[go: up one dir, main page]

JP2008175450A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2008175450A
JP2008175450A JP2007008828A JP2007008828A JP2008175450A JP 2008175450 A JP2008175450 A JP 2008175450A JP 2007008828 A JP2007008828 A JP 2007008828A JP 2007008828 A JP2007008828 A JP 2007008828A JP 2008175450 A JP2008175450 A JP 2008175450A
Authority
JP
Japan
Prior art keywords
pipe
heat exchanger
tube
fluid
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007008828A
Other languages
Japanese (ja)
Inventor
Takumi Kida
琢己 木田
Kazuhiko Machida
和彦 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007008828A priority Critical patent/JP2008175450A/en
Publication of JP2008175450A publication Critical patent/JP2008175450A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】高い精度や、大型の設備を必要としない簡易な工法で、水用流路の断面積を縮小して流速を増加させたり、管長を長くして内管の伝熱面積を増加させたりしなくとも、熱交換性能に優れた二重管式熱交換器を提供する。
【解決手段】断面形状が小径の銅製の線材10を、冷媒管2の外管3の外表面に冷媒管2の管軸方向及び周方向に離間するように螺旋状に巻き付けることにより、冷媒管2の外管3の外表面に冷媒管2の管軸方向あるいは周方向に離間した凸部を設けることができ、離散的に外壁面に対して垂直方向の剪断流れを起こし、冷媒管2の外壁面近傍の流動抵抗を極力小さく抑えつつ、外壁面近傍を流れる高温の水と外壁面から比較的に離れたところを流れる比較的低温の水によって形成されていた温度境界層を乱すことができる。
【選択図】図6
[PROBLEMS] To reduce the cross-sectional area of the water flow path and increase the flow velocity by a simple method that does not require high precision or large equipment, or increase the heat transfer area of the inner pipe by increasing the pipe length. Even if not, a double-pipe heat exchanger having excellent heat exchange performance is provided.
A copper pipe 10 made of copper having a small cross-sectional shape is wound around the outer surface of an outer pipe 3 of the refrigerant pipe 2 in a spiral manner so as to be spaced apart in the axial direction and the circumferential direction of the refrigerant pipe 2. 2 can be provided on the outer surface of the outer pipe 3 so as to be spaced apart in the axial direction or the circumferential direction of the refrigerant pipe 2, causing discrete shear flow in the direction perpendicular to the outer wall surface. While keeping the flow resistance near the outer wall as small as possible, the temperature boundary layer formed by the hot water flowing near the outer wall and the relatively low temperature water flowing relatively far from the outer wall can be disturbed. .
[Selection] Figure 6

Description

本発明は空調、給湯等の機器、特にヒートポンプ式の給湯機などにおいて、水等の流体と冷媒等の2つの流体が熱交換するための熱交換器に関するものである。   The present invention relates to a heat exchanger for exchanging heat between a fluid such as water and two fluids such as a refrigerant in a device such as an air conditioner and a hot water supply, particularly a heat pump type hot water heater.

従来、この種の熱交換器としては、内部に冷媒用流路が形成された内管と、内管の外側に設けられ内管との間に水用流路が形成された外管と、から構成された二重管を形成したものがある(例えば、特許文献1参照)。   Conventionally, as this type of heat exchanger, an inner pipe having a refrigerant flow path formed therein, an outer pipe provided outside the inner pipe and having a water flow path formed between the inner pipe, There is one in which a double tube composed of is formed (see, for example, Patent Document 1).

図13は、特許文献1に記載された従来の熱交換器の平面図、図14は、特許文献1に記載された従来の熱交換器の断面図を示すものである。   FIG. 13 is a plan view of a conventional heat exchanger described in Patent Document 1, and FIG. 14 is a cross-sectional view of the conventional heat exchanger described in Patent Document 1.

図13、図14で示すように、この熱交換器101は二重管式の熱交換器であり、内部に冷媒用流路102が形成された内管103と、内管103の外側に設けられ、内管103との間に水用流路104が形成された銅製の外管105と、から構成され、内管103が2本設けられている。内管103は、銅製の冷媒管106と、冷媒管106の外周に設けられた銅製の漏洩検知管107と、から構成され、冷媒管106を拡管するか、或いは、漏洩検知管107を縮管することにより、冷媒管106と漏洩検知管107とは密着されている。また、漏洩検知管107の内面には、配管方向に沿って多数の漏洩検知溝108が形成されており、漏洩検知溝108内には空気層が形成されている。さらに、漏洩検知溝108は外部に設けられた漏洩検知センサー(図示せず)に接続されており、内管103又は外管105から漏洩した冷媒又は水は漏洩検知溝108を介して外部に漏出し、漏洩検知センサーにより検知されるようになっている。   As shown in FIGS. 13 and 14, this heat exchanger 101 is a double-pipe heat exchanger, and is provided outside the inner tube 103, an inner tube 103 in which a refrigerant channel 102 is formed. A copper outer tube 105 having a water flow path 104 formed between the inner tube 103 and the inner tube 103 is provided with two inner tubes 103. The inner pipe 103 is composed of a copper refrigerant pipe 106 and a copper leak detection pipe 107 provided on the outer periphery of the refrigerant pipe 106, and the refrigerant pipe 106 is expanded or the leak detection pipe 107 is contracted. As a result, the refrigerant pipe 106 and the leak detection pipe 107 are in close contact with each other. A large number of leak detection grooves 108 are formed along the piping direction on the inner surface of the leak detection pipe 107, and an air layer is formed in the leak detection groove 108. Further, the leak detection groove 108 is connected to a leak detection sensor (not shown) provided outside, and the refrigerant or water leaking from the inner tube 103 or the outer tube 105 leaks to the outside through the leak detection groove 108. However, it is detected by a leak detection sensor.

以上のように構成された熱交換器について、以下その動作を説明する。   The operation of the heat exchanger configured as described above will be described below.

熱交換器101は、内管103と外管105との二重管により形成され、冷媒と水とが熱伝導性の良い銅製で且つ密着された冷媒管106と漏洩検知管107を介して熱交換されるようになっているため、内管103が水との接触面積が大きくとれ、熱交換効率を向上させることできる。また、例え、腐食等により冷媒管106や漏洩検知管107に孔や亀裂が生じ、冷媒や水が漏洩したとしても、その漏洩を漏洩検知溝108を介して確実に検知することができ、さらに、冷媒と水との間には冷媒管106と漏洩検知管107により二重に境界壁が形成されており、いずれか一方に孔や亀裂等の欠陥が発生したしても、冷媒と水が互いに混入し合うおそれがない。したがって、熱交換器101の信頼性を高く維持することができる。また、熱交換器101が二重管式となっているため、曲げ加工が容易にでき、製造コストの低減化が可能となると共に、コンパクト化を図ることができる。
特開2005−69620号公報
The heat exchanger 101 is formed by a double pipe of an inner pipe 103 and an outer pipe 105, and heat is passed through a refrigerant pipe 106 and a leak detection pipe 107 in which the refrigerant and water are made of copper having good thermal conductivity and are in close contact with each other. Since they are exchanged, the inner tube 103 has a large contact area with water, and the heat exchange efficiency can be improved. In addition, even if a hole or a crack is generated in the refrigerant pipe 106 or the leak detection pipe 107 due to corrosion or the like and the refrigerant or water leaks, the leak can be reliably detected through the leak detection groove 108. The refrigerant wall 106 and the leakage detection pipe 107 form a double boundary wall between the refrigerant and water, and even if a defect such as a hole or a crack occurs in one of the refrigerant and water, the refrigerant and water There is no risk of mixing with each other. Therefore, the reliability of the heat exchanger 101 can be maintained high. In addition, since the heat exchanger 101 is a double tube type, bending can be easily performed, manufacturing costs can be reduced, and compactness can be achieved.
JP-A-2005-69620

しかしながら、上記従来の構成では、水と接触し熱伝達する内管103の外表面が銅製のなめらかな丸管状であるため、速度境界層(もしくは温度境界層)が発達しやすく、熱交換能力を向上させるためには、流速を増加させたり、熱交換器101の管長を長くし、内管103の伝熱面積を大きくする手法をとる必要があった。   However, in the above-described conventional configuration, the outer surface of the inner tube 103 that contacts heat and transfers heat is a smooth round tube made of copper. Therefore, the velocity boundary layer (or temperature boundary layer) is easily developed, and the heat exchange capability is improved. In order to improve, it has been necessary to increase the flow velocity, increase the tube length of the heat exchanger 101, and increase the heat transfer area of the inner tube 103.

このため、上記のような手法では、まず、流速を増加させるため、外管105の径を小さくし水用流路104の断面積を縮小すると、水道水にカルシウム(Ca)等のミネラル成分が含まれているので、加熱し水の温度が上昇するとカルシウムの溶解度が低下して水に溶けていたカルシウムが析出し、析出したカルシウムが内管103の外壁と外管105内壁に付着し、水用流路104が詰まってしまい熱交換器101が機能しなくなるという課題を有していた。また、熱交換器101の管長を長くすると、熱交換器101のサイズが大きくなったり、重量が増加するという課題を有していた。   For this reason, in the above-described method, first, when the diameter of the outer pipe 105 is reduced and the cross-sectional area of the water flow path 104 is reduced in order to increase the flow velocity, mineral components such as calcium (Ca) are contained in the tap water. Therefore, when heated and the temperature of water rises, the solubility of calcium decreases and calcium dissolved in water precipitates, and the precipitated calcium adheres to the outer wall of the inner tube 103 and the inner wall of the outer tube 105, There was a problem that the heat flow path 104 is clogged and the heat exchanger 101 does not function. Further, when the tube length of the heat exchanger 101 is increased, there is a problem that the size of the heat exchanger 101 is increased or the weight is increased.

本発明は、上記従来の課題を解決するもので、水用流路の断面積を縮小して流速を増加させたり、管長を長くして内管の伝熱面積を増加させたりしなくとも、高い精度や、大型の設備を必要としない簡易な工法で、熱交換性能に優れた二重管式の熱交換器を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, without reducing the cross-sectional area of the water flow path to increase the flow velocity, or without increasing the pipe length to increase the heat transfer area of the inner pipe, The object is to provide a double-pipe heat exchanger with high accuracy and a simple construction method that does not require large-scale equipment and excellent heat exchange performance.

上記従来の課題を解決するために、本発明の熱交換器は、内部に流体Aが流れる第一の管と、内部に流体Bが流れる第二の管と、からなり、前記第二の管を前記第一の管内に配設した構成であって、前記第二の管の外表面に、前記第二の管の管軸方向、あるいは周方向に凹凸を形成したものである。   In order to solve the above-described conventional problems, the heat exchanger according to the present invention includes a first pipe through which a fluid A flows and a second pipe through which the fluid B flows. Is provided in the first tube, and the outer surface of the second tube is formed with irregularities in the tube axis direction or the circumferential direction of the second tube.

これによって、前記第二の管の外表面の凹凸により、前記第二の管の外壁面近傍を流れる水の剪断力に差が生じ、外壁面に対して垂直方向の剪断流れが生じることで、外壁面近傍を流れる高温の水と外壁面から比較的に離れたところを流れる比較的低温の水によって形成されていた温度境界層が乱れ、混合することで、熱伝達性を向上させることができるとともに、冷媒と水との熱交換面積を拡大させることができる。   Thereby, due to the unevenness of the outer surface of the second tube, a difference occurs in the shear force of the water flowing near the outer wall surface of the second tube, and a shear flow perpendicular to the outer wall surface is generated. Heat transferability can be improved by disturbing and mixing the temperature boundary layer formed by the high-temperature water flowing near the outer wall surface and the relatively low-temperature water flowing relatively far from the outer wall surface. At the same time, the heat exchange area between the refrigerant and water can be increased.

本発明の二重管式の熱交換器は、外壁面近傍の高温の水と外壁面から離れた比較的低温の水によって形成されていた温度境界層が乱れ、混合することで、水用流路の断面積を縮小して流速を増加させたり、管長を長くして内管の伝熱面積を増加させたりしなくとも、熱交換器の熱交換性能を向上させることができる。   The double-pipe heat exchanger of the present invention is a water flow system in which a temperature boundary layer formed by high-temperature water near the outer wall surface and relatively low-temperature water separated from the outer wall surface is disturbed and mixed. The heat exchange performance of the heat exchanger can be improved without reducing the cross-sectional area of the path to increase the flow velocity or increasing the pipe length to increase the heat transfer area of the inner pipe.

請求項1に記載の発明は、内部に流体Aが流れる第一の管と、内部に流体Bが流れる第二の管と、からなり、前記第二の管を前記第一の管内に配設した構成であって、前記第二の管の外表面に、前記第二の管の管軸方向、あるいは周方向に凹凸を形成したことにより、第二の管の外壁面近傍を流れる水の剪断力に差が生じ、外壁面に対して垂直方向の剪断流れが生じることで、外壁面近傍を流れる高温の水と壁面から比較的に離れたところを流れる比較的低温の水によって形成されていた温度境界層が乱れ、混合することで、熱伝達性を向上させることができ、熱交換器の熱交換性能を向上させることができる。   The invention according to claim 1 includes a first pipe through which fluid A flows and a second pipe through which fluid B flows, and the second pipe is disposed in the first pipe. In this configuration, the outer surface of the second tube is formed with irregularities in the tube axis direction or the circumferential direction of the second tube, so that the water flowing near the outer wall surface of the second tube is sheared. Due to the difference in force and the generation of shear flow perpendicular to the outer wall, it was formed by hot water flowing near the outer wall and relatively cold water flowing relatively far from the wall. When the temperature boundary layer is disturbed and mixed, heat transfer can be improved, and heat exchange performance of the heat exchanger can be improved.

請求項2に記載の発明は、請求項1に記載の発明において、前記第二の管の外表面に、前記第二の管の管軸方向、あるいは周方向に互いに離間して凸部を形成したことにより、第二の管の外壁面で生じる剪断流れを第二の管の管軸方向、あるいは周方向に離散させて発生させることができ、第二の管の外壁面近傍の流動抵抗を低く抑えることができる。   According to a second aspect of the present invention, in the first aspect of the present invention, convex portions are formed on the outer surface of the second tube so as to be spaced apart from each other in the tube axis direction or the circumferential direction of the second tube. As a result, the shear flow generated on the outer wall surface of the second pipe can be generated separately in the pipe axis direction or the circumferential direction of the second pipe, and the flow resistance in the vicinity of the outer wall surface of the second pipe can be increased. It can be kept low.

請求項3に記載の発明は、請求項1または2に記載の発明において、前記第二の管の外表面に、板状のフィンを螺旋状に巻き付けたことにより、第二の管の外表面に直接凹凸を設けるための転造加工を施す大型の製造設備を必要とせず、螺旋の間隔を密にしたり、粗にしたりすることで、第二の管の外表面に第二の管の管軸方向あるいは周方向に大きな凹凸あるいは離間した大きな凸部を設けることができ、外壁面近傍を流れる高温の水と外壁面から比較的に離れたところを流れる比較的低温の水によって形成されていた温度境界層を乱すことができる。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the outer surface of the second tube is formed by spirally winding a plate-like fin around the outer surface of the second tube. No need for large manufacturing equipment that performs rolling to provide unevenness directly on the tube, and by making the spiral spacing close or rough, the tube of the second tube on the outer surface of the second tube Large irregularities in the axial direction or circumferential direction or large convex portions separated from each other can be provided, and formed by high temperature water flowing near the outer wall surface and relatively low temperature water flowing relatively far from the outer wall surface. The temperature boundary layer can be disturbed.

請求項4に記載の発明は、請求項1または2に記載の発明において、前記第二の管の外表面に、小径の線材を螺旋状に巻き付けたことにより、第二の管の外表面に直接凹凸を設けるための転造加工を施す大型の製造設備を必要とせず、さらにフィンを立てるための位置決め、巻き付け強さを高精度で行うための技術、装置を必要としない簡易な工法と安価な設備で、螺旋の間隔を密にしたり、粗にしたりすることで、第二の管の外表面に第二の管の管軸方向あるいは周方向に凹凸あるいは離間した凸部を設けることができ、第二の管の外壁面近傍の流動抵抗を低く抑えつつ、外壁面近傍を流れる高温の水と外壁面から比較的に離れたところを流れる比較的低温の水によって形成されていた温度境界層を乱すことができる。   The invention according to claim 4 is the invention according to claim 1 or 2, wherein a small-diameter wire is spirally wound around the outer surface of the second pipe, thereby forming an outer surface of the second pipe. It does not require a large-scale manufacturing facility that directly performs rolling to provide unevenness, and furthermore, positioning for raising the fins, technology for performing the winding strength with high accuracy, simple construction method that does not require equipment, and low cost By making the spiral spacing close or rough with a simple facility, the outer surface of the second tube can be provided with convexities that are uneven or spaced apart in the tube axis direction or circumferential direction of the second tube. The temperature boundary layer formed by high temperature water flowing near the outer wall surface and relatively low temperature water flowing relatively far from the outer wall surface while keeping the flow resistance near the outer wall surface of the second pipe low Can be disturbed.

請求項5に記載の発明は、請求項1から4のいずれか一項に記載の発明において、複数本の前記第二の管を互いに螺旋状にねじり合わせ、複数本の前記第二の管のねじりのピッチは、前記第二の管に螺旋状に巻き付けられた前記フィンあるいは前記小径の線材のピッチより緩やかであることにより、外壁面近傍を流れる高温の水と外壁面から離れたところを流れる比較的低温の水によって形成されていた温度境界層を乱すことができる。さらに、第一の管の管内の流体A全体に旋回流として、流体Aの流れを乱流攪乱し第一の管の流体A全体に熱が拡散され熱伝達率の向上が図れる。さらに、ねじられた複数本の第二の管の間にフィンや小径の線材により隙間ができ、複数本の第二の管の周囲ほぼ全体を流体Aとの有効接触面積とすることができる。   The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein a plurality of the second tubes are spirally twisted together to form a plurality of the second tubes. The twisting pitch is gentler than the pitch of the fin or the small-diameter wire wound around the second pipe in a spiral manner, so that the hot water flowing near the outer wall surface flows away from the outer wall surface. The temperature boundary layer formed by the relatively low temperature water can be disturbed. Further, the flow of the fluid A is turbulently disturbed as a swirl flow in the entire fluid A in the first tube, and heat is diffused in the entire fluid A in the first tube, thereby improving the heat transfer coefficient. Further, a gap is formed between the plurality of twisted second pipes by fins or small-diameter wires, and the entire area around the plurality of second pipes can be made an effective contact area with the fluid A.

請求項6に記載の発明は、請求項1から5のいずれか一項に記載の発明において、前記第二の管は、外管と内管とが少なくとも一部に隙間を持ちつつ熱的に密着した二重管であることにより、熱抵抗を小さく保ちつつ、流体A又は流体Bが隙間を介して漏出することにより、流体A又は流体Bの漏洩を検知可能なように構成されていることで流体Aと流体Bの間は二重壁で両流体が混合しにくくなり、かつ隙間を介して外部に漏出し検知されることで安全性が向上する。   The invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein the second pipe is thermally formed with a gap between at least a part of the outer pipe and the inner pipe. It is configured to be able to detect leakage of fluid A or fluid B by leaking fluid A or fluid B through the gap while keeping the thermal resistance small by being a close double tube. In this case, the fluid A and the fluid B are difficult to mix with a double wall, and the leakage is detected to the outside through a gap, so that safety is improved.

請求項7に記載の発明は、請求項1から6のいずれか一項に記載の発明において、前記流体Aと前記流体Bとが対向流とし、前記流体Bが前記第二の管を介して前記流体Aを加熱することにより、流体Aと流体Bの平均的な温度差を大きくして熱交換量を大きくすることができる。   The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein the fluid A and the fluid B are opposed to each other, and the fluid B passes through the second pipe. By heating the fluid A, the average temperature difference between the fluid A and the fluid B can be increased and the amount of heat exchange can be increased.

請求項8に記載の発明は、請求項1から7のいずれか一項に記載の発明において、前記流体Aの流入側に比べ、前記流体Aの流出側の前記第二の管の外表面に設けた凸部が、より管軸方向に離間していることにより、流体Aが流体Bにより加熱される場合に、高温となる流出側では、水に含まれるカルシウムが析出し流出側の第二の管の外表面で不付着しやすい凸部が疎らになるため、カルシウムスケールが成長して水の流動を封止させず、熱交換の停止することを抑制することができる。また、水の流速を落とさないため第二の管との熱伝達率の低下を極力抑えることができ、熱交換器全体として熱伝達率の低下を極力抑制することができる。   According to an eighth aspect of the present invention, in the invention according to any one of the first to seventh aspects, the outer surface of the second pipe on the outflow side of the fluid A compared to the inflow side of the fluid A. Since the provided convex portions are further separated in the tube axis direction, when the fluid A is heated by the fluid B, calcium contained in water is precipitated on the outflow side where the temperature becomes high, and the second on the outflow side. Since the convex portions that are likely not to adhere to the outer surface of the tube become sparse, it is possible to prevent the calcium scale from growing and sealing the flow of water without stopping the heat exchange. In addition, since the flow rate of water is not reduced, a decrease in heat transfer coefficient with the second pipe can be suppressed as much as possible, and a decrease in heat transfer coefficient as a whole heat exchanger can be suppressed as much as possible.

請求項9に記載の発明は、請求項1から8のいずれか一項に記載の発明において、前記流体Aを水とし、前記流体Bを二酸化炭素としたことにより、ヒートポンプ給湯機用の水−冷媒熱交換器として使用することで高いヒートポンプ効率を得ることができる。   The invention according to claim 9 is the invention according to any one of claims 1 to 8, wherein the fluid A is water and the fluid B is carbon dioxide, so that water for a heat pump water heater is used. High heat pump efficiency can be obtained by using it as a refrigerant heat exchanger.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における熱交換器の平面図、図2は、図1のA−A断面図、図3は、同実施の形態における熱交換器の要部切除斜視図である。
(Embodiment 1)
1 is a plan view of a heat exchanger according to Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1, and FIG. 3 is a perspective view of a main part of the heat exchanger according to the same embodiment. It is.

図1から図3において、熱交換器本体1は、内面に漏洩検知溝5を持つ外管3と内管4とが相互に熱的に密着した二重壁2aを持ち、内管4の内部を二酸化炭素が流動する銅製の冷媒管2と、冷媒管2とほぼ同軸で、内部に冷媒管2を備え冷媒管2との間の略環状部を水が流動する銅製の水管6と、で構成している。冷媒管2の外管3の外表面には、冷媒管2の管軸方向及び周方向に離間するように、断面形状が薄板の銅製フィン7を密着するように螺旋状に巻き付けている。   1 to 3, the heat exchanger body 1 has a double wall 2a in which an outer tube 3 and an inner tube 4 having a leak detection groove 5 on the inner surface are in close thermal contact with each other. A copper refrigerant pipe 2 in which carbon dioxide flows, and a copper water pipe 6 that is substantially coaxial with the refrigerant pipe 2 and that has the refrigerant pipe 2 therein and in which water flows through a substantially annular portion between the refrigerant pipe 2 and It is composed. The outer surface of the outer tube 3 of the refrigerant tube 2 is spirally wound so that the copper fins 7 having a thin cross-sectional shape are in close contact with each other so as to be separated in the tube axis direction and the circumferential direction of the refrigerant tube 2.

また、冷媒管2の二酸化炭素の流入口8a、流出口8bと、水管6の水の流入口9a、流出口9bは各々の流れが対向するように設けられている。   In addition, the carbon dioxide inlet 8a and outlet 8b of the refrigerant pipe 2 and the water inlet 9a and outlet 9b of the water pipe 6 are provided so that their flows face each other.

以上のように構成された熱交換器について、以下その動作を説明する。   The operation of the heat exchanger configured as described above will be described below.

まず、冷媒管2の内部を二酸化炭素が流動し、水管6と冷媒管2との間の環状部を水が対向して流れ、外管3と内管4の二重壁2aを介して二酸化炭素と水が熱交換する。   First, carbon dioxide flows inside the refrigerant pipe 2, water flows oppositely through the annular portion between the water pipe 6 and the refrigerant pipe 2, and the carbon dioxide passes through the double wall 2 a of the outer pipe 3 and the inner pipe 4. Carbon and water exchange heat.

ここで、二酸化炭素と水の間において、内面に漏洩検知溝5を持ち二酸化炭素と水が漏洩検知溝5を介して漏出し、検知センサー(図示せず)にて検知可能なように構成されていることで、安全性を確保する二重壁2aを備えつつ十分な接触面積を確保するため、外管3と内管4の二重壁2aを介して高い熱伝導性を得る。   Here, between carbon dioxide and water, it has a leakage detection groove 5 on the inner surface, and carbon dioxide and water leak through the leakage detection groove 5 and can be detected by a detection sensor (not shown). Therefore, in order to ensure a sufficient contact area while providing the double wall 2a for ensuring safety, high thermal conductivity is obtained through the double wall 2a of the outer tube 3 and the inner tube 4.

さらに、冷媒管2内の二酸化炭素と水管6と冷媒管2の間の水が対向流となっているため、効率のよい熱交換を実現することができ、ヒートポンプ給湯機用水冷媒熱交換器として使用することで、高いヒートポンプ効率を得ることができる。   Furthermore, since the carbon dioxide in the refrigerant pipe 2 and the water between the water pipe 6 and the refrigerant pipe 2 are opposed to each other, efficient heat exchange can be realized, and as a water refrigerant heat exchanger for a heat pump water heater By using it, high heat pump efficiency can be obtained.

そして、冷媒管2の外管3の外表面に薄板状のフィン7を螺旋状に巻き付けたことにより、冷媒管2の外管3の外表面にフィン加工するための高度な加工技術や転造するための大型製造設備を必要とせず、冷媒管2の管軸方向あるいは周方向に離間した大きな凸部を設けることができ、冷媒管2の外管3の外壁面近傍を流れる水の剪断力に差を生じさせ、離散的に外壁面に対して垂直方向の剪断流れを起こし、流動抵抗を低く抑えつつ冷媒管2の外管3の外壁面近傍を流れる高温の水と外壁面から比較的に離れたところを流れる比較的低温の水によって形成されていた温度境界層を乱すとことができ、混合することで、熱伝達性を向上させることができる。   Then, a thin plate-like fin 7 is spirally wound around the outer surface of the outer tube 3 of the refrigerant tube 2, so that an advanced processing technique and rolling for processing the fin on the outer surface of the outer tube 3 of the refrigerant tube 2 are performed. The large shearing force of water flowing in the vicinity of the outer wall surface of the outer pipe 3 of the refrigerant pipe 2 can be provided without the need for a large-scale manufacturing facility for carrying out, and can be provided with a large convex portion separated in the pipe axis direction or circumferential direction of the refrigerant pipe 2 The high-temperature water flowing in the vicinity of the outer wall surface of the outer tube 3 of the refrigerant pipe 2 and the outer wall surface are relatively generated while causing a shear flow in a direction perpendicular to the outer wall surface in a discrete manner and suppressing flow resistance to a low level. It is possible to disturb the temperature boundary layer formed by the relatively low-temperature water flowing away from each other, and heat transfer can be improved by mixing.

また、螺旋の間隔を密にしたり、粗にしたりすることで、冷媒管2の管軸方向あるいは周方向に大きな凹凸あるいは離間した大きな凸部を容易に設定することができ、水と二酸化炭素の熱交換器1の水側圧損と加熱能力の諸性能をバランス良く容易に設計することができる。   In addition, by making the spiral interval close or rough, it is possible to easily set large irregularities in the tube axis direction or the circumferential direction of the refrigerant tube 2 or large convex portions separated from each other. Various performances of the water-side pressure loss and the heating capacity of the heat exchanger 1 can be designed with good balance.

尚、本発明の実施の形態では、ファン7を薄板状のものとしたが、針状、あるいは波板状としても同様な効果を得られる。   In the embodiment of the present invention, the fan 7 has a thin plate shape, but the same effect can be obtained by using a needle shape or a corrugated plate shape.

尚、本発明の実施の形態では、冷媒管2の外管3、内管4、水管6及びフィン7の材料は、銅製だが、真ちゅう、SUS、耐食性を持った鉄、アルミ合金等でも同様な効果を得られる。   In the embodiment of the present invention, the material of the outer tube 3, the inner tube 4, the water tube 6 and the fin 7 of the refrigerant tube 2 is made of copper, but the same applies to brass, SUS, corrosion-resistant iron, aluminum alloy, and the like. The effect can be obtained.

尚、本発明の実施の形態では、冷媒管2内を流通する冷媒を二酸化炭素としたが、R410A等の冷媒でも同様な効果を得られる。   In the embodiment of the present invention, carbon dioxide is used as the refrigerant flowing through the refrigerant pipe 2. However, the same effect can be obtained with a refrigerant such as R410A.

(実施の形態2)
図4は、本発明の実施の形態2における熱交換器の平面図、図5は、図4のB−B断面図、図6は、同実施の形態における熱交換器の要部切除斜視図である。尚、実施の形態1と同一構成については、同一符号を付して詳細な説明を省略する。
(Embodiment 2)
4 is a plan view of a heat exchanger according to Embodiment 2 of the present invention, FIG. 5 is a cross-sectional view taken along the line BB of FIG. 4, and FIG. 6 is a cutaway perspective view of the main part of the heat exchanger according to the same embodiment. It is. In addition, about the same structure as Embodiment 1, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

図4から図6において、断面形状が小径の銅製の線材10は、冷媒管2の外管3の外表面に、冷媒管2の管軸方向及び周方向に離間するように螺旋状に巻き付けている。   4 to 6, the copper wire 10 having a small cross-sectional shape is spirally wound around the outer surface of the outer tube 3 of the refrigerant tube 2 so as to be separated in the tube axis direction and the circumferential direction of the refrigerant tube 2. Yes.

以上のように、構成された熱交換器1について、以下その動作を説明する。   The operation of the heat exchanger 1 configured as described above will be described below.

冷媒管2の外管3の外表面に直接凹凸を設けるための転造加工を施す大型の製造設備を必要とせず、さらにフィンを立てるための位置決め、巻き付け強さを高精度で行うための技術、装置を必要としない簡易な工法と安価な設備で、冷媒管2の外管3の外表面に冷媒管2の管軸方向あるいは周方向に離間した凸部を設けることができ、離散的に外壁面に対して垂直方向の剪断流れを起こし、冷媒管2の外壁面近傍の流動抵抗を極力小さく抑えつつ、外壁面近傍を流れる高温の水と壁面から比較的に離れたところを流れる比較的低温の水によって形成されていた温度境界層を乱すことができる。   Technology for performing high-precision positioning and winding strength for raising fins without the need for large-scale manufacturing equipment that performs rolling to provide irregularities directly on the outer surface of the outer pipe 3 of the refrigerant pipe 2 With a simple construction method and inexpensive equipment that does not require an apparatus, the outer surface of the outer pipe 3 of the refrigerant pipe 2 can be provided with convex portions spaced apart in the pipe axis direction or circumferential direction of the refrigerant pipe 2, and discretely A shear flow in a direction perpendicular to the outer wall surface is caused, and the flow resistance in the vicinity of the outer wall surface of the refrigerant pipe 2 is suppressed as much as possible, while the high-temperature water flowing in the vicinity of the outer wall surface and the water flowing relatively away from the wall surface The temperature boundary layer formed by the low temperature water can be disturbed.

尚、本実施の形態では、線材10を断面形状が円状のものとしたが、四角形状、あるいは多角形状などあるいは異径のものでも同様な効果を得られる。   In the present embodiment, the wire 10 has a circular cross-sectional shape, but the same effect can be obtained even when the wire 10 has a quadrangular shape, a polygonal shape, or a different diameter.

(実施の形態3)
図7は、本発明の実施の形態3における熱交換器の平面図、図8は、同実施の形態における熱交換器の要部を示す図7のC部(水流入側)の一部を切除した部分平面図、図9は同実施の形態における熱交換器の要部を示す図7のD部(水流出側)の一部を切除した部分平面図である。尚、実施の形態1、2と同一構成については、同一符号を付して詳細な説明を省略する。
(Embodiment 3)
FIG. 7 is a plan view of the heat exchanger according to the third embodiment of the present invention, and FIG. 8 is a part of part C (water inflow side) of FIG. 7 showing the main part of the heat exchanger according to the same embodiment. FIG. 9 is a partial plan view in which a part of a portion D (water outflow side) in FIG. 7 showing a main part of the heat exchanger in the same embodiment is cut out. In addition, about the same structure as Embodiment 1, 2, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

図7から図9において、水の流入側に比べ、水の流出側の冷媒管2の外管3の外表面に断面形状が小径の銅製の線材11が管軸方向あるいは周方向に、より離間して配設されている。   7 to 9, the copper wire 11 having a small cross-sectional shape on the outer surface of the outer tube 3 of the refrigerant tube 2 on the water outflow side is further separated in the tube axis direction or the circumferential direction than the water inflow side. Arranged.

以上のように、構成された熱交換器1について、以下その動作を説明する。   The operation of the heat exchanger 1 configured as described above will be described below.

二酸化炭素により加熱される水の場合に、高温となる流出側では、冷媒管2の管軸方向に対する線材11が疎らに巻き付けられるため、水に含まれるカルシウムが析出し不付着しやすい線材11による凸部が疎らになるため、カルシウムスケールが成長して水の流動を封止させず、熱交換の停止することを抑制することができる。また、水の流速を落とさないため冷媒管2との熱伝達率の低下を極力抑えることができ、熱交換器1全体として熱伝達率の低下を極力抑制することができる。   In the case of water heated by carbon dioxide, the wire 11 with respect to the tube axis direction of the refrigerant tube 2 is loosely wound on the outflow side where the temperature is high. Since a convex part becomes sparse, it can suppress that a calcium scale grows and does not seal the flow of water, and stops heat exchange. In addition, since the flow rate of water is not reduced, a decrease in heat transfer coefficient with the refrigerant pipe 2 can be suppressed as much as possible, and a decrease in heat transfer coefficient as a whole can be suppressed as much as possible.

(実施の形態4)
図10は、本発明の実施の形態4における熱交換器の平面図、図11は、図10のE−E断面図である。図12は、同実施の形態における熱交換器の要部切除平面図である。尚、実施の形態1、2と同一構成については、同一符号を付して詳細な説明を省略する。
(Embodiment 4)
10 is a plan view of a heat exchanger according to Embodiment 4 of the present invention, and FIG. 11 is a cross-sectional view taken along line EE of FIG. FIG. 12 is a plan view of a main part of the heat exchanger according to the same embodiment. In addition, about the same structure as Embodiment 1, 2, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

図10から図12において、二本の冷媒管2Xが互いに螺旋状にねじり合わされ、二本の冷媒管2Xのねじりのピッチは、冷媒管2Xの外管3の外表面に螺旋状に巻き付けられた銅製の小径の線材10のピッチより緩やかである。   10 to 12, the two refrigerant tubes 2X are spirally twisted with each other, and the twist pitch of the two refrigerant tubes 2X is spirally wound around the outer surface of the outer tube 3 of the refrigerant tube 2X. It is gentler than the pitch of the small-diameter copper wire 10.

以上のように、構成された熱交換器1について、以下その動作を説明する。   The operation of the heat exchanger 1 configured as described above will be described below.

まず、冷媒管2Xの外管3の外表面に螺旋状に配設された小径の線材10により冷媒管2Xの外管3の外壁面近傍を流れる高温の水と外壁面から離れたところを流れる比較的低温の水によって形成されていた温度境界層を乱すことができる。さらに、水管6内の水全体を旋回流にして流れを乱流攪乱し、水全体に熱が拡散され熱伝達率の向上が図れる。   First, high-temperature water flowing near the outer wall surface of the outer tube 3 of the refrigerant tube 2X flows away from the outer wall surface by a small-diameter wire 10 spirally disposed on the outer surface of the outer tube 3 of the refrigerant tube 2X. The temperature boundary layer formed by the relatively low temperature water can be disturbed. Further, the entire water in the water pipe 6 is swirled to disturb the flow, and heat is diffused throughout the water, thereby improving the heat transfer coefficient.

さらに、ねじられた2本の冷媒管2Xの間に線材10により隙間ができ、2本の冷媒管2Xの周囲ほぼ全体を水との有効接触面積とすることができる。   Furthermore, a gap is formed by the wire 10 between the two twisted refrigerant pipes 2X, and almost the entire periphery of the two refrigerant pipes 2X can be made an effective contact area with water.

尚、本発明の実施の形態では、冷媒管2Xの本数を2本としたが、3本以上でも同様な効果を得られる。   In the embodiment of the present invention, the number of the refrigerant pipes 2X is two, but the same effect can be obtained with three or more.

尚、本実施の形態では、小径の線材10を冷媒管2Xに巻き付けたが、板状のフィンを冷媒管2Xに巻き付けても同様な効果が得られる。   In the present embodiment, the small-diameter wire 10 is wound around the refrigerant pipe 2X, but the same effect can be obtained by winding plate-like fins around the refrigerant pipe 2X.

以上のように、本発明にかかる熱交換器は、熱交換性能を向上させることができるので、ヒートポンプ給湯器や家庭用、業務用の空気調和機、ヒートポンプの洗濯乾燥機などのヒートポンプ機器や、燃料電池等の用途にも適用できる。   As described above, since the heat exchanger according to the present invention can improve the heat exchange performance, heat pump equipment such as a heat pump water heater, household, commercial air conditioner, heat pump washing and drying machine, It can also be applied to uses such as fuel cells.

本発明の実施の形態1における熱交換器の平面図The top view of the heat exchanger in Embodiment 1 of this invention 図1のA−A断面図AA sectional view of FIG. 同実施の形態における熱交換器の要部切除斜視図Cutaway perspective view of the main part of the heat exchanger in the same embodiment 本発明の実施の形態2における熱交換器の平面図The top view of the heat exchanger in Embodiment 2 of this invention 図4のB−B断面図BB sectional view of FIG. 同実施の形態における熱交換器の要部切除斜視図Cutaway perspective view of the main part of the heat exchanger in the same embodiment 本発明の実施の形態3における熱交換器の平面図The top view of the heat exchanger in Embodiment 3 of this invention 同実施の形態における熱交換器の要部を示す図7のC部(水流入側)の一部を切除した部分平面図The fragmentary top view which excised a part of C section (water inflow side) of FIG. 7 which shows the principal part of the heat exchanger in the embodiment 同実施の形態における熱交換器の要部を示す図7のD部(水流出側)の一部を切除した部分平面図The partial top view which excised a part of D section (water outflow side) of FIG. 7 which shows the principal part of the heat exchanger in the same embodiment 本発明の実施の形態4における熱交換器の平面図The top view of the heat exchanger in Embodiment 4 of this invention 図10のE−E断面図EE sectional view of FIG. 同実施の形態における熱交換器の要部切除平面図Cutaway plan view of the main part of the heat exchanger in the same embodiment 従来の熱交換器を示す平面図Plan view showing a conventional heat exchanger 従来の熱交換器を示す断面図Sectional view showing a conventional heat exchanger

符号の説明Explanation of symbols

1 熱交換器
2,2x 冷媒管(第二の管)
2a 2重壁
3 外管
4 内管
5 漏洩検知溝
6 水管(第一の管)
7 フィン
10,11 小径の線材
1 Heat exchanger 2, 2x Refrigerant pipe (second pipe)
2a Double wall 3 Outer pipe 4 Inner pipe 5 Leakage detection groove 6 Water pipe (first pipe)
7 Fin 10, 11 Small diameter wire rod

Claims (9)

内部に流体Aが流れる第一の管と、内部に流体Bが流れる第二の管と、からなり、前記第二の管を前記第一の管内に配設した構成であって、前記第二の管の外表面に、前記第二の管の管軸方向、あるいは周方向に凹凸を形成した熱交換器。   A first pipe through which fluid A flows, and a second pipe through which fluid B flows, wherein the second pipe is disposed in the first pipe, The heat exchanger which formed the unevenness | corrugation in the pipe-axis direction of the said 2nd pipe | tube, or the circumferential direction on the outer surface of this pipe | tube. 前記第二の管の外表面に、前記第二の管の管軸方向、あるいは周方向に互いに離間して凸部を形成した請求項1に記載の熱交換器。   The heat exchanger according to claim 1, wherein convex portions are formed on the outer surface of the second pipe so as to be spaced apart from each other in the pipe axis direction or the circumferential direction of the second pipe. 前記第二の管の外表面に、板状のフィンを螺旋状に巻き付けた請求項1または2に記載の熱交換器。   The heat exchanger according to claim 1 or 2, wherein a plate-like fin is spirally wound around the outer surface of the second tube. 前記第二の管の外表面に、小径の線材を螺旋状に巻き付けた請求項1または2に記載の熱交換器。   The heat exchanger according to claim 1 or 2, wherein a small-diameter wire is spirally wound around the outer surface of the second tube. 複数本の前記第二の管を互いに螺旋状にねじり合わせ、複数本の前記第二の管のねじりのピッチは、前記第二の管に螺旋状に巻き付けられた前記フィンあるいは前記小径の線材のピッチより緩やかである請求項1から4のいずれか一項に記載の熱交換器。   A plurality of the second tubes are spirally twisted with each other, and the twisting pitch of the plurality of the second tubes is the same as that of the fins or the small-diameter wire rods spirally wound around the second tubes. The heat exchanger according to any one of claims 1 to 4, wherein the heat exchanger is gentler than the pitch. 前記第二の管は、外管と内管とが少なくとも一部に隙間を持ちつつ熱的に密着した二重管である請求項1から5のいずれか一項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 5, wherein the second pipe is a double pipe in which the outer pipe and the inner pipe are in thermal contact with each other with a gap in at least a part thereof. 前記流体Aと前記流体Bとが対向流とし、前記流体Bが前記第二の管を介して前記流体Aを加熱する請求項1から6のいずれか一項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 6, wherein the fluid A and the fluid B are opposed to each other, and the fluid B heats the fluid A through the second pipe. 前記流体Aの流入側に比べ、前記流体Aの流出側の前記第二の管の外表面に設けた凸部が、より管軸方向に離間している請求項1から7のいずれか一項に記載の熱交換器。   The convex part provided in the outer surface of the said 2nd pipe | tube by the outflow side of the said fluid A compared with the inflow side of the said fluid A is further spaced apart in the pipe-axis direction. The heat exchanger as described in. 前記流体Aを水、前記流体Bを二酸化炭素とする請求項1から8のいずれか一項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 8, wherein the fluid A is water and the fluid B is carbon dioxide.
JP2007008828A 2007-01-18 2007-01-18 Heat exchanger Pending JP2008175450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007008828A JP2008175450A (en) 2007-01-18 2007-01-18 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007008828A JP2008175450A (en) 2007-01-18 2007-01-18 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2008175450A true JP2008175450A (en) 2008-07-31

Family

ID=39702595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007008828A Pending JP2008175450A (en) 2007-01-18 2007-01-18 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2008175450A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002783A (en) * 2011-06-21 2013-01-07 Noritz Corp Heat pump type heat source machine
WO2018167861A1 (en) * 2017-03-15 2018-09-20 三菱電機株式会社 Heat pump device and installation method therefor
KR20200074056A (en) * 2018-12-14 2020-06-24 엘지전자 주식회사 Cogeneration system
CN112629290A (en) * 2021-01-05 2021-04-09 东南大学 Be used for supercritical water screw thread fin double-pipe heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59139785A (en) * 1983-01-28 1984-08-10 Sanyo Electric Co Ltd Remote control system
JP2001201275A (en) * 2000-01-21 2001-07-27 Daikin Ind Ltd Double tube heat exchanger
JP2004190923A (en) * 2002-12-10 2004-07-08 Matsushita Electric Ind Co Ltd Double tube heat exchanger
JP2006003028A (en) * 2004-06-18 2006-01-05 Matsushita Electric Ind Co Ltd Heat exchange device and heat pump water heater using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59139785A (en) * 1983-01-28 1984-08-10 Sanyo Electric Co Ltd Remote control system
JP2001201275A (en) * 2000-01-21 2001-07-27 Daikin Ind Ltd Double tube heat exchanger
JP2004190923A (en) * 2002-12-10 2004-07-08 Matsushita Electric Ind Co Ltd Double tube heat exchanger
JP2006003028A (en) * 2004-06-18 2006-01-05 Matsushita Electric Ind Co Ltd Heat exchange device and heat pump water heater using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002783A (en) * 2011-06-21 2013-01-07 Noritz Corp Heat pump type heat source machine
WO2018167861A1 (en) * 2017-03-15 2018-09-20 三菱電機株式会社 Heat pump device and installation method therefor
JPWO2018167861A1 (en) * 2017-03-15 2019-11-07 三菱電機株式会社 Heat pump device and installation method thereof
US11187434B2 (en) 2017-03-15 2021-11-30 Mitsubishi Electric Corporation Heat pump apparatus and method for installing the same
KR20200074056A (en) * 2018-12-14 2020-06-24 엘지전자 주식회사 Cogeneration system
KR102442969B1 (en) 2018-12-14 2022-09-13 엘지전자 주식회사 energy generating device
CN112629290A (en) * 2021-01-05 2021-04-09 东南大学 Be used for supercritical water screw thread fin double-pipe heat exchanger

Similar Documents

Publication Publication Date Title
CN103629952B (en) Duct type heat exchanger, its manufacture method and heat transmission equipment
JP2007218486A (en) Heat exchanger tube for heat exchanger and heat exchanger using the same
JP2009216309A (en) Heat exchanger
JP2008175450A (en) Heat exchanger
JP2013024543A (en) Heat exchanger, and heat pump heating device using the same
JP4572662B2 (en) Heat exchanger
CN202836268U (en) Pipe type heat exchanger and heat exchanging device
JP2005069620A (en) Heat exchanger
JP5157617B2 (en) Heat exchanger
JP2008267631A (en) Heat exchanger
JP6211313B2 (en) Triple tube heat exchanger
JP2009264644A (en) Heat exchanger
JP2020016393A (en) Heat exchanger
JP2006078062A (en) Heat exchanger
JP2010038429A (en) Heat exchanger
JP2010255856A (en) Heat exchanger and heat pump water heater using the same
JP2005147570A (en) Double tube heat exchanger
JP2010112565A (en) Heat exchanger
JP2010255857A (en) Heat exchanger and heat pump water heater using the same
JP2010255980A (en) Heat exchanger and heat pump water heater using the same
JP2010127496A (en) Heat exchanger
JP5540683B2 (en) Heat exchanger and water heater provided with the same
JP2006057998A (en) Heat exchanger
JP4414198B2 (en) Double tube heat exchanger
JP2008267632A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090917

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Effective date: 20091014

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Effective date: 20110518

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110524

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111101