[go: up one dir, main page]

JP2008139065A - Film evaluation apparatus and film evaluation method - Google Patents

Film evaluation apparatus and film evaluation method Download PDF

Info

Publication number
JP2008139065A
JP2008139065A JP2006323339A JP2006323339A JP2008139065A JP 2008139065 A JP2008139065 A JP 2008139065A JP 2006323339 A JP2006323339 A JP 2006323339A JP 2006323339 A JP2006323339 A JP 2006323339A JP 2008139065 A JP2008139065 A JP 2008139065A
Authority
JP
Japan
Prior art keywords
film
light beam
wavelength
reflected light
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006323339A
Other languages
Japanese (ja)
Inventor
Toshiaki Kitamura
俊昭 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006323339A priority Critical patent/JP2008139065A/en
Publication of JP2008139065A publication Critical patent/JP2008139065A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film evaluation apparatus for drastically reducing a measurement time, and improving an inspection throughput. <P>SOLUTION: A film evaluation apparatus comprises: an illumination optical system (20) for irradiating a film (a thin film) formed on a surface of a to-be-inspected object (a wafer 10) with a parallel light flux; a reflection optical system (30) for receiving a reflection light flux reflected by a front surface and a back surface of the film by the irradiation of the light flux; a data processing section (40) for obtaining information on an intensity distribution of the reflection light flux received by the reflection optical system; and a wavelength selecting section (a wavelength selecting unit 22) for selecting a wavelength of the illumination light flux so as to increase a change in the reflectivity of the reflection light flux relative to a fluctuation in a film thickness. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば半導体ウエハ上に形成された薄膜の厚さの均一性を評価する膜評価装置及び膜評価方法に関する。   The present invention relates to a film evaluation apparatus and a film evaluation method for evaluating the uniformity of the thickness of a thin film formed on, for example, a semiconductor wafer.

半導体製造プロセスでは、半導体ウエハ上にフォトレジスト膜を形成する工程があり、この工程後に形成したフォトレジスト膜の均一性を計測して膜の評価を行う膜評価工程が導入されている。   In the semiconductor manufacturing process, there is a step of forming a photoresist film on a semiconductor wafer, and a film evaluation step for evaluating the film by measuring the uniformity of the photoresist film formed after this step is introduced.

この膜評価工程では、例えばエリプソ光学原理を使用した薄膜計測装置が提案されている(特許文献1)。   In this film evaluation process, for example, a thin film measuring apparatus using the ellipso optical principle has been proposed (Patent Document 1).

しかし、エリプソ光学原理を使用する計測では、微小領域を計測範囲とすることから、近年大口径化するウエハの表面全体に形成された薄膜の均一性を計測する場合に適用すると、膨大な計測点数を必要として計測に長時間かかり、この長い計測時間の間、計測精度の安定性を維持することが困難である課題が有る。   However, in the measurement using the ellipso optical principle, a very small area is set as the measurement range, so when applied to measuring the uniformity of a thin film formed on the entire surface of a wafer having a large diameter in recent years, a huge number of measurement points are required. This requires a long time for measurement, and there is a problem that it is difficult to maintain the stability of measurement accuracy during this long measurement time.

すなわち、局所的には高精度に薄膜の計測が可能ではあるが、長時間の計測中、計測誤差となりうる変動要因、例えば外部振動ノイズ、温度管理などの制御を複雑にする課題がある。   That is, the thin film can be measured locally with high accuracy, but there is a problem of complicating control of fluctuation factors such as external vibration noise and temperature management that can cause measurement errors during long-time measurement.

特開2006−71381号公報JP 2006-71381 A

本発明は、計測時間を大幅に短縮し、検査のスループット性を向上させることが可能な膜評価装置及び膜評価方法を提供することを目的とする。   An object of this invention is to provide the film | membrane evaluation apparatus and film | membrane evaluation method which can shorten measurement time significantly and can improve the through-put property of a test | inspection.

上記目的を達成する本発明の請求項1に記載の膜評価装置は、被検査物の表面に形成された膜へ平行な光束を照射する照明光学系と、前記光束の照射によって前記膜の表面及び裏面で反射する反射光束を受光する反射光学系と、前記反射光学系で受光した前記反射光束の強度分布情報を取得するデータ処理部と、前記膜の厚さ変動に対して前記反射光束の反射率変化が大きい前記照明光束の波長を選択する波長選択部と、を具備してなることを特徴とする。   The film evaluation apparatus according to claim 1 of the present invention that achieves the above object includes an illumination optical system that irradiates a film formed on the surface of an object to be inspected with a parallel light beam, and a surface of the film that is irradiated with the light beam. And a reflection optical system that receives the reflected light beam reflected by the back surface, a data processing unit that acquires intensity distribution information of the reflected light beam received by the reflection optical system, and the reflected light beam And a wavelength selection unit that selects a wavelength of the illumination light beam having a large reflectance change.

本発明の請求項2に記載の膜評価装置は、前記波長選択部が、前記膜の厚さ、前記膜の屈折率及び前記光束の前記膜への入射角に基づいて、前記膜の厚さ変動に対して前記反射光束の反射率変化が大きい前記光束の波長を選択することを特徴とする。   In the film evaluation apparatus according to claim 2 of the present invention, the wavelength selection unit is configured such that the thickness of the film is based on the thickness of the film, the refractive index of the film, and the incident angle of the light flux on the film. The wavelength of the luminous flux is selected so that the reflectance change of the reflected luminous flux is large with respect to fluctuations.

本発明の請求項3に記載の膜評価装置は、前記膜の厚さ変動に対して前記反射光束の反射率変化が大きい前記光束の波長λが、前記膜の表面と裏面で反射した反射光束の光路差が、前記光束の波長λの4分の1の奇数倍間(λ×(1/4〜3/4)、λ×(3/4〜5/4)・・・)となる関係を満たすことを特徴とする。   The film evaluation apparatus according to claim 3 of the present invention is a reflected light beam in which the wavelength λ of the light beam having a large reflectance change of the reflected light beam with respect to the thickness variation of the film is reflected on the front surface and the back surface of the film. Is an odd multiple of ¼ of the wavelength λ of the luminous flux (λ × (1/4 to 3/4), λ × (3/4 to 5/4)...). It is characterized by satisfying.

本発明の請求項4に記載の膜評価装置は、前記反射光学系が、前記反射光束を受光する2次元固体撮像素子を備えることを特徴とする。   The film evaluation apparatus according to a fourth aspect of the present invention is characterized in that the reflective optical system includes a two-dimensional solid-state imaging device that receives the reflected light flux.

本発明の請求項5に記載の膜評価装置は、前記被検査部の表面に前記照明光学系を介して前記膜に照射する前記光束と同一波長の光束を照射し、前記反射光学系を介して前記被検査部の表面を反射する表面反射光束を受光し、該表面反射光束から前記データ処理部により取得した表面反射光束の強度分布情報に基づいて、前記反射光束の強度分布情報を較正する較正部を装備したことを特徴とする。   The film evaluation apparatus according to claim 5 of the present invention irradiates the surface of the part to be inspected with a light beam having the same wavelength as the light beam applied to the film via the illumination optical system, and passes the reflection optical system. And receiving the surface-reflected light beam reflected from the surface of the inspected portion, and calibrating the intensity distribution information of the reflected light beam based on the intensity distribution information of the surface-reflected light beam obtained from the surface-reflected light beam by the data processing unit. Equipped with a calibration unit.

本発明の請求項6に記載の膜評価方法は、被検査物の表面に形成された膜に光束を照射し、該膜の表面及び裏面で反射する反射光束を受光して、膜の厚さ分布を評価する膜評価方法であって、前記膜の厚さ変動に対して前記反射光束の反射率変化が大きい前記光束の波長を選択する波長選択工程と、前記波長選択工程で選択された波長を有する前記膜へ平行な光束を前記膜に照射する照明工程と、前記光束によって前記膜の表面及び裏面で反射した反射光束を受光する受光工程と、前記受光工程で受光した前記反射光束の強度分布情報を取得するデータ処理工程と、を具備してなることを特徴とする。   In the film evaluation method according to claim 6 of the present invention, the film formed on the surface of the object to be inspected is irradiated with a light beam, the reflected light beam reflected on the front surface and the back surface of the film is received, and the film thickness is measured. A film evaluation method for evaluating a distribution, wherein a wavelength selection step for selecting a wavelength of the light beam having a large reflectance change of the reflected light beam with respect to a variation in thickness of the film, and a wavelength selected in the wavelength selection step An illumination process for irradiating the film with a light beam parallel to the film, a light receiving process for receiving a reflected light beam reflected by the light beam on the front and back surfaces of the film, and an intensity of the reflected light beam received in the light receiving process. And a data processing step for obtaining distribution information.

本発明によれば、計測時間を大幅に短縮し、検査のスループット性を向上させることが可能となる。   According to the present invention, it is possible to greatly reduce the measurement time and improve the throughput of inspection.

以下本発明の膜評価装置及び膜評価方法の一実施形態について図1乃至図8を参照して説明する。   Hereinafter, an embodiment of a film evaluation apparatus and a film evaluation method of the present invention will be described with reference to FIGS.

図1は本発明の膜評価装置の一実施形態を示す装置全体の概略図、図2は図1の装置により評価される膜の表面と裏面で反射する反射光の光路差の説明図、図3は膜の表面と裏面で反射する反射光の干渉効果の説明図である。   FIG. 1 is a schematic view of an entire apparatus showing an embodiment of a film evaluation apparatus of the present invention. FIG. 2 is an explanatory view of an optical path difference of reflected light reflected by the front and back surfaces of the film evaluated by the apparatus of FIG. 3 is an explanatory view of the interference effect of the reflected light reflected by the front and back surfaces of the film.

図1を参照して本実施形態の膜評価装置全体の構成を説明する前に、図2及び図3を参照してその評価(計測)原理について説明する。   Before describing the overall configuration of the film evaluation apparatus of this embodiment with reference to FIG. 1, the evaluation (measurement) principle will be described with reference to FIGS.

図2に示すように、ウエハ10の表面にはフォトレジストなどによる薄膜11が形成されている。この薄膜11に角度θで入射する照明光束のうち、薄膜11の表面で入射角θと同じ角度θで反射する膜反射光束FRと、薄膜11を透過して薄膜11の裏面で反射して薄膜11の表面から入射角θと同じ角度θで出て行く膜反射光束BRとの間には、光路abと光路bcの合計分(ab+bc)の光路差f(t)がある。   As shown in FIG. 2, a thin film 11 made of a photoresist or the like is formed on the surface of the wafer 10. Of the illumination light beam incident on the thin film 11 at an angle θ, the film reflected light beam FR that reflects at the same angle θ as the incident angle θ on the surface of the thin film 11 and the thin film that passes through the thin film 11 and is reflected by the back surface of the thin film 11. There is an optical path difference f (t) corresponding to the total of the optical path ab and the optical path bc (ab + bc) between the surface 11 and the film reflected light beam BR that exits at the same angle θ as the incident angle θ.

ここで、薄膜11の厚さ(膜厚)をt、薄膜11の屈折率をnとすると、光路差f(t)は、光路差f(t)=2nt/cos(θ)と表すことが出来る。したがって、薄膜11への照明光束の入射角θを一定にすれば、薄膜11の屈折率nが変わらないことから、光路差は膜厚tによって変化することになる。   Here, if the thickness (film thickness) of the thin film 11 is t and the refractive index of the thin film 11 is n, the optical path difference f (t) can be expressed as optical path difference f (t) = 2 nt / cos (θ). I can do it. Therefore, if the incident angle θ of the illumination light beam to the thin film 11 is made constant, the refractive index n of the thin film 11 does not change, so the optical path difference changes with the film thickness t.

膜反射光束FRと膜反射光束BRとの光路差f(t)により生じた膜反射光束FRと膜反射光束BRとの間の位相差(光路差f(t)/波長λ)によって両光束FRとBRとの干渉が生じる。薄膜11の膜厚tの変動が生じると、光路差(位相差)が変わり(干渉効果が変わり)、反射光強度変化(反射率変化)が生じる。したがって、反射光(膜反射光束)を撮影したウエハ画像には膜厚変動に対応した輝度変動が撮像される。   Both light fluxes FR are caused by the phase difference (optical path difference f (t) / wavelength λ) between the film reflected light beam FR and the film reflected light beam BR generated by the optical path difference f (t) between the film reflected light beam FR and the film reflected light beam BR. And BR occur. When the film thickness t of the thin film 11 varies, the optical path difference (phase difference) changes (the interference effect changes), and the reflected light intensity changes (reflectance changes). Therefore, a brightness variation corresponding to the film thickness variation is captured on the wafer image obtained by photographing the reflected light (film reflected light beam).

ここで、位相差は薄膜11に照射される照明光束の波長λに依存し(位相差=光路差f(t)/波長λ)、位相差にしたがって反射光強度変化(反射率変化)を繰り返すことから、同じ膜厚tに対して照明光束の波長λを適宜切り替えることにより、最適な膜厚変動モニター感度を設定することが可能となる。   Here, the phase difference depends on the wavelength λ of the illumination light beam applied to the thin film 11 (phase difference = optical path difference f (t) / wavelength λ), and the reflected light intensity change (reflectance change) is repeated according to the phase difference. Therefore, it is possible to set the optimum film thickness fluctuation monitor sensitivity by appropriately switching the wavelength λ of the illumination light beam for the same film thickness t.

膜厚変動に対して最も大きな反射光強度変化(反射率変化)をする照明光束の波長λである、適正照明波長(最適な膜厚変動モニター感度を生じる波長)については、予め薄膜11の屈折率n、膜厚tから自動選択することが可能である。   The refraction of the thin film 11 is made in advance for the appropriate illumination wavelength (the wavelength that produces the optimum film thickness fluctuation monitor sensitivity), which is the wavelength λ of the illumination light beam that makes the greatest change in reflected light intensity (reflectance change) with respect to the film thickness fluctuation. It is possible to automatically select from the ratio n and the film thickness t.

また、光路差f(t)が照明光束の波長λのλ×1/4、λ×3/4、λ×5/4、λ×7/4、λ×9/4・・・(波長λの4分の1の奇数倍波形の節)と最も近い、照明光束の波長λを自動選択することで、感度の良い検査条件の設定が可能である。   Further, the optical path difference f (t) is λ × 1/4, λ × 3/4, λ × 5/4, λ × 7/4, λ × 9/4... (Wavelength λ) of the wavelength λ of the illumination light beam. By automatically selecting the wavelength λ of the illumination light beam that is closest to the node of the odd-numbered multiple of one-fourth of the above, it is possible to set inspection conditions with good sensitivity.

すなわち、適正照明波長については、光路差f(t)が、照明光束の波長λの4分の1の奇数倍間(λ×(1/4〜3/4)、λ×(3/4〜5/4)・・・)となる関係を満たすようにすることで、自動選択することも可能である。   That is, for the appropriate illumination wavelength, the optical path difference f (t) is between odd multiples of ¼ of the wavelength λ of the illumination light beam (λ × (1/4 to 3/4), λ × (3/4 to It is also possible to select automatically by satisfying the relationship 5/4).

図3は薄膜11の表面で反射される干渉光の強度変化を示し、照明光束の波長λの1/4の偶数倍の光路差では強度変化が小さく、波長λの1/4の奇数倍の光路差で強度変化が最も大きいことを示す。   FIG. 3 shows the intensity change of the interference light reflected on the surface of the thin film 11. The intensity change is small at an optical path difference that is an even multiple of ¼ of the wavelength λ of the illumination light beam, and is an odd multiple of ¼ of the wavelength λ. It shows that the intensity change is the largest due to the optical path difference.

本実施形態の膜評価装置では、照明光束の波長λを切り替えて最適な膜厚変動モニター感度を設定できるようにしてある。すなわち、図1に示すように、薄膜11(図2参照)が形成されたウエハ10が載置される検査ステージ12と、この検査ステージ12上のウエハ10の薄膜11に適正照明波長の照明光束を照射する照明光学系20と、この照明光学系20の照明光束の照射によって薄膜11の表面及び裏面で反射する膜反射光束を受光する反射光学系30と、この反射光学系30で受光した膜反射光束の強度分布情報を取得するデータ処理部40とを備える。   In the film evaluation apparatus of this embodiment, the optimum film thickness variation monitor sensitivity can be set by switching the wavelength λ of the illumination light beam. That is, as shown in FIG. 1, an inspection stage 12 on which a wafer 10 on which a thin film 11 (see FIG. 2) is formed is placed, and an illumination light beam having an appropriate illumination wavelength on the thin film 11 of the wafer 10 on the inspection stage 12. The illumination optical system 20 that irradiates the film, the reflection optical system 30 that receives the film-reflected light beam reflected from the front and back surfaces of the thin film 11 by irradiation of the illumination light beam of the illumination optical system 20, and the film received by the reflection optical system 30 And a data processing unit 40 that acquires intensity distribution information of the reflected light beam.

検査ステージ12は、回転テーブル13を備えており、不図示のウエハ搬送機構により搬送された、検査対象のウエハ10が回転テーブル13上に載置される。検査後は不図示のウエハ搬出装置により検査済みのウエハ10が回転テーブル13から搬出され、ウエハ搬送機構により新たな検査対象のウエハ10が回転テーブル13上に載置される。   The inspection stage 12 includes a rotary table 13, and a wafer 10 to be inspected that has been transferred by a wafer transfer mechanism (not shown) is placed on the rotary table 13. After the inspection, the inspected wafer 10 is unloaded from the turntable 13 by a wafer unloading device (not shown), and a new inspection target wafer 10 is placed on the turntable 13 by the wafer transfer mechanism.

照明光学系20は、照明光源としての水銀ランプ21と、この水銀ランプ21からの光のうち所定の波長の光を選択する波長選択部としての波長選択ユニット22と、この波長選択ユニット22により選択された波長の光(照明光束)を凹面鏡23に導くバンドルファイバ24とを備える。凹面鏡23に導かれた照明光束は、その鏡面で反射して平行光束となりウエハ10に形成された薄膜11全体を照明する。   The illumination optical system 20 is selected by a mercury lamp 21 as an illumination light source, a wavelength selection unit 22 as a wavelength selection unit for selecting light of a predetermined wavelength from the light from the mercury lamp 21, and the wavelength selection unit 22. A bundle fiber 24 that guides the light (illumination light beam) having the wavelength to the concave mirror 23. The illumination light beam guided to the concave mirror 23 is reflected by the mirror surface to become a parallel light beam, and illuminates the entire thin film 11 formed on the wafer 10.

波長選択ユニット22は、その内部に水銀ランプ21の輝線スペクトルから単一波長のみを透過させる干渉フィルタを複数搭載して構成され、干渉フィルタを選択することで、水銀ランプ21の輝線スペクトルから、例えばg線(436nm)、j線(313nm)のような単一波長(適正照明波長)の照明光束を設定することが出来る。なお、フォトレジストからなる薄膜11の膜厚の均一性を検査する場合には、フォトレジストが感光しない波長帯域のなかから選択される。   The wavelength selection unit 22 includes a plurality of interference filters that transmit only a single wavelength from the emission line spectrum of the mercury lamp 21 therein. By selecting the interference filter, the wavelength selection unit 22 can select, for example, from the emission line spectrum of the mercury lamp 21. An illumination light beam having a single wavelength (appropriate illumination wavelength) such as g-line (436 nm) and j-line (313 nm) can be set. When inspecting the uniformity of the film thickness of the thin film 11 made of photoresist, it is selected from a wavelength band in which the photoresist is not exposed.

波長選択ユニット22により、薄膜11の膜厚変動に対して反射光強度変化(反射率変化)が大きい照明光束の波長λである適正照明波長を選択することによって、僅かな厚さ変動でもこれをデータ処理部40で画像輝度の変化として捉えことが出来るようになり、膜厚変動モニター感度を向上させることが出来る。   The wavelength selection unit 22 selects an appropriate illumination wavelength, which is the wavelength λ of the illumination light beam having a large reflected light intensity change (reflectance change) with respect to the film thickness fluctuation of the thin film 11, so that even a slight thickness fluctuation can be detected. The data processing unit 40 can be regarded as a change in image luminance, and the film thickness variation monitor sensitivity can be improved.

反射光学系30は、薄膜11の表面及び裏面で反射する膜反射光束(図2参照)を受光する凹面鏡31を備える。   The reflective optical system 30 includes a concave mirror 31 that receives a film-reflected light beam (see FIG. 2) reflected by the front and back surfaces of the thin film 11.

なお、照明光学系20と反射光学系30は、共にウエハ10の表面全体を同一条件で計測することから、照明光束や反射光束がその光軸に対して平行となるようにテレセントリック光学系により構成される。   Note that the illumination optical system 20 and the reflection optical system 30 both measure the entire surface of the wafer 10 under the same conditions, and thus are configured by a telecentric optical system so that the illumination light beam and the reflected light beam are parallel to the optical axis. Is done.

データ処理部40は、凹面鏡31により反射した膜反射光束を受光してウエハ像を撮影する、結像レンズと2次元固体撮像素子(CCD)からなる撮影光学系41と、この撮影光学系41で撮影されたウエハ画像に画像処理を施し、ウエハ10に形成した薄膜11の膜厚(輝度)の均一性を計測し、輝度の分散値マップを作成するコンピュータ42とを備える。   The data processing unit 40 receives a film reflected light beam reflected by the concave mirror 31 and shoots a wafer image, and includes a photographic optical system 41 including an imaging lens and a two-dimensional solid-state imaging device (CCD). And a computer 42 that performs image processing on the photographed wafer image, measures the uniformity of the film thickness (luminance) of the thin film 11 formed on the wafer 10, and creates a luminance dispersion value map.

撮影光学系41は、ウエハ10の全面を一括視野で捉えうる倍率の結像レンズと、例えば300mmウエハを撮影する1インチCCD(1024×1024画素)の2次元固体撮像素子とが使用され、300μm/画素の画像分解能でウエハ10の全面を撮影することができる。   The imaging optical system 41 uses an imaging lens having a magnification capable of capturing the entire surface of the wafer 10 with a collective field of view, and a 1-inch CCD (1024 × 1024 pixels) two-dimensional solid-state imaging device that images a 300 mm wafer, for example, and has a size of 300 μm. / The entire surface of the wafer 10 can be photographed with an image resolution of pixels.

撮影光学系41の出力(CCDの出力)からこの画像分解能でウエハ10に形成された薄膜11全体の厚さの均一性を計測することが出来る。   The uniformity of the thickness of the entire thin film 11 formed on the wafer 10 can be measured from the output of the photographing optical system 41 (CCD output) with this image resolution.

凹面鏡23により反射された照明光束のウエハ10に対する入射角度と、凹面鏡31により受光される膜反射光束の反射角度は、ウエハ10の法線に対して同一角度になるように凹面鏡23と凹面鏡31が配置されており、凹面鏡31が正反射光だけを受光するように設定してある。   The concave mirror 23 and the concave mirror 31 are arranged so that the incident angle of the illumination light beam reflected by the concave mirror 23 with respect to the wafer 10 and the reflection angle of the film-reflected light beam received by the concave mirror 31 are the same angle with respect to the normal of the wafer 10. The concave mirror 31 is set so as to receive only regular reflection light.

コンピュータ42には、撮影光学系41の出力を画像処理したウエハ画像を表示する表示装置43が接続され、この表示装置43により図4(a)、(c)に示すウエハ画像や、図4(b)、(d)に示す画像輝度の分散値マップが表示される。   The computer 42 is connected to a display device 43 that displays a wafer image obtained by performing image processing on the output of the photographing optical system 41. The display device 43 displays the wafer image shown in FIGS. The dispersion value map of the image brightness shown in b) and (d) is displayed.

また、コンピュータ42には、装置毎のくせ、照明むら、撮像素子の感度などに起因するウエハ画像輝度のばらつきが生じないように較正する較正部44が装備される。   Further, the computer 42 is equipped with a calibration unit 44 that calibrates the apparatus so as not to cause variations in wafer image brightness due to habits, illumination unevenness, image sensor sensitivity, and the like for each apparatus.

この較正部44は、薄膜11が形成されていない状態のウエハ10(ベアシリコンウエハ)を検査ステージ12上に載置し、照明光学系20を介して計測時と同じ波長の照明光束を照射し、その反射光束を反射光学系30で受光し、撮影して得た較正ウエハ画像データ(薄膜11が形成されていないウエハ10の表面反射光束の強度分布情報)を予めコンピュータ42のメモリ部に保存しておき、コンピュータ42にウエハ10上の薄膜11に照明光束を照射して撮影して得たウエハ画像データ(薄膜11を反射した膜反射光束の強度分布情報)が入力されたとき、このウエハ画像データを較正処理するものである。   The calibration unit 44 places the wafer 10 (bare silicon wafer) on which the thin film 11 is not formed on the inspection stage 12, and irradiates the illumination light beam having the same wavelength as that at the time of measurement via the illumination optical system 20. Calibration wafer image data (intensity distribution information of the surface reflected light beam of the wafer 10 on which the thin film 11 is not formed) obtained by receiving the reflected light beam with the reflection optical system 30 and photographing it is stored in the memory unit of the computer 42 in advance. When the wafer image data (intensity distribution information of the film reflected light beam reflected from the thin film 11) obtained by irradiating the thin film 11 on the wafer 10 with the illumination light beam and being photographed is input to the computer 42, this wafer. The image data is calibrated.

較正処理されたウエハ画像データは、薄膜11の膜厚(輝度)の均一性を計測する計測処理に使用される。   The calibrated wafer image data is used for a measurement process for measuring the uniformity of the film thickness (luminance) of the thin film 11.

なお、コンピュータ42には、各種情報などを入力するためのキーボード45も接続されている。   The computer 42 is also connected with a keyboard 45 for inputting various information.

図4は、図1の撮影光学系41により撮影され、較正部44により補正されたウエハ画像と、更に計測処理を施してウエハ画像の画像位置と画像輝度との関係を表すグラフを示している。   FIG. 4 shows a wafer image photographed by the photographing optical system 41 of FIG. 1 and corrected by the calibration unit 44, and a graph representing the relationship between the image position of the wafer image and the image luminance after further measurement processing. .

フォトレジストの塗布むらが無く、薄膜11の膜厚が均一な場合には、同図(a)に示すようなウエハ画像が得られる。このウエハ画像を計測処理することにより、同図(b)に示すように、画像位置によって画像輝度が変化しない一直線状のグラフが得られる。   When there is no uneven application of the photoresist and the film thickness of the thin film 11 is uniform, a wafer image as shown in FIG. By measuring this wafer image, a straight line graph in which the image brightness does not change depending on the image position is obtained as shown in FIG.

塗布むらが生じて薄膜11の膜厚に変動がある場合には、例えば同図(c)に示すように、放射状に異常コントラストがあるウエハ画像が得られる。このウエハ画像を計測処理することにより、同図(d)に示すように、ある画像位置で画像輝度が低下するグラフが得られる。   When uneven coating occurs and the film thickness of the thin film 11 varies, a wafer image having a radial abnormal contrast is obtained, for example, as shown in FIG. By performing measurement processing on this wafer image, a graph in which the image brightness decreases at a certain image position is obtained as shown in FIG.

図5は図1の撮影光学系41により撮影され、較正部44により補正されたウエハ画像の輝度分布状態を指定の領域に分けて領域内の各画素の輝度値の分散値で表示した、画像輝度の分散値マップを示している。   FIG. 5 is an image in which the brightness distribution state of the wafer image photographed by the photographing optical system 41 in FIG. 1 and corrected by the calibration unit 44 is divided into designated areas and displayed as the variance value of the brightness value of each pixel in the area. The brightness | luminance dispersion value map is shown.

フォトレジストの塗布むらが無く、薄膜11の膜厚が均一な場合には、図4(a)と同様に、図5(a)に示すような画像輝度が均一なウエハ画像が得られる。これを分散値マップで表示すると、同図(b)に示すように各画素の輝度値が一定の分散値マップが得られる。   When there is no uneven application of the photoresist and the film thickness of the thin film 11 is uniform, a wafer image with uniform image brightness as shown in FIG. 5A is obtained as in FIG. When this is displayed as a variance value map, a variance value map in which the luminance value of each pixel is constant is obtained as shown in FIG.

塗布むらが生じて薄膜11の膜厚に変動がある場合には、図4(c)と同様に、図5(c)に示すような放射状に異常コントラストはあるウエハ画像が得られる。これを分散値マップで表示すると、同図(d)に示すように、ある領域内の画素の輝度値が他の領域内の画素の輝度値と異なる分散値マップが得られる。   When uneven coating occurs and the film thickness of the thin film 11 varies, a wafer image having a radially abnormal contrast as shown in FIG. 5C is obtained as in FIG. 4C. When this is displayed as a variance value map, a variance value map is obtained in which the luminance values of the pixels in one area are different from the luminance values of the pixels in the other area, as shown in FIG.

このように画像輝度を分散値マップで表示する他に、撮像されたウエハ画像に欠陥検査画像処理アルゴリズムを介して平坦な輝度分布以外の領域が存在するか否かの欠陥検査を行うことが可能である。   In addition to displaying the image brightness in a dispersion value map in this way, it is possible to perform defect inspection to determine whether or not a region other than a flat brightness distribution exists in the captured wafer image via a defect inspection image processing algorithm It is.

図6は照明光束の波長の最適化をシシミュレーションした一例を示すもので、薄膜11の屈折率n=1.4とし、入射角と反射角を共に15度として、照明波長の異なる2つの照明光束(λ=546nm、436nm)を照射し、膜厚変化(膜厚t=280nm〜420nm)に対する反射率強度の変化を計算した場合のグラフを示す。図5の縦軸は反射率を表し、横軸は膜厚を表す。   FIG. 6 shows an example of simulating optimization of the wavelength of the illumination light beam. The refractive index n of the thin film 11 is 1.4, the incident angle and the reflection angle are both 15 degrees, and two illuminations having different illumination wavelengths are shown. A graph in the case of calculating a change in reflectance intensity with respect to a change in film thickness (film thickness t = 280 nm to 420 nm) by irradiation with a light beam (λ = 546 nm, 436 nm) is shown. The vertical axis in FIG. 5 represents the reflectance, and the horizontal axis represents the film thickness.

光学的膜厚(屈折率×幾何膜厚)が320nm付近においては、照明光束の波長λが436nmでは膜厚変化に対する反射率変化が少ないのに対し、照明光束の波長λが546nmでは膜厚変化に対して反射率変化が大きく、546nmの波長λの照明光束を選択することにより高感度で膜厚変動を検出することが可能である。   When the optical film thickness (refractive index × geometric film thickness) is around 320 nm, the change in the reflectance with respect to the change in film thickness is small when the wavelength λ of the illumination light beam is 436 nm, whereas the change in film thickness occurs when the wavelength λ of the illumination light beam is 546 nm. On the other hand, the change in the film thickness can be detected with high sensitivity by selecting an illumination light beam having a wavelength λ of 546 nm.

また、光路差(2nt/cosθ)を波長λで除算して得た位相を比較すると、波長λ546nmでは1.21となるのに対し、波長λ436nmでは1.52となり、波長λ546nmの照明光束を使用する方がより高感度であるこということが、演算(光路差/波長)からも予測可能である。   Further, when the phase obtained by dividing the optical path difference (2 nt / cos θ) by the wavelength λ is compared to 1.21 at the wavelength λ546 nm, it is 1.52 at the wavelength λ436 nm, and the illumination light beam having the wavelength λ546 nm is used. It can be predicted from the calculation (optical path difference / wavelength) that the sensitivity is higher.

図7は照明光束の波長の最適化をシシミュレーションした他の例を示すもので、薄膜11の屈折率n=1.4とし、入射角と反射角を共に15度として、照明波長の異なる2つの照明光束(λ=546nm、248nm)を照射し、膜厚変化(膜厚t=220nm〜340nm)に対する反射率強度の変化を計算した場合のグラフを示す。図6の縦軸は反射率を表し、横軸は膜厚(n×t)を表す。   FIG. 7 shows another example of simulating optimization of the wavelength of the illumination light beam. The refractive index n of the thin film 11 is 1.4, the incident angle and the reflection angle are both 15 degrees, and the illumination wavelengths are different. The graph in the case of irradiating two illumination light beams (λ = 546 nm, 248 nm) and calculating the change in reflectance intensity with respect to the film thickness change (film thickness t = 220 nm to 340 nm) is shown. The vertical axis in FIG. 6 represents the reflectance, and the horizontal axis represents the film thickness (n × t).

光学的膜厚(屈折率×幾何膜厚)が300nm付近においては、照明光束の波長λが248nmでは膜厚変化に対する反射率変化が少ないのに対し、照明光束の波長λが546nmでは膜厚変化に対して反射率変化が大きく、546nmの波長λの照明光束を選択することにより高感度で膜厚変動を検出することが可能である。   When the optical film thickness (refractive index × geometric film thickness) is around 300 nm, the change in the reflectance with respect to the change in film thickness is small when the wavelength λ of the illumination light beam is 248 nm, whereas the change in film thickness occurs when the wavelength λ of the illumination light beam is 546 nm. On the other hand, the change in the film thickness can be detected with high sensitivity by selecting an illumination light beam having a wavelength λ of 546 nm.

また、光路差(2nt/cosθ)を波長λで除算して得た位相を比較すると、波長λ546nmでは1.14となるのに対し、波長λ248nmでは2.50となり、波長λ546nmの照明光束を使用する方がより高感度であるこということが、演算(光路差/波長)からも予測可能である。   In addition, when the phase obtained by dividing the optical path difference (2 nt / cos θ) by the wavelength λ is 1.14 at the wavelength λ546 nm, it is 2.50 at the wavelength λ248 nm, and the illumination light beam having the wavelength λ546 nm is used. It can be predicted from the calculation (optical path difference / wavelength) that the sensitivity is higher.

図8は本発明の膜評価方法の一実施形態を示すフローチャートで、上述した膜評価装置を使用して実施される。   FIG. 8 is a flowchart showing an embodiment of the film evaluation method of the present invention, which is performed using the above-described film evaluation apparatus.

ステップS100で膜厚変化に対する反射率変化が大きい照明光束の波長λを図5、図6で説明した方法により求め、この波長の照明光束が薄膜11に照射されるように波長選択ユニット22の干渉フィルタを選択する。   In step S100, the wavelength λ of the illumination light beam having a large reflectance change with respect to the film thickness change is obtained by the method described with reference to FIGS. 5 and 6, and the interference of the wavelength selection unit 22 is performed so that the illumination light beam of this wavelength is irradiated onto the thin film 11. Select a filter.

検査ステージ12には予め検査対象となる薄膜11が形成されたウエハ10を載置しておく。   A wafer 10 on which a thin film 11 to be inspected is previously formed is placed on the inspection stage 12.

ステップS101で選択した波長の照明光束を、照明光学系20を介して薄膜11に照射する一方、ステップS102で反射光学系30を介して膜反射光束を受光する。   The illumination light beam having the wavelength selected in step S101 is irradiated onto the thin film 11 via the illumination optical system 20, while the film reflection light beam is received via the reflection optical system 30 in step S102.

ステップS103で膜反射光束を撮影光学系41で撮影し、この撮影光学系41のCCDの出力をコンピュータ42により画像処理するなどのデータ処理が行われる。   In step S103, the film reflected light beam is photographed by the photographing optical system 41, and data processing such as image processing of the CCD output of the photographing optical system 41 by the computer 42 is performed.

ステップS104でデータ処理したウエハ画像を表示装置43に表示させる。   The wafer image subjected to data processing in step S104 is displayed on the display device 43.

本実施形態の膜評価装置、方法によれば、ウエハ全面の薄膜均一性の計測を行うのにこれまで膨大な計測点数の検査を必要としていたのを、一瞬の撮像時間と画像処理時間で済むようになり、ウエハ上の薄膜の均一性確認のための検査時間、コストの大幅な削減が可能となり、検査のスループット性を向上させることが可能となる。   According to the film evaluation apparatus and method of the present embodiment, in order to measure the thin film uniformity on the entire surface of the wafer, an inspection with a huge number of measurement points has been required so far, with only a short imaging time and image processing time. As a result, the inspection time and cost for confirming the uniformity of the thin film on the wafer can be significantly reduced, and the inspection throughput can be improved.

本発明は上述した実施態様に限定されるものではなく、フォトレジストからなる薄膜の他に、酸化膜(例えばSiO)などの膜厚の均一性を検査するのにも適用することが可能である。 The present invention is not limited to the above-described embodiments, and can be applied to inspecting the uniformity of the film thickness of an oxide film (for example, SiO 2 ) in addition to a thin film made of a photoresist. is there.

また、波長選択ユニット22を自動的に波長選択が行えるように構成し、コンピュータ42に薄膜11の屈折率n、薄膜11の膜厚tなどの情報をキーボード45を介して入力し、これら情報に基づいてコンピュータ42で最適な照明光束の波長λを求め、この波長情報を波長選択ユニット22に出力するようにしてもよい。   Further, the wavelength selection unit 22 is configured to automatically perform wavelength selection, and information such as the refractive index n of the thin film 11 and the film thickness t of the thin film 11 is input to the computer 42 via the keyboard 45. Based on this, the optimum wavelength λ of the illumination light beam may be obtained by the computer 42, and this wavelength information may be output to the wavelength selection unit 22.

本発明の膜評価装置の一実施形態を示す装置全体の概略図である。It is the schematic of the whole apparatus which shows one Embodiment of the film | membrane evaluation apparatus of this invention. 図1の装置により評価される薄膜の表面と裏面で反射する反射光の光路差の説明図である。It is explanatory drawing of the optical path difference of the reflected light reflected by the surface of a thin film evaluated by the apparatus of FIG. 1, and a back surface. 図1の装置により評価される薄膜の表面と裏面で反射する反射光の干渉光強度変化を示す説明図である。It is explanatory drawing which shows the interference light intensity change of the reflected light reflected by the surface and back surface of a thin film evaluated with the apparatus of FIG. 図1の膜評価装置により撮影されたウエハ画像と画像輝度との関係を示し、図4(a)は塗布むらの無い均一ウエハ画像、同図(b)は塗布むらの無い(a)に示す画像の画像輝度を画像位置との関係で示すグラフ、同図(c)は塗布むらの有るウエハ画像、同図(d)は塗布むらの有る(c)に示す画像の画像輝度を画像位置との関係で示すグラフである。FIG. 4A shows a relationship between a wafer image photographed by the film evaluation apparatus of FIG. 1 and image brightness, FIG. 4A shows a uniform wafer image without uneven coating, and FIG. 4B shows no uneven coating. A graph showing the image brightness in relation to the image position, FIG. 6C shows a wafer image with uneven coating, FIG. 4D shows the image brightness of the image shown in FIG. It is a graph shown by the relationship of. 図1の装置により撮影されたウエハ画像とこの画像を分散値マップで表示した画像とを示し、図5(a)は塗布むらの無い均一ウエハ画像、同図(b)は塗布むらの無い(a)に示す画像を分散値マップで表示した画像、同図(c)は塗布むらの有るウエハ画像、同図(d)は塗布むらの有る(c)に示す画像を分散値マップで表示した画像である。FIG. 5 shows a wafer image photographed by the apparatus of FIG. 1 and an image in which this image is displayed as a dispersion value map. FIG. 5A shows a uniform wafer image without uneven application, and FIG. 5B shows no uneven application ( The image shown in a) is displayed as a dispersion value map, FIG. 8C is a wafer image with uneven coating, and FIG. 9D is the dispersion value map showing the image shown in FIG. It is an image. 照明波長の異なる2つの照明光(λ=546nm、436nm)を使用して計測した膜厚と反射率との関係を示すグラフである。It is a graph which shows the relationship between the film thickness measured using two illumination lights ((lambda) = 546nm, 436nm) from which an illumination wavelength differs, and a reflectance. 図6と同様に照明波長の異なる2つの照明光(λ=546nm、248nm)を使用して計測した膜厚と反射率との関係を示すグラフである。It is a graph which shows the relationship between the film thickness measured using two illumination light ((lambda) = 546nm, 248nm) from which an illumination wavelength differs similarly to FIG. 6, and a reflectance. 本発明の膜評価方法の一実施形態を示すフローチャートである。It is a flowchart which shows one Embodiment of the film | membrane evaluation method of this invention.

符号の説明Explanation of symbols

10 ウエハ
11 薄膜
20 照明光学系
22 波長選択ユニット
23 凹面鏡
30 反射光学系
31 凹面鏡
40 データ処理ユニット
41 撮影光学系
42 コンピュータ
44 較正部
DESCRIPTION OF SYMBOLS 10 Wafer 11 Thin film 20 Illumination optical system 22 Wavelength selection unit 23 Concave mirror 30 Reflective optical system 31 Concave mirror 40 Data processing unit 41 Shooting optical system 42 Computer 44 Calibration part

Claims (6)

被検査物の表面に形成された膜へ平行な光束を照射する照明光学系と、
前記光束の照射によって前記膜の表面及び裏面で反射する反射光束を受光する反射光学系と、
前記反射光学系で受光した前記反射光束の強度分布情報を取得するデータ処理部と、
前記膜の厚さ変動に対して前記反射光束の反射率変化が大きい前記照明光束の波長を選択する波長選択部と、を具備してなることを特徴とする膜評価装置。
An illumination optical system for irradiating a parallel light beam onto a film formed on the surface of the object to be inspected;
A reflective optical system that receives a reflected light beam reflected from the front and back surfaces of the film by irradiation of the light beam;
A data processing unit for acquiring intensity distribution information of the reflected light beam received by the reflective optical system;
A film evaluation apparatus comprising: a wavelength selection unit that selects a wavelength of the illumination light beam that has a large change in reflectance of the reflected light beam with respect to a change in thickness of the film.
請求項1に記載の膜評価装置において、
前記波長選択部は、前記膜の厚さ、前記膜の屈折率及び前記光束の前記膜への入射角に基づいて、前記膜の厚さ変動に対して前記反射光束の反射率変化が大きい前記光束の波長を選択することを特徴とする膜評価装置。
The film evaluation apparatus according to claim 1,
The wavelength selection unit has a large reflectance change of the reflected light beam with respect to a change in the film thickness based on the thickness of the film, the refractive index of the film, and the incident angle of the light beam on the film. A film evaluation apparatus for selecting a wavelength of a light beam.
請求項1又は2に記載の膜評価装置において、
前記膜の厚さ変動に対して前記反射光束の反射率変化が大きい前記光束の波長λは、前記膜の表面と裏面で反射した反射光束の光路差が、前記光束の波長λの4分の1の奇数倍間(λ×(1/4〜3/4)、λ×(3/4〜5/4)・・・)となる関係を満たすことを特徴とする膜評価装置。
In the film evaluation apparatus according to claim 1 or 2,
The wavelength λ of the light beam, in which the reflectance change of the reflected light beam is large with respect to the thickness variation of the film, is an optical path difference of the reflected light beam reflected by the front surface and the back surface of the film is a quarter of the wavelength λ of the light beam. 1. A film evaluation apparatus characterized by satisfying a relationship of an odd multiple of 1 (λ × (1/4 to 3/4), λ × (3/4 to 5/4)...).
請求項1ないし3の何れか一項に記載の膜評価装置において、
前記反射光学系は、前記反射光束を受光する2次元固体撮像素子を備えることを特徴とする膜評価装置。
In the film evaluation apparatus according to any one of claims 1 to 3,
The film evaluation apparatus, wherein the reflection optical system includes a two-dimensional solid-state imaging device that receives the reflected light flux.
請求項1ないし4の何れか一項に記載の膜評価装置において、
前記被検査部の表面に前記照明光学系を介して前記膜に照射する前記光束と同一波長の光束を照射し、前記反射光学系を介して前記被検査部の表面を反射する表面反射光束を受光し、該表面反射光束から前記データ処理部により取得した表面反射光束の強度分布情報に基づいて、前記反射光束の強度分布情報を較正する較正部を装備したことを特徴とする膜評価装置。
In the film evaluation apparatus according to any one of claims 1 to 4,
A surface-reflected light beam that irradiates the surface of the part to be inspected with a light beam having the same wavelength as the light beam that irradiates the film through the illumination optical system and reflects the surface of the part to be inspected through the reflective optical system. A film evaluation apparatus comprising: a calibration unit that receives light and calibrates the intensity distribution information of the reflected light beam based on the intensity distribution information of the surface reflected light beam obtained from the surface reflected light beam by the data processing unit.
被検査物の表面に形成された膜に光束を照射し、該膜の表面及び裏面で反射する反射光束を受光して、膜の厚さ分布を評価する膜評価方法であって、
前記膜の厚さ変動に対して前記反射光束の反射率変化が大きい前記光束の波長を選択する波長選択工程と、
前記波長選択工程で選択された波長を有する前記膜へ平行な光束を前記膜に照射する照明工程と、
前記光束によって前記膜の表面及び裏面で反射した反射光束を受光する受光工程と、
前記受光工程で受光した前記反射光束の強度分布情報を取得するデータ処理工程と、を具備してなることを特徴とする膜評価方法。
A film evaluation method for evaluating a thickness distribution of a film by irradiating a film formed on a surface of an object to be inspected with a light beam, receiving a reflected light beam reflected on the front and back surfaces of the film,
A wavelength selection step of selecting a wavelength of the luminous flux with a large change in reflectance of the reflected luminous flux with respect to a variation in thickness of the film;
An illumination step of irradiating the film with a light beam parallel to the film having the wavelength selected in the wavelength selection step;
A light receiving step of receiving a reflected light beam reflected on the front and back surfaces of the film by the light beam;
And a data processing step of obtaining intensity distribution information of the reflected light beam received in the light receiving step.
JP2006323339A 2006-11-30 2006-11-30 Film evaluation apparatus and film evaluation method Pending JP2008139065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006323339A JP2008139065A (en) 2006-11-30 2006-11-30 Film evaluation apparatus and film evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006323339A JP2008139065A (en) 2006-11-30 2006-11-30 Film evaluation apparatus and film evaluation method

Publications (1)

Publication Number Publication Date
JP2008139065A true JP2008139065A (en) 2008-06-19

Family

ID=39600703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006323339A Pending JP2008139065A (en) 2006-11-30 2006-11-30 Film evaluation apparatus and film evaluation method

Country Status (1)

Country Link
JP (1) JP2008139065A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117161A (en) * 2008-11-11 2010-05-27 Nikon Corp Inspection device
WO2011148555A1 (en) * 2010-05-28 2011-12-01 信越半導体株式会社 Method for measuring film thickness distribution of wafer having thin film
JP2014508921A (en) * 2011-01-31 2014-04-10 ビアメトリクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for determining optical properties by simultaneously measuring intensities in thin film layers using light of multiple wavelengths

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117161A (en) * 2008-11-11 2010-05-27 Nikon Corp Inspection device
WO2011148555A1 (en) * 2010-05-28 2011-12-01 信越半導体株式会社 Method for measuring film thickness distribution of wafer having thin film
CN102918639A (en) * 2010-05-28 2013-02-06 信越半导体股份有限公司 Method for measuring film thickness distribution of wafer having thin film
US8976369B2 (en) 2010-05-28 2015-03-10 Shin-Etsu Handotai Co., Ltd. Method for evaluating thin-film-formed wafer
EP2579302A4 (en) * 2010-05-28 2016-06-01 Shinetsu Handotai Kk METHOD FOR MEASURING THE DISTRIBUTION OF THE THICKNESS OF A FILM ON A WAFER CARRYING A THIN FILM
JP2014508921A (en) * 2011-01-31 2014-04-10 ビアメトリクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for determining optical properties by simultaneously measuring intensities in thin film layers using light of multiple wavelengths

Similar Documents

Publication Publication Date Title
TWI391625B (en) Surface inspection apparatus, surface inspection method and exposure system
KR101793584B1 (en) Inspecting apparatus and inspecting method
JP4135603B2 (en) Two-dimensional spectroscopic device and film thickness measuring device
US10803576B2 (en) Defect inspection apparatus and defect inspection method
KR20100110321A (en) Inspecting apparatus and inspecting method
JP2004138519A (en) Film thickness measuring device, reflectivity measuring device, foreign matter inspection device, reflectivity measuring method and foreign matter inspection method
KR102513718B1 (en) Scaling metrics for quantifying instrumentation sensitivity to process variation
JP2006005360A (en) Method and system for inspecting wafer
JP2009192520A (en) Surface inspection device
JP6546172B2 (en) Reflective optical element, in particular a measuring arrangement for measuring the optical properties of microlithography
US20060274934A1 (en) Apparatus and method for improving measuring accuracy in the determination of structural data
JP2004012301A (en) Pattern defect detection method and apparatus
JP2011174764A (en) Inspecting method and inspecting device
JP2010048604A (en) Apparatus and method for measuring film thickness
JP5174697B2 (en) Defect inspection equipment
JP2008139065A (en) Film evaluation apparatus and film evaluation method
JP2010107466A (en) Device and method for inspecting defect
JP5050078B2 (en) Pattern inspection device
JP2006284211A (en) Unevenness inspection device and unevenness inspection method
JP4883762B2 (en) Unevenness inspection apparatus and unevenness inspection method
JP2005274156A (en) Flaw inspection device
JP2010117161A (en) Inspection device
JP2009265026A (en) Inspection device
JP2006313143A (en) Irregularity inspection device and method thereof
JP2009097988A (en) Surface inspection apparatus