[go: up one dir, main page]

JP2008124923A - The camera module - Google Patents

The camera module Download PDF

Info

Publication number
JP2008124923A
JP2008124923A JP2006308242A JP2006308242A JP2008124923A JP 2008124923 A JP2008124923 A JP 2008124923A JP 2006308242 A JP2006308242 A JP 2006308242A JP 2006308242 A JP2006308242 A JP 2006308242A JP 2008124923 A JP2008124923 A JP 2008124923A
Authority
JP
Japan
Prior art keywords
image
component mounting
camera module
mounting recess
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006308242A
Other languages
Japanese (ja)
Inventor
Naoto Ikegawa
直人 池川
Yasushi Masaki
康史 正木
Yoichiro Nakahara
陽一郎 中原
Masahide Muto
正英 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2006308242A priority Critical patent/JP2008124923A/en
Publication of JP2008124923A publication Critical patent/JP2008124923A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Measurement Of Optical Distance (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Automatic Focus Adjustment (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

【課題】複数個の撮像素子の配置間隔や光軸方向の製造上のばらつきを低減したカメラモジュールを提供する。
【解決手段】立体配線基板1は上下キャビティー構造で、下側部に電気部品実装用凹部5を設けるとともに、上側部に2個の光学部品取付用凹部6,6を設けてあり、各光学部品取付用凹部6は貫通孔7を介して電気部品実装用凹部5に連通している。電気部品実装用凹部5には、光軸方向を同じ方向として、受光部2aを貫通孔7に臨ませた状態で2個の撮像素子2がフリップチップ実装されている。また各々の光学部品取付用凹部6には、撮像素子2に光を入射させるレンズ3とIRフィルタ4とが設置されている。
【選択図】図1
Provided is a camera module in which an arrangement interval of a plurality of imaging elements and a manufacturing variation in an optical axis direction are reduced.
A three-dimensional wiring board 1 has an upper and lower cavity structure, and is provided with a recess 5 for mounting an electrical component on the lower side and two recesses 6 and 6 for mounting an optical component on the upper side. The component mounting recess 6 communicates with the electrical component mounting recess 5 through the through hole 7. Two image pickup devices 2 are flip-chip mounted in the electrical component mounting recess 5 with the light axis 2 facing the through hole 7 with the same optical axis direction. In each optical component mounting recess 6, a lens 3 and an IR filter 4 for allowing light to enter the image sensor 2 are installed.
[Selection] Figure 1

Description

本発明は、カメラモジュールに関するものである。   The present invention relates to a camera module.

従来、立体配線基板に撮像素子とレンズとを実装したカメラモジュールが提供されていた(例えば特許文献1参照)。
特開2001−245186号公報(段落番号[0022]−[0035]、及び、第1図)
Conventionally, a camera module in which an imaging element and a lens are mounted on a three-dimensional wiring board has been provided (see, for example, Patent Document 1).
JP 2001-245186 A (paragraph numbers [0022]-[0035] and FIG. 1)

上述のカメラモジュールを用いて立体画像を撮像したり、三角測量の原理を用いて撮像画像内の物体までの距離を計測する場合、撮像素子とレンズとが1個ずつ実装された立体配線基板を所定の間隔を開けて2個配列し、2個の撮像素子から入力される画像信号を信号処理していたため、2個の撮像素子の配置間隔や光軸方向の製造上のバラツキが増大し、正確な立体画像が得られなかったり、距離の測定精度が悪化するという問題があった。   When a stereoscopic image is captured using the above-described camera module or the distance to an object in the captured image is measured using the principle of triangulation, a stereoscopic wiring board on which an image sensor and a lens are mounted one by one is used. Since two image elements are arranged at predetermined intervals and image signals input from the two image sensors are processed, the arrangement interval of the two image sensors and the manufacturing variation in the optical axis direction increase. There is a problem that an accurate stereoscopic image cannot be obtained or the distance measurement accuracy is deteriorated.

本発明は上記問題点に鑑みて為されたものであり、その目的とするところは、複数個の撮像素子の配置間隔や光軸方向の製造上のばらつきを低減したカメラモジュールを提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a camera module in which the arrangement interval of a plurality of imaging elements and manufacturing variations in the optical axis direction are reduced. is there.

上記目的を達成するために、請求項1の発明は、複数個の撮像素子と、複数個の撮像素子にそれぞれ光を入射させる複数個のレンズと、複数個の撮像素子の光軸方向を同じ方向として複数個の撮像素子と複数個のレンズとを搭載した立体配線基板とを備えて成ることを特徴とする。   In order to achieve the above object, the invention of claim 1 is characterized in that a plurality of image pickup devices, a plurality of lenses that respectively allow light to enter the plurality of image pickup devices, and the optical axis directions of the plurality of image pickup devices are the same. It is characterized by comprising a three-dimensional wiring board on which a plurality of imaging elements and a plurality of lenses are mounted as directions.

請求項1の発明によれば、複数個の撮像素子および複数個のレンズが、各撮像素子の光軸方向を同じ方向として立体配線基板に搭載されているので、複数個の撮像素子の配置間隔やその光軸方向の製造上のばらつきを低減したカメラモジュールを実現することができる。したがって、このカメラモジュールを立体画像の撮影や距離測定に使用する場合は、正確な立体画像を得ることができ、また距離の測定精度を高めることができる。   According to the first aspect of the present invention, since the plurality of image sensors and the plurality of lenses are mounted on the three-dimensional wiring board with the optical axis direction of each image sensor as the same direction, the arrangement interval of the plurality of image sensors. And a camera module with reduced manufacturing variations in the optical axis direction. Therefore, when this camera module is used for photographing a stereoscopic image or measuring a distance, an accurate stereoscopic image can be obtained and the distance measurement accuracy can be increased.

以下に本発明の実施の形態を図1〜図5に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1はカメラモジュールAの要部断面図であり、このカメラモジュールAは、立体配線基板1に各2個の撮像素子2とレンズ3とIRフィルタ4とを搭載して構成されている。   FIG. 1 is a cross-sectional view of the main part of a camera module A. The camera module A is configured by mounting two image pickup devices 2, lenses 3, and IR filters 4 on a three-dimensional wiring board 1.

立体配線基板1は上下キャビティー構造で、下側部に2個の撮像素子2がフリップチップ実装される電気部品実装用凹部5を設けるとともに、上側部にレンズ3およびIRフィルタ4がそれぞれ1個ずつ設置される光学部品取付用凹部6,6を左右2箇所に設けてある。そして、各光学部品取付用凹部6の底部中央には上側部に比べて開口面積の小さいフィルタ収納用凹部8が形成されており、このフィルタ収納用凹部8の底部には、立体配線基板1を厚み方向に貫通する貫通孔7がそれぞれ形成されている。而して、光学部品取付用凹部6は、貫通孔7を介して電気部品実装用凹部5に連通している。   The three-dimensional wiring board 1 has an upper and lower cavity structure, and is provided with an electrical component mounting recess 5 on which two image pickup devices 2 are flip-chip mounted on the lower side, and one lens 3 and one IR filter 4 on the upper side. Optical component mounting recesses 6 and 6 are provided at two locations on the left and right sides. A filter housing recess 8 having a smaller opening area than the upper portion is formed in the center of the bottom of each optical component mounting recess 6. The three-dimensional wiring board 1 is placed at the bottom of the filter housing recess 8. Through-holes 7 penetrating in the thickness direction are respectively formed. Thus, the optical component mounting recess 6 communicates with the electrical component mounting recess 5 via the through hole 7.

2個の撮像素子2は、可視光領域の光に対して感度を有するCCD(電荷結合素子)やCMOSイメージセンサにより構成される。立体配線基板1の電気部品実装用凹部5には金属めっき層からなる導体パターン10が形成されており、撮像素子2は上面に設けたバンプ電極2bを対応する導体パターン10に半田接合又はフリップチップ接合することによって、受光部2aを貫通孔7に臨ませた状態で電気部品実装用凹部5の底部にフリップチップ実装されている。なお導体パターン10は、電気部品実装用凹部5の周りに設けられて下方に突出する脚部12の先端面(下面)まで延長形成されており、脚部12の先端面に形成された導体パターン10の部位から、立体配線基板1を図示しない実装基板に半田付けするための半田付け端子11が構成されている。   The two image pickup devices 2 are constituted by a CCD (charge coupled device) or a CMOS image sensor having sensitivity to light in the visible light region. A conductor pattern 10 made of a metal plating layer is formed in the recess 5 for mounting electrical parts of the three-dimensional wiring board 1. By bonding, the chip is flip-chip mounted on the bottom of the electrical component mounting recess 5 with the light receiving portion 2 a facing the through hole 7. The conductor pattern 10 is provided around the electrical component mounting recess 5 and is extended to the distal end surface (lower surface) of the leg portion 12 protruding downward. The conductor pattern formed on the distal end surface of the leg portion 12 The soldering terminals 11 for soldering the three-dimensional wiring board 1 to a mounting board (not shown) are configured from the 10 parts.

IRフィルタ4は、紫外領域の光をカットして可視領域および赤外領域の光を透過させるようなフィルタであって、平板状に形成され、フィルタ収納用凹部8の底部に載置されている。   The IR filter 4 is a filter that cuts light in the ultraviolet region and transmits light in the visible region and infrared region, is formed in a flat plate shape, and is placed on the bottom of the filter housing recess 8. .

レンズ3は、撮像素子2に光を入射させるためのもので、光学部品取付用凹部6の内部において、フィルタ収納用凹部8の両側の段部9,9上に配置されている。   The lens 3 is for making light incident on the image sensor 2, and is disposed on the step portions 9 and 9 on both sides of the filter housing recess 8 inside the optical component mounting recess 6.

本実施形態のカメラモジュールAは以上のような構成を有しており、撮影対象の空間から入射した光はレンズ3により集光され、IRフィルタ4を通過し、さらに貫通孔7を通って撮像素子2の受光部2aに入射するようになっている
ここで、各2個の撮像素子2およびレンズ3は立体配線基板1に搭載されているので、撮像素子2およびレンズ3の相対的な位置合わせを精度良く行うことができ、さらに撮像素子2の配置間隔や光軸方向の製造上のばらつきを低減することができる。したがって、2個の撮像素子2の撮像画像をもとに立体画像を作成する場合には、正確な立体画像を得ることができ、また三角測量の原理を用いて撮像画像内の物体までの距離を求める場合には距離の測定誤差を低減できるという利点がある。
The camera module A of the present embodiment has the above-described configuration, and light incident from the space to be imaged is collected by the lens 3, passes through the IR filter 4, and further passes through the through hole 7 to take an image. Here, since each of the two image pickup devices 2 and the lens 3 is mounted on the three-dimensional wiring board 1, the relative positions of the image pickup device 2 and the lens 3 are made incident on the light receiving portion 2 a of the element 2. The alignment can be performed with high accuracy, and further, the arrangement interval of the image pickup device 2 and the manufacturing variation in the optical axis direction can be reduced. Therefore, when creating a stereoscopic image based on the captured images of the two imaging elements 2, an accurate stereoscopic image can be obtained, and the distance to an object in the captured image using the principle of triangulation Is advantageous in that the distance measurement error can be reduced.

ところで、上述の実施形態では2個の撮像素子2に、可視光領域の画像を映像信号に変換する撮像素子を用いているが、図2に示すように2個の撮像素子のうちの1個(図2中の左側)を、可視光領域の光に対して感度を有する昼用の撮像素子2とし、他の1個(図2中の右側)を赤外領域から可視光領域までの光に対して感度を有する暗視用の撮像素子13としても良く、昼用の撮像素子2に加えて暗視用の撮像素子13を備えることで、明暗何れの環境下でも画像を得ることが可能になるという利点がある。   By the way, in the above-described embodiment, an image sensor that converts an image in the visible light region into a video signal is used for the two image sensors 2, but one of the two image sensors as shown in FIG. 2. (Left side in FIG. 2) is the daytime imaging device 2 having sensitivity to light in the visible light region, and the other one (right side in FIG. 2) is light from the infrared region to the visible light region. The image sensor 13 may be a night vision image sensor 13 having a sensitivity to the image, and the image sensor 13 for night vision in addition to the image sensor 2 for daytime can obtain an image in both bright and dark environments. There is an advantage of becoming.

なお撮像素子13は、撮像素子2と同様に、受光部13aを貫通孔7に臨ませた状態で、上面に設けたバンプ電極13bを電気部品実装用凹部5に形成された導体パターン10に半田付けすることによって立体回路基板1にフリップチップ実装されている。また、撮像素子13は、その光軸方向が撮像素子2の光軸方向と同じ方向を向くようにして立体回路基板1に実装されている。   As with the image sensor 2, the image sensor 13 is soldered to the conductor pattern 10 formed on the electrical component mounting recess 5 with the bump electrodes 13 b provided on the upper surface thereof with the light receiving portion 13 a facing the through hole 7. As a result, it is flip-chip mounted on the three-dimensional circuit board 1. The image sensor 13 is mounted on the three-dimensional circuit board 1 so that the optical axis direction thereof is the same as the optical axis direction of the image sensor 2.

ところで、上述の立体配線基板1は3次元立体回路基板の製造技術を用いて形成されるのであるが、その製造技術について図3〜図5を参照して説明する。   By the way, although the above-mentioned three-dimensional wiring board 1 is formed using the manufacturing technique of a three-dimensional three-dimensional circuit board, the manufacturing technique is demonstrated with reference to FIGS.

図3は3次元立体回路基板の製造方法の概要を示すフローである。3次元立体回路基板は、樹脂材料を射出成型することで所望の三次元形状の基板21を成型する成型工程(S1)、基板21の表面にスパッタリング、蒸着、イオンプレーティングなどの物理蒸着法による導電性薄膜22の成膜を行うメタライズ処理工程(S2)、高エネルギービーム(本実施形態ではレーザビーム)による回路部/非回路部の分離を行うレーザ処理工程(S3)、回路部のめっきによる厚膜化を行ってめっき層23を形成するめっき処理工程(S4)、非回路部のエッチング処理工程(S5)の各工程を順次実施することで製造される。   FIG. 3 is a flowchart showing an outline of a method for manufacturing a three-dimensional circuit board. The three-dimensional three-dimensional circuit board is formed by a molding process (S1) in which a resin material is injection-molded to mold a desired three-dimensional substrate 21, and a physical vapor deposition method such as sputtering, vapor deposition, or ion plating on the surface of the substrate 21. A metallization process (S2) for forming the conductive thin film 22, a laser process (S3) for separating the circuit part / non-circuit part by a high energy beam (in this embodiment, a laser beam), and plating of the circuit part It is manufactured by sequentially performing each step of the plating process (S4) for forming the plating layer 23 by increasing the film thickness and the non-circuit part etching process (S5).

図4(a)〜(c)および図5(a)(b)は、上記各工程における3次元立体回路基板Bの表面処理の様子を示している。まず図4(a)は基板21の成型工程(S1)であり、絶縁性を有する合成樹脂を射出成形することによって、所望の三次元形状を有する基板21が成型される。ここにおいて基板21の成型材料としては、例えば熱可塑性樹脂の場合は芳香族ポリアミドや液晶性ポリエステルなどが、熱硬化性樹脂の場合はエポキシ樹脂や飽和ポリエステルなどが用いられ、またセラミックの場合は窒化アルミナなどが用いられる。また基板21の成型方法は射出成形に限らず、押出成型やトランスファ成型などの成型方法を用いても良い。   4 (a) to 4 (c) and FIGS. 5 (a) and 5 (b) show the surface treatment of the three-dimensional circuit board B in each of the above steps. First, FIG. 4A shows a molding step (S1) of the substrate 21, and the substrate 21 having a desired three-dimensional shape is molded by injection molding an insulating synthetic resin. Here, as the molding material of the substrate 21, for example, an aromatic polyamide or liquid crystalline polyester is used in the case of a thermoplastic resin, an epoxy resin or a saturated polyester is used in the case of a thermosetting resin, and a nitriding is used in the case of a ceramic. Alumina or the like is used. The molding method of the substrate 21 is not limited to injection molding, and a molding method such as extrusion molding or transfer molding may be used.

次に、図4(b)はメタライズ処理工程(S2)であり、例えば銅をターゲットとするスパッタリング、真空蒸着、イオンプレーティングなどの物理蒸着法(PVD法)によって、基板21の表面に導電性薄膜22が形成される。しかし、物理蒸着法に限定されることなく化学蒸着法などの他の方法で行ってもよい。導電性薄膜22は、銅以外に、ニッケル、金、アルミニウム、チタン、モリブデン、クロム、タングステン、スズ、鉛などの単体金属、又は黄銅、NiCrなどの合金を用いてもよい。   Next, FIG. 4B is a metallization process step (S2). For example, the surface of the substrate 21 is made conductive by a physical vapor deposition method (PVD method) such as sputtering, vacuum deposition, or ion plating using copper as a target. A thin film 22 is formed. However, it may be performed by other methods such as a chemical vapor deposition method without being limited to the physical vapor deposition method. In addition to copper, the conductive thin film 22 may use a single metal such as nickel, gold, aluminum, titanium, molybdenum, chromium, tungsten, tin, or lead, or an alloy such as brass or NiCr.

図4(c)はレーザ処理工程(S3)であり、導電性薄膜22における回路部23aと非回路部23bとの境界部分に高エネルギービーム、例えば電磁波ビームであるレーザビームが照射され、その部分の導電性薄膜22が蒸発除去されて、その除去部23cによって回路部23aと非回路部23bとが分離され、所定の回路パターンが形成される。   FIG. 4C shows a laser processing step (S3). A boundary portion between the circuit portion 23a and the non-circuit portion 23b in the conductive thin film 22 is irradiated with a high energy beam, for example, a laser beam which is an electromagnetic wave beam, and the portion. The conductive thin film 22 is removed by evaporation, and the circuit portion 23a and the non-circuit portion 23b are separated by the removal portion 23c to form a predetermined circuit pattern.

次に、図5(a)はめっき処理工程(S4)であり、回路部23aに給電されて電流が流れ、回路部23aの部分が例えば電解銅めっきにより厚膜化されて、めっき層24が形成される。このとき、非回路部23bには電流が流れず、非回路部23bの部分はめっきされないので、その膜厚はもとのままの薄膜の状態にある。尚、めっき層24としてはニッケル金めっきなどを形成しても良い。   Next, FIG. 5A is a plating process step (S4). Electricity is supplied to the circuit portion 23a, current flows, the portion of the circuit portion 23a is thickened by, for example, electrolytic copper plating, and the plating layer 24 is formed. It is formed. At this time, no current flows through the non-circuit portion 23b, and the portion of the non-circuit portion 23b is not plated, so that the film thickness remains as it is. Note that nickel gold plating or the like may be formed as the plating layer 24.

次に、図5(b)はエッチング処理工程(S5)であり、回路パターン形成面全体をエッチングすることにより、非回路部23bが除去されて、回路パターンが形成された3次元回路基板が完成するのであり、このような製造技術を用いて、上述の立体配線基板1を形成することができるのである。   Next, FIG. 5B is an etching process step (S5). By etching the entire circuit pattern forming surface, the non-circuit portion 23b is removed and a three-dimensional circuit board on which the circuit pattern is formed is completed. Therefore, the above-described three-dimensional wiring board 1 can be formed using such a manufacturing technique.

なお、本発明の精神と範囲に反することなしに、広範に異なる実施形態を構成することができることは明白なので、この発明は、特定の実施形態に制約されるものではない。   It should be noted that a wide variety of different embodiments can be configured without departing from the spirit and scope of the present invention, and the present invention is not limited to a specific embodiment.

本実施形態のカメラモジュールの概略断面図である。It is a schematic sectional drawing of the camera module of this embodiment. 同上の他のカメラモジュールの概略断面図である。It is a schematic sectional drawing of the other camera module same as the above. 同上の製造方法の概要を示すフロー図である。It is a flowchart which shows the outline | summary of the manufacturing method same as the above. (a)〜(c)は同上の各工程における表面処理の様子を示す斜視図である。(A)-(c) is a perspective view which shows the mode of the surface treatment in each process same as the above. (a)(b)は同上の各工程における表面処理の様子を示す斜視図である。(A) (b) is a perspective view which shows the mode of the surface treatment in each process same as the above.

符号の説明Explanation of symbols

A カメラモジュール
1 立体配線基板
2 撮像素子
2a 受光部
3 レンズ
4 フィルタ
5 電気部品実装用凹部
6 光学部品取付用凹部
7 貫通孔
A camera module 1 three-dimensional wiring board 2 image sensor 2a light receiving part 3 lens 4 filter 5 concave part for mounting electrical parts 6 concave part for mounting optical parts 7 through hole

Claims (1)

複数個の撮像素子と、複数個の撮像素子にそれぞれ光を入射させる複数個のレンズと、複数個の撮像素子の光軸方向を同じ方向として複数個の撮像素子と複数個のレンズとを搭載した立体配線基板とを備えて成ることを特徴とするカメラモジュール。   Equipped with multiple image sensors, multiple lenses that allow light to enter each of the multiple image sensors, and multiple image sensors and multiple lenses with the optical axis direction of the multiple image sensors as the same direction And a three-dimensional wiring board.
JP2006308242A 2006-11-14 2006-11-14 The camera module Pending JP2008124923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006308242A JP2008124923A (en) 2006-11-14 2006-11-14 The camera module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006308242A JP2008124923A (en) 2006-11-14 2006-11-14 The camera module

Publications (1)

Publication Number Publication Date
JP2008124923A true JP2008124923A (en) 2008-05-29

Family

ID=39509200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006308242A Pending JP2008124923A (en) 2006-11-14 2006-11-14 The camera module

Country Status (1)

Country Link
JP (1) JP2008124923A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102591104A (en) * 2011-01-14 2012-07-18 三星电机株式会社 Camera module and method of manufacturing the same
JP2012182309A (en) * 2011-03-01 2012-09-20 Seiko Instruments Inc Optical device
JP2012199844A (en) * 2011-03-23 2012-10-18 Tdk Corp Electronic component mounting board
WO2012165691A1 (en) * 2011-06-03 2012-12-06 (주)에이직뱅크 Stereoscopic image sensor package and method for manufacturing same
KR101232886B1 (en) * 2011-07-20 2013-02-13 (주) 이피웍스 Semiconductor package using a redistribution substrate and method for manufacturing the same
WO2017094777A1 (en) * 2015-12-02 2017-06-08 マイクロモジュールテクノロジー株式会社 Optical device and method for manufacturing optical device
JPWO2021186519A1 (en) * 2020-03-16 2021-09-23

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11281351A (en) * 1998-01-28 1999-10-15 Fuji Electric Co Ltd Distance measuring device
JP2001245186A (en) * 2000-02-29 2001-09-07 Matsushita Electric Ind Co Ltd Imaging device and imaging device assembling method
JP2001333332A (en) * 2000-05-24 2001-11-30 Matsushita Electric Works Ltd Lens barrel and image pickup device using it
JP2006171248A (en) * 2004-12-15 2006-06-29 Renesas Technology Corp Manufacturing method of optical module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11281351A (en) * 1998-01-28 1999-10-15 Fuji Electric Co Ltd Distance measuring device
JP2001245186A (en) * 2000-02-29 2001-09-07 Matsushita Electric Ind Co Ltd Imaging device and imaging device assembling method
JP2001333332A (en) * 2000-05-24 2001-11-30 Matsushita Electric Works Ltd Lens barrel and image pickup device using it
JP2006171248A (en) * 2004-12-15 2006-06-29 Renesas Technology Corp Manufacturing method of optical module

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102591104A (en) * 2011-01-14 2012-07-18 三星电机株式会社 Camera module and method of manufacturing the same
KR101208215B1 (en) * 2011-01-14 2012-12-04 삼성전기주식회사 Camera module and method for manufacturing the same
JP2012182309A (en) * 2011-03-01 2012-09-20 Seiko Instruments Inc Optical device
JP2012199844A (en) * 2011-03-23 2012-10-18 Tdk Corp Electronic component mounting board
WO2012165691A1 (en) * 2011-06-03 2012-12-06 (주)에이직뱅크 Stereoscopic image sensor package and method for manufacturing same
KR101232886B1 (en) * 2011-07-20 2013-02-13 (주) 이피웍스 Semiconductor package using a redistribution substrate and method for manufacturing the same
KR20180090262A (en) * 2015-12-02 2018-08-10 마이크로 모듈 테크놀로지 가부시키가이샤 Optical device and manufacturing method of optical device
CN108293088A (en) * 2015-12-02 2018-07-17 微型模块科技株式会社 The manufacturing method of Optical devices and Optical devices
WO2017094777A1 (en) * 2015-12-02 2017-06-08 マイクロモジュールテクノロジー株式会社 Optical device and method for manufacturing optical device
JPWO2017094777A1 (en) * 2015-12-02 2018-09-20 マイクロモジュールテクノロジー株式会社 Optical device and optical device manufacturing method
US10319766B2 (en) 2015-12-02 2019-06-11 Micro Module Technology Co., Ltd. Packaged optical device with sealing resin and method of manufacturing packaged optical device
CN108293088B (en) * 2015-12-02 2021-04-13 微型模块科技株式会社 Optical device and method of manufacturing the same
KR102563860B1 (en) * 2015-12-02 2023-08-03 마이크로 모듈 테크놀로지 가부시키가이샤 Optical devices and methods for manufacturing optical devices
JPWO2021186519A1 (en) * 2020-03-16 2021-09-23
WO2021186519A1 (en) * 2020-03-16 2021-09-23 オリンパス株式会社 Electronic module, method for manufacturing electronic module, and endoscope
CN115210863A (en) * 2020-03-16 2022-10-18 奥林巴斯株式会社 Electronic module, method for manufacturing electronic module, and endoscope
JP7459228B2 (en) 2020-03-16 2024-04-01 オリンパス株式会社 Electronic module, electronic module manufacturing method, and endoscope

Similar Documents

Publication Publication Date Title
JP2008124923A (en) The camera module
US7714931B2 (en) System and method for mounting an image capture device on a flexible substrate
US7019374B2 (en) Small-sized image pick up module
CN104094405B (en) Shooting unit and filming apparatus
TWI583193B (en) Camera module
JP4510629B2 (en) Manufacturing method of semiconductor device
KR100583509B1 (en) Optical device and method for manufacturing the same
US8606057B1 (en) Opto-electronic modules including electrically conductive connections for integration with an electronic device
US9800858B2 (en) Stereo camera unit
KR20140000428A (en) Camera module
WO2012173014A1 (en) Image capture device and electronic apparatus employing same
CA2731904A1 (en) Stereo camera system
US9997554B2 (en) Chip scale package camera module with glass interposer having lateral conductive traces between a first and second glass layer and method for making the same
KR20130024910A (en) Device comprising an optical module and support plate
US7057833B2 (en) Image capture device
US8643773B2 (en) Manufacturing method of solid-state imaging apparatus, solid-state imaging apparatus, and electronic imaging apparatus
US8440491B2 (en) Methods of forming imager device with electric connections to electrical device
JP5515357B2 (en) Imaging device and imaging module using the same
JP4656046B2 (en) Image sensor focus adjustment mechanism
US9059058B2 (en) Image sensor device with IR filter and related methods
US8855480B2 (en) Camera module
JP2013218252A (en) Camera device and range finder
JP2010109550A (en) Imaging module and process of fabricating the same
JP2007059581A (en) Solid-state imaging device and camera module
JP4280908B2 (en) OPTICAL MODULE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130