンク(62)における実施形態1のエバポレータ(30)の第1ヘッダタンク(31)との相違点は次の通りである。すなわち、図12、図14および図15に示すように、タンク形成部材(36)の第1プレート(36A)の前側右部分に形成された第1外方膨出部(63A)の長さは、前側左部分に形成された第2外方膨出部(63B)の左右方向の長さよりも長くなっているとともに、後側左部分に形成された第4外方膨出部(63D)の左右方向の長さは、後側右部分に形成された第3外方膨出部(63C)の左右方向の長さよりも長くなっている。タンク形成部材(36)の第2プレート(36B)における第1プレート(36A)の第1外方膨出部(63A)の内部空間(63a)に通じるすべての連通穴(44)、第3外方膨出部(63C)の内部空間(63c)に通じるすべての連通穴(44)および第4外方膨出部(63D)の内部空間(63d)に通じるすべての連通穴(44)は、それぞれ第2プレート(36B)における左右方向に隣り合う連通穴(44)間の前後方向中央部分を切除することにより形成された連通部(46)により連通させられている。そして、第1プレート(36A)の第1外方膨出部(63A)、第3外方膨出部(63C)および第4外方膨出部(63D)の内部空間(63a)(63b)(63c)に通じるすべての連通穴(44)を連通させる連通部(46)、および連通穴(44)の前後方向中央部(連通穴(44)における連通部(46)に対応する部分)によって、第2プレート(36B)に、第1プレート(36A)の第1外方膨出部(63A)、第3外方膨出部(63C)および第4外方膨出部(63D)の内部空間(63a)(63b)(63c)に通じかつ冷媒が左右方向に流れる冷媒流通部(64A)(64B)(64C)が形成されている。第2プレート(36B)における第1プレート(36A)の第2外方膨出部(63B)の内部空間(63b)に通じる各連通穴(44)と、左右方向に関して当該連通穴(44)と対応する位置にありかつ第4外方膨出部(63D)の内部空間(63d)に通じる各連通穴(44)とは、第2プレート(36B)における前後方向に隣り合う連通穴(44)間の部分を切除することにより形成された冷媒ターン用連通部(45)により連通させられ、これにより第1プレート(36A)の第2
および第4外方膨出部(63B)(63D)の内部空間(63b)(63d)どうしが相互に通じ合っている。
The difference of the evaporator (30) of the first embodiment in the first header tank (62) from the first header tank (31) is as follows. That is, as shown in FIGS. 12, 14 and 15, the length of the first outward bulge portion (63A) formed in the front right portion of the first plate (36A) of the tank forming member (36) is The length of the second outward bulge portion (63B) formed in the front left portion is longer than the length in the left-right direction and the fourth outward bulge portion (63D) formed in the rear left portion. The length in the left-right direction is longer than the length in the left-right direction of the third outward bulge portion (63C) formed in the rear right portion. All the communication holes (44) leading to the internal space (63a) of the first outer bulging portion (63A) of the first plate (36A) in the second plate (36B) of the tank forming member (36), the third outer All the communication holes (44) leading to the internal space (63c) of the side bulge part (63C) and all the communication holes (44) leading to the internal space (63d) of the fourth outward bulge part (63D) are Each of the second plates (36B) is communicated by a communicating portion (46) formed by cutting a central portion in the front-rear direction between communicating holes (44) adjacent in the left-right direction. Then, the internal space (63a) (63b) of the first outer bulging portion (63A), the third outer bulging portion (63C) and the fourth outer bulging portion (63D) of the first plate (36A). By the communication part (46) communicating all the communication holes (44) leading to (63c) and the center part in the front-rear direction of the communication hole (44) (the part corresponding to the communication part (46) in the communication hole (44)) The second plate (36B) has an inner portion of the first outer bulging portion (63A), the third outer bulging portion (63C) and the fourth outer bulging portion (63D) of the first plate (36A). Refrigerant circulation portions (64A), (64B) and (64C) are formed which communicate with the spaces (63a), (63b) and (63c) and in which the refrigerant flows in the left-right direction. Each communication hole (44) communicating with the internal space (63b) of the second outward bulge portion (63B) of the first plate (36A) in the second plate (36B), and the communication hole (44) in the left-right direction, Each communication hole (44) in the corresponding position and communicating with the internal space (63d) of the fourth outward bulge portion (63D) is a communication hole (44) adjacent in the front-rear direction in the second plate (36B). The refrigerant turn communication portion (45) formed by cutting out the portion between the two is connected to the second plate of the first plate (36A).
The internal spaces (63b) and (63d) of the fourth outer bulges (63B) and (63D) communicate with each other.

そして、第1ヘッダタンク(62)のタンク形成部材(36)を構成する2つのプレート(36A)(36B)および管接続用プレート(37)における第1外方膨出部(63A)と対応する部分により冷媒入口ヘッダ部(65)が形成され、同じく第1ヘッダタンク(62)のタンク形成部材(36)を構成する2つのプレート(36A)(36B)および管接続用プレート(37)における第2外方膨出部(63B)と対応する部分により前側中間ヘッダ部(66)が形成されており、入口ヘッダ部(65)および前側中間ヘッダ部(66)により前側のヘッダ部列(67)が構成されている。また、第1ヘッダタンク(62)のタンク形成部材(36)を構成する2つのプレート(36A)(36B)および管接続用プレート(37)における第3外方膨出部(63C)と対応する部分により出口ヘッダ部(68)が形成され、同じく第1ヘッダタンク(62)のタンク形成部材(36)を構成する2つのプレート(36A)(36B)および管接続用プレート(37)における第4外方膨出部(63D)と対応する部分により後側中間ヘッダ部(69)が形成されており、出口ヘッダ部(68)および後側中間ヘッダ部(69)により後側のヘッダ部列(71)が構成されている。第1ヘッダタンク(62)の前側ヘッダ部列(67)の入口ヘッダ部(65)の長さは中間ヘッダ部(66)の長さよりも長く、さらに第1ヘッダタンク(62)の後側ヘッダ部列(71)の中間ヘッダ部(69)の長さは出口ヘッダ部(68)の長さよりも長くなっている。   The two plates (36A) (36B) and the pipe connection plate (37) constituting the tank forming member (36) of the first header tank (62) correspond to the first outward bulging portion (63A). The refrigerant inlet header portion (65) is formed by the portion, and the two plates (36A) (36B) and the pipe connection plate (37) constituting the tank forming member (36) of the first header tank (62) are also formed. 2 The front intermediate header portion (66) is formed by the portion corresponding to the outward bulge portion (63B), and the front header portion row (67) is formed by the inlet header portion (65) and the front intermediate header portion (66). Is configured. Moreover, it respond | corresponds with the 3rd outward bulge part (63C) in two plates (36A) (36B) and the pipe connection plate (37) which comprise the tank formation member (36) of a 1st header tank (62). An outlet header portion (68) is formed by the portion, and the fourth of the two plates (36A) (36B) and the pipe connection plate (37) constituting the tank forming member (36) of the first header tank (62). The rear intermediate header portion (69) is formed by the portion corresponding to the outward bulge portion (63D), and the rear header portion row (by the outlet header portion (68) and the rear intermediate header portion (69)) ( 71) is configured. The length of the inlet header portion (65) of the front header portion row (67) of the first header tank (62) is longer than the length of the intermediate header portion (66), and the rear header of the first header tank (62). The length of the intermediate header part (69) of the part sequence (71) is longer than the length of the outlet header part (68).

前側熱交換管列(10)の右側部分に位置する複数の熱交換管(33)の上下両端部は、第2ヘッダタンク(61)の前側中間ヘッダ部(7)内(前側外方膨出部(54A)の内部空間(54a)および前列の冷媒流通部(55A))の右側部分および入口ヘッダ部(65)内(第1外方膨出部(63A)の内部空間(63a)および前列右側の冷媒流通部(64A))に通じるように両ヘッダタンク(61)(62)に接続され、同じく左側部分に位置する複数の熱交換管(33)の上下両端部は、第2ヘッダタンク(61)の前側中間ヘッダ部(7)内(前側外方膨出部(54A)の内部空間(54a)および前列の冷媒流通部(55A))の左側部分および第1ヘッダタンク(62)の前側ヘッダ部列(67)の前側中間ヘッダ部(66)内(第2外方膨出部(63B)の内部空間(63b)および当該内部空間(63b)に通じる連通穴(44))に通じるように両ヘッダタンク(61)(62)に接続されている。また、後側熱交換管列(11)の右側部分に位置する複数の熱交換管(33)の上下両端部は、第2ヘッダタンク(61)の後側中間ヘッダ部(8)内(後側外方膨出部(54B)の内部空間(54b)および後列の冷媒流通部(55B))の右側部分および第1ヘッダタンク(62)の出口ヘッダ部(3)内(第3外方膨出部(63C)の内部空間(63c)および後列右側の冷媒流通部(64B))に通じるように両ヘッダタンク(61)(62)に接続され、同じく左側部分に位置する複数の熱交換管(33)の上下両端部は、第2ヘッダタンク(61)の後側中間ヘッダ部(8)内(後側外方膨出部(54B)の内部空間(54b)および後列の冷媒流通部(55B))の左側部分および第1ヘッダタンク(62)の後側ヘッダ部列(71)の中間ヘッダ部(69)内(第4外方膨出部(63D)の内部空間(63d)および後列左側の冷媒流通部(64C))に通じるように両ヘッダタンク(61)(62)に接続されている。   The upper and lower ends of the plurality of heat exchange pipes (33) located on the right side of the front heat exchange pipe row (10) are in the front intermediate header part (7) of the second header tank (61) (front outward bulge). The right side portion of the internal space (54a) of the portion (54A) and the refrigerant circulation portion (55A) in the front row and the inside of the inlet header portion (65) (the internal space (63a) and the front row of the first outward bulging portion (63A)) The right and left ends of the plurality of heat exchange pipes (33), which are connected to both header tanks (61) and (62) so as to communicate with the right refrigerant circulation section (64A) In the front intermediate header portion (7) of (61) (the inner space (54a) of the front outward bulge portion (54A) and the refrigerant circulation portion (55A) of the front row) and the first header tank (62) Leads to the front intermediate header part (66) of the front header part row (67) (the internal space (63b) of the second outer bulge part (63B) and the communication hole (44) leading to the internal space (63b)). Connected to both header tanks (61) (62) . Also, the upper and lower ends of the plurality of heat exchange pipes (33) located in the right part of the rear heat exchange pipe row (11) are located in the rear intermediate header part (8) of the second header tank (61) (rear) The right side portion of the internal space (54b) of the side outward bulge portion (54B) and the refrigerant circulation portion (55B) in the rear row and the inside of the outlet header portion (3) of the first header tank (62) (third outward bulge) A plurality of heat exchange pipes that are connected to both header tanks (61) and (62) so as to communicate with the internal space (63c) of the outlet (63C) and the refrigerant circulation part (64B) on the right side of the rear row, and are also located on the left side The upper and lower ends of (33) are arranged in the rear intermediate header portion (8) of the second header tank (61) (the inner space (54b) of the rear outer bulge portion (54B) and the rear row refrigerant circulation portion ( 55B)) in the left side portion of the first header tank (62) and in the intermediate header portion (69) of the rear header portion row (71) (inner space (63d) and rear row of the fourth outward bulge portion (63D)) Both header tanks (61) and (62) lead to the refrigerant distribution section (64C) on the left side It is connected.

そして、第2ヘッダタンク(61)の前側中間ヘッダ部(7)および第1ヘッダタンク(62)の前側ヘッダ部列(67)の中間ヘッダ部(66)に通じる熱交換管(33)、ならびに第2ヘッダタンク(61)の後側中間ヘッダ部(8)および第1ヘッダタンク(62)の出口ヘッダ部(68)に通じる熱交換管(33)により、それぞれ冷媒が上から下に流れる第1熱交換管群(12)が形成されている。また、第1ヘッダタンク(62)の前側中間ヘッダ部(7)および第1ヘッダタンク(62)の入口ヘッダ部(65)に通じる熱交換管(33)、ならびに第2ヘッダタンク(61)の後側中間ヘッダ部(8)および第1ヘッダタンク(62)の後側ヘッダ部列(71)の中間ヘッダ部(69)に通じる熱交換管(33)により、それぞれ冷媒が下から上に流れる第2熱交換管群(13)が形成されている。したがって、各熱交換管列(10)(11)には第1熱交換管群(12)と第2熱交換管群(13)とが左右方向に並んで設けられており、第1ヘッダタンク(62)の入口ヘッダ部(65)の長さが前側ヘッダ部列(67)の中間ヘッダ部(66)の長さよりも長いこと、および第1ヘッダタンク(62)の後側ヘッダ部列(71)の中間ヘッダ部(69)の長さが出口ヘッダ部(68)の長さよりも長いことによって、第2熱交換管群(13)を構成する熱交換管(33)の数が、第1熱交換管群(12)を構成する熱交換管(33)の数よりも多くなっている。その結果、各熱交換管(33)の流路断面積が等しくなっていることから、各第2熱交換管群(13)を構成する全熱交換管(33)の総流路断面積が、これに隣接する第1熱交換管群(12)を構成する全熱交換管(33)の総流路断面積よりも大きくなっており、たとえば1.1〜1.7倍大きくなっていることが好ましい。   And a heat exchange pipe (33) leading to the intermediate header section (66) of the front header section row (67) of the first header tank (62) and the front header section (7) of the second header tank (61), and The refrigerant flows from top to bottom by the heat exchange pipe (33) that leads to the rear intermediate header portion (8) of the second header tank (61) and the outlet header portion (68) of the first header tank (62). One heat exchange tube group (12) is formed. Further, the heat exchange pipe (33) leading to the front intermediate header (7) of the first header tank (62) and the inlet header (65) of the first header tank (62), and the second header tank (61) The refrigerant flows from the bottom to the top by the heat exchange pipe (33) leading to the middle header section (69) of the rear header section row (71) of the rear middle header section (8) and the first header tank (62). A second heat exchange tube group (13) is formed. Accordingly, the first heat exchange tube group (12) and the second heat exchange tube group (13) are provided in each heat exchange tube row (10) (11) side by side in the left-right direction, and the first header tank The length of the inlet header portion (65) of (62) is longer than the length of the intermediate header portion (66) of the front header portion row (67), and the rear header portion row of the first header tank (62) ( The length of the intermediate header portion (69) of 71) is longer than the length of the outlet header portion (68), so that the number of heat exchange tubes (33) constituting the second heat exchange tube group (13) is It is larger than the number of heat exchange tubes (33) constituting one heat exchange tube group (12). As a result, since the cross-sectional area of each heat exchange pipe (33) is equal, the total cross-sectional area of the total heat exchange pipe (33) constituting each second heat exchange pipe group (13) is It is larger than the total flow passage cross-sectional area of the total heat exchange pipe (33) constituting the first heat exchange pipe group (12) adjacent thereto, for example, 1.1 to 1.7 times larger. It is preferable.

実施形態2のエバポレータ(60)におけるその他の構成は、実施形態1のエバポレータ(30)と同様であり、実施形態1のエバポレータ(30)と同様な方法で製造される。   The other structure in the evaporator (60) of Embodiment 2 is the same as that of the evaporator (30) of Embodiment 1, and is manufactured by the same method as that of the evaporator (30) of Embodiment 1.

上述したエバポレータ(60)において、図16に示すように、減圧器としての膨張弁を通過して減圧された液相のCO が、入出部材(51)の冷媒流入路(52)を通って冷媒入口(48)から第1ヘッダタンク(62)の入口ヘッダ部(65)内に入り、その内部を左方に流れながら分流して、前側熱交換管列(10)の第2熱交換管群(13)の熱交換管(33)の冷媒通路(33a)内に流入する。 In the evaporator (60) described above, as shown in FIG. 16, the liquid-phase CO 2 that has been decompressed through the expansion valve as the decompressor passes through the refrigerant inflow passage (52) of the inlet / outlet member (51). The refrigerant enters the inlet header portion (65) of the first header tank (62) from the refrigerant inlet (48), and flows into the left side of the inlet header portion (65) to be divided into the second heat exchange tubes of the front heat exchange tube row (10). It flows into the refrigerant passage (33a) of the heat exchange pipe (33) of the group (13).

前側熱交換管列(10)の第2熱交換管群(13)の熱交換管(33)の冷媒通路(33a)内に流入したCOは、冷媒通路(33a)内を上方に流れて第2ヘッダタンク(61)の前側中間ヘッダ部(7)内の右側部分流入し、その内部を左方に流れ、分流して前側熱交換管列(10)の第1熱交換管群(12)の熱交換管(33)の冷媒通路(33a)内に流入する。 The CO 2 flowing into the refrigerant passage (33a) of the heat exchange pipe (33) of the second heat exchange pipe group (13) of the front heat exchange pipe row (10) flows upward in the refrigerant passage (33a). The right side portion of the second intermediate tank portion (7) of the second header tank (61) flows in, flows to the left in the inside, and is divided into first heat exchange tube groups (12) in the front heat exchange tube row (10). ) Into the refrigerant passage (33a) of the heat exchange pipe (33).

前側熱交換管列(10)の第1熱交換管群(12)の熱交換管(33)の冷媒通路(33a)内に流入したCOは、流れ方向を変えて冷媒通路(33a)内を下方に流れて第1ヘッダタンク(62)の前側ヘッダ部列(67)の中間ヘッダ部(66)内に入り、第2プレート(36B)の冷媒ターン用連通部(45)を通って後側ヘッダ部列(71)の中間ヘッダ部(69)内に入る。後側ヘッダ部列(71)の中間ヘッダ部(69)内に流入したCOは、その内部を流れながら分流して後側熱交換管列(11)の第2熱交換管群(13)の熱交換管(33)の冷媒通路(33a)内に流入し、流れ方向を変えて冷媒通路(33a)内を上方に流れて第2ヘッダタンク(61)の後側中間ヘッダ部(8)内の左側部分に流入し、その内部を右方に流れ、分流して後側熱交換管列(11)の第1熱交換管群(12)の熱交換管(33)の冷媒通路(33a)内に流入する。 The CO 2 flowing into the refrigerant passage (33a) of the heat exchange pipe (33) of the first heat exchange pipe group (12) of the front heat exchange pipe row (10) changes the flow direction and enters the refrigerant passage (33a). And flows into the intermediate header portion (66) of the front header portion row (67) of the first header tank (62), and passes through the refrigerant turn communication portion (45) of the second plate (36B). The intermediate header portion (69) of the side header portion row (71) is entered. The CO 2 that has flowed into the intermediate header portion (69) of the rear header portion row (71) is shunted while flowing through the inside, and the second heat exchange tube group (13) of the rear side heat exchange tube row (11). The refrigerant flows into the refrigerant passage (33a) of the heat exchange pipe (33), changes the flow direction, flows upward in the refrigerant passage (33a), and then reaches the rear intermediate header portion (8) of the second header tank (61). Flows into the left part of the inside, flows to the right inside, and divides the refrigerant passage (33a of the heat exchange pipe (33) of the first heat exchange pipe group (12) of the rear heat exchange pipe row (11). ) Flows in.

後側熱交換管列(11)の第1熱交換管群(12)の熱交換管(33)の冷媒通路(33a)内に流入したCOは、流れ方向を変えて冷媒通路(33a)内を下方に流れて第1ヘッダタンク(62)の出口ヘッダ部(68)内に入り、その内部を右方に流れ、冷媒出口(49)および入出部材(51)の冷媒流出路(53)を通って流出する。そして、COが熱交換管(33)の冷媒通路(33a)内を流れる間に、通風間隙を図12および図16に矢印Xで示す方向に流れる空気と熱交換をし、気相となって流出する。 The CO 2 flowing into the refrigerant passage (33a) of the heat exchange pipe (33) of the first heat exchange pipe group (12) of the rear heat exchange pipe row (11) changes the flow direction and changes to the refrigerant passage (33a). The refrigerant flows downward and enters the outlet header portion (68) of the first header tank (62), flows to the right inside thereof, and flows out of the refrigerant outlet (49) and the refrigerant outlet passage (53) of the inlet / outlet member (51). Spill through. While the CO 2 flows in the refrigerant passage (33a) of the heat exchange pipe (33), heat exchange with the air flowing in the direction indicated by the arrow X in FIGS. Leaked.

このとき、後側熱交換管列(11)の第2熱交換管群(13)を構成する全熱交換管(33)の総流路断面積が、後側熱交換管列(11)の第1熱交換管群(12)を構成する全熱交換管(33)の総流路断面積よりも大きくなっているので、後側熱交換管列(11)において、第2熱交換管群(13)の熱交換管(33)を冷媒が流れる際の圧力損失と、これに隣接する第1熱交換管群(12)の熱交換管(33)を冷媒が流れる際の圧力損失とが均一化され、その結果第2熱交換管群(13)の熱交換管(33)を流れる冷媒量と、第1熱交換管群(12)の熱交換管(33)を流れる冷媒量とが均一化される。したがって、後側熱交換管列(11)の第1熱交換管群(12)の熱交換管(33)および第2熱交換管群(13)の熱交換管(33)への冷媒分流状態を熱交換性能を向上させる上で好適なものに調整し、各熱交換管(33)への冷媒の分流状態の均一化を図ることができる。また、前側熱交換管列(10)の第2熱交換管群(13)を構成する全熱交換管(33)の総流路断面積が、前側熱交換管列(10)の第1熱交換管群(12)を構成する全熱交換管(33)の総流路断面積よりも大きくなっているので、前側熱交換管列(10)においても、この第2熱交換管群(13)の熱交換管(33)を冷媒が流れる際の圧力損失と、これに隣接する第1熱交換管群(12)の熱交換管(33)を冷媒が流れる際の圧力損失とが均一化され、その結果第2熱交換管群(13)の熱交換管(33)を流れる冷媒量と、第1熱交換管群(12)の熱交換管(33)を流れる冷媒量とが均一化される。したがって、前側熱交換管列(10)の第1熱交換管群(12)の熱交換管(33)および第2熱交換管群(13)の熱交換管(33)への冷媒分流状態を熱交換性能を向上させる上で好適なものに調整し、各熱交換管(33)への冷媒の分流状態の均一化を図ることができる。   At this time, the total flow cross-sectional area of the total heat exchange pipe (33) constituting the second heat exchange pipe group (13) of the rear heat exchange pipe row (11) is equal to that of the rear heat exchange pipe row (11). Since the total cross-sectional area of the total heat exchange pipe (33) constituting the first heat exchange pipe group (12) is larger, the second heat exchange pipe group in the rear heat exchange pipe row (11) There is a pressure loss when the refrigerant flows through the heat exchange pipe (33) of (13) and a pressure loss when the refrigerant flows through the heat exchange pipe (33) of the first heat exchange pipe group (12) adjacent to the heat exchange pipe (33). As a result, the amount of refrigerant flowing through the heat exchange tube (33) of the second heat exchange tube group (13) and the amount of refrigerant flowing through the heat exchange tube (33) of the first heat exchange tube group (12) are It is made uniform. Therefore, the refrigerant distribution state to the heat exchange pipe (33) of the first heat exchange pipe group (12) and the heat exchange pipe (33) of the second heat exchange pipe group (13) of the rear heat exchange pipe row (11) Can be adjusted to be suitable for improving the heat exchanging performance, and the flow of refrigerant can be made uniform to each heat exchanging pipe (33). The total flow cross-sectional area of the total heat exchange tubes (33) constituting the second heat exchange tube group (13) of the front heat exchange tube row (10) is the first heat of the front heat exchange tube row (10). Since the total cross-sectional area of the total heat exchange pipe (33) constituting the exchange pipe group (12) is larger, the second heat exchange pipe group (13 The pressure loss when the refrigerant flows through the heat exchange pipe (33) of the first heat exchange pipe and the pressure loss when the refrigerant flows through the heat exchange pipe (33) of the first heat exchange pipe group (12) adjacent thereto are made uniform. As a result, the refrigerant quantity flowing through the heat exchange pipe (33) of the second heat exchange pipe group (13) and the refrigerant quantity flowing through the heat exchange pipe (33) of the first heat exchange pipe group (12) are made uniform. Is done. Therefore, the refrigerant distribution state to the heat exchange pipe (33) of the first heat exchange pipe group (12) and the heat exchange pipe (33) of the second heat exchange pipe group (13) of the front heat exchange pipe row (10) is changed. It can be adjusted to be suitable for improving the heat exchanging performance, and the distribution state of the refrigerant to each heat exchanging pipe (33) can be made uniform.

上記2つの実施形態では、各熱交換管(33)の流路断面積が等しくなっており、第2熱交換管群(13)を構成する熱交換管(33)の数が、第1熱交換管群(12)を構成する熱交換管(33)の数よりも多くなっていることにより、第2熱交換管群(13)を構成する全熱交換管(33)の総流路断面積が、第1熱交換管群(12)を構成する全熱交換管(33)の総流路断面積よりも大きくなっているが、これに代えて、第2熱交換管群を構成する熱交換管の数、および第1熱交換管群を構成する熱交換管の数が等しくなっており、第2熱交換管群を構成する各熱交換管の流路断面積が、第1熱交換管群を構成する各熱交換管の流路断面積よりも大きくなっていることにより、第2熱交換管群を構成する全熱交換管の総流路断面積が、第1熱交換管群を構成する全熱交換管の総流路断面積よりも大きくなっていてもよい。   In the above two embodiments, the cross-sectional areas of the heat exchange tubes (33) are equal, and the number of heat exchange tubes (33) constituting the second heat exchange tube group (13) is the first heat. Since the number of heat exchange pipes (33) constituting the exchange pipe group (12) is larger than the total number of heat exchange pipes (33) constituting the second heat exchange pipe group (13), The area is larger than the total flow cross-sectional area of the total heat exchange pipe (33) constituting the first heat exchange pipe group (12). Instead, the second heat exchange pipe group is constituted. The number of heat exchange tubes and the number of heat exchange tubes constituting the first heat exchange tube group are equal, and the cross-sectional area of each heat exchange tube constituting the second heat exchange tube group is the first heat. Since the flow passage cross-sectional area of each heat exchange pipe constituting the exchange pipe group is larger, the total flow cross-sectional area of all the heat exchange pipes constituting the second heat exchange pipe group is the first heat exchange pipe. Total flow cross section of all heat exchange tubes constituting the group It may be larger than.

また、上記2つの実施形態では、タンク形成部材(36)の第2プレート(36B)の数は1であるが、これに限定されるものではなく、第1プレート(36A)と管接続用プレート(37)との間に、複数の第2プレート(36B)が積層状に介在させられていてもよい。この場合、各第2プレート(36B)に連通穴(44)、連通部(45)(46)などが形成される。   In the above two embodiments, the number of the second plates (36B) of the tank forming member (36) is 1, but the number is not limited to this, and the first plate (36A) and the pipe connection plate are not limited thereto. A plurality of second plates (36B) may be interposed between the two plates (37). In this case, a communication hole (44), a communication part (45) (46), etc. are formed in each 2nd plate (36B).

また、上記2つの実施形態においては、この発明による熱交換器が超臨界冷凍サイクルのエバポレータに適用されているが、これに限るものではなく、この発明による熱交換器は、他の用途に供されることもある。   In the above two embodiments, the heat exchanger according to the present invention is applied to an evaporator of a supercritical refrigeration cycle. However, the present invention is not limited to this, and the heat exchanger according to the present invention is used for other applications. Sometimes it is done.

さらに、上記2つの実施形態においては、超臨界冷凍サイクルの超臨界冷媒として、COが使用されているが、これに限定されるものではなく、エチレン、エタン、酸化窒素などが使用される。 Furthermore, in the above two embodiments, CO 2 is used as the supercritical refrigerant in the supercritical refrigeration cycle, but is not limited to this, and ethylene, ethane, nitric oxide and the like are used.

この発明による熱交換器を適用したエバポレータの実施形態1の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of Embodiment 1 of the evaporator to which the heat exchanger by this invention is applied. 図1のエバポレータの前側部分を示す後方から前方を見た一部省略垂直断面図である。FIG. 2 is a partially omitted vertical sectional view of the front portion of the evaporator of FIG. 図2のA−A線拡大断面図である。It is an AA line expanded sectional view of FIG. 図2のB−B線拡大断面図である。FIG. 3 is an enlarged sectional view taken along line B-B in FIG. 2. 図4のC−C線拡大断面図である。FIG. 5 is an enlarged cross-sectional view taken along the line CC in FIG. 4. 図2のD−D線断面図である。It is the DD sectional view taken on the line of FIG. 図1のエバポレータにおける第1ヘッダタンクの右端部を示す分解斜視図である。It is a disassembled perspective view which shows the right end part of the 1st header tank in the evaporator of FIG. 図2のE−E線断面図である。It is the EE sectional view taken on the line of FIG. 図1のエバポレータの第1ヘッダタンクの部分を示す分解斜視図である。It is a disassembled perspective view which shows the part of the 1st header tank of the evaporator of FIG. 図1のエバポレータの第2ヘッダタンクの部分を示す分解斜視図である。It is a disassembled perspective view which shows the part of the 2nd header tank of the evaporator of FIG. 図1のエバポレータにおける冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant in the evaporator of FIG. この発明による熱交換器を適用したエバポレータの実施形態2の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of Embodiment 2 of the evaporator to which the heat exchanger by this invention is applied. 図12のエバポレータの第1ヘッダタンクの部分を示す分解斜視図である。It is a disassembled perspective view which shows the part of the 1st header tank of the evaporator of FIG. 図12のエバポレータの第2ヘッダタンクの部分を示す分解斜視図である。It is a disassembled perspective view which shows the part of the 2nd header tank of the evaporator of FIG. 図12のエバポレータの第2ヘッダタンクの部分を示す水平断面図である。It is a horizontal sectional view which shows the part of the 2nd header tank of the evaporator of FIG. 図12のエバポレータにおける冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant in the evaporator of FIG.

符号の説明Explanation of symbols

(1):冷媒入口ヘッダ部
(2):中間ヘッダ部
(3):冷媒出口ヘッダ部
(4):中間ヘッダ部
(5):前側ヘッダ部列
(6):後側ヘッダ部列
(7)(8):中間ヘッダ部
(10):前側熱交換管列
(11):後側熱交換管列
(12):第1熱交換管群
(13):第2熱交換管群
(30):エバポレータ(熱交換器)
(31)(32):ヘッダタンク
(33):熱交換管
(36):タンク形成部材
(36A):第1プレート
(36B):第2プレート
(37):管接続用プレート
(39A)〜(39D):外方膨出部
(39a)〜(39d):内部空間
(60):エバポレータ
(61)(62):ヘッダタンク
(63A)〜(63D):外方膨出部
(65):冷媒入口ヘッダ部
(66):中間ヘッダ部
(67):前側ヘッダ部列
(68):冷媒出口ヘッダ部
(69):中間ヘッダ部
(71):後側ヘッダ部列
(1): Refrigerant inlet header
(2): Intermediate header
(3): Refrigerant outlet header
(4): Intermediate header
(5): Front header row
(6): Rear header column
(7) (8): Intermediate header
(10): Front heat exchange tube row
(11): Rear heat exchange tube row
(12): First heat exchange tube group
(13): Second heat exchange tube group
(30): Evaporator (heat exchanger)
(31) (32): Header tank
(33): Heat exchange pipe
(36): Tank forming member
(36A): 1st plate
(36B): Second plate
(37): Pipe connection plate
(39A) to (39D): outward bulge
(39a) to (39d): Internal space
(60): Evaporator
(61) (62): Header tank
(63A) to (63D): outward bulge
(65): Refrigerant inlet header
(66): Intermediate header
(67): Front header section
(68): Refrigerant outlet header
(69): Intermediate header
(71): Rear header column

Claims (12)

上下方向に間隔をおいて配置された左右方向にのびる1対のヘッダタンクと、両ヘッダタンク間に並列状に配置されかつ上下両端部がそれぞれ両ヘッダタンクに接続された複数の熱交換管とを備えているとともに、冷媒入口および冷媒出口を有しており、上下両ヘッダタンクのうちのいずれか一方の第1ヘッダタンクに、左右方向に並んだ複数のヘッダ部からなるヘッダ部列が前後方向に間隔をおいて複数列設けられ、同他方の第2ヘッダタンクにおける第1ヘッダタンクの各ヘッダ部列と対応する位置に、第1ヘッダタンクの各ヘッダ部列を構成するヘッダ部の数よりも1つ少ない数のヘッダ部が、第1ヘッダタンクの各ヘッダ部列の隣り合う2つのヘッダ部に跨るように設けられ、上下両ヘッダタンク間に、左右方向に並んだ複数の熱交換管からなりかつ第1ヘッダタンクのヘッダ部列と同数の熱交換管列が前後方向に並んで設けられ、熱交換管の両端部が、ヘッダ部内に通じるように上下両ヘッダタンクに接続され、各熱交換管列に、冷媒が上から下に流れる複数の熱交換管からなる第1熱交換管群と、冷媒が下から上に流れる複数の熱交換管からなる第2熱交換管群とが左右方向に交互に設けられており、冷媒入口から流入した冷媒がすべての熱交換管およびヘッダ部を通過して冷媒出口から流出するようになされている熱交換器において、
最も冷媒出口側に位置する最後の第2熱交換管群を構成する全熱交換管の総流路断面積が、当該第2熱交換管群の少なくとも左右いずれか一方に隣接する第1熱交換管群を構成する全熱交換管の総流路断面積よりも大きくなっている熱交換器。
A pair of header tanks extending in the left-right direction spaced apart in the vertical direction, and a plurality of heat exchange tubes arranged in parallel between the header tanks and having upper and lower ends connected to the header tanks, respectively And a header portion row made up of a plurality of header portions arranged in the left-right direction on the first header tank of either one of the upper and lower header tanks. The number of header portions constituting each header portion row of the first header tank at a position corresponding to each header portion row of the first header tank in the other second header tank provided in a plurality of rows at intervals in the direction A plurality of header sections, which are provided so as to straddle two adjacent header sections in each header section row of the first header tank, and are arranged in a horizontal direction between the upper and lower header tanks. The heat exchange tube rows that are formed of tubes and have the same number as the header portion row of the first header tank are provided side by side in the front-rear direction. In each heat exchange tube row, a first heat exchange tube group consisting of a plurality of heat exchange tubes where the refrigerant flows from the top to the bottom, and a second heat exchange tube group consisting of a plurality of heat exchange tubes where the refrigerant flows from the bottom to the top, In the heat exchanger in which the refrigerant flowing in from the refrigerant inlet passes through all the heat exchange pipes and the header part and flows out from the refrigerant outlet,
The first heat exchange in which the total flow cross-sectional area of all the heat exchange tubes constituting the last second heat exchange tube group located closest to the refrigerant outlet side is adjacent to at least one of the left and right sides of the second heat exchange tube group A heat exchanger that is larger than the total flow passage cross-sectional area of all the heat exchange tubes constituting the tube group.
最後の第2熱交換管群を構成する全熱交換管の総流路断面積が、当該第2熱交換管群の少なくとも左右いずれか一方に隣接する第1熱交換管群を構成する全熱交換管の総流路断面積よりも1.1〜1.7倍大きくなっている請求項1記載の熱交換器。 The total flow cross-sectional area of the total heat exchange pipe constituting the last second heat exchange pipe group is the total heat constituting the first heat exchange pipe group adjacent to at least one of the left and right sides of the second heat exchange pipe group. The heat exchanger according to claim 1, wherein the heat exchanger is 1.1 to 1.7 times larger than a total flow passage cross-sectional area of the exchange pipe. 各熱交換管の流路断面積が等しくなっており、最後の第2熱交換管群を構成する熱交換管の数が、当該第2熱交換管群の少なくとも左右いずれか一方に隣接する第1熱交換管群を構成する熱交換管の数よりも多くなっている請求項1または2記載の熱交換器。 The cross-sectional areas of the heat exchange tubes are equal, and the number of heat exchange tubes constituting the last second heat exchange tube group is the second adjacent to at least one of the left and right sides of the second heat exchange tube group. The heat exchanger according to claim 1 or 2, wherein the number is larger than the number of heat exchange tubes constituting one heat exchange tube group. 最後の第2熱交換管群を構成する熱交換管の数、および当該第2熱交換管群の少なくとも左右いずれか一方に隣接する第1熱交換管群を構成する熱交換管の数が等しくなっており、最後の第2熱交換管群を構成する各熱交換管の流路断面積が、当該第2熱交換管群の少なくとも左右いずれか一方に隣接する第1熱交換管群を構成する各熱交換管の流路断面積よりも大きくなっている請求項1または2記載の熱交換器。 The number of heat exchange tubes constituting the last second heat exchange tube group and the number of heat exchange tubes constituting the first heat exchange tube group adjacent to at least one of the left and right sides of the second heat exchange tube group are equal. And the flow passage cross-sectional area of each heat exchange pipe constituting the last second heat exchange pipe group constitutes the first heat exchange pipe group adjacent to at least one of the left and right sides of the second heat exchange pipe group. The heat exchanger according to claim 1 or 2, wherein the heat exchanger tube has a larger cross-sectional area than each other. 上ヘッダタンクが第1ヘッダタンクになるとともに下ヘッダタンクが第2ヘッダタンクとなり、上ヘッダタンクに、それぞれ2つのヘッダ部からなるヘッダ部列が2列設けられ、前側ヘッダ部列の一方のヘッダ部が冷媒入口ヘッダ部となっているとともに冷媒入口ヘッダ部に冷媒入口が通じ、後側ヘッダ部列における冷媒入口ヘッダ部と同一側の一方のヘッダ部が冷媒出口ヘッダ部となっているとともに冷媒出口ヘッダ部に冷媒出口が通じ、上ヘッダタンクの両ヘッダ部列の他方のヘッダ部が中間ヘッダ部となっているとともに両中間ヘッダ部の内部が相互に通じさせられ、下ヘッダタンクの前後両側に、それぞれ上ヘッダタンクの前後両ヘッダ部列の2つのヘッダ部に跨るように1つの中間ヘッダ部が設けられ、上ヘッダタンクの冷媒出口ヘッダ部に通じる全熱交換管が最後の第2熱交換管群を構成し、冷媒出口ヘッダ部の長さが後側ヘッダ部列の中間ヘッダ部の長さよりも長くなっており、各熱交換管の流路断面積が等しく、冷媒出口ヘッダ部に通じる熱交換管の数が、後側ヘッダ部列の中間ヘッダ部に通じる熱交換管の数よりも多くなっている請求項1または2記載の熱交換器。 The upper header tank becomes the first header tank and the lower header tank becomes the second header tank, and the upper header tank is provided with two header part rows each having two header parts, and one header of the front header part row. The refrigerant inlet header portion is connected to the refrigerant inlet header portion, and the one header portion on the same side as the refrigerant inlet header portion in the rear header portion row is the refrigerant outlet header portion and the refrigerant. The refrigerant outlet communicates with the outlet header section, the other header section of both header section rows of the upper header tank serves as an intermediate header section, and the interior of both middle header sections communicate with each other, and both the front and rear sides of the lower header tank In addition, one intermediate header portion is provided so as to straddle the two header portions of the front and rear header portion rows of the upper header tank, respectively, and the refrigerant outlet of the upper header tank The total heat exchange pipes leading to the header part constitute the last second heat exchange pipe group, and the length of the refrigerant outlet header part is longer than the length of the intermediate header part of the rear header part row. The flow path cross-sectional area of an exchange pipe is equal, and the number of the heat exchange pipes which lead to a refrigerant | coolant exit header part is larger than the number of the heat exchange pipes which lead to the intermediate header part of a rear side header part row | line | column. The described heat exchanger. 上ヘッダタンクの前側ヘッダ部列の中間ヘッダ部の長さが冷媒入口ヘッダ部の長さよりも長くなっており、各熱交換管の流路断面積が等しく、上ヘッダタンクの前側ヘッダ部列の中間ヘッダ部に通じる全熱交換管が第2熱交換管群を構成し、上ヘッダタンクの前側ヘッダ部列の中間ヘッダ部に通じる熱交換管の数が、冷媒入口ヘッダ部に通じる熱交換管の数よりも多くなっている請求項5記載の熱交換器。 The length of the intermediate header part of the front header part row of the upper header tank is longer than the length of the refrigerant inlet header part, the flow cross-sectional area of each heat exchange pipe is equal, and the length of the front header part row of the upper header tank The total heat exchange pipes that lead to the intermediate header part constitute the second heat exchange pipe group, and the number of heat exchange pipes that lead to the intermediate header part of the front header part row of the upper header tank leads to the refrigerant inlet header part The heat exchanger according to claim 5, wherein the heat exchanger is larger than the number of the heat exchangers. 下ヘッダタンクが第1ヘッダタンクになるとともに上ヘッダタンクが第2ヘッダタンクとなり、下ヘッダタンクに、それぞれ2つのヘッダ部からなるヘッダ部列が2列設けられ、前側ヘッダ部列の一方のヘッダ部が冷媒入口ヘッダ部となっているとともに冷媒入口ヘッダ部に冷媒入口が通じ、後側ヘッダ部列における冷媒入口ヘッダ部と同一側の一方のヘッダ部が冷媒出口ヘッダ部となっているとともに冷媒出口ヘッダ部に冷媒出口が通じ、下ヘッダタンクの両ヘッダ部列の他方のヘッダ部が中間ヘッダ部となっているとともに両中間ヘッダ部の内部が相互に通じさせられ、上ヘッダタンクの前後両側に、それぞれ下ヘッダタンクの前後両ヘッダ部列の2つのヘッダ部に跨るように1つの中間ヘッダ部が設けられ、下ヘッダタンクの後側ヘッダ部列の中間ヘッダ部に通じる全熱交換管が最後の第2熱交換管群を構成し、下ヘッダタンクの後側ヘッダ部列の中間ヘッダ部の長さが冷媒出口ヘッダ部の長さよりも長くなっており、各熱交換管の流路断面積が等しく、下ヘッダタンクの後側ヘッダ部列の中間ヘッダ部に通じる熱交換管の数が、冷媒出口ヘッダ部に通じる熱交換管の数よりも多くなっている請求項1または2記載の熱交換器。 The lower header tank becomes the first header tank and the upper header tank becomes the second header tank, and the lower header tank is provided with two header portion rows each having two header portions, and one header of the front header portion row. The refrigerant inlet header portion is connected to the refrigerant inlet header portion, and the one header portion on the same side as the refrigerant inlet header portion in the rear header portion row is the refrigerant outlet header portion and the refrigerant. The refrigerant outlet communicates with the outlet header section, the other header section of both header section rows of the lower header tank serves as an intermediate header section, and the interior of both intermediate header sections communicate with each other. In addition, one intermediate header portion is provided so as to straddle the two header portions of the front and rear header portion rows of the lower header tank, and the rear header of the lower header tank is provided. The total heat exchange pipes that lead to the intermediate header part of the partial row constitute the last second heat exchange pipe group, and the length of the intermediate header part of the rear header part row of the lower header tank is longer than the length of the refrigerant outlet header part The number of heat exchange pipes connected to the refrigerant outlet header section is the same as the number of heat exchange pipes connected to the intermediate header section of the rear header section of the lower header tank. The heat exchanger according to claim 1 or 2, wherein the number of the heat exchangers is larger. 下ヘッダタンクの冷媒入口ヘッダ部の長さが、前側ヘッダ部列の中間ヘッダ部の長さよりも長くなっており、各熱交換管の流路断面積が等しく、下ヘッダタンクの冷媒入口ヘッダ部に通じる全熱交換管が第2熱交換管群を構成し、下ヘッダタンクの冷媒入口ヘッダ部に通じる熱交換管の数が、前側ヘッダ部列の中間ヘッダ部に通じる熱交換管の数よりも多くなっている請求項7記載の熱交換器。 The length of the refrigerant inlet header portion of the lower header tank is longer than the length of the intermediate header portion of the front header portion row, the flow passage cross-sectional areas of the respective heat exchange tubes are equal, and the refrigerant inlet header portion of the lower header tank The total heat exchange pipes that lead to the second heat exchange pipe group constitute the second heat exchange pipe group, and the number of heat exchange pipes that lead to the refrigerant inlet header part of the lower header tank is greater than the number of heat exchange pipes that lead to the intermediate header part of the front header part row The heat exchanger according to claim 7, which is also increased. 各ヘッダタンクが、タンク形成部材と、タンク形成部材における熱交換管側を向いた面を覆う管接続用プレートとにより構成され、タンク形成部材が、ヘッダタンクの長さ方向に伸びるとともに熱交換管側を向いた面に開口した中空部を有し、当該中空部の熱交換管側を向いた開口が管接続用プレートにより塞がれることによりヘッダ部が形成されている請求項1〜8のうちのいずれかに記載の熱交換器。 Each header tank is composed of a tank forming member and a pipe connecting plate that covers a surface of the tank forming member facing the heat exchange pipe side, and the tank forming member extends in the length direction of the header tank and heat exchange pipe The header part is formed by having a hollow part opened in the surface which faced the side, and the opening which faced the heat exchange pipe side of the said hollow part is plugged up with the plate for pipe connection. A heat exchanger according to any of the above. タンク形成部材が、第1プレートと、第1プレートと管接続用プレートとの間に介在させられた第2プレートとよりなり、第1プレートおよび第2プレートに跨ってヘッダ部の中空部が形成されている請求項9記載の熱交換器。 The tank forming member includes a first plate and a second plate interposed between the first plate and the pipe connection plate, and a hollow portion of the header portion is formed across the first plate and the second plate. The heat exchanger according to claim 9. タンク形成部材の第1プレートに、第1プレートの長さ方向に伸びる外方膨出部が形成され、外方膨出部の内部空間が、ヘッダ部の中空部の一部を形成するようになっている請求項10記載の熱交換器。 An outward bulge extending in the length direction of the first plate is formed in the first plate of the tank forming member, and the internal space of the outward bulge forms a part of the hollow portion of the header portion. The heat exchanger according to claim 10. 圧縮機、ガスクーラ、エバポレータ、減圧器およびガスクーラから出てきた冷媒とエバポレータから出てきた冷媒とを熱交換させる中間熱交換器を備えており、かつ超臨界冷媒を用いる超臨界冷凍サイクルであって、エバポレータが請求項1〜11のうちのいずれかに記載の熱交換器からなる超臨界冷凍サイクル。 A supercritical refrigeration cycle comprising a compressor, a gas cooler, an evaporator, a decompressor and an intermediate heat exchanger for exchanging heat between the refrigerant coming out of the gas cooler and the refrigerant coming out of the evaporator, and using a supercritical refrigerant A supercritical refrigeration cycle in which the evaporator comprises the heat exchanger according to any one of claims 1 to 11.
JP2007015979A 2007-01-26 2007-01-26 Heat exchanger Pending JP2008180479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007015979A JP2008180479A (en) 2007-01-26 2007-01-26 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007015979A JP2008180479A (en) 2007-01-26 2007-01-26 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2008180479A true JP2008180479A (en) 2008-08-07

Family

ID=39724507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007015979A Pending JP2008180479A (en) 2007-01-26 2007-01-26 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2008180479A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107131A (en) * 2008-10-31 2010-05-13 Denso Corp Refrigerant evaporator
JP2013542392A (en) * 2010-09-30 2013-11-21 ヴァレオ システム テルミク Heat exchanger for motor vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141379A (en) * 1999-11-11 2001-05-25 Showa Alum Corp Double heat exchanger
JP2005315567A (en) * 2004-04-02 2005-11-10 Calsonic Kansei Corp Evaporator
JP2005326135A (en) * 2004-04-12 2005-11-24 Showa Denko Kk Heat exchanger
JP2006242406A (en) * 2005-02-28 2006-09-14 Calsonic Kansei Corp Evaporator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141379A (en) * 1999-11-11 2001-05-25 Showa Alum Corp Double heat exchanger
JP2005315567A (en) * 2004-04-02 2005-11-10 Calsonic Kansei Corp Evaporator
JP2005326135A (en) * 2004-04-12 2005-11-24 Showa Denko Kk Heat exchanger
JP2006242406A (en) * 2005-02-28 2006-09-14 Calsonic Kansei Corp Evaporator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107131A (en) * 2008-10-31 2010-05-13 Denso Corp Refrigerant evaporator
JP2013542392A (en) * 2010-09-30 2013-11-21 ヴァレオ システム テルミク Heat exchanger for motor vehicle

Similar Documents

Publication Publication Date Title
JP2005326135A (en) Heat exchanger
JP4724433B2 (en) Heat exchanger
JP5408951B2 (en) Refrigerant evaporator and air conditioner using the same
JP4533726B2 (en) Evaporator and manufacturing method thereof
JP2007093025A (en) Heat exchanger and its manufacturing method
JP6842915B2 (en) Evaporator
JP2006105581A (en) Laminated heat exchanger
JP5002796B2 (en) Heat exchanger
JP2008180479A (en) Heat exchanger
JP6785137B2 (en) Evaporator
JP2009115378A (en) Heat exchanger
JP5574737B2 (en) Heat exchanger
JP2009113625A (en) Evaporator
JP2007187435A (en) Heat exchanger
JP2008025956A (en) Heat exchanger
JP2005069670A (en) Heat exchanger and evaporator
JP2005195317A (en) Heat exchanger
JP2006194576A (en) Evaporator
JP2009008347A (en) Heat exchanger
JP2009180394A (en) Heat exchanger
JP2005061778A (en) Evaporator
JP2011158130A (en) Heat exchanger
JP2008180478A (en) Heat exchanger
JP5525805B2 (en) Heat exchanger
JP5061026B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120131