[go: up one dir, main page]

JP2008136968A - Method of manufacturing plate-like nox removal catalyst as well as metal substrate for catalyst - Google Patents

Method of manufacturing plate-like nox removal catalyst as well as metal substrate for catalyst Download PDF

Info

Publication number
JP2008136968A
JP2008136968A JP2006327175A JP2006327175A JP2008136968A JP 2008136968 A JP2008136968 A JP 2008136968A JP 2006327175 A JP2006327175 A JP 2006327175A JP 2006327175 A JP2006327175 A JP 2006327175A JP 2008136968 A JP2008136968 A JP 2008136968A
Authority
JP
Japan
Prior art keywords
catalyst
metal
silicone resin
metal substrate
cutting oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006327175A
Other languages
Japanese (ja)
Other versions
JP4944588B2 (en
Inventor
Naomi Imada
尚美 今田
Yasuyoshi Kato
泰良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2006327175A priority Critical patent/JP4944588B2/en
Publication of JP2008136968A publication Critical patent/JP2008136968A/en
Application granted granted Critical
Publication of JP4944588B2 publication Critical patent/JP4944588B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Laminated Bodies (AREA)
  • Catalysts (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an economical method in which a water-shedding film having a high heat resistance can be supported continuously in a small amount and effectively on a metal substrate. <P>SOLUTION: In the metal substrate-manufacturing method of metal lath processing a strip of metal substrate by using a cutting oil, a silicone resin is used by blending together with the cutting oil, and a heat defatting is carried out after the metal lath processing. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は触媒用金属基板、及び板状脱硝触媒の製造方法に係り、特に金属製金網、メタルラス等の平面状の金属基材及びこれを用いるアンモニア接触還元用脱硝触媒の製造方法に関する。   The present invention relates to a catalyst metal substrate and a method for producing a plate-shaped denitration catalyst, and more particularly to a planar metal substrate such as a metal wire net or metal lath, and a method for producing a denitration catalyst for ammonia catalytic reduction using the same.

発電所、各種工場、自動車などから排出される排煙中のNOxは、光化学スモッグや酸性雨の原因物質であり、その効果的な除去方法として、アンモニア(NH3)を還元剤とした選択的接触還元による排煙脱硝法が火力発電所を中心に幅広く用いられている。触媒としては、バナジウム(V)、モリブデン(Mo)あるいはタングステン(W)を活性成分にした酸化チタン(TiO2)系の触媒が使用されており、特に活性成分の一つであるバナジウムは活性が高いだけでなく、排ガス中に含まれている不純物による劣化が小さいことや、より低温から使用できることなどから、現在の脱硝触媒のが主流となっている(特許文献1)。これらの酸化チタン系脱硝触媒は、ハニカム状や金属基板に触媒成分を塗布して用いられることが多く、中でも後者の板状触媒は煤塵による摩耗や堆積に強いため、油、石炭燃焼排ガスの脱硝に広く用いられている。 NOx in flue gas emitted from power plants, various factories, automobiles, etc. is a causative substance of photochemical smog and acid rain. As an effective removal method, selective use of ammonia (NH 3 ) as a reducing agent The flue gas denitration method by catalytic reduction is widely used mainly in thermal power plants. As the catalyst, a titanium oxide (TiO 2 ) -based catalyst containing vanadium (V), molybdenum (Mo) or tungsten (W) as an active component is used. In particular, vanadium which is one of the active components is active. The current denitration catalyst is mainly used because it is not only high but also has little deterioration due to impurities contained in the exhaust gas and can be used at a lower temperature (Patent Document 1). These titanium oxide-based denitration catalysts are often used by applying a catalyst component to a honeycomb or metal substrate. In particular, the latter plate-shaped catalyst is resistant to abrasion and accumulation due to soot, so denitration of oil and coal combustion exhaust gas. Widely used in

板状触媒の製造法としては、従来から数多く提案されているが、金属薄板に所定ピッチの切れ目(スリット)を入れ、スリットと直角方向に引っ張り力を加えて得られる金網状のメタルラス基材は、量産性も優れ、機械強度も強い触媒が得られるところから、国内外の板状触媒の主流となっている。   A number of methods for producing a plate catalyst have been proposed, but a metal mesh-like metal lath base material obtained by placing slits (slits) with a predetermined pitch in a thin metal plate and applying a tensile force in a direction perpendicular to the slit Since a catalyst with excellent mass productivity and strong mechanical strength can be obtained, it has become the mainstream of plate catalysts in Japan and overseas.

一方、米国では、亜瀝青炭(PRB炭)や瀝青炭など、S分を含有する炭種を使用するボイラが増加傾向にある。このような排ガス処理に上記V含有触媒を用いると、Vの触媒作用により排ガス中の二酸化イオウ(SO2)が酸化されて三酸化イオウ(SO3)を生成し、(1)後流機器の腐食、(2)リークNH3と反応して硫安を生成し、後流のエアヒータを閉塞する、などの問題を引き起こす。そのため、高脱硝活性で、かつSO2のSO3への酸化率を低減した脱硝触媒が要望されている。これに対し、V含有量等の触媒組成の最適化等を行ってSO2酸化活性を低減させるなどの方法が採られている。しかし、上記金属基板を用いる方法では、触媒製造時にわずかに溶解した基板金属元素の触媒作用のため、SO2酸化率が上昇するという問題があった。 On the other hand, in the United States, there is an increasing trend in boilers using coal types containing S, such as subbituminous coal (PRB coal) and bituminous coal. When the V-containing catalyst is used for such exhaust gas treatment, sulfur dioxide (SO 2 ) in the exhaust gas is oxidized by the catalytic action of V to produce sulfur trioxide (SO 3 ). (1) Causes corrosion, (2) reacts with leaked NH 3 to produce ammonium sulfate, and clogs the downstream air heater. Therefore, there is a demand for a denitration catalyst having high denitration activity and a reduced oxidation rate of SO 2 to SO 3 . On the other hand, a method of reducing the SO 2 oxidation activity by optimizing the catalyst composition such as the V content has been adopted. However, the method using the metal substrate has a problem in that the SO 2 oxidation rate increases due to the catalytic action of the substrate metal element slightly dissolved during the production of the catalyst.

一方、酸化チタン系脱硝触媒には、安価で高い触媒性能が得られる、硫酸法による酸化チタンが使用されている。一般に硫酸法による酸化チタン中には数重量%の硫酸根が含まれており、触媒成分の添加・焼成等の工程を経ても、その大半が触媒成分中に残留している。このため、触媒基板を用いた触媒の場合、基板に触媒成分のペーストやスラリを湿式法でコーティング又は塗布しようとすると、残留硫酸によって金属基板が溶解されて、基板成分が触媒成分中に移動するという問題を生じる。サス基板成分のうち、鉄(Fe)、ニッケル(Ni)、クロム(Cr)等の元素は、酸化チタンに吸着されると、脱硝触媒成分であるV以上にSO2の酸化を促進することが知られており、触媒製造過程で溶解した微量の遷移金属成分がSO2酸化率の低減の妨げになっている。このような金属基板の腐食を防止する方法として、金属基板と触媒成分の接触を防止する目的で、金属基板表面に不活性化膜を形成させる方法、例えば金属アルミを溶射する方法(特許文献2)、酸化チタンを主成分とする被膜を形成する方法(特許文献3)などが提案されている。 On the other hand, titanium oxide based on a sulfuric acid method is used as a titanium oxide-based denitration catalyst, which is inexpensive and provides high catalyst performance. In general, titanium oxide by the sulfuric acid method contains several weight percent of sulfate radicals, and most of them remain in the catalyst component even after steps such as addition and firing of the catalyst component. For this reason, in the case of a catalyst using a catalyst substrate, if a paste or slurry of the catalyst component is coated or applied to the substrate by a wet method, the metal substrate is dissolved by the residual sulfuric acid, and the substrate component moves into the catalyst component. This causes a problem. Among the suspension substrate components, elements such as iron (Fe), nickel (Ni), and chromium (Cr), when adsorbed on titanium oxide, can promote oxidation of SO 2 more than V, which is a denitration catalyst component. It is known that a small amount of transition metal component dissolved during the catalyst production process hinders the reduction of the SO 2 oxidation rate. As a method for preventing such corrosion of the metal substrate, for the purpose of preventing contact between the metal substrate and the catalyst component, a method of forming an inactivated film on the surface of the metal substrate, for example, a method of spraying metal aluminum (Patent Document 2). ), And a method for forming a film mainly composed of titanium oxide (Patent Document 3) has been proposed.

また、他の効果的な方法として、金属基板表面に薄いシリコーン皮膜を形成させることが考えられる。シリコーン皮膜は撥水性があるため、触媒成分中の残留硫酸が基材と接触することを防止でき、かつ耐熱性が高いため300℃以上の高温で使用される排ガス処理用触媒用途として優れる。一方、金属基板に限らず、ガラスや紙、樹脂などの基板表面に、薄膜を形成する方法は、用途ごとに種々開発されており(非特許文献1)、ロールコーター、ディップコーター、スピンコーターなどの塗工機を用いる方法が一般的である。しかしながら、この方法で触媒基材表面へ皮膜を形成させるには、(1)高価な塗工機が必要、(2)有機溶剤が必要、(3)付着量が多い、などの課題があった。特にシリコーン付着量が多いと触媒性能に悪影響を与えるため好ましくないという問題があった。
特開昭50-128681号公報 特開昭52-14658号公報 特開平06-246176号公報 (超)精密塗布・塗工技術全集、技術情報協会著
Another effective method is to form a thin silicone film on the surface of the metal substrate. Since the silicone film has water repellency, the residual sulfuric acid in the catalyst component can be prevented from coming into contact with the substrate, and since it has high heat resistance, it is excellent as a catalyst for exhaust gas treatment used at a high temperature of 300 ° C. or higher. On the other hand, various methods for forming a thin film on the surface of a substrate such as glass, paper, and resin are not limited to metal substrates, and various methods have been developed for each application (Non-Patent Document 1), such as a roll coater, a dip coater, and a spin coater. A method using a coating machine is generally used. However, in order to form a film on the catalyst substrate surface by this method, there are problems such as (1) an expensive coating machine is required, (2) an organic solvent is required, and (3) the amount of adhesion is large. . In particular, there is a problem that a large amount of silicone adhesion is not preferable because it adversely affects catalyst performance.
JP 50-128681 JP 52-14658 A Japanese Patent Laid-Open No. 06-246176 Complete collection of (ultra) precision coating and coating techniques, by the Technical Information Association

本発明の課題は、耐熱性の高い撥水皮膜を少量かつ効率的に金属基板に連続的に担持できる経済的な方法を提供することにある。   An object of the present invention is to provide an economical method capable of supporting a water repellent film having high heat resistance on a metal substrate in a small amount and efficiently.

上記課題は、以下の方法により達成される。
(1)帯状の金属基材を切削油を用いてメタルラス加工する金属基板の製造法において、前記切削油と共にシリコーン樹脂を混合して用い、メタルラス加工後に加熱脱脂を行うことを特徴とする金属基板の製造方法。
(2)帯状の金属基材を切削油を用いてメタルラス加工する金属基板の製造法において、金属基材を切削油を用いてメタルラス加工した後、シリコーン樹脂と接触させ、その後加熱脱脂を行うことを特徴とする金属基板の製造方法。
(3)前記切削油に対するシリコーン樹脂の混合比が重量基準で1:0.2〜1:2の範囲内であることを特徴とする(1)または(2)に記載の方法。
(4)(1)〜(3)のいずれか1項に記載の方法により得られた金属基板に、酸化チタンと、タングステン、モリブデン及びバナジウムの内から選ばれた一種以上の元素の酸化物とを含む脱硝触媒成分を付着させることを特徴とする板状脱硝触媒の製造方法。
(5)シリコーン樹脂膜が形成された金属基板表面に酸化チタンと、タングステン、モリブデン及びバナジウムの内から選ばれる一種以上の元素の酸化物からなる脱硝触媒成分が担持されていることを特徴とする(4)により製造された脱硝触媒。
The above-mentioned subject is achieved by the following method.
(1) In the manufacturing method of the metal substrate which metal-lasers-processes a strip | belt-shaped metal base material using cutting oil, it mixes and uses a silicone resin with the said cutting oil, and heat degreasing | defatting is performed after metal lath processing. Manufacturing method.
(2) In a method of manufacturing a metal substrate in which a metal substrate is processed with a metal oil using a cutting oil, a metal substrate is processed with a metal oil using a cutting oil, then contacted with a silicone resin, and then heated and degreased. A metal substrate manufacturing method characterized by the above.
(3) The method according to (1) or (2), wherein a mixing ratio of the silicone resin to the cutting oil is in a range of 1: 0.2 to 1: 2 on a weight basis.
(4) A metal substrate obtained by the method according to any one of (1) to (3), titanium oxide, and an oxide of one or more elements selected from tungsten, molybdenum, and vanadium A method for producing a plate-shaped denitration catalyst comprising adhering a denitration catalyst component containing
(5) A denitration catalyst component comprising titanium oxide and an oxide of one or more elements selected from tungsten, molybdenum and vanadium is supported on the surface of the metal substrate on which the silicone resin film is formed. A denitration catalyst produced by (4).

本発明によれば、金属基板を担体に用いる脱硝触媒における基板の腐食を防止でき、それに起因して生じる性能低下、とくに酸化率の上昇を防止することができる。また、本発明によれば、基板の腐食防止を簡単な設備で、または従来設備のままで実施できるので、コスト低減効果も大きくなる。   ADVANTAGE OF THE INVENTION According to this invention, the corrosion of the board | substrate in the denitration catalyst which uses a metal substrate for a support | carrier can be prevented, and the performance fall resulting from it, especially the raise of an oxidation rate can be prevented. In addition, according to the present invention, the corrosion of the substrate can be prevented with simple equipment or with conventional equipment, so that the cost reduction effect is also increased.

本発明で言うシリコーン樹脂とは、シロキサン結合を骨格とした高分子有機化合物(ポリマー)でジメチルシリコーンオイル、メチル基の一部をフェニル基に置き換えたジメチルフェニルシリコーンを意味する。シリコーン樹脂の種類は特に問わないが、粘度は、低粘度から中粘度のものが扱いやすく、25℃での動粘度が100mm2/s以下、好ましくは50mm2/s以下のものが適する。粘度が100mm2/sを超えるとメタルラス表面に連続的に担持する時に液切りがしづらいなど、取り扱い上の問題がある。切削油は、一般的に切削加工に使用する潤滑油剤であれば、特に制限はされない。切削油とシリコーン樹脂の混合比は、切削油に対してシリコーン樹脂の重量比が1:0.1〜1:2、好ましくは1:0.5〜1:1の範囲が好結果を与える。シリコーン樹脂の重量比が0.1未満であると、コーティング層が形成されにくく、また2を超えると、メタルラス(切り)加工がしにくくなる。また、シリコーン樹脂を混合することにより刃物の寿命を短くなる恐れがある場合には、切削油とシリコーン樹脂とを別々に用いて処理してもよい。 The term “silicone resin” as used in the present invention means dimethylsilicone oil in which a polymer organic compound (polymer) having a siloxane bond as a skeleton is substituted with a phenyl group for a part of methyl groups. The type of the silicone resin is not particularly limited, but a viscosity having a low to medium viscosity is easy to handle, and a kinematic viscosity at 25 ° C. is 100 mm 2 / s or less, preferably 50 mm 2 / s or less. When the viscosity exceeds 100 mm 2 / s, there are problems in handling such as difficulty in draining when continuously supported on the metal lath surface. The cutting oil is not particularly limited as long as it is a lubricating oil generally used for cutting. The mixing ratio of the cutting oil and the silicone resin gives a good result when the weight ratio of the silicone resin to the cutting oil is in the range of 1: 0.1 to 1: 2, preferably 1: 0.5 to 1: 1. When the weight ratio of the silicone resin is less than 0.1, it is difficult to form a coating layer, and when it exceeds 2, the metal lath (cutting) process becomes difficult. Moreover, when there exists a possibility that the lifetime of a blade may be shortened by mixing a silicone resin, you may process using cutting oil and a silicone resin separately.

金属基材に切削油とシリコーン樹脂を付着させた後、シリコーン樹脂の分解温度(250℃)以上で加熱脱脂する。この温度未満では、メタルラス表面に酸化珪素の被膜が形成されず、好ましくない。また、皮膜の劣化や基材の劣化を考慮すると、600℃以下が好ましい。加熱時間はメタルラス基材が炉内に有る時間との関係で適宜選定される。また、切削油の脱脂のための炉と、シリコーン樹脂の不溶化のための炉とを別々に設けてもかまわない。   After adhering cutting oil and silicone resin to the metal substrate, heat degreasing is performed at a decomposition temperature (250 ° C.) or higher of the silicone resin. Below this temperature, a silicon oxide film is not formed on the metal lath surface, which is not preferable. Further, considering the deterioration of the film and the deterioration of the substrate, 600 ° C. or lower is preferable. The heating time is appropriately selected in relation to the time during which the metal lath substrate is in the furnace. Also, a furnace for degreasing the cutting oil and a furnace for insolubilizing the silicone resin may be provided separately.

上記の方法で得られた金属基板に触媒成分を担持するには、一般的に知られている、 酸化チタンと、タングステン(W)、モリブデン(Mo)及びバナジウム(V)の内から選ばれた1種以上の元素の酸化物からなる脱硝触媒のペーストを基材であるメタルラスの網目に埋め込む塗布法や、これらのスラリをコーティングする方法などが適するが、本発明がこれらに制限されないことはいうまでもない。   In order to support the catalyst component on the metal substrate obtained by the above method, it is generally selected from titanium oxide, tungsten (W), molybdenum (Mo) and vanadium (V). A coating method of embedding a paste of a denitration catalyst composed of an oxide of one or more elements into a metal lath network as a base material or a method of coating these slurries is suitable, but the present invention is not limited thereto. Not too long.

以下、本発明を図面により具体的に説明する。
図1は、本発明を実施するに必要最小限の機器を配した触媒の製造フロー図である。図1において、ロールに巻かれた金属帯板1がメタルラス加工機2により、帯板の長手方向と直角にスリット(切れ目)を入れられ、同時に長手方向に延伸され、いわゆるメタルラスに加工される。なお、図中、20は駆動ローラである。このとき、本発明では、メタルラス加工時に使用する切削油に、切削油とシリコーン樹脂の混合液3を用いる。メタルラス切り加工された基材は、ブロー4で油切りされた後、加熱脱脂炉5に導かれ、切削油の除去と同時にシリコーンの不溶化が行われる。このように、切削油にシリコーン樹脂を混合することにより、新たなシリコーンコーティング装置を用いることが不要になる。また、従来法では、シリコーン樹脂を基材表面に薄く均一に担持するには、シリコーン樹脂の濃度、粘度を調整するために有機溶剤を混合するが、本発明の方法によれば、切削油が有機溶剤と同じ役割を果たすことから、有機溶剤を用いることなく基材表面に薄く均一なシリコーン樹脂を形成させることができる。また、メタルラス加工後の切削油除去のために実施する油切りや加熱脱脂時に、同時にシリコーン樹脂の油切り及び加熱による不溶化処理も行えるため、新たな設備を用いる必要がないという利点がある。
Hereinafter, the present invention will be specifically described with reference to the drawings.
FIG. 1 is a production flow diagram of a catalyst provided with the minimum equipment necessary for carrying out the present invention. In FIG. 1, a metal strip 1 wound on a roll is slit by a metal lath processing machine 2 at a right angle to the longitudinal direction of the strip, and simultaneously stretched in the longitudinal direction to be processed into a so-called metal lath. In the figure, reference numeral 20 denotes a drive roller. At this time, in this invention, the liquid mixture 3 of cutting oil and silicone resin is used for the cutting oil used at the time of metal lath processing. The base material that has been subjected to metal lath cutting is drained with a blow 4 and then guided to a heating and degreasing furnace 5 where silicone is insolubilized simultaneously with the removal of the cutting oil. Thus, it becomes unnecessary to use a new silicone coating apparatus by mixing the silicone resin with the cutting oil. Further, in the conventional method, in order to carry the silicone resin thinly and uniformly on the substrate surface, an organic solvent is mixed in order to adjust the concentration and viscosity of the silicone resin. Since it plays the same role as an organic solvent, a thin and uniform silicone resin can be formed on the substrate surface without using an organic solvent. Further, at the time of oil draining or heat degreasing performed for removing the cutting oil after metal lath processing, the silicone resin can be drained and insolubilized by heating, so that there is an advantage that it is not necessary to use new equipment.

次に図2は、基板のメタルラス加工後に、シリコーン樹脂コーティングを行う実施例を示すフロー図である。図2において、金属帯板1がメタルラス加工機2で切削油タンク16から供給される切削油と共にメタルラスに加工されるが、メタルラス加工時に使用するのは切削油のみである。その後、メタルラス加工された基材は、シリコーン樹脂コーティング装置6に送られる。シリコーン樹脂コーティング装置6にはシリコーン樹脂槽7が設置されており、その中をメタルラス基材が通過する。その後、ブロー4で油切りされた後、加熱脱脂炉5に導かれ、切削油の除去と同時にシリコーンの不溶化が行われる。このとき、シリコーン樹脂槽7内にはメタルラスに付着した切削油が常に一定量持ち込まれ、かつ常に一定量がメタルラスに付着して持ち出されるため、槽7内の切削油とシリコーン樹脂量は常にバランスされている。そのため、槽7内にはシリコーン油供給タンク17からシリコーン樹脂のみを供給すればよい。この場合、層内の液量を一定にするためにレベル計8を設置し、層内の液量を監視する手段を設けるとよい。このように、本実施例においても、特別な有機溶剤が不要になり、加熱脱脂炉もシリコーン樹脂の不溶化と兼用することができる。   Next, FIG. 2 is a flowchart showing an embodiment in which a silicone resin coating is performed after the metal lath processing of the substrate. In FIG. 2, the metal strip 1 is processed into a metal lath together with the cutting oil supplied from the cutting oil tank 16 by the metal lath processing machine 2, but only the cutting oil is used during the metal lath processing. Thereafter, the metal lath processed substrate is sent to the silicone resin coating apparatus 6. The silicone resin coating device 6 is provided with a silicone resin tank 7 through which the metal lath substrate passes. Then, after draining with the blow 4, it guide | induces to the heating degreasing furnace 5, and insolubilization of silicone is performed simultaneously with the removal of cutting oil. At this time, a certain amount of cutting oil adhering to the metal lath is always brought into the silicone resin tank 7, and a certain amount is always adhering to the metal lath and taken out, so the amount of cutting oil and the silicone resin in the tank 7 is always balanced. Has been. Therefore, only the silicone resin may be supplied into the tank 7 from the silicone oil supply tank 17. In this case, in order to make the liquid amount in the layer constant, a level meter 8 may be installed and a means for monitoring the liquid amount in the layer may be provided. Thus, also in this embodiment, a special organic solvent is not required, and the heating and degreasing furnace can also be used for insolubilization of the silicone resin.

図3は、図1のメタルラス加工及び被膜形成工程の後、脱硝触媒を担持する工程を組み合わせた実施例を示すフロー図である。図1の処理工程を経たメタルラスに、別に調製したTiO2とW、Mo及びVの一種以上の酸化物とから成る触媒成分に水と無機繊維を添加・混練することにより得られた触媒ペースト10を、塗布ローラ11を用いてメタルラスの目を埋めるようにして圧着して帯状の板状触媒が得られる。得られた帯状の板状触媒は更に油圧プレス12でスペーサにするため波形、ノッチ型等の山形が形成され、次いで切断機13で長さ300〜1000mmに切断され、触媒エレメント14となる。このように得られた触媒エレメント14は風乾後、重ねるか、または図4のようなユニット15内に重ね合わせて収納され、400〜600℃で焼成される。 FIG. 3 is a flowchart showing an embodiment in which the step of supporting the denitration catalyst is combined after the metal lath processing and the film formation step of FIG. Catalyst paste 10 obtained by adding and kneading water and inorganic fibers to a catalyst component composed of TiO 2 and one or more oxides of W, Mo, and V prepared separately in the metal lath that has undergone the treatment process of FIG. The belt-like plate-shaped catalyst is obtained by pressure-bonding with a coating roller 11 so as to fill the eyes of the metal lath. The obtained band-shaped plate-shaped catalyst is further formed into a corrugated shape, a notch-shaped chevron, etc., to be used as a spacer by the hydraulic press 12, and then cut into a length of 300 to 1000 mm by the cutting machine 13 to form the catalyst element 14. The catalyst element 14 obtained in this way is air-dried and then stacked, or stacked and stored in the unit 15 as shown in FIG. 4, and calcined at 400 to 600 ° C.

以下、具体的実施例を用いて本発明を詳細に説明する。
実施例1
切削油(BA-905-2、日本工作油社製)と、シリコーン樹脂(KF96-5、信越化学社製)とを重量比にして1:1に混合した液を用い、図1の装置を使用して、ステンレス鋼板(SUS430、厚み0.16mm、幅500mm)をメタルラス加工すると共に、シリコーン樹脂を付着させた。油切り後、不溶化炉にて500℃で40秒加熱処理し、メタルラス表面に皮膜を形成させた、本発明のメタルラス基材を得た。このときの重量増加は0.4g/m2であった。
Hereinafter, the present invention will be described in detail using specific examples.
Example 1
Using a liquid in which cutting oil (BA-905-2, manufactured by Nippon Tool Oil Co., Ltd.) and silicone resin (KF96-5, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed at a weight ratio of 1: 1, the apparatus shown in FIG. A stainless steel plate (SUS430, thickness 0.16 mm, width 500 mm) was subjected to metal lath processing, and a silicone resin was adhered. After draining, heat treatment was performed at 500 ° C. for 40 seconds in an insolubilization furnace to obtain a metal lath substrate of the present invention in which a film was formed on the surface of the metal lath. The weight increase at this time was 0.4 g / m 2 .

実施例2、3
切削油とシリコーン樹脂の混合比を1:0.5 、1:2に変えた以外は実施例1と同様にしてメタルラス基材を得た。それぞれの重量増加は0.2g/m2及び0.7g/m2であった。
Examples 2 and 3
A metal lath substrate was obtained in the same manner as in Example 1 except that the mixing ratio of the cutting oil and the silicone resin was changed to 1: 0.5 and 1: 2. The respective weight gains were 0.2 g / m 2 and 0.7 g / m 2 .

比較例1
実施例1において、切削油にシリコーン樹脂を混合させないほかは、実施例1と同様にしてメタルラス基材を得た。
Comparative Example 1
In Example 1, a metal lath substrate was obtained in the same manner as in Example 1 except that the silicone resin was not mixed with the cutting oil.

実施例4、5
硫酸法によって得られた酸化チタン、タングステン酸アンモニウム、メタバナジン酸アンモニウムをTi/W/V原子比で91/5/4atom%になるように混合した原料に、水と硫酸とを添加してニーダで混練後、シリカアルミナ系無機繊維を添加してペーストを調製した。このとき、乾燥状態のペースト中のSO4濃度は約4重量%であった。
Examples 4 and 5
Titanium oxide, ammonium tungstate, and ammonium metavanadate obtained by the sulfuric acid method were mixed in a raw material mixed at a Ti / W / V atomic ratio of 91/5 / 4atom%, and water and sulfuric acid were added and kneaded. After kneading, a silica alumina inorganic fiber was added to prepare a paste. At this time, the SO 4 concentration in the dry paste was about 4% by weight.

本触媒ペーストをローラ式の塗布機で、実施例1〜3で得られた各メタルラス基材に塗布して板状触媒を得た。得られた触媒を山形に成型後、12時間大気中で風乾し、500℃で二時間焼成した。   This catalyst paste was applied to each metal lath substrate obtained in Examples 1 to 3 with a roller type coater to obtain a plate-like catalyst. The obtained catalyst was molded into a mountain shape, air-dried in the atmosphere for 12 hours, and calcined at 500 ° C. for 2 hours.

比較例2
比較例1のメタルラス基材を用いた以外は、実施例4と同様にして触媒を得た。
Comparative Example 2
A catalyst was obtained in the same manner as in Example 4 except that the metal lath substrate of Comparative Example 1 was used.

試験例1
実施例1〜3、比較例1で得られたメタルラス基材から100mm×100mmの試料片を切り出し、500℃で2時間焼成した。その後、得られた試料片をそれぞれ水の中に10秒間浸漬した後、相対湿度100%の大気中30℃の条件下に24h静置した(以後この操作を単に「吸湿処理」と記す)。その後、試料片の外観を観察したところ、実施例4〜6のメタルラス試料片は試験前後で外観に変化は無かったが、比較例1のメタルラス試料片は表面に所々錆びが観察された。このことから、本発明によって処理したメタルラス基材は吸湿処理後も錆を発生することなく、防食効果が高いことが分った。
Test example 1
A sample piece of 100 mm × 100 mm was cut out from the metal lath substrate obtained in Examples 1 to 3 and Comparative Example 1, and baked at 500 ° C. for 2 hours. Thereafter, each of the obtained sample pieces was immersed in water for 10 seconds and then left to stand for 24 hours in an atmosphere of 100% relative humidity at 30 ° C. (hereinafter, this operation is simply referred to as “moisture absorption treatment”). Thereafter, when the appearance of the sample pieces was observed, the appearance of the metal lath sample pieces of Examples 4 to 6 was not changed before and after the test, but rust was observed on the surface of the metal lath sample piece of Comparative Example 1 in some places. From this, it was found that the metal lath substrate treated according to the present invention has a high anticorrosion effect without generating rust even after the moisture absorption treatment.

試験例2
実施例4、5及び比較例2で得られた触媒から100×100mmの試料片を切り出し、試験例1と同様に吸湿処理を行った。吸湿処理前後の試験片から触媒を剥がして乳鉢で粉砕し、得られた粉末中のSO4量とFe2O3量を、蛍光X線測定装置を用いて測定した。
Test example 2
Sample pieces of 100 × 100 mm were cut out from the catalysts obtained in Examples 4 and 5 and Comparative Example 2, and moisture absorption treatment was performed in the same manner as in Test Example 1. The catalyst was peeled off from the test piece before and after the moisture absorption treatment and pulverized in a mortar, and the SO 4 amount and Fe 2 O 3 amount in the obtained powder were measured using a fluorescent X-ray measurement apparatus.

実施例4、5と比較例2の触媒において、試験前後の触媒中のSO4量とFe2O3量とを比較した結果を表1に示す。実施例と比較例とではSO4量はほぼ等しいことが分かる。一方、実施例4、5では、触媒中のFe2O3量は試験前後でほとんど差が無いが、比較例2では、試験後の触媒中のFe2O3が大きく増加していることが分かる。このことから、比較例2の触媒では、吸湿処理により基材から触媒中にFeが移動することが分かる。以上の結果から、実施例の触媒はいずれも被膜によりメタルラスと触媒の接触を防止でき、メタルラスからのFeの移動を防止できることが分かった。 Table 1 shows the results of comparing the amounts of SO 4 and Fe 2 O 3 in the catalysts before and after the tests in the catalysts of Examples 4 and 5 and Comparative Example 2. It can be seen that the SO 4 amount is almost equal between the example and the comparative example. On the other hand, in Examples 4 and 5, although the amount of Fe 2 O 3 in the catalyst almost no difference before and after the test, that in Comparative Example 2, are Fe 2 O 3 in the catalyst after the test has increased significantly I understand. From this, it can be seen that in the catalyst of Comparative Example 2, Fe moves from the base material into the catalyst by the moisture absorption treatment. From the above results, it was found that any of the catalysts of Examples could prevent the metal lath and the catalyst from contacting each other by the coating and prevent the movement of Fe from the metal lath.

Figure 2008136968
Figure 2008136968

また、実施例1及び比較例2の触媒において、吸湿試験前後でのSO2酸化率を表2の条件で流通式反応器を用いて測定した結果を表3に示す。実施例1の触媒では、吸湿試験前後で酸化率に変化は見られないが、比較例2の触媒では、吸湿試験後にSO2酸化率が高くなっている。これより、本発明の方法では、メタルラスと触媒との接触を防止できた結果、Feの移動によるSO2酸化率の上昇が防止されることが分かった。 Table 3 shows the results of measuring the SO 2 oxidation rate before and after the moisture absorption test using the flow reactor in the conditions of Table 2 for the catalysts of Example 1 and Comparative Example 2. In the catalyst of Example 1, there is no change in the oxidation rate before and after the moisture absorption test, but in the catalyst of Comparative Example 2, the SO 2 oxidation rate is high after the moisture absorption test. From this, it was found that, in the method of the present invention, the contact between the metal lath and the catalyst could be prevented, so that the increase in the SO 2 oxidation rate due to the movement of Fe was prevented.

Figure 2008136968
Figure 2008136968

Figure 2008136968
Figure 2008136968

本発明を実施するに必要最小限の機器を配した触媒の製造フロー図。The manufacturing flow figure of the catalyst which arranged the minimum equipment required for implementing this invention. 基板のメタルラス加工後に、シリコーン樹脂コーティングを行う実施例を示すフロー図。The flowchart which shows the Example which performs silicone resin coating after the metal lath processing of a board | substrate. 図1のメタルラス加工及び被膜形成工程の後、脱硝触媒を担持する工程を組み合わせた実施例を示すフロー図。The flowchart which shows the Example which combined the process which carry | supports a denitration catalyst after the metal lath processing and film formation process of FIG. 本発明になる波板状触媒を枠内に収めた触媒ユニットを示す図。The figure which shows the catalyst unit which accommodated the corrugated catalyst which becomes this invention in the frame.

符号の説明Explanation of symbols

1 サスの帯板
2 メタルラス加工機
3 切削油とシリコーン樹脂混合液
4 油切り用ブロー
5 加熱脱脂炉
6 シリコーン樹脂コーティング装置
7 シリコーン樹脂槽
8 液レベル計
10 触媒ペースト
11 塗布ローラ
12 油圧プレス
13 切断機
14 触媒エレメント
15 触媒ユニット
16 切削油タンク
17 シリコーン油タンク
20 駆動ローラ
DESCRIPTION OF SYMBOLS 1 Suspension strip 2 Metal lath processing machine 3 Cutting oil and silicone resin mixed liquid 4 Blow for oil removal 5 Heating degreasing furnace 6 Silicone resin coating apparatus 7 Silicone resin tank 8 Liquid level meter 10 Catalyst paste 11 Coating roller 12 Hydraulic press 13 Cutting Machine 14 Catalyst element 15 Catalyst unit 16 Cutting oil tank 17 Silicone oil tank 20 Drive roller

Claims (5)

帯状の金属基材を切削油を用いてメタルラス加工する金属基板の製造法において、前記切削油と共にシリコーン樹脂を混合して用い、メタルラス加工後に加熱脱脂を行うことを特徴とする金属基板の製造方法。 A method for producing a metal substrate, wherein a metal substrate is processed with a cutting oil using a metal lath, and a silicone resin is mixed with the cutting oil and heat degreasing is performed after the metal lath processing. . 帯状の金属基材を切削油を用いてメタルラス加工する金属基板の製造法において、金属基材を切削油を用いてメタルラス加工した後、シリコーン樹脂と接触させ、その後加熱脱脂を行うことを特徴とする金属基板の製造方法。 In a metal substrate manufacturing method for metal lath processing of a band-shaped metal base material using cutting oil, the metal base material is metal lath processed using cutting oil, then contacted with a silicone resin, and then heated and degreased. A method for manufacturing a metal substrate. 前記切削油に対するシリコーン樹脂の混合比が重量基準で1:0.2〜1:2の範囲内であることを特徴とする請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein a mixing ratio of the silicone resin to the cutting oil is in a range of 1: 0.2 to 1: 2 on a weight basis. 請求項1〜3のいずれか1項に記載の方法により得られた金属基板に、酸化チタンと、タングステン、モリブデン及びバナジウムの内から選ばれた一種以上の元素の酸化物とを含む脱硝触媒成分を付着させることを特徴とする板状脱硝触媒の製造方法。 A denitration catalyst component comprising titanium oxide and an oxide of one or more elements selected from tungsten, molybdenum and vanadium on the metal substrate obtained by the method according to any one of claims 1 to 3. A method for producing a plate-shaped denitration catalyst, wherein シリコーン樹脂膜が形成された金属基板表面に酸化チタンと、タングステン、モリブデン及びバナジウムの内から選ばれる一種以上の元素の酸化物からなる脱硝触媒成分が担持されていることを特徴とする請求項4により製造された脱硝触媒。 5. A denitration catalyst component comprising titanium oxide and an oxide of one or more elements selected from tungsten, molybdenum and vanadium is supported on the surface of the metal substrate on which the silicone resin film is formed. A denitration catalyst manufactured by
JP2006327175A 2006-12-04 2006-12-04 Metal substrate for catalyst and method for producing plate-shaped denitration catalyst Expired - Fee Related JP4944588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006327175A JP4944588B2 (en) 2006-12-04 2006-12-04 Metal substrate for catalyst and method for producing plate-shaped denitration catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006327175A JP4944588B2 (en) 2006-12-04 2006-12-04 Metal substrate for catalyst and method for producing plate-shaped denitration catalyst

Publications (2)

Publication Number Publication Date
JP2008136968A true JP2008136968A (en) 2008-06-19
JP4944588B2 JP4944588B2 (en) 2012-06-06

Family

ID=39598983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006327175A Expired - Fee Related JP4944588B2 (en) 2006-12-04 2006-12-04 Metal substrate for catalyst and method for producing plate-shaped denitration catalyst

Country Status (1)

Country Link
JP (1) JP4944588B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236872A (en) * 1993-02-10 1994-08-23 Toray Dow Corning Silicone Co Ltd Forming method of silicon oxide film
JPH06246176A (en) * 1993-02-26 1994-09-06 Babcock Hitachi Kk Production of plate catalyst and processing solution of metal substrate for the catalyst
JPH10204470A (en) * 1997-01-21 1998-08-04 Idemitsu Kosan Co Ltd Lubricating oil composition for metalworking
JP2000080389A (en) * 1998-07-02 2000-03-21 Nippon Mitsubishi Oil Corp Lubricating oil composition for metalworking
JP2001252574A (en) * 2000-03-13 2001-09-18 Babcock Hitachi Kk Catalyst structure for cleaning exhaust gas and reticulated material used for this

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236872A (en) * 1993-02-10 1994-08-23 Toray Dow Corning Silicone Co Ltd Forming method of silicon oxide film
JPH06246176A (en) * 1993-02-26 1994-09-06 Babcock Hitachi Kk Production of plate catalyst and processing solution of metal substrate for the catalyst
JPH10204470A (en) * 1997-01-21 1998-08-04 Idemitsu Kosan Co Ltd Lubricating oil composition for metalworking
JP2000080389A (en) * 1998-07-02 2000-03-21 Nippon Mitsubishi Oil Corp Lubricating oil composition for metalworking
JP2001252574A (en) * 2000-03-13 2001-09-18 Babcock Hitachi Kk Catalyst structure for cleaning exhaust gas and reticulated material used for this

Also Published As

Publication number Publication date
JP4944588B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
CN105813714B (en) Flue gas treating process and denitration/SO3 reduction apparatus
JP6663842B2 (en) Honeycomb structure, exhaust gas purifying catalyst using the same, and method for producing exhaust gas purifying catalyst
US8980779B2 (en) Method of regenerating NOx removal catalyst
KR102340327B1 (en) Catalyst and method for purifying combustion exhaust gas
JP7257483B2 (en) Catalyst-carrying structure and manufacturing method thereof
JP2009262006A (en) Slurry for production of denitration catalyst, method for production of the slurry, method for production of denitration catalyst by using the slurry, and denitration catalyst produced thereby
JP2013169526A (en) Method for processing end of catalyst support honeycomb structure in exhaust gas denitration device
CN106238070B (en) The regeneration method of regenerated liquid of denitrating catalyst and preparation method thereof and denitrating catalyst
JP2015104725A (en) Method for oxidation treatment of metallic mercury in gas by using used denitration catalyst
JP2020515384A (en) Catalyst, exhaust system and method for treating exhaust gas
JP4944588B2 (en) Metal substrate for catalyst and method for producing plate-shaped denitration catalyst
JP5081420B2 (en) Catalyst production method and catalyst produced by the method
JP2013180286A (en) Denitration catalyst for treating exhaust gas and method for treating exhaust gas
JP5615058B2 (en) Method for producing metal substrate for exhaust gas denitration catalyst
JP2012066182A (en) Metal substrate for denitration catalyst, and denitration catalyst using the same
CN1886185A (en) Method for restoring performance of exhaust gas treatment apparatus
JP2010075806A (en) High-durability substrate for depositing catalyst and exhaust gas cleaning catalyst thereof
JP2004267969A (en) Exhaust gas purification equipment, catalyst for purifying exhaust gas as well as its manufacturing method
JP2006314935A (en) Flue gas nox removal catalyst, its manufacturing method, and flue gas nox removal system
JPH06246176A (en) Production of plate catalyst and processing solution of metal substrate for the catalyst
JP2016209835A (en) Method for recovering performance of denitration catalyst
JP2015116512A (en) Adsorbent for removing arsenic or phosphorus from flue gas and flue gas purification method using the same
JP2007009315A (en) Sulfidation corrosion resistant high temperature member, method for producing the same, and method for preventing sulfidation corrosion of high temperature member
JP2008253955A (en) Coating agent for denitrification catalyst, production method thereof, and denitrification catalyst
JP4071516B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees