[go: up one dir, main page]

JP2008119665A - Manufacturing method of exhaust gas purification filter - Google Patents

Manufacturing method of exhaust gas purification filter Download PDF

Info

Publication number
JP2008119665A
JP2008119665A JP2006309643A JP2006309643A JP2008119665A JP 2008119665 A JP2008119665 A JP 2008119665A JP 2006309643 A JP2006309643 A JP 2006309643A JP 2006309643 A JP2006309643 A JP 2006309643A JP 2008119665 A JP2008119665 A JP 2008119665A
Authority
JP
Japan
Prior art keywords
firing
exhaust gas
formed body
gas purification
honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006309643A
Other languages
Japanese (ja)
Other versions
JP5082398B2 (en
Inventor
Takehiro Hayashi
健博 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006309643A priority Critical patent/JP5082398B2/en
Priority to DE200710000897 priority patent/DE102007000897A1/en
Publication of JP2008119665A publication Critical patent/JP2008119665A/en
Application granted granted Critical
Publication of JP5082398B2 publication Critical patent/JP5082398B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Filtering Materials (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

【課題】焼成時間を短縮して生産性の向上を図ることができ、焼成時における不具合の発生を抑制することができる排ガス浄化フィルタの製造方法を提供すること。
【解決手段】多孔質の隔壁11をハニカム状に配して多数のセル12を設けたコーディエライトからなるハニカム構造体10に栓部13を設けてなる排ガス浄化フィルタ1の製造方法は、セラミックス材料を押出成形して、ハニカム成形体を作製する押出成形工程と、ハニカム成形体を乾燥する乾燥工程と、ハニカム成形体を焼成する焼成工程と、焼成工程の前において、ハニカム成形体の端面におけるセルの開口部のうち、栓部13によって栓詰めすべき部分に栓詰め用スラリーを配置する栓詰め工程とを有し、焼成工程における第1回目の焼成では、ハニカム成形体に含まれる有機分の分解が開始されてから完了するまでは、炉内への酸素供給量を抑制する。
【選択図】図1
An object of the present invention is to provide a method for producing an exhaust gas purification filter capable of reducing the firing time to improve productivity and suppressing the occurrence of problems during firing.
A method for manufacturing an exhaust gas purification filter 1 in which a plug portion 13 is provided in a honeycomb structure 10 made of cordierite in which porous partition walls 11 are arranged in a honeycomb shape and a large number of cells 12 are provided. Extrusion molding of the material to produce a honeycomb molded body, a drying process for drying the honeycomb molded body, a firing process for firing the honeycomb molded body, and an end face of the honeycomb molded body before the firing step A plugging step of disposing a plugging slurry in a portion to be plugged by the plug portion 13 in the opening of the cell, and in the first firing in the firing step, the organic component contained in the honeycomb formed body From the start of the decomposition until the completion, the amount of oxygen supplied to the furnace is suppressed.
[Selection] Figure 1

Description

本発明は、ディーゼルエンジン等の内燃機関から排出される排ガス中のパティキュレートを捕集して排ガスの浄化を行う排ガス浄化フィルタに関する。   The present invention relates to an exhaust gas purification filter that collects particulates in exhaust gas discharged from an internal combustion engine such as a diesel engine and purifies the exhaust gas.

従来から、ディーゼルエンジン等の内燃機関から排出される排ガス中のパティキュレートを捕集して排ガスの浄化を行う排ガス浄化フィルタが知られている。
この排ガス浄化フィルタは、多孔質の隔壁をハニカム状に配して多数のセルを設けた基材としてのハニカム構造体を有するものである(特許文献1参照)。そして、排ガスを導入する導入通路となるセルの下流端と、多孔質の隔壁を通過した排ガスを排出する排出通路となるセルの上流端とは、栓部によって閉塞されるのが一般的である。
2. Description of the Related Art Conventionally, exhaust gas purification filters that purify exhaust gas by collecting particulates discharged from an internal combustion engine such as a diesel engine are known.
This exhaust gas purification filter has a honeycomb structure as a base material provided with a large number of cells with porous partition walls arranged in a honeycomb shape (see Patent Document 1). Then, the downstream end of the cell serving as the introduction passage for introducing the exhaust gas and the upstream end of the cell serving as the discharge passage for discharging the exhaust gas that has passed through the porous partition walls are generally blocked by the plug portion. .

上記排ガス浄化フィルタを用いて排ガスを浄化する際には、導入通路となるセルに侵入した排ガスが多孔質の隔壁を通過して、隣のセルよりなる排出通路に移動する。このとき、排ガス中のパティキュレートが隔壁に形成されている多数の細孔に捕集され、排ガスが浄化される。また、隔壁に触媒を担持させておくことにより、捕集したパティキュレートを触媒反応により分解除去することができる。   When the exhaust gas is purified using the exhaust gas purification filter, the exhaust gas that has entered the cell serving as the introduction passage passes through the porous partition wall and moves to the exhaust passage composed of the adjacent cell. At this time, the particulates in the exhaust gas are collected in a large number of pores formed in the partition wall, and the exhaust gas is purified. Moreover, by collecting the catalyst on the partition wall, the collected particulate can be decomposed and removed by a catalytic reaction.

上記排ガス浄化フィルタの基材となるハニカム構造体を作製するに当たっては、造孔材としてのカーボンを添加したセラミック材料を押出成形してハニカム成形体を作製し、乾燥させ、その後焼成する。そして、焼成時にカーボンを焼失させることによって、所望の気孔率を有する多孔質の隔壁を形成する。   In producing a honeycomb structure as a base material for the exhaust gas purification filter, a ceramic material added with carbon as a pore former is extruded to produce a honeycomb formed body, dried, and then fired. And the porous partition which has a desired porosity is formed by burning off carbon at the time of baking.

ところが、造孔材としてのカーボンやバインダ等の有機分を含有するハニカム成形体を焼成する際には、有機分の反応による反応熱(燃焼熱)が発生する。特に、昇温速度を速くすると、有機分が急激に反応して大きな燃焼熱が生じる。そして、ハニカム成形体に局部的な温度上昇等が生じる。これにより、ハニカム成形体内に熱応力が生じ、割れ等の不具合が発生していた。   However, when a honeycomb formed body containing an organic component such as carbon or a binder as a pore former is fired, reaction heat (combustion heat) is generated due to the reaction of the organic component. In particular, when the rate of temperature rise is increased, the organic component reacts abruptly to generate large combustion heat. And local temperature rise etc. arise in a honeycomb fabrication object. As a result, thermal stress is generated in the honeycomb molded body, and defects such as cracks occur.

そこで、従来は、カーボンやバインダ等の有機分が燃焼する温度領域において、炉内温度を一時的に保持したり、ゆっくり昇温させたりして、これらの有機分を徐々に燃焼させていた。ところが、このような方法では焼成時間が長くなり、生産性の低下を招くことになる。   Therefore, conventionally, in the temperature range where organic components such as carbon and binder are combusted, the temperature in the furnace is temporarily maintained or the temperature is slowly raised to gradually combust these organic components. However, in such a method, the firing time becomes long and the productivity is lowered.

よって、焼成時間を短縮して生産性の向上を図ることができ、焼成時における不具合の発生を抑制することができる排ガス浄化フィルタの製造方法が望まれている。   Therefore, there is a demand for a method for manufacturing an exhaust gas purification filter that can shorten the firing time to improve productivity and suppress the occurrence of defects during firing.

特開平8−73274号公報JP-A-8-73274

本発明は、かかる従来の問題点を鑑みてなされたものであり、焼成時間を短縮して生産性の向上を図ることができ、焼成時における不具合の発生を抑制することができる排ガス浄化フィルタの製造方法を提供しようとするものである。   The present invention has been made in view of such conventional problems, and is an exhaust gas purification filter capable of reducing the firing time to improve productivity and suppressing the occurrence of defects during firing. A manufacturing method is to be provided.

本発明は、多孔質の隔壁をハニカム状に配して多数のセルを設けたコーディエライトからなるハニカム構造体を有し、該ハニカム構造体の上記セルのうち、排ガスを導入する導入通路となるセルの下流端と、上記多孔質の隔壁を通過した排ガスを排出する排出通路となるセルの上流端とを栓部によって閉塞してなる排ガス浄化フィルタを製造する方法において、
コーディエライト化原料を含むセラミックス材料を押出成形して、ハニカム成形体を作製する押出成形工程と、
上記ハニカム成形体を乾燥する乾燥工程と、
上記ハニカム成形体を1又は複数回焼成する焼成工程と、
該焼成工程の前又は途中において、上記ハニカム成形体の端面における上記セルの開口部のうち、上記栓部によって栓詰めすべき部分に栓詰め用スラリーを配置する栓詰め工程とを有し、
上記焼成工程における第1回目の焼成では、少なくとも上記ハニカム成形体に含まれる有機分の分解が開始されてから完了するまでは、炉内への酸素供給量を抑制することを特徴とする排ガス浄化フィルタの製造方法にある(請求項1)。
The present invention has a honeycomb structure made of cordierite provided with a large number of cells with porous partition walls arranged in a honeycomb shape, and an introduction passage for introducing exhaust gas among the cells of the honeycomb structure. In a method for producing an exhaust gas purification filter comprising a plug portion closing a downstream end of a cell and an upstream end of a cell serving as a discharge passage for discharging exhaust gas that has passed through the porous partition wall,
An extrusion process for producing a honeycomb formed body by extruding a ceramic material containing a cordierite forming raw material;
A drying step of drying the honeycomb formed body,
A firing step of firing the honeycomb formed body one or more times;
Before or during the firing step, the plugging step of placing a plugging slurry in a portion to be plugged by the plug portion of the opening of the cell in the end face of the honeycomb molded body,
In the first firing in the firing step, the exhaust gas purification is characterized in that the amount of oxygen supplied into the furnace is suppressed at least from the start to the completion of the decomposition of the organic component contained in the honeycomb formed body. It exists in the manufacturing method of a filter (Claim 1).

本発明の排ガス浄化フィルタの製造方法は、上記のごとく、押出成形工程と乾燥工程と焼成工程と栓詰め工程とを行う。そして、上記焼成工程における第1回目の焼成では、少なくとも上記ハニカム成形体に含まれる有機分の分解が開始されてから完了するまでは、炉内への酸素供給量を抑制する。すなわち、上記ハニカム成形体の第1回目の焼成では、少なくとも上記有機分を燃焼させる間は、上記炉内の雰囲気中の酸素を通常よりも欠乏させた状態にする。   As described above, the method for producing an exhaust gas purification filter of the present invention includes an extrusion molding process, a drying process, a firing process, and a plugging process. In the first firing in the firing step, the amount of oxygen supplied to the furnace is suppressed at least from the start of decomposition of the organic component contained in the honeycomb formed body until the completion. That is, in the first firing of the honeycomb formed body, oxygen in the atmosphere in the furnace is depleted more than usual during at least the burning of the organic component.

ここで、上記ハニカム成形体の第1回目の焼成では、例えばバインダや造孔材としてのカーボン等の上記有機分が含まれた状態の上記ハニカム成形体を焼成し、この有機分を燃焼させて除去する。このとき、本発明のように、上記炉内雰囲気中の酸素を欠乏させた状態で焼成することにより、酸素供給量を抑制しないで通常の酸素状態で焼成した場合に比べて、上記有機分が燃焼したときの分解反応による反応熱(燃焼熱)が小さくなる。また、分解反応に必要となる酸素の供給量が少なくなるため、分解反応自体が緩やかに進む。   Here, in the first firing of the honeycomb molded body, for example, the honeycomb molded body containing the organic component such as carbon as a binder or a pore former is fired, and the organic component is burned. Remove. At this time, as in the present invention, by firing in a state in which the oxygen in the furnace atmosphere is deficient, the organic content is smaller than when firing in a normal oxygen state without suppressing the oxygen supply amount. The reaction heat (combustion heat) due to the decomposition reaction when burned is reduced. In addition, since the supply amount of oxygen necessary for the decomposition reaction is reduced, the decomposition reaction itself proceeds slowly.

これにより、上記ハニカム成形体の第1回目の焼成において、上記ハニカム成形体に含まれる上記有機分を安定的に燃焼除去することができる。それ故に、上記有機分の急激な燃焼及びそれに伴う大きな燃焼熱の発生を抑制し、さらには上記ハニカム成形体に大きな熱応力が生じて割れ等が発生することを抑制することができる。
また、上記有機分を安定的に燃焼させることができることから、従来よりも昇温速度を速くすることができる。これにより、焼成時間を短縮することができ、生産性を向上させることができる。
Thereby, in the first firing of the honeycomb formed body, the organic component contained in the honeycomb formed body can be stably removed by combustion. Therefore, it is possible to suppress the rapid combustion of the organic component and the generation of large combustion heat associated therewith, and further suppress the occurrence of cracks and the like due to the generation of large thermal stress in the honeycomb formed body.
Moreover, since the said organic component can be burned stably, a temperature increase rate can be made faster than before. Thereby, baking time can be shortened and productivity can be improved.

このように、本発明の排ガス浄化フィルタの製造方法によれば、焼成時間を短縮して生産性の向上を図ることができ、焼成時における不具合の発生を抑制することができる。   Thus, according to the method for manufacturing an exhaust gas purification filter of the present invention, the firing time can be shortened to improve productivity, and the occurrence of defects during firing can be suppressed.

本発明においては、上記焼成工程における第1回目の焼成では、少なくとも上記ハニカム成形体に含まれる有機分の分解が開始されてから完了するまでは、上記焼成炉内の酸素濃度を8%以下とすることが好ましい(請求項2)。
上記焼成炉内の酸素濃度が8%を超える場合には、上記ハニカム成形体の第1回目の焼成において、上記ハニカム成形体に含まれる上記有機分を安定的に燃焼させることができないおそれがある。
In the present invention, in the first firing in the firing step, the oxygen concentration in the firing furnace is set to 8% or less from the start to the completion of the decomposition of the organic component contained in the honeycomb formed body. (Claim 2).
When the oxygen concentration in the firing furnace exceeds 8%, the organic component contained in the honeycomb formed body may not be stably burned in the first firing of the honeycomb formed body. .

また、上記焼成工程は、上記栓詰め工程の前に、上記ハニカム成形体を仮焼成する第1焼成工程と、
上記栓詰め工程の後に、上記ハニカム成形体を上記仮焼成の焼成温度よりも高い焼成温度で本焼成すると共に、上記栓詰めすべき部分に上記栓部を形成する第2焼成工程とを有する構成とすることができる(請求項3)。
The firing step includes a first firing step of temporarily firing the honeycomb formed body before the plugging step;
After the plugging step, the honeycomb formed body is subjected to main firing at a firing temperature higher than the firing temperature of the temporary firing, and a second firing step of forming the plug portion at the portion to be plugged. (Claim 3).

この場合には、上記第1焼成工程において仮焼成することにより、上記ハニカム成形体は、ある程度の強度を有するものとなる。そのため、その後の上記栓詰め工程において、上記ハニカム成形体のハンドリング性を充分に確保することができ、上記栓詰め用スラリーを容易に配置することができる。
また、上記第2焼成工程において、仮焼成よりも高い焼成温度で本焼成することにより、例えば熱膨張係数や平均細孔径等の特性を調整し、所望の値とすることができる。
In this case, the honeycomb formed body has a certain degree of strength by being temporarily fired in the first firing step. Therefore, in the subsequent plugging process, the handling property of the honeycomb formed body can be sufficiently ensured, and the plugging slurry can be easily arranged.
Further, in the second firing step, by performing the main firing at a firing temperature higher than the preliminary firing, for example, characteristics such as a thermal expansion coefficient and an average pore diameter can be adjusted to a desired value.

また、上記焼成工程は、上記栓詰め工程の前に、上記ハニカム成形体を本焼成する第1焼成工程と、
上記栓詰め工程の後に、上記ハニカム成形体を上記本焼成の焼成温度よりも低い焼成温度で仮焼成すると共に、上記栓詰めすべき部分に上記栓部を形成する第2焼成工程とを有する構成とすることができる(請求項4)。
The firing step includes a first firing step of firing the honeycomb formed body before the plugging step;
After the plugging step, the honeycomb formed body is temporarily fired at a firing temperature lower than the firing temperature of the main firing, and has a second firing step of forming the plug portion at the portion to be plugged. (Claim 4).

この場合には、上記第1焼成工程において本焼成することにより、上記ハニカム成形体は、ある程度の強度を有するものとなる。そのため、その後の上記栓詰め工程において、上記ハニカム成形体のハンドリング性を充分に確保することができ、上記栓詰め用スラリーを容易に配置することができる。
また、上記第1焼成工程における本焼成により、焼成による寸法変化をほぼ完了させることができる。そのため、上記第2焼成工程において、上記栓部を精度良く形成することができる。
In this case, the honeycomb formed body has a certain degree of strength by performing the main firing in the first firing step. Therefore, in the subsequent plugging process, the handling property of the honeycomb formed body can be sufficiently ensured, and the plugging slurry can be easily arranged.
Moreover, the dimensional change by baking can be substantially completed by the main baking in the said 1st baking process. Therefore, the plug portion can be formed with high precision in the second firing step.

また、上記焼成工程は、上記栓詰め工程の後に、上記ハニカム成形体を本焼成すると共に、上記栓詰めすべき部分に上記栓部を形成する第1焼成工程のみを有する構成とすることができる(請求項5)。
この場合には、上記第1焼成工程における1回の焼成のみで、上記ハニカム成形体と上記栓詰め用スラリーとを同時に焼成することができる。これにより、上記ハニカム構造体と上記栓部とを一体的に設けることができる。
In addition, the firing step may include a first firing step in which the honeycomb formed body is subjected to main firing after the plugging step and the plug portion is formed in a portion to be plugged. (Claim 5).
In this case, the honeycomb formed body and the plugging slurry can be fired simultaneously by only one firing in the first firing step. Thereby, the said honeycomb structure and the said plug part can be provided integrally.

また、上記焼成工程における上記仮焼成の焼成温度は、1300〜1400℃であることが好ましい(請求項6)。
上記仮焼成の焼成温度が1300℃未満の場合には、上記ハニカム成形体を充分にコーディエライト化することができないおそれがある。一方、1400℃を超える場合には、その温度に昇温させるために必要な時間だけ焼成時間が長くなるだけであり、生産性の低下を招くおそれがある。
したがって、上記焼成工程における上記仮焼成の焼成温度は、1380〜1400℃であることがより好ましい(請求項7)。
Moreover, it is preferable that the baking temperature of the said temporary baking in the said baking process is 1300-1400 degreeC (Claim 6).
When the calcining temperature of the temporary calcining is less than 1300 ° C., the honeycomb formed body may not be sufficiently cordierite. On the other hand, when the temperature exceeds 1400 ° C., the firing time is increased only for the time required to raise the temperature, and the productivity may be reduced.
Therefore, it is more preferable that the calcining temperature of the preliminary calcining in the calcining step is 1380 to 1400 ° C. (Claim 7).

また、上記焼成工程における上記本焼成の焼成温度は、1400〜1450℃であることが好ましい(請求項8)。
上記本焼成の焼成温度が1400℃未満の場合には、上記ハニカム成形体を完全にコーディエライト化することができないおそれがある。一方、1450℃を超える場合には、上記ハニカム成形体の主成分となるコーディエライトの融点を超えて、溶損してしまうおそれがある。
Moreover, it is preferable that the baking temperature of the said baking in the said baking process is 1400-1450 degreeC (Claim 8).
When the firing temperature of the main firing is less than 1400 ° C., the honeycomb formed body may not be completely cordierite. On the other hand, when the temperature exceeds 1450 ° C., the melting point of cordierite which is the main component of the honeycomb formed body may be exceeded, and there is a risk of melting.

(実施例1)
本発明の実施例について、図を用いて説明する。
本例において製造する排ガス浄化フィルタ1は、図1、図2に示すごとく、多孔質の隔壁11をハニカム状に配し、断面四角形状のセル12を多数設けてなるハニカム構造体10を有する。ハニカム構造体10は、コーディエライトを主成分とするセラミックより構成されており、円筒形状を呈している。
(Example 1)
Embodiments of the present invention will be described with reference to the drawings.
As shown in FIGS. 1 and 2, the exhaust gas purification filter 1 manufactured in this example has a honeycomb structure 10 in which porous partition walls 11 are arranged in a honeycomb shape and a large number of cells 12 having a quadrangular cross section are provided. The honeycomb structure 10 is made of ceramic mainly composed of cordierite, and has a cylindrical shape.

また、同図に示すごとく、ハニカム構造体10のセル12のうち、排ガスGを導入する導入通路121となるセル12の下流端と、多孔質の隔壁11を通過した排ガスGを排出する排出通路122となるセル12の上流端とは、栓部13によって閉塞されている。本例では、隣り合うセル12が交互に導入通路121及び排出通路122となるように、栓部13を配してある。両端面から見ると、それぞれ縦方向及び横方向1つおきに、いわゆる市松模様状に栓部13が配された状態となっている。   Further, as shown in the figure, among the cells 12 of the honeycomb structure 10, the downstream end of the cell 12 serving as the introduction passage 121 for introducing the exhaust gas G and the exhaust passage for discharging the exhaust gas G that has passed through the porous partition wall 11 are used. The upstream end of the cell 12 that becomes 122 is closed by the plug portion 13. In this example, the plug portions 13 are arranged so that the adjacent cells 12 alternately become the introduction passage 121 and the discharge passage 122. When viewed from both end surfaces, the plug portions 13 are arranged in a so-called checkered pattern every other vertical and horizontal directions.

本例の排ガス浄化フィルタは、粘土質のセラミック材料を押出成形し(押出成形工程)、得られたハニカム成形体を乾燥する(乾燥工程)。その後、ハニカム成形体に栓詰め用スラリーを配置し(栓詰め工程)、ハニカム成形体を本焼成して、栓部を設けたハニカム構造体を作製する(第1焼成工程)ことによって製造される。
以下、本例の製造方法について説明する。
The exhaust gas purification filter of this example extrudes a clay-like ceramic material (extrusion molding process), and dries the obtained honeycomb molded body (drying process). Thereafter, the plugging slurry is disposed on the honeycomb formed body (plugging step), and the honeycomb formed body is subjected to main firing to produce a honeycomb structure provided with plug portions (first firing step). .
Hereinafter, the manufacturing method of this example will be described.

まず、カオリン、溶融シリカ、水酸化アルミニウム、アルミナ、タルク等を含有し、化学組成が重量比にて最終的にSiO2:45〜55%、Al23:33〜42%、MgO:12〜18%よりなるコーディエライトを主成分とする組成となるように調整したコーディエライト化原料を水に混合し、有機バインダとしてのメチルセルロースを添加した。このとき、有機バインダの添加量はコーディエライト化原料100重量%に対して3〜10重量%とした。さらに、造孔材としてのカーボンや成形用潤滑油等の有機分を添加して混練し、粘土質のセラミック材料を得た。 First, it contains kaolin, fused silica, aluminum hydroxide, alumina, talc, etc., and the chemical composition finally has a weight ratio of SiO 2 : 45 to 55%, Al 2 O 3 : 33 to 42%, MgO: 12 A cordierite-forming raw material adjusted so as to have a composition mainly composed of ˜18% cordierite was mixed with water, and methylcellulose as an organic binder was added. At this time, the addition amount of the organic binder was 3 to 10% by weight with respect to 100% by weight of the cordierite forming raw material. Further, organic components such as carbon and pore forming lubricant were added and kneaded to obtain a clay-like ceramic material.

次いで、粘土質のセラミック材料を押出成形機により押出成形し、所望の長さで切断してハニカム成形体を作製した。このハニカム成形体は、最終的なハニカム構造体と略同形状を呈し、ハニカム状に設けられた隔壁と、これによって仕切られると共に軸方向を貫通する複数のセルとを有する。本例においては、粘度質のセラミック材料を直径160mm、長さ100mm、隔壁の厚み0.3mm、セル数300メッシュのハニカム成形体に成形した。なお、ハニカム成形体のサイズ等は、用途に応じて変更可能である。   Next, the clay-like ceramic material was extruded using an extruder and cut to a desired length to produce a honeycomb molded body. This honeycomb formed body has substantially the same shape as the final honeycomb structure, and has partition walls provided in a honeycomb shape, and a plurality of cells partitioned by this and penetrating in the axial direction. In this example, a viscous ceramic material was formed into a honeycomb formed body having a diameter of 160 mm, a length of 100 mm, a partition wall thickness of 0.3 mm, and a cell count of 300 mesh. Note that the size and the like of the honeycomb formed body can be changed according to the application.

次いで、ハニカム成形体を乾燥した後、ハニカム成形体の端面におけるセルの開口部において、縦方向及び横方向1つおきに、いわゆる市松模様状に栓部となる栓詰め用スラリーを配置した。   Next, after the honeycomb formed body was dried, plugging slurries serving as plug portions were arranged in a so-called checkered pattern at every other opening in the longitudinal direction and the lateral direction at the cell opening on the end face of the honeycomb formed body.

次いで、焼成炉において本焼成を行った。
本例で用いた焼成炉2は、図3に示すごとく、複数のゾーンで構成され、被処理物(ハニカム成形体100)を台車29に載せて搬送しながら焼成することができる連続炉(トンネル炉)である。焼成炉2は、脱脂ゾーン21、焼成ゾーン22及び冷却ゾーン23を有しており、各ゾーンは、温度調整することができるように構成されている。
Next, main firing was performed in a firing furnace.
As shown in FIG. 3, the firing furnace 2 used in this example is composed of a plurality of zones, and is a continuous furnace (tunnel) capable of firing a workpiece (honeycomb molded body 100) on a carriage 29 while being conveyed. Furnace). The firing furnace 2 has a degreasing zone 21, a firing zone 22, and a cooling zone 23, and each zone is configured so that the temperature can be adjusted.

また、図4に示すごとく、脱脂ゾーン21は、二次燃焼炉31とバーナー32とを有しており、炉内の酸素濃度を調整することができるように構成されている。
具体的には、炉内から未燃分の有機物を含んだ排気を回収する。回収された排気は、空燃比調整されたバーナー32にて所定の温度に調整される。そして、温度調整した排気と二次燃焼炉31から供給される低酸素濃度の排気とを混合し、所定量をファンにて炉内に供給する。そして、温度及び酸素濃度を調整した熱風を脱脂ゾーン21に送り込む。炉内に供給された熱風の残量については、二次燃焼炉31に戻され、650℃で処理された後、所定量を炉内排気との混合へと送られる。炉内の酸素濃度は常時モニタリングされており、混合比と空燃比とをフィードバッグしながら、脱脂ゾーン21の酸素濃度を調整する。
Moreover, as shown in FIG. 4, the degreasing zone 21 has a secondary combustion furnace 31 and a burner 32, and is configured so that the oxygen concentration in the furnace can be adjusted.
Specifically, exhaust gas containing unburned organic matter is recovered from the furnace. The recovered exhaust gas is adjusted to a predetermined temperature by a burner 32 that has been adjusted to an air-fuel ratio. Then, the exhaust gas adjusted in temperature and the low oxygen concentration exhaust gas supplied from the secondary combustion furnace 31 are mixed, and a predetermined amount is supplied into the furnace by a fan. Then, hot air whose temperature and oxygen concentration are adjusted is sent into the degreasing zone 21. The remaining amount of hot air supplied into the furnace is returned to the secondary combustion furnace 31, processed at 650 ° C., and then sent to a predetermined amount for mixing with the furnace exhaust. The oxygen concentration in the furnace is constantly monitored, and the oxygen concentration in the degreasing zone 21 is adjusted while feeding back the mixing ratio and the air-fuel ratio.

また、本例の焼成は、図5に示すような焼成パターンEで行った。すなわち、焼成炉2の脱脂ゾーン21において、室温から焼成温度1400℃まで昇温速度100℃/hで昇温する。このとき、ハニカム成形体100に含まれる有機分を燃焼除去する。脱脂ゾーン21における炉内の酸素濃度は2%以下に調整し、炉内の雰囲気中の酸素を通常よりも欠乏させた状態とした。そして、焼成ゾーン22において、焼成温度1400℃で4時間保持する。その後、冷却ゾーン23において、室温まで冷却し、焼成を終了する。焼成に要した時間は29時間であった。
以上により、図1に示すごとく、栓部13を設けたハニカム構造体10を有する排ガス浄化フィルタ1を作製した。
Moreover, the baking of this example was performed by the baking pattern E as shown in FIG. That is, in the degreasing zone 21 of the firing furnace 2, the temperature is raised from room temperature to a firing temperature of 1400 ° C. at a heating rate of 100 ° C./h. At this time, the organic component contained in the honeycomb formed body 100 is removed by combustion. The oxygen concentration in the furnace in the degreasing zone 21 was adjusted to 2% or less, and oxygen in the atmosphere in the furnace was depleted more than usual. And in the baking zone 22, it hold | maintains at the baking temperature of 1400 degreeC for 4 hours. Then, in the cooling zone 23, it cools to room temperature and complete | finishes baking. The time required for the firing was 29 hours.
In this way, as shown in FIG. 1, the exhaust gas purification filter 1 having the honeycomb structure 10 provided with the plug portion 13 was produced.

次に、比較例として、従来の方法で排ガス浄化フィルタを作製した。
比較例の焼成は、図5に示すような焼成パターンCで行った。すなわち、焼成炉2の脱脂ゾーン21において、室温から160℃までを3時間、160℃から650℃までを24時間かけて昇温し、650℃から1400℃までを15時間かけて昇温する。なお、脱脂ゾーン21における炉内の酸素濃度は調整せず、通常の状態(酸素濃度16%)とした。そして、焼成ゾーン22において、焼成温度1400℃で4時間保持する。その後、冷却ゾーン23において、室温まで冷却し、焼成を終了する。焼成に要した時間は57時間であった。
その他の工程は、上記と同様である。
Next, as a comparative example, an exhaust gas purification filter was produced by a conventional method.
The comparative example was fired with a firing pattern C as shown in FIG. That is, in the degreasing zone 21 of the firing furnace 2, the temperature is raised from room temperature to 160 ° C. over 3 hours, from 160 ° C. to 650 ° C. over 24 hours, and from 650 ° C. to 1400 ° C. over 15 hours. In addition, the oxygen concentration in the furnace in the degreasing zone 21 was not adjusted, and was in a normal state (oxygen concentration 16%). And in the baking zone 22, it hold | maintains at the baking temperature of 1400 degreeC for 4 hours. Then, in the cooling zone 23, it cools to room temperature and complete | finishes baking. The time required for firing was 57 hours.
Other steps are the same as above.

次に、本例の排ガス浄化フィルタ1の製造方法における作用効果について、比較例と比較しながら説明する。
本例の排ガス浄化フィルタ1の製造方法において、本焼成工程では、ハニカム成形体100に含まれる有機分の分解が開始されてから完了するまでは、炉内への酸素供給量を抑制している。すなわち、ハニカム成形体100の第1回目の焼成では、室温から焼成温度1400℃まで昇温する焼成炉2の脱脂ゾーン21において、炉内の雰囲気中の酸素を通常よりも欠乏させた状態にしている。
Next, the effect in the manufacturing method of the exhaust gas purification filter 1 of this example is demonstrated, comparing with a comparative example.
In the manufacturing method of the exhaust gas purification filter 1 of the present example, in the main firing step, the amount of oxygen supplied into the furnace is suppressed from the start to the completion of the decomposition of the organic component contained in the honeycomb formed body 100. . That is, in the first firing of the honeycomb formed body 100, in the degreasing zone 21 of the firing furnace 2 where the temperature is raised from room temperature to a firing temperature of 1400 ° C., oxygen in the atmosphere in the furnace is depleted more than usual. Yes.

ここで、本焼成工程では、バインダや造孔材としてのカーボン等の有機分が含まれた状態のハニカム成形体100を焼成し、この有機分を燃焼させて除去する。このとき、本例のように、炉内雰囲気中の酸素を欠乏させた状態で有機分を燃焼除去することにより、通常の酸素状態で焼成した比較例に比べて、有機分が燃焼したときの分解反応による反応熱(燃焼熱)が小さくなる。また、分解反応に必要となる酸素の供給量が少なくなるため、分解反応自体が緩やかに進む。   Here, in the main firing step, the honeycomb formed body 100 in a state where an organic component such as carbon as a binder or a pore forming material is contained is fired, and this organic component is burned and removed. At this time, as in this example, the organic content is burned and removed in a state where the oxygen in the furnace atmosphere is depleted, so that the organic content is combusted compared to the comparative example baked in a normal oxygen state. Reaction heat (combustion heat) due to the decomposition reaction is reduced. In addition, since the supply amount of oxygen necessary for the decomposition reaction is reduced, the decomposition reaction itself proceeds slowly.

これにより、本焼成工程において、ハニカム成形体100に含まれる有機分を安定的に燃焼除去することができる。それ故に、有機分の急激な燃焼及びそれに伴う大きな燃焼熱の発生を抑制し、さらにはハニカム成形体100に大きな熱応力が生じて割れ等が発生することを抑制することができる。
また、ハニカム成形体100に含まれる有機分を安定的に燃焼させることができることから、比較例よりも昇温速度を速くすることができる。これにより、焼成時間を短縮することができ、生産性を向上させることができる。実際に焼成に要した時間は、本例29時間に対して比較例57時間であり、焼成時間を大幅に短縮することができる。
Thereby, in the main firing step, organic components contained in the honeycomb formed body 100 can be stably removed by combustion. Therefore, it is possible to suppress the rapid combustion of the organic component and the generation of the large combustion heat associated therewith, and further suppress the occurrence of cracks and the like due to the large thermal stress generated in the honeycomb formed body 100.
Moreover, since the organic component contained in the honeycomb formed body 100 can be stably burned, the temperature rising rate can be increased as compared with the comparative example. Thereby, baking time can be shortened and productivity can be improved. The actual time required for firing is 57 hours for the comparative example with respect to 29 hours for this example, and the firing time can be greatly shortened.

このように、本例の排ガス浄化フィルタの製造方法によれば、焼成時間を短縮して生産性の向上を図ることができ、焼成時における不具合の発生を抑制することができる。   Thus, according to the manufacturing method of the exhaust gas purification filter of this example, the firing time can be shortened to improve the productivity, and the occurrence of defects during firing can be suppressed.

(実施例2)
本例は、焼成炉2の脱脂ゾーン21の酸素濃度を変化させて作製した排ガス浄化フィルタ1について、不良率を調べたものである。
本例では、焼成炉2の脱脂ゾーン21における酸素濃度を2〜16%の範囲で変化させ、排ガス浄化フィルタ1を作製した。具体的には、実施例1と同様のサイズのハニカム成形体100を用いて、実施例1と同様の焼成パターンEで焼成を行い、室温から500℃までの酸素濃度をそれぞれ2%、5%、8%、12%、16%に調整した。なお、500℃以降については、いずれも酸素濃度を9%に調整した。そして、作製した排ガス浄化フィルタ1について割れ等の不良を目視により観察し、その発生割合から不良率を求めた。その結果を図6に示す。
(Example 2)
In this example, the defect rate is examined for the exhaust gas purification filter 1 manufactured by changing the oxygen concentration in the degreasing zone 21 of the firing furnace 2.
In this example, the exhaust gas purification filter 1 was manufactured by changing the oxygen concentration in the degreasing zone 21 of the firing furnace 2 in the range of 2 to 16%. Specifically, using the honeycomb formed body 100 having the same size as that of Example 1, firing was performed with a firing pattern E similar to that of Example 1, and oxygen concentrations from room temperature to 500 ° C. were respectively 2% and 5%. , 8%, 12% and 16%. In addition, after 500 degreeC, all adjusted oxygen concentration to 9%. And the defects, such as a crack, were observed visually about the produced exhaust gas purification filter 1, and the defect rate was calculated | required from the generation | occurrence | production ratio. The result is shown in FIG.

図6は、縦軸に不良率(%)、横軸に室温から500℃までの酸素濃度(%)を示したものである。
同図から知られるように、酸素濃度16%での不良率は100%であったが、酸素濃度12%での不良率は約10%であり、不良率が大幅に低下した。さらに、酸素濃度2%、5%、8%での不良率はほぼ0%であり、不良の発生は見られなかった。
In FIG. 6, the vertical axis represents the defect rate (%), and the horizontal axis represents the oxygen concentration (%) from room temperature to 500 ° C.
As can be seen from the figure, the failure rate at an oxygen concentration of 16% was 100%, but the failure rate at an oxygen concentration of 12% was about 10%, and the failure rate was greatly reduced. Furthermore, the defect rate at oxygen concentrations of 2%, 5%, and 8% was almost 0%, and no occurrence of defects was observed.

この結果から、炉内雰囲気中の酸素を欠乏させた状態で焼成し、ハニカム成形体100に含まれる有機分を燃焼除去することにより、その有機分を安定的に燃焼除去できることがわかる。特に、酸素濃度を8%以下とすることにより、有機分の急激な燃焼及びそれに伴う大きな燃焼熱の発生をより一層抑制することができ、ハニカム成形体100の割れ等の不良の発生を防止できることがわかる。   From this result, it can be seen that firing is performed in a state where oxygen in the furnace atmosphere is deficient, and the organic component contained in the honeycomb formed body 100 is combusted and removed, whereby the organic component can be stably combusted and removed. In particular, by setting the oxygen concentration to 8% or less, it is possible to further suppress the rapid combustion of organic components and the accompanying generation of large combustion heat, and to prevent the occurrence of defects such as cracks in the honeycomb molded body 100. I understand.

(実施例3)
次に、焼成炉2の脱脂ゾーン21の酸素濃度を変化させて焼成した際のハニカム成形体100の内外温度を調べたものである。
本例では、焼成炉2の脱脂ゾーン21における酸素濃度を2%又は16%に調整し、ハニカム成形体100を焼成した。具体的には、実施例1と同様のサイズのハニカム成形体100を用いて、実施例1と同様の焼成パターンEで焼成を行い、室温から500℃までの酸素濃度を2%、16%に調整した。そして、ハニカム成形体100の中心部、外周部及び炉内温度を白金熱電対により測定した。その結果を図7に示す。
(Example 3)
Next, the internal and external temperatures of the honeycomb formed body 100 when the oxygen concentration in the degreasing zone 21 of the firing furnace 2 was changed and fired were examined.
In this example, the honeycomb formed body 100 was fired by adjusting the oxygen concentration in the degreasing zone 21 of the firing furnace 2 to 2% or 16%. Specifically, using the honeycomb formed body 100 having the same size as that of Example 1, firing is performed with a firing pattern E similar to that of Example 1, and the oxygen concentration from room temperature to 500 ° C. is set to 2% and 16%. It was adjusted. And the center part of the honeycomb molded object 100, the outer peripheral part, and the furnace temperature were measured with the platinum thermocouple. The result is shown in FIG.

図7(a)、(b)は、縦軸に温度(℃)、横軸に時間を示したものである。また、中心部の温度をS1、外周部の温度をS2、炉内温度をS3として示している。
同図から知られるように、酸素濃度16%の場合では、ハニカム成形体100に内外温度差が生じているが、酸素濃度2%の場合では、内外温度差がほとんど見られない。
7A and 7B show temperature (° C.) on the vertical axis and time on the horizontal axis. Further, the temperature of the central part is shown as S 1 , the temperature of the outer peripheral part is shown as S 2 , and the temperature in the furnace is shown as S 3 .
As can be seen from the figure, when the oxygen concentration is 16%, an internal / external temperature difference is generated in the honeycomb formed body 100, but when the oxygen concentration is 2%, the internal / external temperature difference is hardly observed.

この結果から、炉内雰囲気中の酸素を欠乏させた状態で焼成し、ハニカム成形体100に含まれる有機分を燃焼除去することにより、その有機分を安定的に燃焼除去できることがわかる。そして、有機分の急激な燃焼を抑制し、ハニカム成形体100に局部的な温度上昇が生じることを抑制できることがわかる。   From this result, it can be seen that firing is performed in a state where oxygen in the furnace atmosphere is deficient, and the organic component contained in the honeycomb formed body 100 is combusted and removed, whereby the organic component can be stably combusted and removed. And it turns out that the rapid combustion of an organic part can be suppressed and it can suppress that the local temperature rise arises in the honeycomb molded object 100. FIG.

実施例における、排ガス浄化フィルタを示す斜視図。The perspective view which shows the exhaust gas purification filter in an Example. 実施例における、排ガス浄化フィルタを示す断面説明図。Cross-sectional explanatory drawing which shows the exhaust gas purification filter in an Example. 実施例における、焼成炉の構成を示す説明図。Explanatory drawing which shows the structure of the baking furnace in an Example. 実施例における、脱脂ゾーンの構成を示す説明図。Explanatory drawing which shows the structure of the degreasing zone in an Example. 実施例における、焼成パターンを示す説明図。Explanatory drawing which shows the baking pattern in an Example. 実施例における、不良率と酸素濃度との関係を示す説明図。Explanatory drawing which shows the relationship between the defect rate and oxygen concentration in an Example. 実施例における、ハニカム成形体の温度と時間との関係を示す説明図。Explanatory drawing which shows the relationship between the temperature of a honeycomb molded object, and time in an Example.

符号の説明Explanation of symbols

1 排ガス浄化フィルタ
10 ハニカム構造体
11 隔壁
12 セル
121 導入通路
122 排出通路
13 栓部
G 排ガス
DESCRIPTION OF SYMBOLS 1 Exhaust gas purification filter 10 Honeycomb structure 11 Partition 12 Cell 121 Introduction passage 122 Discharge passage 13 Plug part G Exhaust gas

Claims (8)

多孔質の隔壁をハニカム状に配して多数のセルを設けたコーディエライトからなるハニカム構造体を有し、該ハニカム構造体の上記セルのうち、排ガスを導入する導入通路となるセルの下流端と、上記多孔質の隔壁を通過した排ガスを排出する排出通路となるセルの上流端とを栓部によって閉塞してなる排ガス浄化フィルタを製造する方法において、
コーディエライト化原料を含むセラミックス材料を押出成形して、ハニカム成形体を作製する押出成形工程と、
上記ハニカム成形体を乾燥する乾燥工程と、
上記ハニカム成形体を1又は複数回焼成する焼成工程と、
該焼成工程の前又は途中において、上記ハニカム成形体の端面における上記セルの開口部のうち、上記栓部によって栓詰めすべき部分に栓詰め用スラリーを配置する栓詰め工程とを有し、
上記焼成工程における第1回目の焼成では、少なくとも上記ハニカム成形体に含まれる有機分の分解が開始されてから完了するまでは、炉内への酸素供給量を抑制することを特徴とする排ガス浄化フィルタの製造方法。
It has a honeycomb structure made of cordierite in which porous partition walls are arranged in a honeycomb shape and a large number of cells are provided. In a method of manufacturing an exhaust gas purification filter in which an end and an upstream end of a cell serving as a discharge passage for discharging exhaust gas that has passed through the porous partition wall are closed by a plug portion,
An extrusion process for producing a honeycomb formed body by extruding a ceramic material containing a cordierite forming raw material;
A drying step of drying the honeycomb formed body,
A firing step of firing the honeycomb formed body one or more times;
Before or during the firing step, the plugging step of placing a plugging slurry in a portion to be plugged by the plug portion of the opening of the cell in the end face of the honeycomb molded body,
In the first firing in the firing step, the exhaust gas purification is characterized in that the amount of oxygen supplied into the furnace is suppressed at least from the start to the completion of the decomposition of the organic component contained in the honeycomb formed body. A method for manufacturing a filter.
請求項1において、上記焼成工程における第1回目の焼成では、少なくとも上記ハニカム成形体に含まれる有機分の分解が開始されてから完了するまでは、上記炉内の酸素濃度を8%以下とすることを特徴とする排ガス浄化フィルタの製造方法。   In claim 1, in the first firing in the firing step, the oxygen concentration in the furnace is set to 8% or less from the start to the completion of the decomposition of the organic component contained in the honeycomb molded body. An exhaust gas purification filter manufacturing method characterized by the above. 請求項1又は2において、上記焼成工程は、上記栓詰め工程の前に、上記ハニカム成形体を仮焼成する第1焼成工程と、
上記栓詰め工程の後に、上記ハニカム成形体を上記仮焼成の焼成温度よりも高い焼成温度で本焼成すると共に、上記栓詰めすべき部分に上記栓部を形成する第2焼成工程とを有することを特徴とする排ガス浄化フィルタの製造方法。
In claim 1 or 2, the firing step includes a first firing step of temporarily firing the honeycomb formed body before the plugging step;
After the plugging step, the honeycomb formed body is subjected to main firing at a firing temperature higher than the firing temperature of the temporary firing, and a second firing step of forming the plug portion in the portion to be plugged. An exhaust gas purification filter manufacturing method characterized by the above.
請求項1又は2において、上記焼成工程は、上記栓詰め工程の前に、上記ハニカム成形体を本焼成する第1焼成工程と、
上記栓詰め工程の後に、上記ハニカム成形体を上記本焼成の焼成温度よりも低い焼成温度で仮焼成すると共に、上記栓詰めすべき部分に上記栓部を形成する第2焼成工程とを有することを特徴とする排ガス浄化フィルタの製造方法。
In claim 1 or 2, the firing step includes a first firing step of firing the honeycomb formed body before the plugging step;
After the plugging step, the honeycomb formed body is temporarily fired at a firing temperature lower than the firing temperature of the main firing, and has a second firing step of forming the plug portion in the portion to be plugged. An exhaust gas purification filter manufacturing method characterized by the above.
請求項1又は2において、上記焼成工程は、上記栓詰め工程の後に、上記ハニカム成形体を本焼成すると共に、上記栓詰めすべき部分に上記栓部を形成する第1焼成工程のみを有することを特徴とする排ガス浄化フィルタの製造方法。   3. The firing process according to claim 1, wherein the firing step includes only a first firing step of firing the honeycomb formed body after the plugging step and forming the plug portion in the portion to be plugged. An exhaust gas purification filter manufacturing method characterized by the above. 請求項3又は4において、上記焼成工程における上記仮焼成の焼成温度は、1300〜1400℃であることを特徴とする排ガス浄化フィルタの製造方法。   5. The method for producing an exhaust gas purification filter according to claim 3, wherein a calcination temperature of the preliminary calcination in the calcination step is 1300 to 1400 ° C. 5. 請求項6において、上記焼成工程における上記仮焼成の焼成温度は、1380〜1400℃であることを特徴とする排ガス浄化フィルタの製造方法。   The method for producing an exhaust gas purification filter according to claim 6, wherein the calcining temperature of the preliminary calcination in the calcination step is 1380 to 1400 ° C. 請求項3〜5のいずれか1項において、上記焼成工程における上記本焼成の焼成温度は、1400〜1450℃であることを特徴とする排ガス浄化フィルタの製造方法。   The method for producing an exhaust gas purification filter according to any one of claims 3 to 5, wherein a firing temperature of the main firing in the firing step is 1400 to 1450 ° C.
JP2006309643A 2006-11-15 2006-11-15 Manufacturing method of exhaust gas purification filter Expired - Fee Related JP5082398B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006309643A JP5082398B2 (en) 2006-11-15 2006-11-15 Manufacturing method of exhaust gas purification filter
DE200710000897 DE102007000897A1 (en) 2006-11-15 2007-11-14 Method for producing an exhaust gas purification filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006309643A JP5082398B2 (en) 2006-11-15 2006-11-15 Manufacturing method of exhaust gas purification filter

Publications (2)

Publication Number Publication Date
JP2008119665A true JP2008119665A (en) 2008-05-29
JP5082398B2 JP5082398B2 (en) 2012-11-28

Family

ID=39504996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006309643A Expired - Fee Related JP5082398B2 (en) 2006-11-15 2006-11-15 Manufacturing method of exhaust gas purification filter

Country Status (2)

Country Link
JP (1) JP5082398B2 (en)
DE (1) DE102007000897A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013142526A (en) * 2012-01-12 2013-07-22 Sumitomo Chemical Co Ltd Tunnel kiln and method of manufacturing sintered body using the same
JP2015535520A (en) * 2012-11-21 2015-12-14 コーニング インコーポレイテッド Method for firing cordierite bodies
JP2018138507A (en) * 2017-02-24 2018-09-06 日本碍子株式会社 Method for manufacturing ceramic body
US10472289B2 (en) 2015-05-07 2019-11-12 Corning Incorporated Method of firing a ceramic honeycomb body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6443706B2 (en) 2014-09-03 2018-12-26 コーニング インコーポレイテッド Honeycomb body having layered plug and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203273A (en) * 1988-02-10 1989-08-16 Ngk Insulators Ltd Method for calcining honeycomb structural body of ceramics
JP2003277162A (en) * 2002-01-21 2003-10-02 Ngk Insulators Ltd Porous honeycomb structural body, application thereof and manufacturing method therefor
JP2005087805A (en) * 2003-09-12 2005-04-07 Ngk Insulators Ltd Honeycomb structure and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3022195B2 (en) 1994-09-05 2000-03-15 日本碍子株式会社 Method for firing ceramic compact and combustion apparatus used for firing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203273A (en) * 1988-02-10 1989-08-16 Ngk Insulators Ltd Method for calcining honeycomb structural body of ceramics
JP2003277162A (en) * 2002-01-21 2003-10-02 Ngk Insulators Ltd Porous honeycomb structural body, application thereof and manufacturing method therefor
JP2005087805A (en) * 2003-09-12 2005-04-07 Ngk Insulators Ltd Honeycomb structure and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013142526A (en) * 2012-01-12 2013-07-22 Sumitomo Chemical Co Ltd Tunnel kiln and method of manufacturing sintered body using the same
JP2015535520A (en) * 2012-11-21 2015-12-14 コーニング インコーポレイテッド Method for firing cordierite bodies
US10472289B2 (en) 2015-05-07 2019-11-12 Corning Incorporated Method of firing a ceramic honeycomb body
JP2018138507A (en) * 2017-02-24 2018-09-06 日本碍子株式会社 Method for manufacturing ceramic body

Also Published As

Publication number Publication date
JP5082398B2 (en) 2012-11-28
DE102007000897A1 (en) 2008-07-24

Similar Documents

Publication Publication Date Title
US9221192B2 (en) Ceramic processing firing
US6620751B1 (en) Strontium feldspar aluminum titanate for high temperature applications
US8187525B2 (en) Method of firing green bodies into porous ceramic articles
JP3925225B2 (en) Exhaust gas purification filter and manufacturing method thereof
US20050143255A1 (en) Porous material and method for production thereof
JP2012509765A (en) High strength / low microcrack ceramic honeycomb and method therefor
CN114950029B (en) Porous honeycomb structure and method for producing same
JP4222600B2 (en) Method for firing ceramic honeycomb structure
JP5082398B2 (en) Manufacturing method of exhaust gas purification filter
JP2008037722A (en) Method of manufacturing honeycomb structure
JP2008120652A (en) Method of firing ceramic honeycomb formed body
JP2012188346A (en) Method for firing honeycomb mold, honeycomb structure obtained by using the same and gas treating apparatus with the same
JP2008110896A (en) Method of manufacturing ceramic honeycomb structure
JP2018138507A (en) Method for manufacturing ceramic body
JP2002326881A (en) Manufacturing method of porous ceramic
JP2002160976A (en) Method for manufacturing ceramic honeycomb structure
JP2007045686A (en) Method for manufacturing porous ceramic structure
JP2002234780A (en) Method for producing porous ceramic honeycomb structure
JP5791391B2 (en) Honeycomb structure and gas processing apparatus using the same
KR101807833B1 (en) A process for the preparation of ceramic honeycomb catalyst supporter having a low coefficient of expansion and the ceramic honeycomb catalyst supporter prepared therefrom
JP4899814B2 (en) Manufacturing method of exhaust gas purification filter
US11071937B2 (en) Ceramic porous body and method for producing the same, and dust collecting filter
JP2008119666A (en) Manufacturing method of exhaust gas purifying filter
JP2007237653A (en) Manufacturing method for ceramic honeycomb structure
US11505504B2 (en) Non-oxide inorganic pore-formers for cordierite ceramic articles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

R151 Written notification of patent or utility model registration

Ref document number: 5082398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees