JP2008156289A - Method for producing monoalkyl glyceryl ether - Google Patents
Method for producing monoalkyl glyceryl ether Download PDFInfo
- Publication number
- JP2008156289A JP2008156289A JP2006347259A JP2006347259A JP2008156289A JP 2008156289 A JP2008156289 A JP 2008156289A JP 2006347259 A JP2006347259 A JP 2006347259A JP 2006347259 A JP2006347259 A JP 2006347259A JP 2008156289 A JP2008156289 A JP 2008156289A
- Authority
- JP
- Japan
- Prior art keywords
- glycerin
- glyceryl ether
- reaction mixture
- reaction
- acetalized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
本発明は、モノアルキルグリセリルエーテルの製造方法に関する。 The present invention relates to a method for producing a monoalkyl glyceryl ether.
従来のモノアルキルグリセリルエーテルの製造法としてはアルコールとエピクロロヒドリンから合成されるアルキルグリシジルエーテル(特許文献1、2)を中間体として1,3−ジオキソランを経由して加水分解する方法(特許文献3)、および当該アルキルグリシジルエーテルを直接加水分解する方法(特許文献4)が知られている。 As a conventional method for producing monoalkyl glyceryl ether, hydrolysis is performed via 1,3-dioxolane using alkyl glycidyl ether synthesized from alcohol and epichlorohydrin (Patent Documents 1 and 2) as an intermediate (patent) Document 3) and a method of directly hydrolyzing the alkyl glycidyl ether (Patent Document 4) are known.
また他の製造法としてカルボニル化合物とグリセリンを反応させ得られたアセタールあるいはケタールを水素化分解する方法(特許文献5)が知られている。
しかしながら、特許文献1〜4の方法では食塩などの廃棄物を大量に生じることや生産性が悪く工程が複雑であることから製品が高価なものになってしまうという問題点が生じていた。また、特許文献5の方法においても得られた生成物が混合物となる。すなわちグリセリンのアセタールあるいはケタールを無溶媒で水素化分解すると、ジエーテル体〔下記式(A)及び/又は(B)〕が生成してくる。そこで、より選択性の高いモノアルキルグリセリルエーテルの製造方法が望まれていた。 However, in the methods of Patent Documents 1 to 4, there are problems that a large amount of waste such as salt is generated, and the productivity is poor and the process is complicated, so that the product becomes expensive. Moreover, the product obtained also in the method of patent document 5 turns into a mixture. That is, when the acetal or ketal of glycerin is hydrocracked without a solvent, a diether body [the following formula (A) and / or (B)] is produced. Therefore, a method for producing monoalkyl glyceryl ether with higher selectivity has been desired.
したがって本発明の目的は、幅広い用途に応用できるモノアルキルグリセリルエーテルを高い選択性で製造できる工業的に有利な製造方法を提供することにある。 Accordingly, an object of the present invention is to provide an industrially advantageous production method capable of producing monoalkyl glyceryl ether applicable to a wide range of applications with high selectivity.
本発明者は、グリセリンとアルデヒドまたはケトンとから得られるアセタールまたはケタールを原料として得られる反応生成物を水素化分解する際に、グリセリンを溶媒として所定比率で用いることにより、選択的にモノアルキルグリセリルエーテルが得られることを見出し、本発明を完成するに至った。 The present inventor selectively uses monoalkyl glyceryl by hydrolyzing a reaction product obtained from glycerol and an aldehyde or ketone as a raw material and using glycerol as a solvent in a predetermined ratio. The inventors have found that ether can be obtained, and have completed the present invention.
すなわち、本発明は、次の工程(I)及び(II)を含む、モノアルキルグリセリルエーテルの製造方法に関するものである。
工程(I):酸性触媒の存在下、グリセリンと下記一般式(1)で表されるカルボニル化合物とを反応させて、グリセリンとグリセリンのアセタール化物とを含む反応混合物を得る工程
That is, this invention relates to the manufacturing method of monoalkyl glyceryl ether including following process (I) and (II).
Step (I): A step of reacting glycerin with a carbonyl compound represented by the following general formula (1) in the presence of an acidic catalyst to obtain a reaction mixture containing glycerin and an acetalized product of glycerin.
(式中、R1とR2は、同一でも異なっていても良く、それぞれ水素原子、又は炭素数1〜4の炭化水素基である。) (In formula, R < 1 > and R < 2 > may be same or different, and are respectively a hydrogen atom or a C1-C4 hydrocarbon group.)
工程(II):工程(I)で得られた反応混合物を用いた、グリセリンとグリセリンのアセタール化物とを含む反応原料であって、グリセリンのアセタール化物に対するグリセリンのモル比が1.5以上である反応原料に対して水素化分解を行う工程 Step (II): a reaction raw material containing the glycerin and an acetalized product of glycerin using the reaction mixture obtained in the step (I), wherein the molar ratio of glycerin to the acetalized product of glycerin is 1.5 or more. Process for hydrocracking reaction raw materials
本発明によれば、モノアルキルグリセリルエーテルを高い選択性で製造できる製造方法が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method which can manufacture a monoalkyl glyceryl ether with high selectivity is provided.
<工程(I)>
工程(I)では、酸性触媒の存在下、グリセリンと下記一般式(1)で表されるカルボニル化合物との間でアセタール化反応又はケタール化反応(以下、特に説明しない限り、両者をアセタール化反応と総称する)を行う。これにより、グリセリンと、グリセリンのアセタール化物とを含む反応混合物を得る。アセタール原料としてケトンを用いた場合、ケタール化反応によりケタール化物が得られる。
<Process (I)>
In step (I), in the presence of an acidic catalyst, an acetalization reaction or a ketalization reaction between glycerin and a carbonyl compound represented by the following general formula (1) (hereinafter, unless otherwise specified, an acetalization reaction) Collectively). Thereby, the reaction mixture containing glycerin and an acetalized product of glycerin is obtained. When a ketone is used as the acetal raw material, a ketalized product is obtained by a ketalization reaction.
(式中、R1とR2は、同一でも異なっていても良く、それぞれ水素原子、又は炭素数1〜4の炭化水素基である。) (In formula, R < 1 > and R < 2 > may be same or different, and are respectively a hydrogen atom or a C1-C4 hydrocarbon group.)
式中、R1とR2の炭化水素はアルキル基が好ましく、アルキル基としてはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基等が挙げられる。一般式(1)で表される化合物〔以下、化合物(1)という〕としては、アセトン、メチルエチルケトン、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒドが好ましい。 In the formula, the hydrocarbon of R 1 and R 2 is preferably an alkyl group, and examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a sec-butyl group. It is done. As the compound represented by the general formula (1) [hereinafter referred to as compound (1)], acetone, methyl ethyl ketone, acetaldehyde, propionaldehyde, and butyraldehyde are preferable.
工程(I)において化合物(1)とグリセリンとの反応はアセタール化反応であり、化合物(1)に対するグリセリンの比率〔グリセリン/化合物(1)、モル比〕については工程(II)においてグリセリンのモル比を調整することからいかなる比率でもよいが、調整なしに工程(II)を行うためには1.5以上、更に1.5〜10、更に2〜5が好ましい。すなわち、工程(I)において、反応混合物中のグリセリンのアセタール化物に対するグリセリンとのモル比が1.5以上となるよう、グリセリンと化合物(1)とを反応させることは好ましい方法である。 In step (I), the reaction between compound (1) and glycerin is an acetalization reaction, and the ratio of glycerin to compound (1) [glycerin / compound (1), molar ratio] is the mole of glycerin in step (II). Any ratio may be used since the ratio is adjusted, but 1.5 or more, more preferably 1.5 to 10, and further 2 to 5 are preferable in order to perform the step (II) without adjustment. That is, in step (I), it is a preferred method to react glycerin and compound (1) so that the molar ratio of glycerin to acetalized glycerin in the reaction mixture is 1.5 or more.
アセタール化反応に用いる酸性触媒としては均一系の触媒として塩酸、硫酸等の無機酸、パラトルエンスルホン酸、ベンゼンスルホン酸等の有機酸が挙げられる。また不均一系の固体酸性触媒としてSiO2・Al2O3、SiO2・MgO、SiO2・ZrO2、Al2O3・B2O3、Al2O3、各種ゼオライト、各種へテロポリ酸、各種リン酸塩、各種硫酸塩、H3PO4/珪藻土(固体リン酸)、陽イオン交換樹脂(超強酸)、酸化物担持SbF6、SO4/ZrO2等が挙げられるが、特にこれらに限定されるものではなく、固体表面に酸点を有する化合物を用いることができる。これらのなかで入手が容易であり工業的に使用するに当たり有利なものとして酸性白土(ガレオンアースシリーズ、水澤化学(株)製)、シリカアルミナ(ミズカエースシリーズ、水澤化学(株)製)、微粉末ケイ酸(シルトンシリーズ水澤化学(株)製)、合成酸処理ゼオライト(HSZ-640HOA、東ソー(株)製)が挙げられる。添加する酸性触媒量はグリセリンに対して0.001〜50重量%、さらに0.05〜2.0重量%用いるのが好ましい。アセタール化反応終了後、均一系の触媒は中和後、吸着処理や蒸留により除去される。不均一系の固体酸性触媒の除去は濾過のほか、固体酸をあらかじめ充填したカラムに反応液を循環あるいは流通させる固定床などの方法がある。 Examples of the acidic catalyst used in the acetalization reaction include inorganic acids such as hydrochloric acid and sulfuric acid, and organic acids such as paratoluenesulfonic acid and benzenesulfonic acid as homogeneous catalysts. The SiO 2 · Al 2 O 3 as a solid acidic catalyst of a heterogeneous, SiO 2 · MgO, SiO 2 · ZrO 2, Al2O 3 · B 2 O 3, Al 2 O 3, various zeolites, heteropolyacid acid to various, various Examples include phosphate, various sulfates, H 3 PO 4 / diatomaceous earth (solid phosphoric acid), cation exchange resin (super strong acid), oxide-supported SbF 6 , SO 4 / ZrO 2, etc. However, a compound having an acid point on the solid surface can be used. Among them, acid clay (Galleon Earth series, manufactured by Mizusawa Chemical Co., Ltd.), silica alumina (Mizuka Ace series, manufactured by Mizusawa Chemical Co., Ltd.), Examples thereof include powdered silicic acid (manufactured by Shilton Series Mizusawa Chemical Co., Ltd.) and synthetic acid-treated zeolite (HSZ-640HOA, manufactured by Tosoh Corporation). The amount of the acidic catalyst to be added is preferably 0.001 to 50% by weight, more preferably 0.05 to 2.0% by weight, based on glycerin. After completion of the acetalization reaction, the homogeneous catalyst is neutralized and then removed by adsorption treatment or distillation. The removal of the heterogeneous solid acidic catalyst includes not only filtration but also a fixed bed in which the reaction solution is circulated or circulated through a column pre-filled with a solid acid.
アセタール化反応は脱水を行わず平衡化により、10〜200℃、好ましくは20〜100℃で行う方法および無溶媒あるいはキシレン、トルエン、ベンゼン、オクタン、イソオクタン、ヘプタン、ヘキサン、シクロヘキサン、ペンタン、リグロイン、石油エーテルなどの不活性溶媒中あるいはこれらの混合溶媒中で、使用するケトン、アルデヒドの沸点にもよるが40〜130℃、好ましくは70〜100℃の温度にて生成する水を除去しながら行う方法がある。 Acetalization reaction is carried out by equilibration without dehydration and at 10 to 200 ° C., preferably 20 to 100 ° C. and without solvent or xylene, toluene, benzene, octane, isooctane, heptane, hexane, cyclohexane, pentane, ligroin, In an inert solvent such as petroleum ether or a mixed solvent of these, it is carried out while removing water produced at a temperature of 40 to 130 ° C., preferably 70 to 100 ° C., depending on the boiling point of the ketone or aldehyde used. There is a way.
工程(I)の後に、必要に応じて、得られた反応混合物から、過剰の未反応カルボニル化合物及び/又は酸性触媒を除去する工程、例えば、酸性触媒の中和反応や酸性触媒の吸着除去などを行うことができる。 After step (I), if necessary, a step of removing excess unreacted carbonyl compound and / or acidic catalyst from the obtained reaction mixture, for example, neutralization reaction of acidic catalyst or adsorption removal of acidic catalyst It can be performed.
<工程(II)>
本発明では、工程(II)として、工程(I)で得られた反応混合物であって、グリセリンのアセタール化物に対するグリセリンの比率(グリセリン/グリセリンのアセタール化物)が1.5(モル比)以上であるもの(反応混合物)に対して水素化分解を行う。
<Process (II)>
In the present invention, as the step (II), the reaction mixture obtained in the step (I), wherein the ratio of glycerin to glycerin acetalized product (glycerin / glycerin acetalized product) is 1.5 (molar ratio) or more. Hydrocracking something (reaction mixture).
工程(II)におけるグリセリンのアセタール化物に対するグリセリンの比率(グリセリン/グリセリンのアセタール化物、モル比)は、好ましくは1.5〜10、より好ましくは2〜5である。この範囲において、所望のモノアルキルグリセリルエーテルの高い選択性が得られる。なお、工程(I)により得られた反応混合物は、グリセリン量がこのモル比を満たす場合は、そのまま工程(II)を行うことができ、また、必要に応じてグリセリンを添加してこのモル比となるように調整してもよい。 The ratio of glycerin to glycerin acetalized product in step (II) (glycerin / glycerin acetalized product, molar ratio) is preferably 1.5 to 10, more preferably 2 to 5. In this range, high selectivity of the desired monoalkyl glyceryl ether is obtained. In addition, when the amount of glycerin satisfies this molar ratio, the reaction mixture obtained by the step (I) can perform the step (II) as it is, and if necessary, glycerin is added to this molar ratio. You may adjust so that it may become.
グリセリンのアセタール化物の水素化分解反応はパラジウム、ロジウム、ルテニウム、プラチナ等、通常の水素化分解触媒をアセタール化物に対して5〜5000mg/kg添加し、水素圧を常圧から25MPa、温度を50〜250℃、1時間から30時間反応することにより達成される。上記水素化分解触媒はこれらを活性炭、アルミナ、シリカ、珪藻土、酸化チタン等に0.1%〜20%担持させたものを使用してもよい。なお水素化分解触媒としてはパラジウムが特に好ましい。また反応は反応に不活性であればさらに溶媒を添加してもよい。反応は密閉方式でも、水素流通方式でもよい。 The hydrocracking reaction of the acetalized product of glycerin is carried out by adding a normal hydrocracking catalyst such as palladium, rhodium, ruthenium, platinum or the like to the acetalized product in an amount of 5 to 5000 mg / kg, the hydrogen pressure from normal pressure to 25 MPa, and the temperature of 50 It is achieved by reacting at ˜250 ° C. for 1 to 30 hours. As the hydrocracking catalyst, those obtained by supporting 0.1% to 20% on activated carbon, alumina, silica, diatomaceous earth, titanium oxide or the like may be used. Palladium is particularly preferable as the hydrocracking catalyst. If the reaction is inert to the reaction, a solvent may be further added. The reaction may be a closed system or a hydrogen flow system.
反応混合物からモノグリセリルエーテルを単離するには濾過を行って触媒を除去したのち蒸留等により行うことができる。溶媒として用いたグリセリンは工程(I)におけるアセタール化反応の原料、あるいは溶媒として再利用できる。 Isolation of monoglyceryl ether from the reaction mixture can be carried out by distillation after filtration to remove the catalyst. The glycerin used as a solvent can be reused as a raw material for the acetalization reaction in step (I) or as a solvent.
本発明の方法によれば、安価なアルデヒド、ケトンとグリセリンからモノアルキルグリセリルエーテルが効率的に合成できる。水素化分解の工程(II)では、アセタールから95%以上の転化率、85(モル)%以上の高い選択性でモノアルキルグリセリルエーテルが合成できる。さらに食塩が副生する通常のエーテル化反応と異なり廃棄物も出さないので環境問題の点からも優れている。本発明のモノアルキルグリセリルエーテルはグリセリンに比較して粘度が低く取り扱いが簡単である。またジオール構造を有しているため沸点が高く、水との親和性も高いことから潤滑剤や保湿剤として有用である。さらにエーテル化に際し、エピクロロヒドリンやアルキルハライドのような有機ハロゲン化物を含有する原料を使用しないので得られるモノアルキルグリセリルエーテルは有機ハロゲンを含まない安定性に優れたものとなる。またグリシジルエーテルを加水分解して得られるグリセリルエーテルはエポキシ基が残存する可能性があるが、本発明によればその心配がない安全性に優れたものである。 According to the method of the present invention, monoalkyl glyceryl ether can be efficiently synthesized from inexpensive aldehyde, ketone and glycerin. In the hydrocracking step (II), a monoalkyl glyceryl ether can be synthesized from acetal with a conversion of 95% or more and high selectivity of 85 (mol)% or more. Furthermore, unlike normal etherification reaction by which salt is a by-product, no waste is produced, which is excellent from the viewpoint of environmental problems. The monoalkyl glyceryl ether of the present invention has a lower viscosity than glycerin and is easy to handle. Further, since it has a diol structure, it has a high boiling point and a high affinity with water, so it is useful as a lubricant or a humectant. Furthermore, in the case of etherification, since the raw material containing organic halides, such as epichlorohydrin and an alkyl halide, is not used, the monoalkyl glyceryl ether obtained becomes excellent in stability which does not contain an organic halogen. Further, glyceryl ether obtained by hydrolyzing glycidyl ether may have an epoxy group remaining, but according to the present invention, it is excellent in safety without the concern.
本発明により製造されたモノアルキルグリセリルエーテルは、保湿剤やクレンジング剤などの化粧料、油性汚れ溶解剤、水に可溶な有機溶剤、塗料、シンナー、印刷インキなどの溶剤、不凍液、潤滑剤、接着剤、アルキド樹脂やポリウレタン樹脂の組成物等に有用である。 Monoalkyl glyceryl ether produced according to the present invention includes cosmetics such as humectants and cleansing agents, oily soil solubilizers, organic solvents soluble in water, paints, thinners, printing inks, antifreeze, lubricants, It is useful for an adhesive, an alkyd resin, a polyurethane resin composition, and the like.
実施例1
1000ml容4つ口丸底フラスコにグリセリン350.0g(3.801mol)とアセトン133.5g(2.300mol)を入れ、Amberlyst 15 ion-exchange resin(SIGMA-ALDRICH社製)0.53gを加えて室温で96時間撹拌した。反応混合物をろ過し得られた反応液から水とアセトンを減圧留去し、NMRで分析するとグリセリン/2,2-ジメチル-1,3-ジオキソラン-4-メタノールは2.005/1.000(mol)であった。このうち150.0gとPd/C(Pd 5.0%担持品 N.E.ケムキャット製)3.00gを500mlのオートクレーブに仕込み10MPaの水素圧下、150℃で4時間水素化分解を行った。得られた反応混合物を濾過し、濾液をGC、NMRで分析した結果、転化率は99.5%、1−イソプロピルグリセリルエーテル/1,3-ジイソプロピルグリセリルエーテルが89/11(mol)の比で得られた。
Example 1
Add 350.0 g (3.801 mol) of glycerin and 133.5 g (2.300 mol) of acetone to a 1000 ml 4-neck round bottom flask, add 0.53 g of Amberlyst 15 ion-exchange resin (manufactured by SIGMA-ALDRICH) and stir at room temperature for 96 hours. did. Water and acetone were distilled off under reduced pressure from the reaction mixture obtained by filtering the reaction mixture, and analyzed by NMR, glycerol / 2,2-dimethyl-1,3-dioxolane-4-methanol was 2.005 / 1.000 (mol). It was. Of these, 150.0 g and 3.00 g of Pd / C (manufactured by NE Chemcat Pd 5.0%) were charged into a 500 ml autoclave and hydrocracked at 150 ° C. for 4 hours under a hydrogen pressure of 10 MPa. The obtained reaction mixture was filtered, and the filtrate was analyzed by GC and NMR. As a result, the conversion rate was 99.5%, and 1-isopropyl glyceryl ether / 1,3-diisopropyl glyceryl ether was obtained in a ratio of 89/11 (mol). It was.
GC分析条件
装置;Hewlett Packard 4890A
カラム;Agilent Technologies ULTRA 1, 25m, I.D. 0.2mm, Film 0.33μm
エチレングリコールを内部標準として、サンプルをTMS化した後、GC測定した。
GC analysis condition equipment; Hewlett Packard 4890A
Column: Agilent Technologies ULTRA 1, 25m, ID 0.2mm, Film 0.33μm
The sample was converted to TMS using ethylene glycol as an internal standard, and then GC measurement was performed.
1H NMRはDMSO-d6を溶媒として用い、ジニトロベンゼンを内部標準として測定を行った。 1 H NMR was measured using DMSO-d 6 as a solvent and dinitrobenzene as an internal standard.
実施例2
1000ml容4つ口丸底フラスコにグリセリン373.37g(4.054mol)とアセトン123.72g(2.130mol)を入れ、ガレオンアースNV(水澤化学(株)製)4.02gを加えて室温で20時間撹拌した。反応混合物をろ過し得られた反応液から水とアセトンを減圧留去し、NMRで分析するとグリセリン/2,2-ジメチル-1,3-ジオキソラン-4-メタノールは2.674/1.000(mol)であった。この混合物100.00gとグリセリン56.63gを500mlのオートクレーブに仕込み(このときグリセリンと2,2-ジメチル-1,3-ジオキソラン-4-メタノールのモル比は5.00/1.00)、さらにPd/C(Pd 5.0%担持品 N.E.ケムキャット製)3.13gを添加した。その後10MPaの水素圧下、150℃で4時間水素化分解を行った。得られた反応混合物を濾過し、濾液をGC、NMRで分析した結果、転化率は98.2%、1−イソプロピルグリセリルエーテル/1,3-ジイソプロピルグリセリルエーテルが92/8(mol)の比で得られた。
Example 2
Glycerin 373.37 g (4.054 mol) and acetone 123.72 g (2.130 mol) were placed in a 1000 ml four-necked round bottom flask, and Galleon Earth NV (manufactured by Mizusawa Chemical Co., Ltd.) 4.02 g was added and stirred at room temperature for 20 hours. Water and acetone were distilled off from the reaction solution obtained by filtering the reaction mixture under reduced pressure, and analysis by NMR revealed that glycerin / 2,2-dimethyl-1,3-dioxolane-4-methanol was 2.674 / 1.000 (mol). It was. 100.00 g of this mixture and 56.63 g of glycerin are charged into a 500 ml autoclave (the molar ratio of glycerin to 2,2-dimethyl-1,3-dioxolane-4-methanol is 5.00 / 1.00), and Pd / C (Pd 5.0 % Supported product manufactured by NE Chemcat) 3.13 g was added. Thereafter, hydrogenolysis was performed at 150 ° C. for 4 hours under a hydrogen pressure of 10 MPa. The obtained reaction mixture was filtered, and the filtrate was analyzed by GC and NMR. As a result, the conversion rate was 98.2%, and 1-isopropyl glyceryl ether / 1,3-diisopropyl glyceryl ether was obtained in a ratio of 92/8 (mol). It was.
比較例1
1000ml容4つ口丸底フラスコにグリセリン184.26g(2.000mol)とアセトン611.23g(10.52mol)を入れ、ガレオンアースNV(水澤化学社製)5.02gを加えて室温で18時間撹拌した。反応混合物をろ過し得られた反応液から水とアセトンを減圧留去し、NMRで分析するとグリセリン/2,2-ジメチル-1,3-ジオキソラン-4-メタノールは0.530/1.000(mol)であった。この混合物100.00gと2,2-ジメチル-1,3-ジオキソラン-4-メタノール(和光純薬製)13.57gを500mlのオートクレーブに仕込み(このときグリセリンと2,2-ジメチル-1,3-ジオキソラン-4-メタノールのモル比は0.447/1.00)さらにPd/C(Pd 5.0%担持品 N.E.ケムキャット製)2.27gを添加した。その後10MPaの水素圧下、150℃で4時間水素化分解を行った。得られた反応混合物を濾過し、濾液をGC、NMRで分析した結果、転化率は99.9%、1−イソプロピルグリセリルエーテル/1,3-ジイソプロピルグリセリルエーテルが81/19(mol)の比で得られた。
Comparative Example 1
184.26 g (2.000 mol) of glycerin and 611.23 g (10.52 mol) of acetone were added to a 1000 ml four-necked round bottom flask, 5.02 g of Galleon Earth NV (manufactured by Mizusawa Chemical Co., Ltd.) was added and stirred at room temperature for 18 hours. Water and acetone were distilled off under reduced pressure from the reaction mixture obtained by filtering the reaction mixture, and analyzed by NMR, glycerin / 2,2-dimethyl-1,3-dioxolane-4-methanol was 0.530 / 1.000 (mol). It was. Charge 100.00 g of this mixture and 13.57 g of 2,2-dimethyl-1,3-dioxolane-4-methanol (Wako Pure Chemical Industries) into a 500 ml autoclave (at this time glycerin and 2,2-dimethyl-1,3-dioxolane) The molar ratio of -4-methanol was 0.447 / 1.00), and 2.27 g of Pd / C (Pd 5.0% supported product manufactured by NE Chemcat) was added. Thereafter, hydrogenolysis was performed at 150 ° C. for 4 hours under a hydrogen pressure of 10 MPa. The obtained reaction mixture was filtered, and the filtrate was analyzed by GC and NMR. As a result, the conversion was 99.9%, and 1-isopropyl glyceryl ether / 1,3-diisopropyl glyceryl ether was obtained in a ratio of 81/19 (mol). It was.
Claims (2)
工程(I):酸性触媒の存在下、グリセリンと下記一般式(1)で表されるカルボニル化合物とを反応させて、グリセリンとグリセリンのアセタール化物とを含む反応混合物を得る工程
(式中、R1とR2は、同一でも異なっていても良く、それぞれ水素原子、又は炭素数1〜4の炭化水素基である。)
工程(II):工程(I)で得られた反応混合物を用いた、グリセリンとグリセリンのアセタール化物とを含む反応原料であって、グリセリンのアセタール化物に対するグリセリンとのモル比が1.5以上である反応原料に対して水素化分解を行う工程 The manufacturing method of monoalkyl glyceryl ether including following process (I) and (II).
Step (I): A step of reacting glycerin with a carbonyl compound represented by the following general formula (1) in the presence of an acidic catalyst to obtain a reaction mixture containing glycerin and an acetalized product of glycerin.
(In formula, R < 1 > and R < 2 > may be same or different, and are respectively a hydrogen atom or a C1-C4 hydrocarbon group.)
Step (II): a reaction raw material containing the glycerin and an acetalized product of glycerin using the reaction mixture obtained in the step (I), wherein the molar ratio of the glycerin to the acetalized product is 1.5 or more. Process for hydrocracking a reaction raw material
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006347259A JP4980045B2 (en) | 2006-12-25 | 2006-12-25 | Method for producing monoalkyl glyceryl ether |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006347259A JP4980045B2 (en) | 2006-12-25 | 2006-12-25 | Method for producing monoalkyl glyceryl ether |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008156289A true JP2008156289A (en) | 2008-07-10 |
JP4980045B2 JP4980045B2 (en) | 2012-07-18 |
Family
ID=39657623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006347259A Active JP4980045B2 (en) | 2006-12-25 | 2006-12-25 | Method for producing monoalkyl glyceryl ether |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4980045B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012500849A (en) * | 2008-08-25 | 2012-01-12 | ダウ グローバル テクノロジーズ エルエルシー | Polyol ether and process for producing the same |
WO2020241779A1 (en) | 2019-05-28 | 2020-12-03 | 花王株式会社 | Co-surfactant, surfactant composition, and composition for oil recovery |
WO2020241786A1 (en) | 2019-05-28 | 2020-12-03 | 花王株式会社 | Surfactant and surfactant composition |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0725804A (en) * | 1993-05-13 | 1995-01-27 | Kao Corp | Glyceryl ether compound and production thereof |
-
2006
- 2006-12-25 JP JP2006347259A patent/JP4980045B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0725804A (en) * | 1993-05-13 | 1995-01-27 | Kao Corp | Glyceryl ether compound and production thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012500849A (en) * | 2008-08-25 | 2012-01-12 | ダウ グローバル テクノロジーズ エルエルシー | Polyol ether and process for producing the same |
WO2020241779A1 (en) | 2019-05-28 | 2020-12-03 | 花王株式会社 | Co-surfactant, surfactant composition, and composition for oil recovery |
WO2020241786A1 (en) | 2019-05-28 | 2020-12-03 | 花王株式会社 | Surfactant and surfactant composition |
Also Published As
Publication number | Publication date |
---|---|
JP4980045B2 (en) | 2012-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8829206B2 (en) | Production of cyclic acetals or ketals using solid acid catalysts | |
JP2014523864A (en) | Method for preparing 1,2-pentanediol | |
TWI403496B (en) | Process for obtaining ditrimethylolpropane and trimethylolpropane-enriched product streams from the secondary streams of trimethylolpropane preparation | |
EP3110784A1 (en) | Synthesis of diketone compounds from carbohydrates | |
JPH06263677A (en) | Production of ether alcohol | |
JP4980045B2 (en) | Method for producing monoalkyl glyceryl ether | |
KR101828002B1 (en) | Preparation method of 1,3-cyclohexanedimethanol | |
JP2001190954A (en) | Preparation of palladium catalyst and ether | |
US20170240495A1 (en) | Polyether diol and method for producing the same | |
JP2019521131A (en) | Process for producing alpha, beta unsaturated aldehydes by oxidation of alcohols in the presence of liquid phase | |
JPS6356211B2 (en) | ||
JP5969047B2 (en) | A process for obtaining a product stream enriched in trimethylolpropane from a side stream of trimethylolpropane production. | |
JP4979230B2 (en) | Tetrahydropyran compound production method and tetrahydropyran compound produced by the production method | |
JPH08500368A (en) | How to convert acetal to ether | |
JPH08157401A (en) | Production of trimethylolpropane and ditrimethylolpropane | |
JPH11209318A (en) | Intermolecular etherificatton and degradation of ether | |
JP3871731B2 (en) | Method for producing ether compounds | |
JP2015077552A (en) | Catalyst composition for reductive reaction, production method of 1,6-hexanediol, and production method of aminobenzene compound | |
JP4961723B2 (en) | Method for producing acetals | |
JPH0672930A (en) | Production of 2-arylethanol | |
JPH10139705A (en) | Method for producing ether compound | |
Yang et al. | Catalytic application of H4SiW12O40/SiO2 in synthesis of acetals and ketals | |
JPH08143500A (en) | Production of hydroxyalkanal | |
JP3025754B2 (en) | Method for producing ether compound | |
JP7175915B2 (en) | Method for producing cyclic ether |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111202 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111206 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120417 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120418 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150427 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4980045 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |