JP2008135268A - Starting method of fuel cell device - Google Patents
Starting method of fuel cell device Download PDFInfo
- Publication number
- JP2008135268A JP2008135268A JP2006319948A JP2006319948A JP2008135268A JP 2008135268 A JP2008135268 A JP 2008135268A JP 2006319948 A JP2006319948 A JP 2006319948A JP 2006319948 A JP2006319948 A JP 2006319948A JP 2008135268 A JP2008135268 A JP 2008135268A
- Authority
- JP
- Japan
- Prior art keywords
- ignition
- temperature
- fuel cell
- combustion
- fuel gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
【課題】着火判定を誤ることなく、短時間に判定できる燃料電池の運転方法を提供する。
【解決手段】燃料ガス及び酸素含有ガスとを供給して発電する燃料電池4aと、燃焼用燃料ガスに着火する着火ヒータ7と、燃焼領域Fの温度を検知する温度センサ8とを備えた燃料電池装置の起動方法であって、燃焼用燃料ガスへのヒータ7による着火動作を行った後、所定の着火判定時間t0以内に、着火前の燃焼領域Fの温度T0℃から所定温度T1℃以上温度が上昇した場合に着火したと判定し、着火判定時間t0以内に着火と判定できなければ未着火と判定し、起動処理を継続することを特徴とする。
【選択図】図2A fuel cell operating method capable of making a determination in a short time without making an erroneous ignition determination.
A fuel cell comprising a fuel cell for generating electric power by supplying a fuel gas and an oxygen-containing gas, an ignition heater for igniting a combustion fuel gas, and a temperature sensor for detecting the temperature of a combustion region. In this battery device starting method, after the ignition operation of the combustion fuel gas by the heater 7 is performed, within a predetermined ignition determination time t 0 , the temperature T 0 ° C of the combustion region F before ignition is set to the predetermined temperature T. If the temperature rises by 1 ° C. or more, it is determined that ignition has occurred, and if ignition cannot be determined within the ignition determination time t 0, it is determined that no ignition has occurred, and the startup process is continued.
[Selection] Figure 2
Description
本発明は、燃料ガス及び酸素含有ガスが供給されて発電する燃料電池と、燃焼用燃料ガスに着火する着火手段と、燃焼用燃料ガスの燃焼領域の温度を検知する温度センサとを備えた燃料電池装置の起動方法に関する。 The present invention provides a fuel cell comprising a fuel cell that is supplied with fuel gas and an oxygen-containing gas to generate power, ignition means for igniting the combustion fuel gas, and a temperature sensor for detecting the temperature of the combustion region of the combustion fuel gas. The present invention relates to a method for starting a battery device.
従来、燃料電池装置では、改質器を昇温するため燃料ガスを燃焼させており、着火時の燃焼状態を光センサ(Cds)を用いた火炎の検知、あるいは熱電対などの温度センサによる温度検知で確認している。温度センサを用いたものとしては、例えば特許文献1のように、固体高分子形燃料電池で用いられる改質装置では、燃焼用燃料ガス供給後、点火トランスなどの着火手段で着火動作を行い、温度センサで燃焼領域の温度を検知し、検知温度が所定の絶対温度である着火判定温度以上となると着火したと判定している。
Conventionally, in a fuel cell device, fuel gas is combusted to raise the temperature of the reformer, and the combustion state at the time of ignition is detected by a flame using a photosensor (Cds) or by a temperature sensor such as a thermocouple. Confirmed by detection. As a device using a temperature sensor, for example, as in
また、固体電解質形燃料電池でも、ヒータを用いて着火動作を行い、着火する起動方法が知られており、この場合でも、温度センサの絶対温度で着火可否を判定している(例えば特許文献2参照)。
このような燃料電池装置において、温度センサで燃焼領域の温度を検知し、絶対温度で着火判定を行った場合には、誤って判定されたり、判定に時間がかかるという問題があった。 In such a fuel cell apparatus, when the temperature of the combustion region is detected by the temperature sensor and the ignition determination is performed at the absolute temperature, there is a problem that the determination is erroneous or the determination takes time.
即ち、運転停止後短時間で再起動する場合など、燃焼領域の温度が室温まで冷却されていない状態では、着火動作前の段階で温度センサの温度が既に着火判定温度を超えている場合がある。 That is, when the temperature of the combustion region is not cooled to room temperature, such as when restarting in a short time after shutdown, the temperature of the temperature sensor may already exceed the ignition determination temperature before the ignition operation. .
例えば、着火判定温度を100℃で設計しており、再起動時の燃焼領域の温度が200℃ある場合は、着火していなくても着火していると誤判断してしまう。 For example, when the ignition determination temperature is designed at 100 ° C. and the temperature of the combustion region at the time of restart is 200 ° C., it is erroneously determined that the ignition has occurred even if the ignition is not performed.
また、例えば燃焼用燃料ガスに都市ガスを使う場合は、着火判定温度を、主成分のメタンの自然発火温度である536℃以上である600℃とすると、逆に燃焼領域の温度が例えば100℃程度まで冷却されている場合では、正常に着火しても温度センサが600℃以上に昇温されるまでは時間を要するため、判定時間を長くする必要が生じ、未着火時の燃焼用燃料ガスの遮断を素早く行えず、未燃焼ガスの外部への排出が長時間に及ぶという課題があった。 For example, when city gas is used as the combustion fuel gas, if the ignition determination temperature is 600 ° C., which is 536 ° C. or more, which is the spontaneous ignition temperature of the main component methane, the temperature of the combustion region is, for example, 100 ° C. If it is cooled to a certain level, it takes time until the temperature sensor is heated to 600 ° C. or higher even if it is normally ignited. Therefore, it is necessary to lengthen the determination time, and the combustion fuel gas at the time of non-ignition There was a problem that it was not possible to shut off the gas quickly, and the discharge of unburned gas to the outside took a long time.
特に、固体酸化物型燃料電池ではその動作温度が高く600〜1000℃で動作するため、燃料電池に供給された燃料ガスのうち、発電反応に使用されなかった余剰の燃料ガスを燃焼したり、バーナで加熱して、動作温度まで温度を上昇させるため、誤って判定され易く、また判定に時間がかかり易いという課題があった。 In particular, since the solid oxide fuel cell has a high operating temperature and operates at 600 to 1000 ° C., among the fuel gas supplied to the fuel cell, the excess fuel gas that has not been used for the power generation reaction is burned, Since the temperature is raised to the operating temperature by heating with a burner, there is a problem that it is easy to make a mistaken determination and it takes a long time to make the determination.
本発明は、着火判定を誤ることなく、短時間に判定できる燃料電池装置の起動方法を提供することを目的とする。 An object of this invention is to provide the starting method of the fuel cell apparatus which can determine in a short time, without making an ignition determination mistake.
本発明の燃料電池装置の起動方法は、燃料ガス及び酸素含有ガスが供給されて発電する燃料電池と、燃焼用燃料ガスに着火する着火手段と、前記燃焼用燃料ガスの燃焼領域の温度を検知する温度センサとを備えた燃料電池装置の起動方法であって、前記燃焼用燃料ガスへの前記着火手段による着火動作を行った後、所定の着火判定時間t0以内に、着火前の前記燃焼領域の温度T0℃から所定温度T1℃以上に温度が上昇した場合に着火したと判定し、前記着火判定時間t0以内に着火と判定できなければ未着火と判定して、着火又は未着火の前記判定に応じて処理を進めることを特徴とする。 The method for starting a fuel cell device according to the present invention includes a fuel cell that is supplied with a fuel gas and an oxygen-containing gas to generate power, an ignition means that ignites the combustion fuel gas, and a temperature in the combustion region of the combustion fuel gas. A start method for a fuel cell device comprising: a temperature sensor that performs an ignition operation on the combustion fuel gas by the ignition means, and then performs the combustion before ignition within a predetermined ignition determination time t 0 When the temperature rises from the temperature T 0 ° C of the region to a predetermined temperature T 1 ° C or higher, it is determined that ignition has occurred, and if it cannot be determined that ignition has not occurred within the ignition determination time t 0, it is determined that ignition has not occurred. A process is advanced according to the said determination of ignition.
このような燃料電池装置の起動方法では、着火判定を、燃焼領域の絶対温度ではなく、着火動作前後の温度上昇T1℃で判定するため、燃料電池装置が室温の状態から起動させる場合だけでなく、起動前の燃焼領域温度が、定常運転時の燃焼領域の温度よりT1℃以上低い温度であれば、室温まで冷却されていない状態(燃料電池装置が室温よりも高温である状態)で起動しても確実に未着火を検出でき、着火判定を短時間に判定できる。 In such a fuel cell device activation method, the ignition determination is performed based on the temperature rise T 1 ° C before and after the ignition operation, not on the absolute temperature of the combustion region, so only when the fuel cell device is activated from a room temperature state. If the combustion zone temperature before startup is lower than the temperature of the combustion zone during steady operation by at least T 1 ° C., the fuel cell device is not cooled to room temperature (the fuel cell device is hotter than room temperature). Even if it is activated, unignition can be reliably detected, and the ignition determination can be made in a short time.
また、本発明の燃料電池装置の起動方法は、未着火と判定した場合には前記燃焼用燃料ガスの供給を停止することを特徴とする。このような運転方法では、未燃焼ガスの外部への排出を抑制できる。 In addition, the fuel cell device activation method of the present invention is characterized in that the supply of the combustion fuel gas is stopped when it is determined that no ignition has occurred. In such an operation method, discharge of unburned gas to the outside can be suppressed.
さらに、本発明の燃料電池装置の起動方法は、前記着火手段による着火動作を行った後、前記着火判定時間t0以内に、前記燃焼領域の温度が、前記燃焼用燃料ガスの自然発火温度以上の設定温度T2℃以上になった場合は着火したと判定することを特徴とする。 Furthermore, in the method for starting the fuel cell device according to the present invention, the temperature of the combustion region is equal to or higher than the spontaneous ignition temperature of the combustion fuel gas within the ignition determination time t 0 after performing the ignition operation by the ignition means. It is determined that ignition has occurred when the temperature reaches a set temperature T 2 ° C or higher.
このような燃料電池装置の起動方法では、燃料電池装置の運転停止後、即再起動を行う場合など、着火前の燃焼領域の温度と定常運転時の燃焼領域の温度との温度差がT1℃よりも小さい場合もあり得るが、本発明では、燃焼用燃料ガスの自然発火温度T2℃以上になった場合は着火したと判定するため、正確な判定を行うことができる。また、燃料電池装置の運転停止後、即再起動を行う場合など、着火前の燃焼領域の温度が高くなるほど、定常運転時の燃焼領域の温度との温度差が少なくなるため、T1℃の温度上昇時間が長くなる傾向にあるが、本発明では、燃焼用燃料ガスの自然発火温度T2℃以上になった場合は着火したと判定するため、着火前の燃焼領域温度がT2−T1℃から自然発火温度T2℃までが、最も判定時間が長くなるため、このT2−T1℃からT2℃まで温度上昇する時間を考慮して、着火判定時間を決めれば良く、むやみに着火判定時間を長くする必要が無くなり、これにより、着火失敗時の判定を素早く行え、未燃ガスの放出を少なくできる。 In such a fuel cell device start-up method, the temperature difference between the temperature of the combustion region before ignition and the temperature of the combustion region during steady operation is T 1, for example, when restarting immediately after stopping the operation of the fuel cell device. Although it may be lower than ° C., in the present invention, it is determined that the ignition has occurred when the combustion temperature of the combustion fuel gas is equal to or higher than T 2 ° C. Therefore, accurate determination can be made. Further, after the stop of the operation of the fuel cell system, such as when performing an immediate reboot, as the temperature of the combustion region before ignition is increased, since the temperature difference between the temperature of the combustion region during steady operation is reduced, T 1 of ℃ Although the temperature rise time tends to be long, in the present invention, the combustion region temperature before ignition is T 2 −T in order to determine that the ignition has occurred when the combustion gas reaches or exceeds the spontaneous ignition temperature T 2 ° C. until autoignition temperature T 2 ° C. from 1 ℃ is most because the determination time is prolonged, taking into account the time for the temperature rise from the T 2 -T 1 ℃ to T 2 ° C., may be determined ignition determination time, needlessly Therefore, it is not necessary to lengthen the ignition determination time, whereby it is possible to quickly determine when the ignition fails and to reduce the emission of unburned gas.
また、本発明の燃料電池装置の起動方法は、前記着火手段による着火動作を行う際は、前記燃焼領域への酸素含有ガス供給量を低く設定し、着火したと判定後に、酸素含有ガス供給量を増加させることを特徴とする。 Further, in the start-up method of the fuel cell device of the present invention, when performing the ignition operation by the ignition means, the oxygen-containing gas supply amount to the combustion region is set low, and after determining that the ignition has been performed, the oxygen-containing gas supply amount It is characterized by increasing.
着火動作時に酸素含有ガス供給量が多いと火炎を吹き消す恐れがある為、着火動作時は酸素含有ガス供給量を低く設定しておき、着火したと判定後、最適な空燃費まで酸素含有ガス供給量を増加することで、確実な着火を行うことができ、未着火時の未燃ガスの放出を抑制できる。 If there is a large supply of oxygen-containing gas during ignition operation, the flame may be blown out, so the oxygen-containing gas supply amount should be set low during ignition operation. By increasing the supply amount, reliable ignition can be performed, and release of unburned gas when unignited can be suppressed.
さらに、本発明の燃料電池装置の起動方法は、未着火と判定し、前記燃焼用燃料ガスの供給を停止した後、前記着火手段による着火動作を再度繰り返し、前記着火手段による着火動作を所定回数繰り返しても着火と判定できなかった場合に、前記燃焼用燃料ガスの供給を停止した後、前記着火手段による着火動作を停止することを特徴とする。 Further, the method for starting the fuel cell device according to the present invention determines that the ignition has not been performed, stops supplying the combustion fuel gas, repeats the ignition operation by the ignition means again, and repeats the ignition operation by the ignition means a predetermined number of times. If the ignition cannot be determined even after repeated, the ignition operation by the ignition means is stopped after the supply of the combustion fuel gas is stopped.
これは、設置後初回起動時あるいは長期間使用していない状態では、燃焼用燃料ガス配管に燃焼用燃料ガスが充填されていないため、燃焼用燃料ガスの供給を開始しても燃焼領域に放出されるにはある程度の時間を要する。しかしながら、一旦充填された後で再起動する場合などはすぐに燃焼領域に燃料ガスが放出されるため、むやみに判定時間を長くすることは未燃ガスの大量放出につながる。本発明では、着火動作を繰り返し、所定回数着火動作を繰り返しても着火と判定できなかった場合には着火動作を停止するため、未燃ガスの大量放出を防止できる。特に、各着火動作毎に未着火と判定した場合に、燃焼用燃料ガスの供給を停止すると、未燃ガスの放出をさらに抑制できる。 This is because the combustion fuel gas piping is not filled with the combustion fuel gas when it is started for the first time after installation or when it has not been used for a long time. It takes a certain amount of time. However, since the fuel gas is immediately released to the combustion region when the fuel cell is restarted after being filled, unnecessarily increasing the determination time leads to a large amount of unburned gas being released. In the present invention, the ignition operation is repeated, and when the ignition operation cannot be determined even after repeating the ignition operation a predetermined number of times, the ignition operation is stopped, so that a large amount of unburned gas can be released. In particular, when it is determined that there is no ignition for each ignition operation, the release of the unburned gas can be further suppressed by stopping the supply of the combustion fuel gas.
また、着火失敗は、天候(気温、湿度)による空気の含有水分量やモジュール内の水分吸着度合いの変化、着火ヒータ等の着火手段へのスケール付着等様々な要因があるが、所定回数繰り返すことで機器故障以外の外乱影響を緩和でき、すぐに機器停止となるのを避けられ、ユーザーの使い勝手の低下を防止できる。 In addition, ignition failure has various factors such as changes in the moisture content of air due to the weather (air temperature and humidity), changes in the degree of moisture adsorption in the module, and scale adhesion to ignition means such as ignition heaters. This can alleviate the effects of disturbances other than equipment failure, prevent the equipment from shutting down immediately, and prevent the user from losing usability.
また、本発明の燃料電池装置の起動方法は、未着火と判定し、前記燃焼用燃料ガスの供給を停止した後、前記着火手段による着火動作を再度行う際は、前記燃焼領域への酸素含有ガス供給量を減少させて前記着火動作を行うことを特徴とする。 Further, in the method for starting the fuel cell device of the present invention, when it is determined that the ignition has not been performed and the supply of the fuel gas for combustion is stopped, the ignition operation by the ignition means is performed again. The ignition operation is performed while reducing the gas supply amount.
このような燃料電池装置の起動方法では、未着火と判定した場合、前回の着火動作時よりも燃焼領域への酸素含有ガス供給量を減少させて着火動作を行うため、酸素含有ガスで火炎を吹き消している場合には、着火動作時に酸素含有ガス供給量を少なくすることにより、確実に着火できる。 In such a start-up method of the fuel cell device, when it is determined that the ignition has not been performed, the ignition operation is performed by reducing the amount of oxygen-containing gas supplied to the combustion region compared to the previous ignition operation. In the case of blowing off, ignition can be ensured by reducing the supply amount of the oxygen-containing gas during the ignition operation.
さらに、本発明の燃料電池装置の起動方法は、前記着火手段がヒータであり、前記燃焼用燃料ガスの供給を開始する前に、予熱時間t1だけヒータに通電し、予熱することを特徴とする。このような燃料電池装置の起動方法では、燃焼用燃料ガスの供給を開始してからヒータに通電して着火する場合よりも着火時間を短縮でき、その分、未燃ガスの外部への放出を少なくできる。また、仮に、長期使用によるヒータ性能の低下、ヒータへのスケール付着などでヒータ表面温度が低下した場合に、ヒータの予熱時間を長くして十分にヒータを加熱し温度を上げた状態で着火動作を行うことで、着火性能の低下を防止できる。 Furthermore, the starting method of the fuel cell device according to the present invention is characterized in that the ignition means is a heater, and the heater is energized and preheated for a preheating time t 1 before the supply of the combustion fuel gas is started. To do. In such a fuel cell device start-up method, the ignition time can be shortened compared with the case where the heater is ignited by starting the supply of the fuel gas for combustion, and the unburned gas is released to the outside accordingly. Less. In addition, if the heater surface temperature decreases due to deterioration of heater performance due to long-term use, scale adhesion to the heater, etc., ignition operation is performed with the heater preheated for a long time and sufficiently heated. By performing the above, it is possible to prevent a decrease in ignition performance.
また、本発明の燃料電池装置の起動方法は、未着火と判定し、前記燃焼用燃料ガスの供給を停止した後、再度前記着火手段による着火動作を行う際は、前記ヒータの予熱時間t1を前回の着火動作時よりも長くして着火動作を行うことを特徴とする。このような燃料電池装置の起動方法では、燃焼用燃料ガスの供給を開始してからヒータに通電して着火する場合よりも着火時間を短縮でき、その分、未燃ガスの外部への放出を少なくできるとともに、長期使用によるヒータ性能の低下、ヒータへのスケール付着などでヒータ表面温度が低下したことが原因で未着火となった場合に、ヒータの予熱時間を長くして十分にヒータを加熱し温度を上げた状態で着火動作を行うことで、着火信頼性を向上できる。 Further, in the method for starting the fuel cell device of the present invention, when it is determined that the ignition has not been performed and the supply of the fuel gas for combustion is stopped, when the ignition operation is performed again by the ignition means, the heater preheating time t 1 This is characterized in that the ignition operation is performed with a length longer than that in the previous ignition operation. In such a fuel cell device start-up method, the ignition time can be shortened compared with the case where the heater is ignited by starting the supply of the fuel gas for combustion, and the unburned gas is released to the outside accordingly. In addition, if the heater surface temperature decreases due to deterioration of the heater performance due to long-term use, scale adhesion to the heater, etc. The ignition reliability can be improved by performing the ignition operation with the temperature raised.
さらに、本発明の燃料電池装置の起動方法は、未着火と判定した場合、表示装置に異常表示を行うことを特徴とする。これにより、表示装置の異常表示から燃焼用燃料ガスに着火していないことを確認できる。 Furthermore, the method for starting the fuel cell device according to the present invention is characterized in that when it is determined that no ignition has occurred, an abnormality is displayed on the display device. Thereby, it can confirm that the fuel gas for combustion is not ignited from the abnormality display of a display apparatus.
本発明の燃料電池装置の起動方法では、燃焼用燃料ガスへの着火判定を着火動作前からの温度上昇で判定するため、燃料電池装置の再起動時であっても、着火判定を確実(正確)に素早く行え、未着火の未燃ガスの放出を抑制できる。 In the method for starting the fuel cell device according to the present invention, the ignition determination for the combustion fuel gas is determined based on the temperature rise from before the ignition operation. Therefore, even when the fuel cell device is restarted, the ignition determination is ensured (accurate). ) Can be quickly performed, and release of unignited unburned gas can be suppressed.
以下、本発明の燃料電池装置の起動方法の一形態について説明する。図1は燃料電池装置の概要を示す概略構成図である。 Hereinafter, an embodiment of the starting method of the fuel cell device of the present invention will be described. FIG. 1 is a schematic configuration diagram showing an outline of a fuel cell device.
燃料電池装置は、図1に示すように、収納容器1内に、改質器3及びセルスタック4が収容されて構成されている。セルスタック4は、複数の燃料電池セル(燃料電池)4aをガスマニホールド4bに立設して構成されている。収納容器1の改質器3へは、ガスポンプ2により外部から都市ガス、プロパンガス等の原燃料ガスが供給され、改質器3にて改質された燃料ガスがセルスタック4の燃料電池セル4aに供給される。また、収納容器1内には、空気(酸素含有ガス)が空気ブロワ5により空気導入管6を介して供給される。
As shown in FIG. 1, the fuel cell device is configured such that a reformer 3 and a
即ち、燃料電池セル4aは、内部に燃料ガスが流通するガス通路を有しており、燃料ガスは、マニホールド4b内から燃料電池セル4aのガス通路を流通して発電反応に用いられ、余剰の燃料ガスがガス通路を介して燃料電池セル4aの上方(燃焼領域F)に放出される。一方、空気は空気ブロワ5により空気導入管6より収納容器1内に供給される。
That is, the fuel cell 4a has a gas passage through which the fuel gas flows. The fuel gas flows from the manifold 4b through the gas passage of the fuel cell 4a and is used for the power generation reaction. The fuel gas is discharged above the fuel battery cell 4a (combustion region F) through the gas passage. On the other hand, air is supplied from the
そして、この形態では、燃料電池セル4aの上方(燃焼領域F)に放出された余剰の燃料ガスが、燃焼用燃料ガスとされている。 And in this form, the surplus fuel gas discharge | released above the fuel cell 4a (combustion area | region F) is made into the fuel gas for combustion.
つまり、この形態では、セルスタック4の上方に放出される余剰の燃料ガスが燃焼する燃焼領域F、言い換えれば、セルスタック4上方には、着火手段としてのヒータ7、燃料ガスの燃焼状態を計測する温度センサ8が設けられており、燃焼領域Fの上方には、改質器3が設けられ、改質器3は、セルスタック4から放出された燃料ガスの燃焼により加熱されるように構成されている。
In other words, in this embodiment, the combustion region F in which surplus fuel gas discharged above the
温度センサ8としては、1000℃以上の温度を計測でき応答性も速く安価であるK種熱電対を用いることができる。又、温度センサ8は、ヒータ7からの輻射熱をできるだけ検出しないように離して配置されている。従って、セルスタック4から吹き出した燃料ガスにヒータ7で着火し、燃料ガスを燃焼させて改質器3を昇温させ、原燃料ガスの改質を行う構造としている。燃焼した排ガスは排気管9より収納容器1外部に放出される。
As the temperature sensor 8, a K-type thermocouple that can measure a temperature of 1000 ° C. or higher and that is fast in response and inexpensive can be used. Further, the temperature sensor 8 is arranged so as not to detect the radiant heat from the
以上のように構成された燃料電池装置の起動方法について、図2に基づいて説明する。燃料電池装置の起動が開始されると、先ず発電準備である起動処理を行う。 A method for starting the fuel cell device configured as described above will be described with reference to FIG. When activation of the fuel cell device is started, first, activation processing that is preparation for power generation is performed.
先ず、S1において着火ヒータ7の予熱時間t1を1分に設定する。S2で空気ブロワ5を起動し収納容器1内に空気を供給する。ここで、着火動作時は空気ブロワ5による供給量が多いと火炎を吹き消す恐れがある為、流量を少なく(例えば、40L/min)設定しておく。この空気ブロワ5による空気供給が、燃料電池セル4aの上方の燃焼領域Fに達し、燃料電池セル4aの火炎を吹き消すおそれがあるため、空気ブロワ5による空気供給量を減らすことで、燃焼領域Fへの空気供給量を減らすことができる。その後、S3でヒータ7に通電し、S4において設定した予熱時間t1だけ待機する。これにより、ヒータ7を予熱する。再起動時では、この待機時間に収納容器1内に残留している燃料ガスを、空気を収納容器1内に供給することにより排出する。
First, to set a preheating time t 1 of the
予熱時間t1が経過すると、S5で温度センサ8の検知温度を着火前の温度T0として記憶した後、S6でガスポンプ2を起動させ、収納容器1の改質器3内に原燃料ガスを供給し、改質された燃料ガスを燃料電池セル4aに供給し、発電反応に用いられなかった余剰の燃料ガスが燃焼領域Fに放出され、この余剰の燃料ガスに着火を試みる。
When the preheating time t 1 has elapsed, after storing the temperature detected by the temperature sensor 8 as temperature T 0 before ignition in S5, activates the gas pump 2 in S6, the reformer 3 in the raw fuel gas of the
そして、S7において着火判定時間t0(例えば1分)が経過したか確認する。経過していなければS8で温度センサ8の検知温度がS5で記憶したT0℃よりT1(例えば100℃)℃上昇したか確認する。言い換えれば、温度センサ8の検知温度(絶対温度)が[T0+T1]℃以上になったか確認する。[T0+T1]℃以上の場合は、着火したと判定しS10に進む。[T0+T1]℃未満の場合は、S9において温度センサ8の検知温度がT2℃以上か確認する。ここでT2は燃料ガスの自然発火温度以上の所定温度とする。ここでは燃料ガスに都市ガスを使用し、その主成分であるメタンの自然発火温度が536℃の為、自然発火温度以上の設定温度T2を600℃と設定している。 Then, in S7, it is confirmed whether the ignition determination time t 0 (for example, 1 minute) has elapsed. If it has not elapsed, it is checked in S8 whether the detected temperature of the temperature sensor 8 has increased by T 1 (for example, 100 ° C.) ° C. from T 0 ° C. stored in S5. In other words, it is confirmed whether the detected temperature (absolute temperature) of the temperature sensor 8 is equal to or higher than [T 0 + T 1 ] ° C. If [T 0 + T 1 ] ° C. or higher, it is determined that ignition has occurred, and the process proceeds to S10. When the temperature is lower than [T 0 + T 1 ] ° C., it is confirmed in S9 whether the temperature detected by the temperature sensor 8 is equal to or higher than T 2 ° C. Here T 2 are the autoignition temperature above the predetermined temperature of the fuel gas. Here, city gas is used as the fuel gas, and since the spontaneous ignition temperature of methane, which is the main component thereof, is 536 ° C., the set temperature T 2 equal to or higher than the spontaneous ignition temperature is set to 600 ° C.
温度センサ8の検知温度がT2℃以上の場合は、自然発火するため着火したと判定し、S10に進む。T2℃未満の場合は、再度、S7から判定を繰り返す。従って、着火判定時間t0以内に、温度センサ8の検知温度が[T0+T1]℃以上になるか、T2℃以上になれば、着火したと判定しS10に進み、S10で空気ブロワ5による空気供給量を最適な空燃比となる流量(例えば60L/min)まで増加させ、定常運転へ移行する。 If the detected temperature of the temperature sensor 8 is equal to or higher than T 2 ° C., it is determined that ignition has occurred because of spontaneous ignition, and the process proceeds to S10. If it is less than T 2 ° C, the determination is repeated from S7 again. Therefore, if the detected temperature of the temperature sensor 8 is equal to or higher than [T 0 + T 1 ] ° C. or higher than T 2 ° C. within the ignition determination time t 0 , it is determined that the ignition has occurred, and the process proceeds to S 10. 5 is increased to a flow rate (for example, 60 L / min) at which the air-fuel ratio becomes an optimum air-fuel ratio, and the operation shifts to a steady operation.
もし、着火判定時間t0以内に、温度センサ8の検知温度が[T0+T1]℃以上にも、T2℃以上にもならなければ、未着火と判断し、S11で原燃料ガスのガスポンプ2を停止し、燃焼用燃料ガスである燃料ガスの燃焼領域Fへの供給を停止後、S12で所定のリトライ回数(例えば3回)以内か確認する。リトライ回数以内であればS13でヒータ7の予熱時間t1を3分に延ばした後、S2に戻り、再度着火動作を繰り返す。もし、所定のリトライ回数(3回)着火動作を繰り返しても未着火の場合は、S12でNo判定となり、S14に進み、表示装置、例えばモニター画面に異常表示を行った後、S15で着火動作を停止する。
If the detected temperature of the temperature sensor 8 does not exceed [T 0 + T 1 ] ° C. or higher than T 2 ° C. within the ignition determination time t 0 , it is determined that no ignition has occurred, and in S11, the raw fuel gas is discharged. After the gas pump 2 is stopped and the supply of the fuel gas, which is a combustion fuel gas, to the combustion region F is stopped, it is confirmed in S12 whether or not it is within a predetermined number of retries (for example, 3 times). After extending the preheating time t 1 of the
以上のような燃料電池装置の起動方法では、S8で着火動作前後の温度上昇(温度差)T1℃で判定するため、燃料電池装置の運転停止後、燃料電池装置が室温の状態まで冷えていない段階で起動を開始(再起動)しても確実にかつ迅速に未着火を検出でき、未燃ガスの放出を抑制できる。また、燃料電池装置の運転停止後、即再起動を行うなど収納容器1内の温度が600℃を超えている場合は、T1℃の温度上昇に時間がかかる、あるいは定常運転時の燃焼領域Fの温度が700℃よりも低い場合にはT1℃上昇しない場合もあるが、S9で温度センサ8の検知温度がT2(600)℃以上の場合は、自然発火温度以上であり着火したと自動的に判断する為、高温からの再起動にも対応ができる。
In the starting method of the fuel cell device as described above, since the temperature rise (temperature difference) T 1 ° C before and after the ignition operation is determined in S8, the fuel cell device is cooled to the room temperature after the fuel cell device is stopped. Even if starting is started (restarting) at a stage where there is no ignition, unignition can be detected reliably and quickly, and release of unburned gas can be suppressed. Further, when the temperature in the
また、着火動作時はS2で空気ブロワ5による供給量を少なくして着火性を高め、着火後S10にて空気ブロワ5による供給量を最適な空燃費となる流量まで増加した為、空気供給量が多すぎて火炎を吹き消すこと無く確実に着火できる。また、S7で未着火と判定した場合もS12で所定のリトライ回数だけ自動的に着火動作を繰り返すようにした為、設置後初回起動時などでシステム内の燃料ガス配管に燃料ガスが充填されていない場合、また、天候、長期使用などの様々な外乱影響を緩和でき、すぐに機器停止となるのを避けられる。
Further, during the ignition operation, the supply amount by the
また、未着火でリトライを行う際は、ヒータ7への予熱時間を長くしたため、ヒータへのスケール付着等でヒータ7の着火性能が低下した場合でもリトライ時の着火性能を向上できる。
Further, when retrying without ignition, the preheating time for the
尚、上記形態では、燃料電池セル4a内に供給され、発電反応に用いられなかった余剰の燃料ガスを、燃焼用燃料ガスとしたが、本発明では、例えば、収納容器内に、燃料電池セルを加熱するバーナを設け、このバーナから放出される都市ガス等を燃焼用燃料ガスとしても良い。この場合には、燃料電池セルに供給された余剰の燃料ガスを燃焼させる必要がないため、燃料電池セルに供給された燃料ガスのうち余剰の燃料ガスを回収し、再利用することができる。 In the above embodiment, the surplus fuel gas supplied into the fuel cell 4a and not used in the power generation reaction is used as the combustion fuel gas. However, in the present invention, for example, the fuel cell is placed in the storage container. It is also possible to provide a burner for heating the gas and use city gas or the like discharged from the burner as the combustion fuel gas. In this case, since it is not necessary to burn the surplus fuel gas supplied to the fuel battery cell, the surplus fuel gas in the fuel gas supplied to the fuel battery cell can be recovered and reused.
また、上記形態では、収納容器1内に改質器を収納した形態について説明したが、本発明では、収納容器外に改質器を設け、この改質器にて改質された燃料ガスを燃料電池セルに供給するように構成しても良い。この場合、燃料電池セルが収容された収納容器と別に改質用収納容器を設け、この改質用収納容器内に改質器を収納し、この改質器を加熱するための燃焼用燃料ガスに着火するために、本発明を用いることもできる。
Moreover, although the form which accommodated the reformer in the
さらに、上記形態では、S7の着火判定時間t0内に温度センサ8の検知温度がT2(600℃)以上となった場合には、着火したと判定する場合について説明したが、例えば、S5の温度センサが検知する温度がT2(600℃)以上である場合には、着火したと判定しても良い。この場合には、判定作業を簡略化できる。 Furthermore, in the above-described embodiment, the case where it is determined that the ignition is detected when the temperature detected by the temperature sensor 8 is equal to or higher than T 2 (600 ° C.) within the ignition determination time t 0 of S 7 has been described. If the temperature detected by the temperature sensor is equal to or higher than T 2 (600 ° C.), it may be determined that ignition has occurred. In this case, the determination work can be simplified.
1・・・収納容器
2・・・ガスポンプ
3・・・改質器
4・・・セルスタック
4a・・・燃料電池セル(燃料電池)
5・・・空気ブロワ
7・・・着火ヒータ(着火手段)
8・・・温度センサ
F・・・燃焼領域
DESCRIPTION OF
5 ...
8 ... Temperature sensor F ... Combustion region
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006319948A JP2008135268A (en) | 2006-11-28 | 2006-11-28 | Starting method of fuel cell device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006319948A JP2008135268A (en) | 2006-11-28 | 2006-11-28 | Starting method of fuel cell device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008135268A true JP2008135268A (en) | 2008-06-12 |
Family
ID=39559978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006319948A Pending JP2008135268A (en) | 2006-11-28 | 2006-11-28 | Starting method of fuel cell device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008135268A (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010067547A (en) * | 2008-09-12 | 2010-03-25 | Toto Ltd | Fuel battery module |
JP2010067548A (en) * | 2008-09-12 | 2010-03-25 | Toto Ltd | Fuel battery system |
JP2010153064A (en) * | 2008-12-24 | 2010-07-08 | Kyocera Corp | Fuel battery device |
JP2010153063A (en) * | 2008-12-24 | 2010-07-08 | Kyocera Corp | Fuel battery device |
EP2256848A1 (en) | 2009-05-28 | 2010-12-01 | Toto Ltd. | Solid oxide fuel cell device |
EP2256850A1 (en) | 2009-05-28 | 2010-12-01 | Toto Ltd. | Solid oxide fuel cell device |
EP2256849A1 (en) | 2009-05-28 | 2010-12-01 | Toto Ltd. | Solid oxide fuel cell device |
JP2011009036A (en) * | 2009-06-25 | 2011-01-13 | Kyocera Corp | Fuel cell device |
JP2011096595A (en) * | 2009-11-02 | 2011-05-12 | Jx Nippon Oil & Energy Corp | Combustion device, fuel cell system, and ignition determination method for combustion portion |
JP2011238527A (en) * | 2010-05-12 | 2011-11-24 | Jx Nippon Oil & Energy Corp | Fuel cell system and control method thereof |
JP2012009206A (en) * | 2010-06-23 | 2012-01-12 | Rinnai Corp | Power generator |
WO2012043646A1 (en) | 2010-09-30 | 2012-04-05 | Toto株式会社 | Solid oxide fuel cell |
JP2012156060A (en) * | 2011-01-27 | 2012-08-16 | Toto Ltd | Solid electrolyte fuel cell device |
JP2013171635A (en) * | 2012-02-17 | 2013-09-02 | Toto Ltd | Fuel cell device |
JP2014010896A (en) * | 2012-06-27 | 2014-01-20 | Kyocera Corp | Fuel cell device |
WO2015162833A1 (en) * | 2014-04-25 | 2015-10-29 | パナソニック株式会社 | Solid oxide fuel cell |
EP3104443A1 (en) | 2015-06-10 | 2016-12-14 | Aisin Seiki Kabushiki Kaisha | Fuel cell system |
JP2017098146A (en) * | 2015-11-26 | 2017-06-01 | 京セラ株式会社 | Module and module storage device |
US9843061B2 (en) | 2013-04-05 | 2017-12-12 | Panasonic Intellectual Property Management Co., Ltd. | Hydrogen generator with a supplementary air flow rate adjustor for a combustor |
DE102017118755A1 (en) | 2016-09-29 | 2018-03-29 | Aisin Seiki Kabushiki Kaisha | FUEL CELL SYSTEM |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0719484A (en) * | 1993-06-28 | 1995-01-20 | Sanden Corp | Safety device for kerosene stove |
JP2003036877A (en) * | 2001-07-23 | 2003-02-07 | Mitsubishi Electric Corp | Phosphoric acid type fuel cell power generator |
JP2004116934A (en) * | 2002-09-27 | 2004-04-15 | Aisin Seiki Co Ltd | Ignition method for fuel cell reformer burner and fuel cell system by this method |
JP2004156895A (en) * | 2002-10-16 | 2004-06-03 | Matsushita Electric Ind Co Ltd | Burner, hydrogen generating device and fuel battery power generating system |
JP2006002991A (en) * | 2004-06-17 | 2006-01-05 | Matsushita Electric Ind Co Ltd | Combustion device |
JP2006024397A (en) * | 2004-07-06 | 2006-01-26 | Honda Motor Co Ltd | Fuel cell system |
JP2006086016A (en) * | 2004-09-16 | 2006-03-30 | Kyocera Corp | Operation method of solid oxide fuel cell |
JP2006093023A (en) * | 2004-09-27 | 2006-04-06 | Nissan Motor Co Ltd | Fuel cell system and power supply system using the same |
JP2006105481A (en) * | 2004-10-05 | 2006-04-20 | Nippon Oil Corp | Burner and fuel cell system |
JP2006233011A (en) * | 2005-02-24 | 2006-09-07 | Aisin Seiki Co Ltd | Fuel gas processing equipment |
JP2007187426A (en) * | 2006-01-16 | 2007-07-26 | Ebara Ballard Corp | Combustion device, reformer, fuel cell power generation system, and operation method of reformer |
JP2008010369A (en) * | 2006-06-30 | 2008-01-17 | Sanyo Electric Co Ltd | Starting method of fuel cell system and fuel cell system |
JP2008135284A (en) * | 2006-11-28 | 2008-06-12 | Toshiba Fuel Cell Power Systems Corp | Fuel cell power generating system and its starting method |
-
2006
- 2006-11-28 JP JP2006319948A patent/JP2008135268A/en active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0719484A (en) * | 1993-06-28 | 1995-01-20 | Sanden Corp | Safety device for kerosene stove |
JP2003036877A (en) * | 2001-07-23 | 2003-02-07 | Mitsubishi Electric Corp | Phosphoric acid type fuel cell power generator |
JP2004116934A (en) * | 2002-09-27 | 2004-04-15 | Aisin Seiki Co Ltd | Ignition method for fuel cell reformer burner and fuel cell system by this method |
JP2004156895A (en) * | 2002-10-16 | 2004-06-03 | Matsushita Electric Ind Co Ltd | Burner, hydrogen generating device and fuel battery power generating system |
JP2006002991A (en) * | 2004-06-17 | 2006-01-05 | Matsushita Electric Ind Co Ltd | Combustion device |
JP2006024397A (en) * | 2004-07-06 | 2006-01-26 | Honda Motor Co Ltd | Fuel cell system |
JP2006086016A (en) * | 2004-09-16 | 2006-03-30 | Kyocera Corp | Operation method of solid oxide fuel cell |
JP2006093023A (en) * | 2004-09-27 | 2006-04-06 | Nissan Motor Co Ltd | Fuel cell system and power supply system using the same |
JP2006105481A (en) * | 2004-10-05 | 2006-04-20 | Nippon Oil Corp | Burner and fuel cell system |
JP2006233011A (en) * | 2005-02-24 | 2006-09-07 | Aisin Seiki Co Ltd | Fuel gas processing equipment |
JP2007187426A (en) * | 2006-01-16 | 2007-07-26 | Ebara Ballard Corp | Combustion device, reformer, fuel cell power generation system, and operation method of reformer |
JP2008010369A (en) * | 2006-06-30 | 2008-01-17 | Sanyo Electric Co Ltd | Starting method of fuel cell system and fuel cell system |
JP2008135284A (en) * | 2006-11-28 | 2008-06-12 | Toshiba Fuel Cell Power Systems Corp | Fuel cell power generating system and its starting method |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010067547A (en) * | 2008-09-12 | 2010-03-25 | Toto Ltd | Fuel battery module |
JP2010067548A (en) * | 2008-09-12 | 2010-03-25 | Toto Ltd | Fuel battery system |
JP2010153064A (en) * | 2008-12-24 | 2010-07-08 | Kyocera Corp | Fuel battery device |
JP2010153063A (en) * | 2008-12-24 | 2010-07-08 | Kyocera Corp | Fuel battery device |
EP2256848A1 (en) | 2009-05-28 | 2010-12-01 | Toto Ltd. | Solid oxide fuel cell device |
EP2256850A1 (en) | 2009-05-28 | 2010-12-01 | Toto Ltd. | Solid oxide fuel cell device |
CN101901927A (en) * | 2009-05-28 | 2010-12-01 | Toto株式会社 | Solid electrolyte fuel cell |
EP2256849A1 (en) | 2009-05-28 | 2010-12-01 | Toto Ltd. | Solid oxide fuel cell device |
US8974978B2 (en) | 2009-05-28 | 2015-03-10 | Toto Ltd. | Solid oxide fuel cell device |
US8592093B2 (en) | 2009-05-28 | 2013-11-26 | Toto Ltd. | Solid oxide fuel cell device |
JP2011009036A (en) * | 2009-06-25 | 2011-01-13 | Kyocera Corp | Fuel cell device |
JP2011096595A (en) * | 2009-11-02 | 2011-05-12 | Jx Nippon Oil & Energy Corp | Combustion device, fuel cell system, and ignition determination method for combustion portion |
JP2011238527A (en) * | 2010-05-12 | 2011-11-24 | Jx Nippon Oil & Energy Corp | Fuel cell system and control method thereof |
JP2012009206A (en) * | 2010-06-23 | 2012-01-12 | Rinnai Corp | Power generator |
JP2012079487A (en) * | 2010-09-30 | 2012-04-19 | Toto Ltd | Solid oxide fuel cell apparatus |
CN103140975A (en) * | 2010-09-30 | 2013-06-05 | Toto株式会社 | Solid oxide fuel cell |
WO2012043646A1 (en) | 2010-09-30 | 2012-04-05 | Toto株式会社 | Solid oxide fuel cell |
US9385386B2 (en) | 2010-09-30 | 2016-07-05 | Toto Ltd. | Solid oxide fuel cell system |
EP2624347A4 (en) * | 2010-09-30 | 2015-08-26 | Toto Ltd | Solid oxide fuel cell |
JP2012156060A (en) * | 2011-01-27 | 2012-08-16 | Toto Ltd | Solid electrolyte fuel cell device |
JP2013171635A (en) * | 2012-02-17 | 2013-09-02 | Toto Ltd | Fuel cell device |
JP2014010896A (en) * | 2012-06-27 | 2014-01-20 | Kyocera Corp | Fuel cell device |
US9843061B2 (en) | 2013-04-05 | 2017-12-12 | Panasonic Intellectual Property Management Co., Ltd. | Hydrogen generator with a supplementary air flow rate adjustor for a combustor |
WO2015162833A1 (en) * | 2014-04-25 | 2015-10-29 | パナソニック株式会社 | Solid oxide fuel cell |
JP6023917B2 (en) * | 2014-04-25 | 2016-11-09 | パナソニック株式会社 | Solid oxide fuel cell |
EP3136485A4 (en) * | 2014-04-25 | 2017-05-17 | Panasonic Corporation | Solid oxide fuel cell |
US10096849B2 (en) | 2014-04-25 | 2018-10-09 | Panasonic Corporation | Solid oxide fuel cell system |
EP3429008A1 (en) | 2014-04-25 | 2019-01-16 | Panasonic Corporation | Solid oxide fuel cell |
US10629926B2 (en) | 2014-04-25 | 2020-04-21 | Panasonic Corporation | Solid oxide fuel cell system |
EP3104443A1 (en) | 2015-06-10 | 2016-12-14 | Aisin Seiki Kabushiki Kaisha | Fuel cell system |
JP2017098146A (en) * | 2015-11-26 | 2017-06-01 | 京セラ株式会社 | Module and module storage device |
DE102017118755A1 (en) | 2016-09-29 | 2018-03-29 | Aisin Seiki Kabushiki Kaisha | FUEL CELL SYSTEM |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008135268A (en) | Starting method of fuel cell device | |
JP5847617B2 (en) | Fuel cell system | |
JP5213345B2 (en) | Fuel cell device | |
KR101322619B1 (en) | Gas pressure drop detecting method using differential pressure sensor | |
JP6023917B2 (en) | Solid oxide fuel cell | |
WO2005052451A1 (en) | Burner control sensor configuration | |
JP6446949B2 (en) | Fuel cell system | |
TWI704324B (en) | Industrial furnace and combustion control method for industrial furnace | |
EP3113269B1 (en) | Fuel cell system | |
JP7068052B2 (en) | Fuel cell system, start control program | |
JP7452449B2 (en) | fuel cell system | |
JP6701804B2 (en) | Fuel cell system | |
JP2003151596A (en) | Fuel cell generator system | |
JP2014026982A (en) | Solid oxide fuel cell device | |
KR20130034739A (en) | Gas pressure drop detecting method using differential pressure sensor | |
KR101242696B1 (en) | Burning control method of combustion chamber | |
JP2010218790A (en) | Fuel cell power generation system | |
JP6424494B2 (en) | Fuel cell system | |
JP6978292B2 (en) | Power generator, control device and control program | |
CN110793067B (en) | Intelligent wall-mounted gas furnace ignition system and method | |
KR20200081677A (en) | Apparatus for Combustion and the Method for Controlling Combustion | |
KR20240095933A (en) | Apparatus and Method for detecting ignition delay of combustor | |
JP2009218032A (en) | Ignitor motion control method and device for fuel processing device burner | |
JP6361422B2 (en) | Fuel cell system | |
JP2020113404A (en) | Fuel cell system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090617 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120417 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120618 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130311 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130827 |