JP2008137868A - Components for semiconductor manufacturing equipment - Google Patents
Components for semiconductor manufacturing equipment Download PDFInfo
- Publication number
- JP2008137868A JP2008137868A JP2006327378A JP2006327378A JP2008137868A JP 2008137868 A JP2008137868 A JP 2008137868A JP 2006327378 A JP2006327378 A JP 2006327378A JP 2006327378 A JP2006327378 A JP 2006327378A JP 2008137868 A JP2008137868 A JP 2008137868A
- Authority
- JP
- Japan
- Prior art keywords
- film
- base material
- intermediate layer
- substrate
- semiconductor manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
【課題】基材上にエアロゾルデポジション法により形成された膜を備えた部材において、基材と膜との線熱膨張係数の差による膜の剥離やクラックの発生を効果的に抑制することができ、高温で繰り返し使用される半導体製造装置に好適に用いることができる部材を提供する。
【解決手段】基材表面の少なくとも一部に、少なくとも1層の中間層を介して、エアロゾルデポジション法により形成された膜を形成し、前記基材と膜との線熱膨張係数の差が3×10-6/K以上であり、前記中間層を、前記基材の構成材料と前記膜の構成材料との混合組成からなるように構成する。
【選択図】なしIn a member provided with a film formed by an aerosol deposition method on a substrate, it is possible to effectively suppress film peeling and cracking due to a difference in linear thermal expansion coefficient between the substrate and the film. The member which can be used suitably for the semiconductor manufacturing apparatus which can be used repeatedly at high temperature is provided.
A film formed by an aerosol deposition method is formed on at least a part of a substrate surface via at least one intermediate layer, and a difference in linear thermal expansion coefficient between the substrate and the film is increased. 3 × 10 −6 / K or more, and the intermediate layer is configured to have a mixed composition of the constituent material of the base material and the constituent material of the film.
[Selection figure] None
Description
本発明は、基材上に膜が形成された構成を有しており、半導体の表面処理、洗浄処理、熱処理等の半導体製造装置に好適に用いることができる部材に関する。 The present invention relates to a member that has a structure in which a film is formed on a substrate and that can be suitably used in semiconductor manufacturing equipment such as semiconductor surface treatment, cleaning treatment, and heat treatment.
従来、半導体製造装置に用いられる部材において、その耐久性、耐食性、耐熱性、機械的強度の向上等を目的として、基材表面に異なる材質からなる膜で被覆したものが多用されている。
この被覆方法としては、スラリーを塗布して焼き付ける方法、PVDやCVD等の蒸着法、溶射法等が一般に用いられている。
2. Description of the Related Art Conventionally, members used in semiconductor manufacturing apparatuses are often used in which the surface of a base material is coated with a film made of a different material for the purpose of improving durability, corrosion resistance, heat resistance, mechanical strength, and the like.
As this coating method, a method of applying and baking a slurry, a vapor deposition method such as PVD or CVD, a thermal spraying method, or the like is generally used.
一方、近年、セラミックス等の基材表面への脆性材料からなる膜を形成する新たな方法として、特許文献1に記載されているような、いわゆるエアロゾルデポジション法(以下、AD法という)と呼ばれる方法が知られている。
このAD法とは、具体的には、サブミクロンオーダーの脆性材料の微粒子を含むエアロゾルをノズルから噴射し、高速で基板に吹き付け、微粒子を基材上に堆積させることにより、微粒子組成からなる圧粉体による堆積膜を形成させる方法である。
On the other hand, as a new method for forming a film made of a brittle material on the surface of a substrate such as ceramics in recent years, it is called a so-called aerosol deposition method (hereinafter referred to as AD method) as described in Patent Document 1. The method is known.
Specifically, the AD method is a method in which an aerosol containing fine particles of a submicron order brittle material is sprayed from a nozzle, sprayed onto a substrate at a high speed, and the fine particles are deposited on a base material, thereby forming a pressure composed of a fine particle composition. This is a method for forming a deposited film of powder.
AD法は、焼成や溶射等の工程を伴わないため、基材表面が高温に曝されることがなく、室温程度の低温下で、脆性材料を緻密な膜として形成することができるという利点を有しており、上記のような半導体製造装置用のセラミックス部材等の製造への適用も検討されている。
しかしながら、AD法においては、上記のように、低温下で、緻密な膜が形成されることから、基材と膜との線熱膨張係数の差が大きいと、これにより形成された半導体製造装置用部材を、一定の温度以上で繰り返し使用した場合、線熱膨張係数の差から生じる応力により、膜の剥離やクラックを生じるおそれがある。 However, in the AD method, as described above, a dense film is formed at a low temperature. Therefore, if the difference in linear thermal expansion coefficient between the substrate and the film is large, the semiconductor manufacturing apparatus formed thereby When the member for use is repeatedly used at a certain temperature or higher, there is a risk of peeling or cracking of the film due to the stress generated from the difference in linear thermal expansion coefficient.
本発明は、上記技術的課題を解決するためになされたものであり、基材上にAD法により形成された膜を備えた部材において、基材と膜との線熱膨張係数の差による膜の剥離やクラックの発生を効果的に抑制することができ、高温で繰り返し使用される半導体製造装置に好適に用いることができる部材を提供することを目的とするものである。 The present invention has been made in order to solve the above technical problem, and in a member having a film formed on a base material by an AD method, the film has a difference in linear thermal expansion coefficient between the base material and the film. It is an object of the present invention to provide a member that can effectively suppress the occurrence of peeling and cracks and can be suitably used in a semiconductor manufacturing apparatus that is repeatedly used at high temperatures.
本発明に係る半導体製造装置用部材は、基材表面の少なくとも一部に、少なくとも1層の中間層を介して、AD法により形成された膜を備え、前記基材と膜との線熱膨張係数の差が3×10-6/K以上であり、前記中間層は、前記基材の構成材料と前記膜の構成材料との混合組成からなることを特徴とする。
このような層構成からなる部材は、中間層により、基材と緻密な膜との線熱膨張係数の差が緩和され、膜の剥離やクラックの発生が抑制される。
A member for a semiconductor manufacturing apparatus according to the present invention includes a film formed by an AD method on at least a part of a surface of a base material via at least one intermediate layer, and linear thermal expansion between the base material and the film. The difference in coefficient is 3 × 10 −6 / K or more, and the intermediate layer is composed of a mixed composition of the constituent material of the base material and the constituent material of the film.
In the member having such a layer structure, the difference in the linear thermal expansion coefficient between the base material and the dense film is alleviated by the intermediate layer, and the peeling of the film and the occurrence of cracks are suppressed.
前記基材および膜は、互いに異なる材質からなり、いずれも、アルミナ、ムライト、安定化ジルコニア、炭化ケイ素、窒化アルミニウム、イットリアおよびシリカのうちの少なくともいずれか1種を含む材質からなることが好ましい。
基材と膜とは、上記のような線熱膨張係数の差の大きい材質からなり、かつ、半導体製造装置に一般的に用いられており、基材に対して、膜による耐熱性、耐食性等の特性を付与し得る材質が構成材料として好適である。
It is preferable that the base material and the film are made of different materials, and both are made of a material containing at least one of alumina, mullite, stabilized zirconia, silicon carbide, aluminum nitride, yttria and silica.
The base material and the film are made of a material having a large difference in linear thermal expansion coefficient as described above, and are generally used in semiconductor manufacturing equipment. A material capable of providing the above characteristics is suitable as a constituent material.
また、前記中間層は、膜厚が0.1μm以上50μm以下であることが好ましい。
上記範囲内の膜厚とすることにより、基材と膜との線熱膨張係数の差の緩和効果が十分に得られ、膜の剥離やクラックの防止効果が得られる。
The intermediate layer preferably has a thickness of 0.1 μm or more and 50 μm or less.
By setting the film thickness within the above range, the effect of relaxing the difference in linear thermal expansion coefficient between the base material and the film can be sufficiently obtained, and the effect of preventing film peeling and cracking can be obtained.
上述したとおり、本発明によれば、基材上にAD法により形成された膜を備えた部材において、基材と膜との線熱膨張係数の差による膜の剥離やクラックの発生が効果的に抑制された半導体製造装置用部材が提供される。
したがって、本発明に係る半導体製造装置用部材は、高温での繰り返し使用にも耐え得るものであり、耐熱衝撃性にも優れており、半導体の表面処理、洗浄処理、熱処理等を行う装置に好適に適用することができる。
As described above, according to the present invention, in a member provided with a film formed on the base material by the AD method, peeling of the film or generation of cracks due to a difference in linear thermal expansion coefficient between the base material and the film is effective. A member for a semiconductor manufacturing apparatus is provided.
Therefore, the semiconductor manufacturing apparatus member according to the present invention can withstand repeated use at high temperatures, has excellent thermal shock resistance, and is suitable for an apparatus that performs semiconductor surface treatment, cleaning treatment, heat treatment, and the like. Can be applied to.
以下、本発明について、より詳細に説明する。
本発明に係る半導体製造装置用部材は、基材表面の少なくとも一部に、少なくとも1層の中間層を介して、AD法により形成された膜を備えた構成を有するものである。そして、前記基材と膜との線熱膨張係数の差が3×10-6/K以上であり、前記中間層は、前記基材の構成材料と前記膜の構成材料との混合組成からなることを特徴としている。
このように、基材と表面層との間に、両者の線熱膨張係数の差を緩和する役割を果たす中間層を介することにより、膜の剥離やクラックの発生を抑制することができる。
また、AD法により各層を緻密な膜として形成することができるため、上記のような中間層を備えていても、全体として薄膜化することができるという利点も有している。
Hereinafter, the present invention will be described in more detail.
The member for a semiconductor manufacturing apparatus according to the present invention has a configuration in which a film formed by an AD method is provided on at least a part of the surface of a base material via at least one intermediate layer. The difference in coefficient of linear thermal expansion between the base material and the film is 3 × 10 −6 / K or more, and the intermediate layer is composed of a mixed composition of the constituent material of the base material and the constituent material of the film. It is characterized by that.
As described above, by providing the intermediate layer between the base material and the surface layer to relieve the difference in the linear thermal expansion coefficient between them, it is possible to suppress the peeling of the film and the occurrence of cracks.
Further, since each layer can be formed as a dense film by the AD method, there is an advantage that even if the intermediate layer as described above is provided, it can be thinned as a whole.
前記基材としては、半導体製造装置用部材において一般的に用いられている材質であれば、いずれでもよく、通常は、セラミックス、単結晶、ガラス等の無機材料が用いられる。あるいはまた、AD法により形成された積層体であってもよい。
これらの材質は、半導体製造装置用部材の使用態様に応じて適宜選択されるが、特に、アルミナ、ムライト、安定化ジルコニア、炭化ケイ素、窒化アルミニウム、イットリアおよびシリカのうちの少なくともいずれか1種を含む材質からなることが好ましい。
The base material may be any material as long as it is generally used in a member for a semiconductor manufacturing apparatus, and usually an inorganic material such as ceramics, single crystal, glass or the like is used. Alternatively, it may be a laminate formed by the AD method.
These materials are appropriately selected according to the use mode of the semiconductor manufacturing apparatus member, and in particular, at least one of alumina, mullite, stabilized zirconia, silicon carbide, aluminum nitride, yttria and silica is used. It is preferable to consist of the material which contains.
例えば、シリカからなる基材上に、アルミナ膜を形成する場合、アルミナは、シリカに比べて線熱膨張係数が大きく、高温において、その線熱膨張係数の差により膜の剥離やクラックを生じやすい。特に、膜が緻密になると、その傾向が強く、AD法により基材上にアルミナ膜を形成した部材であっても、一定温度以上で使用されると、膜の剥離やクラックを生じる。
このため、前記基材と膜との間には、シリカとアルミナの間の線熱膨張係数を有する中間層を形成し、これにより、基材と膜との線熱膨張係数の差を緩和させ、剥離やクラックの発生を抑制する。
したがって、本発明に係る半導体製造装置用部材の構成は、上記において例示したシリカ基材とアルミナ膜のように、基材と膜との線熱膨張係数の差が3×10-6/K以上である場合に非常に有効である。
For example, when an alumina film is formed on a substrate made of silica, alumina has a larger coefficient of linear thermal expansion than silica, and the film tends to peel or crack at high temperatures due to the difference in coefficient of linear thermal expansion. . In particular, when the film becomes dense, the tendency is strong, and even a member in which an alumina film is formed on a substrate by the AD method causes peeling or cracking of the film when used at a certain temperature or higher.
For this reason, an intermediate layer having a linear thermal expansion coefficient between silica and alumina is formed between the base material and the film, thereby reducing the difference in the linear thermal expansion coefficient between the base material and the film. Suppresses the occurrence of peeling and cracking.
Therefore, the configuration of the member for a semiconductor manufacturing apparatus according to the present invention is such that the difference in linear thermal expansion coefficient between the base material and the film is 3 × 10 −6 / K or more like the silica base material and the alumina film exemplified above. Is very effective.
本発明に係る部材の最表面に形成される膜は、基材との線熱膨張係数の差が3×10-6/K以上の基材と異なる材質により構成され、かつ、基材と同様に、半導体製造装置用部材に一般的に使用されている、アルミナ、ムライト、安定化ジルコニア、炭化ケイ素、窒化アルミニウム、イットリアおよびシリカのうちの少なくともいずれか1種を含む材質からなることが好ましい。 The film formed on the outermost surface of the member according to the present invention is made of a material different from the base material having a linear thermal expansion coefficient difference of 3 × 10 −6 / K or more from the base material, and is the same as the base material In addition, it is preferably made of a material containing at least one of alumina, mullite, stabilized zirconia, silicon carbide, aluminum nitride, yttria, and silica, which are generally used for members for semiconductor manufacturing equipment.
前記膜の形成方法としては、本発明においては、AD法を用いる。具体的には、特許文献1に記載されている方法と同様の方法により行うことができる。
この方法は、膜形成材料の微粒子が、高速噴射され、基材に対して強い衝撃力で衝突することにより、より微粒子に破砕され、この微粒子表面が高エネルギーとなり、基材表面あるいはまた微粒子同士との強い接合力を生じ、緻密な膜を形成することができるという特徴を有している。
また、上記のような微粒子の強い衝撃力での衝突により、基材表面に形成された中間層の表面には凹凸が形成され、膜をより剥離し難くさせるアンカー効果も得られるという優れた特徴を有している。
In the present invention, the AD method is used as the method for forming the film. Specifically, it can be performed by a method similar to the method described in Patent Document 1.
In this method, the fine particles of the film-forming material are jetted at high speed and collide with the substrate with a strong impact force, so that the particles are crushed into fine particles, and the surface of the fine particles becomes high energy. It has a feature that a strong film can be formed and a dense film can be formed.
In addition, due to the collision of fine particles as described above with a strong impact force, the surface of the intermediate layer formed on the surface of the base material is uneven, and an excellent anchoring effect that makes the film more difficult to peel is also obtained. have.
前記膜の厚さは、剥離防止、コスト低減化等の観点からは、できる限り薄くすることが好ましいが、緻密で完全な被覆膜とすることを考慮して、0.5μm以上50μm以下とすることが好ましい。
なお、この膜は、必ずしも、基材全体を覆うものとは限らず、部材の用途目的に応じて、少なくとも、膜による耐熱性、耐食性等の特性付与が求められる箇所に、形成されれば足りる。
The thickness of the film is preferably as thin as possible from the viewpoints of prevention of peeling, cost reduction, and the like. However, in consideration of a dense and complete coating film, the thickness is 0.5 μm or more and 50 μm or less. It is preferable to do.
In addition, this film does not necessarily cover the entire base material, and it is sufficient if it is formed at least in places where characteristics such as heat resistance and corrosion resistance are required by the film depending on the purpose of use of the member. .
また、前記基材と膜との間に形成される中間層は、前記基材の構成材料と前記膜の構成材料との混合組成からなる層として構成することが好ましい。
このように、中間層の材質には、基材および膜の構成材料が混合された材質とすることにより、基材と膜との線熱膨張係数の差の緩和が図られ、膜の剥離およびクラック防止効果を高めることができる。
前記中間層は、1層でもよく、また、複数層により構成してもよい。
Moreover, it is preferable to comprise the intermediate | middle layer formed between the said base material and a film | membrane as a layer which consists of a mixed composition of the constituent material of the said base material, and the constituent material of the said film | membrane.
In this way, by making the material of the intermediate layer a material in which the constituent materials of the base material and the film are mixed, the difference in the coefficient of linear thermal expansion between the base material and the film can be reduced, and the film can be peeled off. The crack prevention effect can be enhanced.
The intermediate layer may be a single layer or a plurality of layers.
前記中間層は、上記のような材質からなる基材表面を被覆する際に一般的に用いられている方法により形成することができる。中間層の具体的な形成方法としては、スラリーを塗布して焼き付ける方法、金属有機化合物堆積法(MOD法)、CVD、MOCVD、PVD等の蒸着法、溶射法等が挙げられる。 The intermediate layer can be formed by a method generally used for coating a substrate surface made of the above-described material. Specific methods for forming the intermediate layer include a method of applying and baking a slurry, a metal organic compound deposition method (MOD method), a vapor deposition method such as CVD, MOCVD, and PVD, and a thermal spraying method.
前記中間層は、剥離防止、部材の薄肉化等の観点からは、できる限り薄くすることが好ましいが、上述したような基材と膜との熱膨張係数の差を十分に緩和可能な厚さを要することから、その膜厚は0.1μm以上50μm以下であることが好ましい。 The intermediate layer is preferably as thin as possible from the viewpoints of prevention of peeling, thinning of the member, etc., but the thickness can sufficiently relieve the difference in the thermal expansion coefficient between the base material and the film as described above. Therefore, the film thickness is preferably 0.1 μm or more and 50 μm or less.
以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記の実施例により制限されるものではない。
[実施例1]
シリカガラス基板表面に、MOD材料として、シリカ用溶液とアルミナ用溶液とをシリカとアルミナのモル比が1:1になるように混合した液を用いて、スピンコータにて塗布した。1200℃で焼成した後、乾燥し、膜厚0.2μmの中間層を形成した。
この中間層上に、AD法により、膜厚10μmのアルミナ膜を形成した。
この試料について、室温から1200℃までの昇降温を5回繰り返したところ、膜のクラック発生は認められなかった。
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not restrict | limited by the following Example.
[Example 1]
A silica glass substrate surface was coated with a spin coater using a liquid in which a silica solution and an alumina solution were mixed so that the molar ratio of silica and alumina was 1: 1 as a MOD material. After baking at 1200 degreeC, it dried and formed the intermediate | middle layer with a film thickness of 0.2 micrometer.
On this intermediate layer, an alumina film having a film thickness of 10 μm was formed by the AD method.
With respect to this sample, when raising and lowering the temperature from room temperature to 1200 ° C. was repeated five times, no film cracking was observed.
[実施例2]
アルミナ基板表面に、アルミナと炭化ケイ素のモル比が1:1になるように混合した溶射材を用いて、プラズマ溶射を行い、膜厚20μmの中間層を形成した。
この中間層上に、AD法により、膜厚10μmの炭化ケイ素膜を形成した。
この試料について、室温から1200℃までの昇降温を5回繰り返したところ、膜のクラック発生は認められなかった。
[Example 2]
Plasma spraying was performed on the surface of the alumina substrate using a thermal spray material mixed so that the molar ratio of alumina to silicon carbide was 1: 1, thereby forming an intermediate layer having a thickness of 20 μm.
On this intermediate layer, a silicon carbide film having a thickness of 10 μm was formed by the AD method.
With respect to this sample, when raising and lowering the temperature from room temperature to 1200 ° C. was repeated five times, no film cracking was observed.
[実施例3]
ムライト基板表面に、ムライトとイットリア安定化ジルコニアのモル比が1:1になるように混合したスラリーを用いて、スプレーにて塗布した。1200℃で焼成した後、乾燥し、膜厚50μmの中間層を形成した。
この中間層上に、AD法により、膜厚10μmのイットリア安定化ジルコニア膜を形成した。
この試料について、室温から1200℃までの昇降温を5回繰り返したところ、膜のクラック発生は認められなかった。
[Example 3]
The slurry was applied to the surface of the mullite substrate using a slurry mixed so that the molar ratio of mullite and yttria-stabilized zirconia was 1: 1. After baking at 1200 degreeC, it dried and formed the 50-micrometer-thick intermediate | middle layer.
An yttria-stabilized zirconia film having a thickness of 10 μm was formed on this intermediate layer by the AD method.
With respect to this sample, when raising and lowering the temperature from room temperature to 1200 ° C. was repeated five times, no film cracking was observed.
[実施例4〜11]
基材、膜および中間層を表1の実施例4〜11に示す組成として、それぞれ、実施例1〜3と同様の成膜方法にて、基材上に、中間層および膜を形成した。
いずれの試料も、室温から1200℃までの昇降温を5回繰り返したところ、膜のクラック発生は認められなかった。
[Examples 4 to 11]
The base material, the film, and the intermediate layer were formed as the compositions shown in Examples 4 to 11 in Table 1, respectively, and the intermediate layer and the film were formed on the base material by the same film forming method as in Examples 1 to 3, respectively.
In any of the samples, when the temperature increase / decrease from room temperature to 1200 ° C. was repeated five times, no film cracking was observed.
[実施例12]
シリカガラス基板表面に、シリカ粉末(平均粒径0.5μm)とアルミナ粉末(平均粒径0.5μm)との混合粉末を用いて、AD法により、膜厚10μmのシリカ−アルミナ傾斜組成層を形成した。
なお、この傾斜組成層は、シリカ粉末とアルミナ粉末の各キャリア流量を徐々に変化させながらノズル手前で混合して噴射させることにより形成した。膜厚の増加に伴い、シリカ含有量が少なくなり、アルミナ含有量が多くなるような傾斜組成とした。
この試料について、室温から1200℃までの昇降温を5回繰り返したところ、膜のクラックの発生は認められなかった。
[Example 12]
Using a mixed powder of silica powder (average particle size 0.5 μm) and alumina powder (average particle size 0.5 μm) on the silica glass substrate surface, a silica-alumina gradient composition layer having a thickness of 10 μm is formed by AD method. Formed.
In addition, this gradient composition layer was formed by mixing and injecting before a nozzle, changing each carrier flow rate of a silica powder and an alumina powder gradually. The gradient composition was such that the silica content decreased and the alumina content increased as the film thickness increased.
With respect to this sample, when raising and lowering the temperature from room temperature to 1200 ° C. was repeated 5 times, the occurrence of cracks in the film was not observed.
[比較例1]
シリカガラス基板表面に、アルミナ粉末(平均粒径0.52μm)を用いて、AD法により、膜厚約50μmのアルミナ層を形成した。
この試料について、室温から1200℃までの昇降温を5回繰り返したところ、膜にクラックが発生した。
[Comparative Example 1]
An alumina layer having a film thickness of about 50 μm was formed on the surface of the silica glass substrate by an AD method using alumina powder (average particle size 0.52 μm).
About this sample, when raising / lowering temperature from room temperature to 1200 degreeC was repeated 5 times, the crack generate | occur | produced in the film | membrane.
上記実施例および比較例の結果をまとめて表1に示す。
The results of the above examples and comparative examples are summarized in Table 1.
表1に示したように、基材と膜との線熱膨張係数が3×10-6/K以上である場合においても、その線熱膨張係数を緩和する中間層を形成することにより、繰り返しの高温での使用においても、膜にクラックを生じない、耐熱衝撃性に優れた部材が得られることが認められた。 As shown in Table 1, even when the linear thermal expansion coefficient between the base material and the film is 3 × 10 −6 / K or more, the intermediate layer that relaxes the linear thermal expansion coefficient is formed repeatedly. It was confirmed that a member excellent in thermal shock resistance that does not cause cracks in the film can be obtained even when used at a high temperature.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006327378A JP4879002B2 (en) | 2006-12-04 | 2006-12-04 | Components for semiconductor manufacturing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006327378A JP4879002B2 (en) | 2006-12-04 | 2006-12-04 | Components for semiconductor manufacturing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008137868A true JP2008137868A (en) | 2008-06-19 |
JP4879002B2 JP4879002B2 (en) | 2012-02-15 |
Family
ID=39599735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006327378A Expired - Fee Related JP4879002B2 (en) | 2006-12-04 | 2006-12-04 | Components for semiconductor manufacturing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4879002B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015002319A (en) * | 2013-06-18 | 2015-01-05 | 日亜化学工業株式会社 | Light emitting device and manufacturing method thereof |
JP2016130350A (en) * | 2015-01-14 | 2016-07-21 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | Structure including coating film and manufacturing method of the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005158933A (en) * | 2003-11-25 | 2005-06-16 | National Institute Of Advanced Industrial & Technology | Semiconductor or liquid crystal manufacturing apparatus member and manufacturing method thereof |
JP2007119913A (en) * | 2005-09-30 | 2007-05-17 | Fujifilm Corp | Method of manufacturing composite structure, impurity removal processing apparatus, film forming apparatus, composite structure and raw material powder |
-
2006
- 2006-12-04 JP JP2006327378A patent/JP4879002B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005158933A (en) * | 2003-11-25 | 2005-06-16 | National Institute Of Advanced Industrial & Technology | Semiconductor or liquid crystal manufacturing apparatus member and manufacturing method thereof |
JP2007119913A (en) * | 2005-09-30 | 2007-05-17 | Fujifilm Corp | Method of manufacturing composite structure, impurity removal processing apparatus, film forming apparatus, composite structure and raw material powder |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015002319A (en) * | 2013-06-18 | 2015-01-05 | 日亜化学工業株式会社 | Light emitting device and manufacturing method thereof |
US9871170B2 (en) | 2013-06-18 | 2018-01-16 | Nichia Corporation | Light emitting device and method for manufacturing same |
US10355173B2 (en) | 2013-06-18 | 2019-07-16 | Nichia Corporation | Method for manufacturing light emitting device |
JP2016130350A (en) * | 2015-01-14 | 2016-07-21 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | Structure including coating film and manufacturing method of the same |
Also Published As
Publication number | Publication date |
---|---|
JP4879002B2 (en) | 2012-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2918698B1 (en) | Compositions and methods for thermal spraying a hermetic rare earth environmental barrier coating | |
US7910172B2 (en) | Method for fabricating a component having an environmental barrier coating | |
US20110033630A1 (en) | Techniques for depositing coating on ceramic substrate | |
EP1842937A2 (en) | Bond coating and thermal barrier compositions, processes for applying both, and their coated articles | |
CA2928776C (en) | Modified thermal barrier composite coatings | |
CN1935746A (en) | Silicon based substrate with hafnium containing barrier layer | |
TW201501204A (en) | Aerosol deposition coating for semiconductor chamber components | |
JP2004323976A (en) | Spot method for repairing thermal barrier coating, and composition | |
US6861164B2 (en) | Environmental and thermal barrier coating for ceramic components | |
TW201126600A (en) | Methods of coating substrate with plasma resistant coatings and related coated substrates | |
KR101276506B1 (en) | Surface-treated ceramic member, method for producing same, and vacuum processing device | |
JP5300851B2 (en) | CERAMIC LAYER COMPOSITE AND METHOD FOR PRODUCING THE CERAMIC LAYER COMPOSITE | |
US20100239429A1 (en) | Wear protection coating | |
JP4879002B2 (en) | Components for semiconductor manufacturing equipment | |
JP2008137860A (en) | Tools for firing ceramics for electronic parts | |
CN111279009A (en) | Component comprising a protective coating having a graded composition | |
JP4178239B2 (en) | High adhesion oxide film and method for producing the same | |
JP4090335B2 (en) | Corrosion resistant ceramics | |
JP4763452B2 (en) | Surface-coated ceramic sintered body | |
JP4092122B2 (en) | Semiconductor manufacturing apparatus member and manufacturing method thereof | |
KR102197552B1 (en) | Non oxide substrate comprising densified top coating and method of forming thereof | |
JP5462652B2 (en) | Surface-treated ceramic member and manufacturing method thereof | |
KR20120109376A (en) | Coating method for ceramic on metal substrate and ceramic coated metal substrate | |
EP3330239A1 (en) | Intermediate bond-coat layer for improvement of adherence of a thermal barrier coating on a ceramic matrix composite substrate | |
CN119372579A (en) | A wide-range plasma sprayed dual-component rare earth silicate environmental barrier coating and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090501 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110414 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110422 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110609 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111129 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111129 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4879002 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141209 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |