[go: up one dir, main page]

JP2008128114A - Exhaust throttle valve failure diagnosis device for internal combustion engine - Google Patents

Exhaust throttle valve failure diagnosis device for internal combustion engine Download PDF

Info

Publication number
JP2008128114A
JP2008128114A JP2006314521A JP2006314521A JP2008128114A JP 2008128114 A JP2008128114 A JP 2008128114A JP 2006314521 A JP2006314521 A JP 2006314521A JP 2006314521 A JP2006314521 A JP 2006314521A JP 2008128114 A JP2008128114 A JP 2008128114A
Authority
JP
Japan
Prior art keywords
throttle valve
exhaust
exhaust throttle
intake air
air amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006314521A
Other languages
Japanese (ja)
Inventor
Daisuke Shibata
大介 柴田
Yutaka Sawada
裕 澤田
Satoru Maeda
悟 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006314521A priority Critical patent/JP2008128114A/en
Publication of JP2008128114A publication Critical patent/JP2008128114A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

【課題】コストアップを伴うことなく確実に排気絞り弁の故障を診断することのできる内燃機関の排気絞り弁故障診断装置を提供する。
【解決手段】吸気通路102と排気通路120とを連通する排気ガス還流通路152に排気ガス還流量を制御するEGR制御弁154を有する排気ガス還流装置150、および排気通路に配設された排気絞り弁134を備える内燃機関において、所定の運転状態で排気絞り弁134を一時的に閉成作動させる排気絞り弁開閉作動手段と、該排気絞り弁開閉作動手段による前記排気絞り弁134の開閉作動に対応させて吸入空気量の変化を検出する吸入空気量変化検出手段と、該吸入空気量変化検出手段により検出された吸入空気量の変化に基づき、前記排気絞り弁が異常か正常かを診断する診断手段と、を備える。
【選択図】図1
An exhaust throttle valve failure diagnosis device for an internal combustion engine capable of reliably diagnosing an exhaust throttle valve failure without increasing the cost.
An exhaust gas recirculation device having an EGR control valve for controlling an exhaust gas recirculation amount in an exhaust gas recirculation passage that communicates the intake passage and the exhaust passage, and an exhaust throttle disposed in the exhaust passage. In an internal combustion engine having a valve 134, an exhaust throttle valve opening / closing operation means for temporarily closing the exhaust throttle valve 134 in a predetermined operation state, and an opening / closing operation of the exhaust throttle valve 134 by the exhaust throttle valve opening / closing operation means. Correspondingly detecting intake air amount change detecting means for detecting a change in intake air amount, and diagnosing whether the exhaust throttle valve is abnormal or normal based on the change in intake air amount detected by the intake air amount change detecting means Diagnostic means.
[Selection] Figure 1

Description

本発明は、内燃機関の排気絞り弁故障診断装置、特に、吸気通路と排気通路とを連通する排気ガス還流通路に排気ガス還流量を制御する排気ガス還流制御弁を有する排気ガス還流装置と、排気通路に配設された排気絞り弁とを備える内燃機関の排気絞り弁故障診断装置に関する。   The present invention relates to an exhaust throttle valve failure diagnosis device for an internal combustion engine, in particular, an exhaust gas recirculation device having an exhaust gas recirculation control valve for controlling an exhaust gas recirculation amount in an exhaust gas recirculation passage communicating the intake passage and the exhaust passage, The present invention relates to an exhaust throttle valve failure diagnosis device for an internal combustion engine including an exhaust throttle valve disposed in an exhaust passage.

一般に、内燃機関の排気通路に排気絞り弁を設け、必要に応じて排気通路を流れる排気の流量を絞る技術が知られている。これは、排気の流量を絞って背圧を上昇させることにより排気温度を上昇させるために用いられている。すなわち、排気系に設けられた排気浄化用触媒の早期暖機や排気中の微粒子(パティキュレートマター、以下、PMと称す)を捕集するDPF(ディーゼルパティキュレートフィルタ)の再生等のためである。   In general, a technique is known in which an exhaust throttle valve is provided in an exhaust passage of an internal combustion engine, and the flow rate of exhaust flowing through the exhaust passage is reduced as necessary. This is used to raise the exhaust gas temperature by reducing the flow rate of the exhaust gas and raising the back pressure. That is, for early warm-up of an exhaust purification catalyst provided in an exhaust system, regeneration of a DPF (diesel particulate filter) that collects particulates (particulate matter, hereinafter referred to as PM) in exhaust, and the like. .

ところで、かかる排気絞り弁は、常に排気に曝されているために排気中の油分や未燃燃料成分等が付着しやすく、付着した成分により固着が生じ、作動不能となる場合がある。排気絞り弁が開弁位置に固着すると排気温度上昇作用を奏させることができず、また、排気絞り弁が閉弁位置で固着すると、機関は排気背圧の高い状態で運転されることになり、機関出力の低下や加速性の悪化が継続的に生じるようになる。このため、排気絞り弁の故障、すなわち、異常(固着)の有無を確実に診断することが重要である。   By the way, since such an exhaust throttle valve is always exposed to exhaust gas, oil components, unburned fuel components, and the like in the exhaust gas are likely to adhere to the exhaust throttle valve. If the exhaust throttle valve sticks to the open position, the exhaust temperature rise action cannot be achieved, and if the exhaust throttle valve sticks to the closed position, the engine is operated with a high exhaust back pressure. The engine output decreases and the acceleration performance deteriorates continuously. For this reason, it is important to reliably diagnose whether there is a failure of the exhaust throttle valve, that is, whether there is an abnormality (adherence).

このように排気通路に排気絞り弁を設けた内燃機関において、排気絞り弁の上流側に温度センサまたは圧力センサを設置し、正常時と異常時とに生じる温度差または圧力差に基づき排気絞り弁の故障を検出する装置が知られている。   In an internal combustion engine having an exhaust throttle valve in the exhaust passage as described above, a temperature sensor or a pressure sensor is installed upstream of the exhaust throttle valve, and the exhaust throttle valve is based on a temperature difference or a pressure difference generated between a normal time and an abnormal time. An apparatus for detecting a fault in the system is known.

また、かかる排気絞り弁の異常の有無を簡易かつ確実に検出する異常検出装置として、例えば、特許文献1に記載の技術が提案されている。このものにおいては、エアフローメータで検出した吸入空気量が機関運転状態に応じて定められた目標吸入空気量となるように排気ガス還流制御弁の開度をフィードバック制御するようにしている。そして、排気ガス還流制御弁の開度がフィードバック制御されているときに、排気絞り弁の開弁または閉弁操作を行い、この操作前後の排気ガス還流制御弁開度の変化量に基づいて排気絞り弁の異常の有無を検出するようにしている。   For example, a technique described in Patent Document 1 has been proposed as an abnormality detection device that simply and reliably detects the presence or absence of such an exhaust throttle valve abnormality. In this device, the opening degree of the exhaust gas recirculation control valve is feedback-controlled so that the intake air amount detected by the air flow meter becomes the target intake air amount determined according to the engine operating state. Then, when the opening degree of the exhaust gas recirculation control valve is feedback-controlled, the exhaust throttle valve is opened or closed, and the exhaust gas recirculation control valve opening degree before and after this operation is controlled based on the amount of change in the exhaust gas recirculation control valve opening degree. Whether there is an abnormality in the throttle valve is detected.

特開2001−207917号公報Japanese Patent Laid-Open No. 2001-207917

しかしながら、上述の排気絞り弁の上流側に温度センサまたは圧力センサを設置したものにおいては、故障検出のためにかかる専用のセンサを設けなければならないことから、コストアップの要因となり、また、温度センサの場合には、その上下流の温度差が小さいので故障を確実に診断するのが困難であるという問題があった。   However, in the case where a temperature sensor or a pressure sensor is installed on the upstream side of the exhaust throttle valve described above, it is necessary to provide a dedicated sensor for detecting a failure. In this case, since the temperature difference between the upstream and downstream sides is small, there is a problem that it is difficult to reliably diagnose the failure.

また、特許文献1に記載の技術は、吸入空気量が機関運転状態に応じて定められた目標吸入空気量となるように排気ガス還流制御弁の開度をフィードバック制御し、排気ガス還流制御弁の開度がフィードバック制御されているときに排気絞り弁の異常の有無を検出するようにしており、その異常検出の際に、排気ガス還流制御弁の開度の変化がフィードバック制御に起因するものか、排気絞り弁の異常に起因するものかを区別するのに複雑な制御を必要とする。さらに、排気ガス還流制御弁開度の変化量を精度よく検出することは容易ではなく、この場合も故障を確実に診断するのが困難であるという問題があった。   Further, the technology described in Patent Document 1 feedback-controls the opening degree of the exhaust gas recirculation control valve so that the intake air amount becomes a target intake air amount determined according to the engine operating state, and the exhaust gas recirculation control valve When the opening degree of the exhaust gas is being feedback-controlled, the presence or absence of an abnormality of the exhaust throttle valve is detected, and when the abnormality is detected, the change in the opening degree of the exhaust gas recirculation control valve is caused by the feedback control. Therefore, complicated control is required to distinguish whether it is caused by abnormality of the exhaust throttle valve. Furthermore, it is not easy to accurately detect the amount of change in the exhaust gas recirculation control valve opening, and in this case as well, there is a problem that it is difficult to reliably diagnose a failure.

本発明はかかる事情に鑑みなされたもので、その目的は、コストアップを伴うことなく確実に排気絞り弁の故障を診断することのできる内燃機関の排気絞り弁故障診断装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an exhaust throttle valve failure diagnosis device for an internal combustion engine that can reliably diagnose an exhaust throttle valve failure without increasing the cost. .

上記目的を達成する本発明の一形態に係る内燃機関の排気絞り弁故障診断装置は、吸気通路と排気通路とを連通する排気ガス還流通路に排気ガス還流量を制御する排気ガス還流制御弁を有する排気ガス還流装置、および排気通路に配設された排気絞り弁を備える内燃機関において、所定の運転状態で前記排気絞り弁を一時的に閉成作動させる排気絞り弁開閉作動手段と、該排気絞り弁開閉作動手段による前記排気絞り弁の開閉作動に対応させて吸入空気量の変化を検出する吸入空気量変化検出手段と、該吸入空気量変化検出手段により検出された吸入空気量の変化に基づき、前記排気絞り弁が異常か正常かを診断する診断手段と、を備えることを特徴とする。   An exhaust throttle valve failure diagnosis device for an internal combustion engine according to an aspect of the present invention that achieves the above object includes an exhaust gas recirculation control valve that controls an exhaust gas recirculation amount in an exhaust gas recirculation passage that connects the intake passage and the exhaust passage. In an internal combustion engine having an exhaust gas recirculation device and an exhaust throttle valve disposed in an exhaust passage, exhaust throttle valve opening / closing operation means for temporarily closing the exhaust throttle valve in a predetermined operation state, and the exhaust Intake air amount change detecting means for detecting a change in the intake air amount in response to the opening / closing operation of the exhaust throttle valve by the throttle valve opening / closing operation means, and a change in the intake air amount detected by the intake air amount change detecting means. And a diagnostic means for diagnosing whether the exhaust throttle valve is abnormal or normal.

ここで、前記排気絞り弁開閉作動手段の作動時には、前記排気ガス還流制御弁の開度を固定することが好ましい。   Here, it is preferable that the opening degree of the exhaust gas recirculation control valve is fixed when the exhaust throttle valve opening / closing operation means is operated.

また、前記排気ガス還流制御弁の開度を全開に固定することが好ましい。   Moreover, it is preferable that the opening degree of the exhaust gas recirculation control valve is fixed to be fully open.

さらに、前記所定の運転状態は、車両の減速状態であることが好ましい。   Furthermore, it is preferable that the predetermined driving state is a deceleration state of the vehicle.

上記本発明の一形態に係る内燃機関の排気絞り弁故障診断装置においては、所定の運転状態で排気絞り弁開閉作動手段により排気絞り弁が一時的に閉成作動されると、吸入空気量変化検出手段により排気絞り弁の閉成時における吸入空気量と開成時における吸入空気量とにより吸入空気量の変化が検出され、そして、この吸入空気量の変化に基づき、診断手段により排気絞り弁が異常か正常かが診断される。詳しくは、排気絞り弁の弁開閉作動前後における吸入空気量の差が大きいときは、排気絞り弁の閉成作動により背圧が上昇し還流排気ガス量が増大し、吸入空気量が減少した結果であり、排気絞り弁が正常に機能していると診断される。   In the exhaust throttle valve failure diagnosis device for an internal combustion engine according to one aspect of the present invention, when the exhaust throttle valve is temporarily closed by the exhaust throttle valve opening / closing operation means in a predetermined operation state, the intake air amount change The detection means detects a change in the intake air amount based on the intake air amount when the exhaust throttle valve is closed and the intake air amount when the exhaust throttle valve is opened. Based on the change in the intake air amount, the diagnostic means detects the exhaust throttle valve. Diagnose whether it is abnormal or normal. Specifically, when there is a large difference in the intake air amount before and after the valve opening / closing operation of the exhaust throttle valve, the back pressure increases due to the closing operation of the exhaust throttle valve, the reflux exhaust gas amount increases, and the intake air amount decreases. And the exhaust throttle valve is diagnosed as functioning normally.

逆に、その前後における吸入空気量の差が小さいときは、排気絞り弁の弁開閉作動指令にもかかわらず還流排気ガス量の変化がなく吸入空気量がほとんど変化しなかった結果であり、排気絞り弁が故障であると診断される。従って、上記一形態の構成によれば、温度センサまたは圧力センサなどの追加部品を必要とすることなく、単に、排気絞り弁の弁開閉作動に対応された吸入空気量の変化に基づきコストアップを伴うことなく確実に排気絞り弁の故障を診断することができる。   Conversely, when the difference in the intake air amount before and after that is small, it is the result that there was no change in the recirculated exhaust gas amount regardless of the valve opening / closing operation command of the exhaust throttle valve, and the intake air amount hardly changed. The throttle valve is diagnosed as malfunctioning. Therefore, according to the configuration of the above embodiment, the cost can be increased based on the change in the intake air amount corresponding to the valve opening / closing operation of the exhaust throttle valve without requiring additional parts such as a temperature sensor or a pressure sensor. A failure of the exhaust throttle valve can be diagnosed without fail.

ここで、前記排気絞り弁開閉作動手段の作動時には、前記排気ガス還流制御弁の開度を固定する形態によれば、還流排気ガス量の変動要因を排気絞り弁の弁開閉作動に伴う背圧の変化のみとすること、延いては、吸入空気量の変動要因をこの背圧の変化のみとすることができるので、より確実に排気絞り弁の故障を診断することができる。   Here, during the operation of the exhaust throttle valve opening / closing operation means, according to the embodiment in which the opening degree of the exhaust gas recirculation control valve is fixed, the fluctuation factor of the recirculated exhaust gas amount is caused by the back pressure accompanying the valve opening / closing operation of the exhaust throttle valve. Since only the change in the intake air amount can be caused only by the change in the back pressure, a failure of the exhaust throttle valve can be diagnosed more reliably.

また、前記排気ガス還流制御弁の開度を全開に固定する形態によれば、限界位置への制御であるので、その制御および保持が容易である。   In addition, according to the embodiment in which the opening degree of the exhaust gas recirculation control valve is fixed at the fully open position, the control and the holding are easy because the control is to the limit position.

さらに、前記所定の運転状態は、車両の減速状態である形態によれば、通常の燃焼を行なわせる必要がなく、排気絞り弁の故障診断に起因するエミッションの悪化を防止することができる。   Further, according to the mode in which the predetermined operation state is a deceleration state of the vehicle, it is not necessary to perform normal combustion, and it is possible to prevent the deterioration of the emission due to the failure diagnosis of the exhaust throttle valve.

以下、添付図面を用いて本発明の実施形態について説明する。図1は、本発明を自動車用ディーゼルエンジンに適用した一実施形態の概略構成を説明する模式図である。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic diagram illustrating a schematic configuration of an embodiment in which the present invention is applied to an automobile diesel engine.

図1において、100はディーゼルエンジン本体、102はエンジン100の吸気通路、104は吸気通路102に設けられたサージタンク、106はサージタンク104と各気筒の吸気ポートとを接続する吸気枝管である。本実施形態では、吸気通路102には吸気通路102を流れる吸入空気の流量を絞る吸気絞り弁108、および吸気を冷却するインタクーラ110が設けられている。吸気絞り弁108はソレノイド、バキュームアクチュエータ等の適宜な形式のアクチュエータ108Aを備え、後述する電子制御ユニット(ECU)200からの制御信号に応じた開度をとる。本実施形態では、吸気絞り弁108は、例えば機関低回転時等に吸気圧力を低下させて、後述するEGR通路152を通ってサージタンク104に還流される排気ガス(EGRガス)量を増大させるために用いられる。   In FIG. 1, 100 is a diesel engine body, 102 is an intake passage of the engine 100, 104 is a surge tank provided in the intake passage 102, and 106 is an intake branch pipe connecting the surge tank 104 and the intake port of each cylinder. . In the present embodiment, the intake passage 102 is provided with an intake throttle valve 108 that restricts the flow rate of intake air flowing through the intake passage 102 and an intercooler 110 that cools intake air. The intake throttle valve 108 includes an actuator 108A of an appropriate type such as a solenoid or a vacuum actuator, and takes an opening degree according to a control signal from an electronic control unit (ECU) 200 described later. In the present embodiment, the intake throttle valve 108 reduces the intake pressure, for example, at the time of low engine rotation, and increases the amount of exhaust gas (EGR gas) recirculated to the surge tank 104 through the EGR passage 152 described later. Used for.

図1に112で示すのは、吸気通路102の吸気入口近傍に設けられたエアフローメータである。本実施形態では、エアフローメータ112は熱線式流量計等のように、吸気通路102を流れる吸入空気の質量流量を測定可能な形式のものが使用されている。吸気通路102に流入した大気は、エアフローメータ112を通過した後、ターボチャージャ130のタービン130Tで駆動されるコンプレッサ130Cにより昇圧され、吸気通路102に設けられたインタクーラ110により冷却された後サージタンク104、枝管106を経て各気筒に吸入される。   In FIG. 1, an air flow meter 112 is provided near the intake inlet of the intake passage 102. In the present embodiment, the air flow meter 112 is of a type that can measure the mass flow rate of the intake air flowing through the intake passage 102, such as a hot-wire flow meter. After the air flowing into the intake passage 102 passes through the air flow meter 112, it is pressurized by the compressor 130C driven by the turbine 130T of the turbocharger 130, cooled by the intercooler 110 provided in the intake passage 102, and then the surge tank 104. Then, it is sucked into each cylinder through the branch pipe 106.

図1に114で示すのは、各気筒内に燃料を直接に噴射する燃料噴射弁である。燃料噴射弁114は、高圧燃料を貯留する共通の蓄圧室(コモンレール)116に接続されている。機関100の燃料は高圧燃料ポンプ118により昇圧されてコモンレール116に供給され、コモンレール116から各燃料噴射弁114を介して直接各気筒内に噴射される。   Reference numeral 114 in FIG. 1 denotes a fuel injection valve that directly injects fuel into each cylinder. The fuel injection valve 114 is connected to a common pressure accumulation chamber (common rail) 116 that stores high-pressure fuel. The fuel of the engine 100 is boosted by a high-pressure fuel pump 118, supplied to the common rail 116, and injected directly into each cylinder from the common rail 116 via each fuel injection valve 114.

また、図1に120で示すのは各気筒の排気ポートと排気通路122とを接続する排気マニホルドであり、その後流に上述のターボチャージャ130が配置されている。ターボチャージャ130は排気通路122の排気により駆動される排気タービン130Tと、この排気タービン130Tにより駆動される吸気コンプレッサ130Cとを備えていることは前述の通りである。   Further, reference numeral 120 in FIG. 1 is an exhaust manifold that connects the exhaust port of each cylinder and the exhaust passage 122, and the turbocharger 130 described above is disposed downstream thereof. As described above, the turbocharger 130 includes the exhaust turbine 130T driven by the exhaust gas in the exhaust passage 122 and the intake compressor 130C driven by the exhaust turbine 130T.

また、本実施形態では、ターボチャージャ130下流側の排気通路122に、第1の触媒装置(例えば、酸化触媒または三元触媒)132が配置されると共に、その下流に排気通路122を流れる排気流量を制御するための排気絞り弁134が配置されている。排気絞り弁134は、吸気絞り弁108と同様なアクチュエータ134Aを備え、ECU200からの制御信号に応じて全開位置と所定の開度の閉弁位置とをとる。本実施形態では排気絞り弁134は、第1の触媒装置132の早期活性化や後述する第2の触媒装置136におけるパティキュレートフィルタ(DPF)の再生のために排気温度を上昇させる際に用いられる。そして、本実施形態では、排気絞り弁134の下流に上述の第2の触媒装置(吸蔵還元型NOx触媒およびDPF)136が配置されている。   In the present embodiment, a first catalyst device (for example, an oxidation catalyst or a three-way catalyst) 132 is disposed in the exhaust passage 122 on the downstream side of the turbocharger 130, and the exhaust flow rate that flows through the exhaust passage 122 downstream thereof. An exhaust throttle valve 134 for controlling the exhaust gas is arranged. The exhaust throttle valve 134 includes an actuator 134A similar to the intake throttle valve 108, and takes a fully open position and a closed position with a predetermined opening according to a control signal from the ECU 200. In this embodiment, the exhaust throttle valve 134 is used when raising the exhaust temperature for early activation of the first catalyst device 132 and regeneration of the particulate filter (DPF) in the second catalyst device 136 described later. . In the present embodiment, the above-described second catalytic device (storage reduction type NOx catalyst and DPF) 136 is disposed downstream of the exhaust throttle valve 134.

本実施形態における第2の触媒装置136では、その上流側に吸蔵還元型NOx触媒が収納されている。この吸蔵還元型NOx触媒により、機関運転時において排気が酸化雰囲気(リーン)にあるときに、NOxが吸蔵還元型NOx触媒に吸蔵される。そして還元雰囲気(ストイキあるいはリッチ)では吸蔵還元型NOx触媒に吸蔵されていたNOxが酸化窒素(NO)として離脱し、炭化水素(HC)や一酸化炭素(CO)により還元される。このことによりNOxの浄化が行なわれる。   In the second catalyst device 136 in the present embodiment, the NOx storage reduction catalyst is accommodated upstream thereof. With this NOx storage reduction catalyst, NOx is stored in the NOx storage reduction catalyst when the exhaust is in an oxidizing atmosphere (lean) during engine operation. In a reducing atmosphere (stoichiometric or rich), NOx stored in the NOx storage reduction catalyst is released as nitrogen oxide (NO) and is reduced by hydrocarbon (HC) or carbon monoxide (CO). As a result, purification of NOx is performed.

そして、第2の触媒装置136での下流側、すなわち、吸蔵還元型NOx触媒の後流にはモノリス構造に形成された壁部を有するDPFが収納され、この壁部の微小孔を排気が通過するように構成されている。また、DPF表面には吸蔵還元型NOx触媒がコーティングされている。このため、前述のようにNOxの浄化が行われる。しかも、DPF表面には排気中の微粒子物質(PM)が捕捉されるので、酸化雰囲気ではNOx吸蔵時に発生する活性酸素によりPMの酸化が開始され、さらに周囲の過剰酸素によりPM全体が酸化される。還元雰囲気(ストイキあるいはリッチ)では吸蔵還元型NOx触媒から発生する大量の活性酸素によりPMの酸化が促進される。このことによりNOxの浄化と共に、PMの浄化も実行される。   Then, downstream of the second catalytic device 136, that is, downstream of the NOx storage reduction catalyst, DPF having a wall portion formed in a monolith structure is accommodated, and exhaust passes through the minute hole in the wall portion. Is configured to do. The DPF surface is coated with a NOx storage reduction catalyst. For this reason, NOx purification is performed as described above. Moreover, since particulate matter (PM) in the exhaust is trapped on the DPF surface, the oxidation of PM is started by active oxygen generated during NOx occlusion in an oxidizing atmosphere, and the entire PM is oxidized by excess oxygen in the surroundings. . In a reducing atmosphere (stoichiometric or rich), oxidation of PM is promoted by a large amount of active oxygen generated from the NOx storage reduction catalyst. As a result, the purification of PM is performed together with the purification of NOx.

さらに、本実施形態ではエンジン排気の一部を吸気系に還流させるEGR装置150が設けられている。EGR装置150は、排気マニホルド120と吸気サージタンク104とを連通する前述のEGR通路152、およびEGR通路152に配置されたEGR制御弁(以下、EGR弁という)154、およびEGR弁154の上流側のEGR通路152に設けられたEGRクーラ156を備えている。EGR弁154は図示しないステッパモータ、ソレノイドアクチュエータ等のアクチュエータを備え、ECU200からの制御信号に応じた開度をとり、EGR通路152を通って吸気サージタンク104に還流されるEGRガス流量を制御する。なお、EGRガスは気筒から排出された高温のガスであるため、多量のEGRガスを吸気に還流させると吸気温度が上昇してしまい、エンジンの吸気体積効率が低下することになる。本実施形態では、これを防止するために、EGR弁154上流側のEGR通路152には水冷または空冷のEGRクーラ156が設けられている。本実施形態では、EGRクーラ156を用いて吸気系に還流するEGRガス温度を低下させることにより、エンジンの吸気体積効率の低下を抑制して比較的多量のEGRガスを還流させることが可能となっている。   Further, in the present embodiment, an EGR device 150 that recirculates part of the engine exhaust to the intake system is provided. The EGR device 150 includes the EGR passage 152 that connects the exhaust manifold 120 and the intake surge tank 104, an EGR control valve (hereinafter referred to as an EGR valve) 154 disposed in the EGR passage 152, and an upstream side of the EGR valve 154. The EGR cooler 156 provided in the EGR passage 152 is provided. The EGR valve 154 includes actuators such as stepper motors and solenoid actuators (not shown), takes an opening degree according to a control signal from the ECU 200, and controls an EGR gas flow rate recirculated to the intake surge tank 104 through the EGR passage 152. . Since the EGR gas is a high-temperature gas discharged from the cylinder, when a large amount of EGR gas is recirculated to the intake air, the intake air temperature rises, and the intake volume efficiency of the engine decreases. In the present embodiment, in order to prevent this, a water-cooled or air-cooled EGR cooler 156 is provided in the EGR passage 152 upstream of the EGR valve 154. In the present embodiment, by using the EGR cooler 156 to reduce the temperature of the EGR gas recirculated to the intake system, it is possible to recirculate a relatively large amount of EGR gas while suppressing a decrease in the intake volume efficiency of the engine. ing.

さらに、図1に200で示すのは、エンジン100の電子制御ユニット(ECU)である。本実施形態のECU200は、公知の構成のマイクロコンピュータとして構成され、CPU、RAM、ROM、入力ポート、出力ポートを双方向性バスで相互に接続した構成とされている。ECU200はエンジン100の燃料噴射制御、回転数制御等の基本制御を行うほか、本実施形態では後述するように、排気絞り弁134の故障診断を行なう。   Further, an electronic control unit (ECU) of the engine 100 is indicated by 200 in FIG. The ECU 200 according to the present embodiment is configured as a microcomputer having a known configuration, and is configured such that a CPU, a RAM, a ROM, an input port, and an output port are connected to each other via a bidirectional bus. The ECU 200 performs basic control such as fuel injection control and rotation speed control of the engine 100, and in this embodiment, performs failure diagnosis of the exhaust throttle valve 134 as described later.

これらの制御を行うため、ECU200の入力ポートには、エンジン100のクランク軸近傍に配置された回転数センサ160からエンジン回転数NEに対応する信号が入力されている他、エアフローメータ112からエンジン吸入空気量Gnに相当する信号が、また、不図示のアクセルペダル近傍に配置されたアクセル開度センサ162から運転者のアクセルペダル踏み込み量(アクセル開度)に対応する信号とEGR弁154に配置されたEGR弁開度センサ164からEGR弁開度を表す信号等が、それぞれ入力されている。   In order to perform these controls, a signal corresponding to the engine rotational speed NE is input to the input port of the ECU 200 from the rotational speed sensor 160 disposed in the vicinity of the crankshaft of the engine 100. A signal corresponding to the air amount Gn is also disposed in the EGR valve 154 and a signal corresponding to the accelerator pedal depression amount (accelerator opening) of the driver from an accelerator opening sensor 162 disposed in the vicinity of an unillustrated accelerator pedal. A signal indicating the EGR valve opening degree is input from the EGR valve opening degree sensor 164, respectively.

ECU200の出力ポートは、図示しない燃料噴射回路を介してエンジン100の燃料噴射弁114に接続され、燃料噴射弁114からの燃料噴射量と燃料噴射時期とを制御している。また、ECU200の出力ポートは図示しない駆動回路を介してEGR弁154、吸気絞り弁108および排気絞り弁134のアクチュエータに接続され、それぞれの弁開度を制御している。   The output port of the ECU 200 is connected to the fuel injection valve 114 of the engine 100 via a fuel injection circuit (not shown), and controls the fuel injection amount from the fuel injection valve 114 and the fuel injection timing. Further, the output port of the ECU 200 is connected to the actuators of the EGR valve 154, the intake throttle valve 108, and the exhaust throttle valve 134 via a drive circuit (not shown), and controls the valve opening degree.

なお、本実施形態ではEGR弁開度を検出するEGR弁開度センサ164を設けているが、開度センサ164を設けずに、例えばEGR弁154のアクチュエータとしてステッパモータを用いた場合にはモータの駆動ステップ数に基づいて、またアクチュエータとしてソレノイドアクチュエータを用いた場合にはソレノイド駆動パルスオン/オフのデューティ比(駆動パルスのオン、オフ1周期に占めるオン時間の割合)に基づいてEGR弁開度を算出するようにすることも可能である。   In this embodiment, the EGR valve opening sensor 164 for detecting the EGR valve opening is provided. However, for example, when the stepper motor is used as the actuator of the EGR valve 154 without providing the opening sensor 164, the motor EGR valve opening based on the number of drive steps and, if a solenoid actuator is used as the actuator, the duty ratio of the solenoid drive pulse on / off (the ratio of the on time in the drive pulse on / off cycle) It is also possible to calculate.

前述のように、DPFにはエンジン運転中において排気中のPMが捕集され、徐々にDPFのPM捕集量が増大する。本実施形態では、第1の触媒装置132を早期に活性化させたいとき、および第2の触媒装置136におけるDPFのPM捕集量が増大した場合には、排気絞り弁134を閉弁して機関吸気量を低下させ、排気温度を上昇させることにより、早期の活性化とDPFの再生を行なうようにしている。   As described above, PM in exhaust gas is collected in the DPF during engine operation, and the amount of PM collected in the DPF gradually increases. In the present embodiment, when it is desired to activate the first catalyst device 132 at an early stage, and when the amount of PM collected by the DPF in the second catalyst device 136 increases, the exhaust throttle valve 134 is closed. By reducing the intake air amount of the engine and raising the exhaust gas temperature, early activation and regeneration of the DPF are performed.

以下、上記構成になる本実施形態の排気絞り弁の故障診断の制御手順について図2のフローチャートを参照して説明する。なお、この故障診断ルーチンは所定の周期で実行される。   Hereinafter, a control procedure for failure diagnosis of the exhaust throttle valve of the present embodiment configured as described above will be described with reference to the flowchart of FIG. This failure diagnosis routine is executed at a predetermined cycle.

そこで、故障診断ルーチンがスタートすると、ステップS201において車両が減速状態にあるか否かが判定される。この車両が減速状態にあるか否かの判定は、本実施形態においては、アクセル開度センサ162により検出されるアクセル開度が0%であり、かつ、燃料噴射弁114から噴射される燃料量が0以下であるかにより行われ、これらの条件が満たされた車両の減速状態のときのみ次のステップS202に進む。換言すると、車両が減速状態になるまでステップS201が繰り返されて待機状態が維持される。   Therefore, when the failure diagnosis routine starts, it is determined in step S201 whether or not the vehicle is in a decelerating state. In this embodiment, it is determined whether or not the vehicle is in a deceleration state. In this embodiment, the accelerator opening detected by the accelerator opening sensor 162 is 0%, and the amount of fuel injected from the fuel injection valve 114 is determined. The process proceeds to the next step S202 only when the vehicle is in a deceleration state where these conditions are satisfied. In other words, step S201 is repeated until the vehicle is decelerated and the standby state is maintained.

車両が減速状態になると、次のステップS202において、EGR弁154が所定の開度に固定されるかまたは全開に開作動される。そして、次のステップS203では、EGR弁154が所定の開度または全開位置に作動された後における、所定の時期に後述する排気絞り弁全閉指令前の吸入空気量GnAがエアフローメータ112の出力値に基づいて計測され記憶される。その後、ステップS204において、排気絞り弁134のアクチュエータ134Aに対して、上述の排気絞り弁134の全閉指令が送られる。   When the vehicle is decelerated, in the next step S202, the EGR valve 154 is fixed at a predetermined opening or is fully opened. In the next step S203, the intake air amount GnA before the exhaust throttle valve fully closing command, which will be described later, is output from the air flow meter 112 at a predetermined time after the EGR valve 154 is operated to a predetermined opening or fully opened position. It is measured and stored based on the value. Thereafter, in step S204, the exhaust throttle valve 134 fully closed command is sent to the actuator 134A of the exhaust throttle valve 134.

なお、車両の通常走行状態では、この排気絞り弁134は一般に全開状態に維持されているので、故障診断のために行なわれる上述の全閉指令を直ちに発しても通常問題はないが、排気絞り弁134が全開以外の位置にあるかまたは不明であるときには、全閉指令を発する前に、予め排気絞り弁134を全開状態にすべく、全開指令を発するようにするのが好ましい。   In the normal running state of the vehicle, the exhaust throttle valve 134 is generally maintained in a fully open state. Therefore, there is no problem even if the full close command described above for failure diagnosis is issued immediately. When the valve 134 is in a position other than full open or is unknown, it is preferable to issue a full open command in advance to make the exhaust throttle valve 134 fully open before issuing the full close command.

そして、次のステップS205において、排気絞り弁134の全閉指令後における所定の時期に排気絞り弁全閉指令後の吸入空気量GnBがエアフローメータ112により計測され記憶される。そして、次のステップS206に進み、所定の一時的な期間t0が経過するのを待ってステップS207に進み、排気絞り弁134のアクチュエータ134Aに対して排気絞り弁134の全開指令が送られる。   In the next step S205, the intake air amount GnB after the exhaust throttle valve full-close command is measured and stored by the air flow meter 112 at a predetermined time after the exhaust throttle valve 134 is fully closed. Then, the process proceeds to the next step S206, waits for a predetermined temporary period t0 to elapse, and then proceeds to step S207, where a full open command of the exhaust throttle valve 134 is sent to the actuator 134A of the exhaust throttle valve 134.

さらに、次のステップS208においては、ステップS203で計測され記憶されていた吸入空気量GnAとステップS205で計測され記憶されていた吸入空気量GnBとの吸入空気量の差ΔGn(=|GnA−GnB|)が算出される。そして、ステップS209において、この求められた吸入空気量の差ΔGnが所定の閾値αと対比されて排気絞り弁134が故障か否かの診断が行なわれる。すなわち、吸入空気量の差ΔGnが所定の閾値αを超えずに小さいときは、排気絞り弁134の全閉指令にもかかわらず、排気絞り弁134が閉成されなかった結果であり、排気絞り弁134の、例えば開固着故障であるとしてステップS210に進み、異常との診断が行なわれる。一方、吸入空気量の差ΔGnが所定の閾値αを超え大きいときは、排気絞り弁134が指令通りに閉成作動した結果であり、排気絞り弁134は正常に作動しているとしてステップS211に進み、正常と診断される。   Further, in the next step S208, the difference ΔGn (= | GnA−GnB) between the intake air amount GnA measured and stored in step S203 and the intake air amount GnB measured and stored in step S205. |) Is calculated. In step S209, the obtained difference in intake air amount ΔGn is compared with a predetermined threshold value α to diagnose whether or not the exhaust throttle valve 134 has failed. That is, when the difference ΔGn in the intake air amount is small without exceeding the predetermined threshold value α, it is a result that the exhaust throttle valve 134 is not closed despite the exhaust throttle valve 134 being fully closed, and the exhaust throttle Proceeding to step S210 on the assumption that the valve 134 is, for example, an open fixing failure, a diagnosis of abnormality is made. On the other hand, when the difference ΔGn in the intake air amount exceeds the predetermined threshold value α, it is a result of the exhaust throttle valve 134 being closed as commanded, and it is determined that the exhaust throttle valve 134 is operating normally and the process proceeds to step S211. Proceed and be diagnosed as normal.

ここで、図3は、上述の診断手順における関係部位の変化の様子とエアフローメータ112により計測される吸入空気量Gnとの変化の様子とを示したタイムチャートである。図3の(A)はアクセル開度、(B)は車速、(C)はEGR弁154の開度、(D)は排気絞り弁134の駆動指令信号、(E)はエアフローメータ112により計測される吸入空気量Gnを示している。   Here, FIG. 3 is a time chart showing a state of change of the related part in the above-described diagnosis procedure and a state of change of the intake air amount Gn measured by the air flow meter 112. 3 (A) is the accelerator opening, (B) is the vehicle speed, (C) is the opening of the EGR valve 154, (D) is the drive command signal for the exhaust throttle valve 134, and (E) is measured by the air flow meter 112. The intake air amount Gn to be performed is shown.

図3から明らかなように、本実施形態による診断ルーチンは、時刻t1で始まる、アクセル開度が0%で、燃料噴射弁104からの燃料噴射量が停止された車両の減速状態で、かつ、EGR弁154の開度が全開(100%)の状態において実行され、そして、時刻t3における排気絞り弁134への全閉指令の前後における、所定時刻t2および時刻t4での吸入空気量Gnの計測によって排気絞り弁134の故障診断を行っている。より詳しく述べると、EGR弁154の開度が全開であって排気絞り弁134も全開の状態での所定時刻t2において、吸入空気量GnAがエアフローメータ112により計測される。そして、その後の所定時刻t3における全閉指令により、排気絞り弁134が一時的にt0間、時刻t5まで閉作動される。さらに、その一時的な閉作動中の所定時刻t4において、吸入空気量GnBがエアフローメータ112により計測される。そして、その後、図3には示されていないが、上述の排気絞り弁134が正常に機能しているか否かの診断が行なわれるのである。   As is apparent from FIG. 3, the diagnosis routine according to the present embodiment starts at time t1, is in a deceleration state of the vehicle in which the accelerator opening is 0% and the fuel injection amount from the fuel injection valve 104 is stopped, and The measurement is performed with the opening degree of the EGR valve 154 fully opened (100%), and the intake air amount Gn at a predetermined time t2 and time t4 before and after the fully closing command to the exhaust throttle valve 134 at time t3. Thus, failure diagnosis of the exhaust throttle valve 134 is performed. More specifically, the intake air amount GnA is measured by the air flow meter 112 at a predetermined time t2 when the opening of the EGR valve 154 is fully open and the exhaust throttle valve 134 is also fully open. Then, the exhaust throttle valve 134 is temporarily closed during time t0 until time t5 by a full-close command at a predetermined time t3 thereafter. Furthermore, the intake air amount GnB is measured by the air flow meter 112 at a predetermined time t4 during the temporary closing operation. Thereafter, although not shown in FIG. 3, a diagnosis is made as to whether or not the exhaust throttle valve 134 is functioning normally.

ここで、上述の吸入空気量の差ΔGnが所定の閾値αを超えるか否かにより、排気絞り弁134の故障診断ができる理由について補足説明すると、本実施形態においては、車両の減速状態で、かつ、EGR弁154の開度が全開の状態において実行されるので、このときエンジン100の気筒102に吸入される吸気量は、排気ガス還流通路122の流路抵抗や背圧等により決定されるEGRガスの最大量とエアフローメータ112を通過する新気量とを加えたものとなる。従って、エンジン100の気筒102に吸入される吸気量は、車両の減速状態でエンジン100の一回転当たりでは一定であるから、エンジン100の気筒102に吸入されるEGRガス量が多くなるほど新気量は減少し、EGRガス量が少なくなるほど新気量は増加する。   Here, a supplementary explanation will be given as to why the exhaust throttle valve 134 can be diagnosed depending on whether or not the difference ΔGn in the intake air amount exceeds the predetermined threshold value α. In the present embodiment, in the deceleration state of the vehicle, In addition, since the opening of the EGR valve 154 is executed in a fully opened state, the intake amount sucked into the cylinder 102 of the engine 100 at this time is determined by the flow resistance, back pressure, etc. of the exhaust gas recirculation passage 122. The maximum amount of EGR gas and the amount of fresh air passing through the air flow meter 112 are added. Accordingly, the amount of intake air drawn into the cylinder 102 of the engine 100 is constant per one rotation of the engine 100 in the deceleration state of the vehicle, so that the fresh air amount increases as the amount of EGR gas drawn into the cylinder 102 of the engine 100 increases. The amount of fresh air increases as the amount of EGR gas decreases.

ところで、排気絞り弁134の開閉作動前後における吸入空気量の差ΔGnが大きいのは、排気絞り弁134の閉成作動により背圧が上昇しEGRガス量が増大し、吸入空気量Gnが減少した結果であり、排気絞り弁134が正常に機能していると診断される(図3の(E)実線示)。逆に、その前後における吸入空気量の差ΔGnが小さいのは、排気絞り弁134の閉指令にもかかわらず閉作動が十分ではなく、EGRガス量の変化がなく吸入空気量Gnがほとんど変化しなかった結果であり、排気絞り弁134が故障であると診断される(図3の(E)破線示)のである。   By the way, the difference ΔGn in the intake air amount before and after the opening / closing operation of the exhaust throttle valve 134 is large because the back pressure rises due to the closing operation of the exhaust throttle valve 134, the EGR gas amount increases, and the intake air amount Gn decreases. As a result, it is diagnosed that the exhaust throttle valve 134 is functioning normally (shown by a solid line in FIG. 3E). Conversely, the difference ΔGn between the intake air amount before and after that is small because the closing operation is not sufficient despite the close command of the exhaust throttle valve 134, there is no change in the EGR gas amount, and the intake air amount Gn almost changes. The result is that there is no failure, and the exhaust throttle valve 134 is diagnosed as having a failure (shown by the broken line (E) in FIG. 3).

従って、上述の本実施形態によれば、温度センサまたは圧力センサなどの追加部品を必要とすることなく、単に、吸入空気量Gnの変化に基づきコストアップを伴うことなく確実に排気絞り弁134の故障を診断することができる。ここで、排気絞り弁134の閉成作動時には、EGR制御弁154の開度を固定する形態によれば、還流排気ガス量の変動要因を排気絞り弁134の閉成作動に伴う背圧のみとすることができるので、より確実に排気絞り弁134の故障を診断することができ、EGR制御弁154の開度を全開に固定する形態によれば、その制御および保持が容易である。さらに、所定の運転状態が、車両の減速状態である形態によれば、排気絞り弁134の故障診断に起因するエミッションの悪化を防止することができる。   Therefore, according to the above-described present embodiment, the exhaust throttle valve 134 can be reliably and without an additional cost based on a change in the intake air amount Gn, without requiring additional components such as a temperature sensor or a pressure sensor. A failure can be diagnosed. Here, during the closing operation of the exhaust throttle valve 134, according to the embodiment in which the opening degree of the EGR control valve 154 is fixed, the fluctuation factor of the recirculated exhaust gas amount is determined only by the back pressure accompanying the closing operation of the exhaust throttle valve 134. Therefore, the failure of the exhaust throttle valve 134 can be diagnosed more reliably, and according to the embodiment in which the opening degree of the EGR control valve 154 is fixed fully open, its control and holding are easy. Furthermore, according to the mode in which the predetermined operation state is the vehicle deceleration state, it is possible to prevent the deterioration of the emission due to the failure diagnosis of the exhaust throttle valve 134.

本発明に係る内燃機関の排気絞り弁故障診断装置の一実施形態を示す模式図である。1 is a schematic diagram showing an embodiment of an exhaust throttle valve failure diagnosis device for an internal combustion engine according to the present invention. 本発明の実施形態の故障診断制御手順の一例を示すフローチャートである。It is a flowchart which shows an example of the failure diagnosis control procedure of embodiment of this invention. 故障診断手順における関係部位の変化の様子と吸入空気量Gnとの変化の様子を示すタイムチャートであり、(E)における実線は正常状態を、破線は異状(故障)状態を示している。It is a time chart which shows the mode of the change of the related site | part in a failure diagnosis procedure, and the mode of change of the intake air amount Gn, The solid line in (E) shows a normal state and the broken line has shown the abnormal (failure) state.

符号の説明Explanation of symbols

100 ディーゼルエンジン本体
102 吸気通路
112 エアフローメータ
122 排気通路
134 排気絞り弁
150 EGR装置
152 EGR通路
154 EGR制御弁(EGR弁)
160 回転数センサ
162 アクセル開度センサ
200 ECU
DESCRIPTION OF SYMBOLS 100 Diesel engine body 102 Intake passage 112 Air flow meter 122 Exhaust passage 134 Exhaust throttle valve 150 EGR device 152 EGR passage 154 EGR control valve (EGR valve)
160 Rotational speed sensor 162 Accelerator opening sensor 200 ECU

Claims (4)

吸気通路と排気通路とを連通する排気ガス還流通路に排気ガス還流量を制御する排気ガス還流制御弁を有する排気ガス還流装置、および排気通路に配設された排気絞り弁を備える内燃機関において、
所定の運転状態で前記排気絞り弁を一時的に閉成作動させる排気絞り弁開閉作動手段と、
該排気絞り弁開閉作動手段による前記排気絞り弁の開閉作動に対応させて吸入空気量の変化を検出する吸入空気量変化検出手段と、
該吸入空気量変化検出手段により検出された吸入空気量の変化に基づき、前記排気絞り弁が異常か正常かを診断する診断手段と、
を備えることを特徴とする内燃機関の排気絞り弁故障診断装置。
In an internal combustion engine including an exhaust gas recirculation device having an exhaust gas recirculation control valve for controlling an exhaust gas recirculation amount in an exhaust gas recirculation passage communicating the intake passage and the exhaust passage, and an exhaust throttle valve disposed in the exhaust passage,
Exhaust throttle valve opening / closing operation means for temporarily closing the exhaust throttle valve in a predetermined operation state;
An intake air amount change detecting means for detecting a change in the intake air amount corresponding to the opening / closing operation of the exhaust throttle valve by the exhaust throttle valve opening / closing operation means;
Diagnostic means for diagnosing whether the exhaust throttle valve is abnormal or normal based on a change in the intake air amount detected by the intake air amount change detecting means;
An exhaust throttle valve failure diagnosis device for an internal combustion engine, comprising:
前記排気絞り弁開閉作動手段の作動時には、前記排気ガス還流制御弁の開度を固定することを特徴とする請求項1に記載の内燃機関の排気絞り弁故障診断装置。   2. The exhaust throttle valve failure diagnosis device for an internal combustion engine according to claim 1, wherein an opening degree of the exhaust gas recirculation control valve is fixed when the exhaust throttle valve opening / closing operation means is operated. 前記排気ガス還流制御弁の開度を全開に固定することを特徴とする請求項2に記載の内燃機関の排気絞り弁故障診断装置。   3. The exhaust throttle valve failure diagnosis device for an internal combustion engine according to claim 2, wherein the opening degree of the exhaust gas recirculation control valve is fixed at full open. 前記所定の運転状態は、車両の減速状態であることを特徴とする請求項1ないし3のいずれかに記載の内燃機関の排気絞り弁故障診断装置。   The exhaust throttle valve failure diagnosis device for an internal combustion engine according to any one of claims 1 to 3, wherein the predetermined operation state is a deceleration state of a vehicle.
JP2006314521A 2006-11-21 2006-11-21 Exhaust throttle valve failure diagnosis device for internal combustion engine Pending JP2008128114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006314521A JP2008128114A (en) 2006-11-21 2006-11-21 Exhaust throttle valve failure diagnosis device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006314521A JP2008128114A (en) 2006-11-21 2006-11-21 Exhaust throttle valve failure diagnosis device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008128114A true JP2008128114A (en) 2008-06-05

Family

ID=39554215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006314521A Pending JP2008128114A (en) 2006-11-21 2006-11-21 Exhaust throttle valve failure diagnosis device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2008128114A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127243A (en) * 2008-11-28 2010-06-10 Toyota Motor Corp Failure diagnosing device for internal combustion engine
JP2010261330A (en) * 2009-04-30 2010-11-18 Hino Motors Ltd Exhaust purification device
JP2011032929A (en) * 2009-07-31 2011-02-17 Denso Corp Low-pressure egr apparatus
WO2011077517A1 (en) * 2009-12-22 2011-06-30 トヨタ自動車株式会社 Control device for internal combustion engine
US20130008417A1 (en) * 2011-07-06 2013-01-10 Caterpillar Inc. Control system for engine with exhaust gas recirculation
WO2015005336A1 (en) * 2013-07-10 2015-01-15 日野自動車株式会社 Failure diagnosis device for exhaust brake
JP2018040284A (en) * 2016-09-07 2018-03-15 いすゞ自動車株式会社 Control device and control method
JP2019502854A (en) * 2015-12-27 2019-01-31 ジェイコブス ビークル システムズ、インコーポレイテッド Method and apparatus for determining exhaust brake failure
US10513989B2 (en) 2015-09-01 2019-12-24 Jacobs Vehicle Systems, Inc. Method and apparatus for determining exhaust brake failure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09317518A (en) * 1996-05-27 1997-12-09 Nissan Motor Co Ltd Controller for internal combustion engine
JPH11210500A (en) * 1998-01-29 1999-08-03 Toyota Motor Corp Internal combustion engine having exhaust restraining device
JP2000240472A (en) * 1999-02-22 2000-09-05 Toyota Motor Corp Exhaust valve failure diagnosis device
JP2001207828A (en) * 2000-01-26 2001-08-03 Toyota Motor Corp Abnormality detection device for particulate filter
JP2001289108A (en) * 2000-04-04 2001-10-19 Toyota Motor Corp Internal combustion engine abnormality detection device
JP2001295684A (en) * 2000-04-13 2001-10-26 Sanshin Ind Co Ltd Exhaust emission control method for cylinder injection engine
JP2004100516A (en) * 2002-09-06 2004-04-02 Mitsubishi Fuso Truck & Bus Corp Failure detector of internal combustion engine
JP2005127231A (en) * 2003-10-24 2005-05-19 Bosch Automotive Systems Corp Method and device for diagnosing failure of vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09317518A (en) * 1996-05-27 1997-12-09 Nissan Motor Co Ltd Controller for internal combustion engine
JPH11210500A (en) * 1998-01-29 1999-08-03 Toyota Motor Corp Internal combustion engine having exhaust restraining device
JP2000240472A (en) * 1999-02-22 2000-09-05 Toyota Motor Corp Exhaust valve failure diagnosis device
JP2001207828A (en) * 2000-01-26 2001-08-03 Toyota Motor Corp Abnormality detection device for particulate filter
JP2001289108A (en) * 2000-04-04 2001-10-19 Toyota Motor Corp Internal combustion engine abnormality detection device
JP2001295684A (en) * 2000-04-13 2001-10-26 Sanshin Ind Co Ltd Exhaust emission control method for cylinder injection engine
JP2004100516A (en) * 2002-09-06 2004-04-02 Mitsubishi Fuso Truck & Bus Corp Failure detector of internal combustion engine
JP2005127231A (en) * 2003-10-24 2005-05-19 Bosch Automotive Systems Corp Method and device for diagnosing failure of vehicle

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127243A (en) * 2008-11-28 2010-06-10 Toyota Motor Corp Failure diagnosing device for internal combustion engine
JP2010261330A (en) * 2009-04-30 2010-11-18 Hino Motors Ltd Exhaust purification device
JP2011032929A (en) * 2009-07-31 2011-02-17 Denso Corp Low-pressure egr apparatus
US9709009B2 (en) 2009-07-31 2017-07-18 Denso Corporation Low pressure exhaust gas recirculation apparatus
US9115672B2 (en) 2009-12-22 2015-08-25 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
WO2011077517A1 (en) * 2009-12-22 2011-06-30 トヨタ自動車株式会社 Control device for internal combustion engine
JPWO2011077517A1 (en) * 2009-12-22 2013-05-02 トヨタ自動車株式会社 Control device for internal combustion engine
US20130008417A1 (en) * 2011-07-06 2013-01-10 Caterpillar Inc. Control system for engine with exhaust gas recirculation
JP2015017524A (en) * 2013-07-10 2015-01-29 日野自動車株式会社 Failure diagnosis device for exhaust brake
CN105339631A (en) * 2013-07-10 2016-02-17 日野自动车株式会社 Failure diagnosis device for exhaust brake
WO2015005336A1 (en) * 2013-07-10 2015-01-15 日野自動車株式会社 Failure diagnosis device for exhaust brake
US9726086B2 (en) 2013-07-10 2017-08-08 Hino Motors, Ltd. Failure diagnosis device for exhaust brake
CN105339631B (en) * 2013-07-10 2018-04-17 日野自动车株式会社 The trouble-shooter of exhaust brake
US10513989B2 (en) 2015-09-01 2019-12-24 Jacobs Vehicle Systems, Inc. Method and apparatus for determining exhaust brake failure
JP2019502854A (en) * 2015-12-27 2019-01-31 ジェイコブス ビークル システムズ、インコーポレイテッド Method and apparatus for determining exhaust brake failure
JP2018040284A (en) * 2016-09-07 2018-03-15 いすゞ自動車株式会社 Control device and control method

Similar Documents

Publication Publication Date Title
JP4788631B2 (en) Exhaust throttle valve diagnostic device and method
JP4333725B2 (en) Exhaust gas recirculation device for internal combustion engine
US8307629B2 (en) Control method of exhaust emission purification system and exhaust emission purification system
US6711892B2 (en) Exhaust gas purifier for internal combustion engines
JP2008128114A (en) Exhaust throttle valve failure diagnosis device for internal combustion engine
JP4177863B2 (en) Control device for vehicle engine
JP2008008205A (en) Exhaust gas recirculation device for internal combustion engine
JP4748396B2 (en) Exhaust throttle valve failure diagnosis device for internal combustion engine
JP2008133779A (en) Diagnostic device for differential pressure sensor
JP4720647B2 (en) Exhaust gas recirculation device for internal combustion engine
US7340884B2 (en) Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
JP4941458B2 (en) Fault diagnosis device for internal combustion engine
US7950225B2 (en) Exhaust control system for an internal combustion engine
JP2006316746A (en) Exhaust gas purification device for internal combustion engine
JP4706977B2 (en) Deterioration diagnosis device for exhaust gas purification device of internal combustion engine
JP3511967B2 (en) Abnormality detection device for particulate filter
JP5247555B2 (en) Engine control device
JP4352651B2 (en) Abnormality determination device for internal combustion engine
JP2008008207A (en) Exhaust gas recirculation device for internal combustion engine
JP2010007634A (en) Exhaust emission control device for an internal combustion engine
JP4033117B2 (en) Secondary air supply device
EP1760283A1 (en) Exhaust gas post-processing device
US20130061582A1 (en) Exhaust gas purification system in upland area
JP4539466B2 (en) Exhaust gas purification system for internal combustion engine
JP2019116876A (en) Sensor diagnostic system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100604